Application Notes for Configuring SIP Trunking between the Onvoy Converged IP Service and an Avaya IP Telephony Solution – Issue 1.0

Abstract

These Application Notes describe the steps to configure SIP trunking between the Onvoy Converged IP Service and an Avaya IP telephony solution consisting of Avaya Communication Manager, Avaya SIP Enablement Services, and various Avaya SIP, H.323, digital and analog endpoints.

Onvoy is a Minneapolis-based service provider of advanced telecommunications solutions that offers SIP trunk access to their Converged IP Service. Converged IP Service is a robust voice over IP network solution for customers ranging from small businesses to large enterprises. SIP trunking allows customer locations to be connected to the public telephone network via converged IP network access serving both voice and data needs. This provides a flexible, cost-saving alternative to traditional hardwired telephone trunk lines.

Onvoy is a member of the Avaya DeveloperConnection Service Provider program. Information in these Application Notes has been obtained through compliance testing and additional technical discussions. Testing was conducted via the DeveloperConnection Program at the Avaya Solution and Interoperability Test Lab.
1. Introduction

These Application Notes describe the steps for configuring SIP trunking between the Onvoy Converged IP Service and an Avaya IP telephony solution consisting of Avaya SIP Enablement Services, Avaya Communication Manager and various Avaya telephony endpoints. These endpoints included IP telephones (using SIP and H.323 protocols), traditional analog and digital phones and the Avaya one-X Desktop Edition running on a Microsoft Windows PC.

Onvoy is a Minneapolis-based service provider of advanced telecommunications solutions that offers SIP trunk access to their Converged IP Service. Converged IP Service is a robust voice over IP network solution for customers ranging from small businesses to large enterprises. Customers using this SIP trunking solution are able to place and receive PTSN calls via a dedicated broadband Internet connection using the Session Initiation Protocol (SIP). This converged network solution is a flexible, cost-saving alternative to more traditional PTSN trunks such as T1 or ISDN PRI.

Onvoy’s Converged IP Service offers the following capabilities:

- Outbound PSTN calling to local, long distance and international services
- Incoming Direct Inward Dial (DID) service
- Incoming Toll-free service
- Operator, Directory Assistance and Calling Card Service
- Converged IP access via Onvoy’s managed QoS IP network

An illustration of Onvoy’s network coverage is provided in Figure 1 or the most current version online at http://www.onvoy.com/pdf/networkmap.pdf.
SIP is a signaling protocol designed to provide a common framework for session establishment, modification and termination to support multimedia communications. In this application, SIP acts as the signaling protocol between the Avaya equipment and the network service offered by Onvoy. SIP manages the establishment of voice connections and the transfer of related information such as calling party identity, etc.

Figure 2 illustrates an example Avaya IP telephony solution connected to Onvoy’s Converged IP Service using SIP trunking. This is the configuration used during the DeveloperConnection compliance testing process.

The Avaya IP telephony solution used to create a simulated customer site contained:

- Avaya S8710 Media Server with an Avaya G650 Media Gateway. The S8710 served as the host processor for Avaya Communication Manager.
- Avaya SIP Enablement Services (SES) software operating on an Avaya S8500B server platform.
- Avaya 4600 series IP telephones (configured to use either the SIP or H.323 protocol).
- Avaya 6400 series digital and 6200 series analog telephones.
Although not shown in Figure 2, the enterprise site may also have alternate routes to the PSTN using traditional trunks.

Note also that security devices, such as firewall and network address translation (NAT) devices, are not included in this configuration. These Application Notes focus on SIP trunking interoperability. However, it is recommended that enterprise customers deploy security devices in a production environment.

Figure 2: Avaya IP Telephony Network using Onvoy Converged IP Service

1.1. Call Flows

To better understand how calls are routed between the PSTN and the enterprise site shown in Figure 2 using SIP trunks, two call flows are described in this section.

The first call scenario illustrated in Figure 3 is a PSTN call to the enterprise site terminating on a typical analog telephone supported by Avaya Communication Manager.
1. A user on the PSTN dials an Onvoy provided DID number assigned to an Avaya Communication Manager telephone at the enterprise site. The PSTN routes the call to the Onvoy network (as the local service provider) who routes the DID number to the assigned customer.

2. Based on the DID number, Onvoy offers the call to Avaya SES using SIP signaling messages sent over the converged access facility. Note that the assignment of the DID number and the address of the Avaya SES server was previously established during the ordering and provisioning of the service.

3. Avaya SES routes the call to the Avaya S8710 Media Server running Avaya Communication Manager over a SIP trunk between the elements.

4. Avaya Communication Manager terminates the call to the directly connected analog phone as shown in step 4. The same process occurs for calls to Avaya digital and H.323 IP phones.

- or –

4a. Inbound calls destined for a SIP extension at the enterprise are routed to Avaya Communication Manager which then transmits the appropriate SIP signaling via Avaya SES to the SIP telephone (as shown by the 4a arrow.)

![Figure 3: Incoming PSTN Calls to Avaya Communication Manager](image)

Appendix A illustrates an example of a SIP INVITE message sent by Onvoy for an incoming DID call.
The second call scenario illustrated in Figure 4 is an outgoing call from an Avaya telephone at the enterprise site to the PSTN via the SIP trunk to Onvoy.

1. An Avaya H.323, analog or digital telephone served by Avaya Communication Manager originates a call to a user on the PSTN.

 - or -

1a. An Avaya SIP telephone originates a call that is routed via Avaya SES (as shown by the 1a arrow) to Avaya Communication Manager.

2. The call request is handled by Avaya Communication Manager where origination treatment such as class of service restrictions and automatic route selection is performed. Avaya Communication Manager selects the SIP trunk and sends the SIP signaling messages to Avaya SIP Enablement Services.

3. Avaya SIP Enablement Services routes the call to Onvoy.

4. Onvoy completes the call to the PSTN.

Figure 4: Outgoing Calls from Avaya Communication Manager to the PSTN
2. Equipment and Software Validated

The following equipment and software were used for the sample configuration provided:

<table>
<thead>
<tr>
<th>Avaya IP Telephony Solution Components</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Component</td>
<td>Version</td>
</tr>
<tr>
<td>Avaya S8710 Media Server with an Avaya G650 Media Gateway</td>
<td>Communication Manager 3.1</td>
</tr>
<tr>
<td></td>
<td>(R013x.01.0.628.6 update: 01.0.628.6-11410)</td>
</tr>
<tr>
<td>Avaya SIP Enablement Services on S8500B Media Server</td>
<td>CCS-3.0.0.0-031.0</td>
</tr>
<tr>
<td>Avaya 4620 Series SIP Telephones</td>
<td>Release 022006 – s10d0b2.2.2.bin</td>
</tr>
<tr>
<td>Avaya one-X Desktop Edition SIP endpoint</td>
<td>Release 2.1</td>
</tr>
<tr>
<td>Avaya 4620 Series H.323 IP Telephones</td>
<td>Release 022006 – a10d01b2_3.bin</td>
</tr>
<tr>
<td>Avaya 6416 Digital Telephone</td>
<td>n/a</td>
</tr>
<tr>
<td>Avaya 6210 Analog Telephone</td>
<td>n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Onvoy Converged IP Service Components</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Component</td>
<td>Version</td>
</tr>
<tr>
<td>Lucent Compact Switch</td>
<td>3.10.1.8</td>
</tr>
<tr>
<td>Acme Packet Net-Net Session Border Controller</td>
<td>2.1.0 P24</td>
</tr>
</tbody>
</table>

The specific configuration above was used for the Onvoy compatibility testing. Note that this solution will be compatible with all other Avaya Media Server and Media Gateway platforms running similar versions of Avaya Communication Manager and Avaya SIP Enablement Services.

3. Configure Avaya Communication Manager

This section describes the steps for configuring a SIP trunk on Avaya Communication Manager. The SIP trunk is established between Avaya Communication Manager and Avaya SIP Enablement Services (SES) server. This trunk will carry the SIP signaling sent to the Onvoy Converged IP Service.

This SIP trunk also provides the trunking for SIP endpoint devices such as Avaya 4600 SIP telephones and Avaya one-X Desktop Edition using Avaya Communication Manager in the recommended OPS configuration. Avaya SIP telephones are configured as Outboard Proxy SIP (OPS) stations on Avaya Communication Manager. OPS SIP stations register with Avaya SES but have calling privileges and features managed by Avaya Communication Manager. Avaya Communication Manager acts as a back-to-back SIP user agent when a SIP phone places or receives a call over a SIP trunk to a service provider.
Note the use of SIP endpoints is optional. The steps discussed in Sections 3.2 and 4.2 describing SIP endpoints administration may be omitted if SIP endpoints are not used.

In the Avaya SIP architecture, the Avaya SES acts as a SIP proxy through which all incoming and outgoing SIP messages flow to Onvoy. There is no direct SIP signaling path between Onvoy and Avaya Communication Manager or Avaya SIP endpoints.

For incoming calls, the Avaya SES uses media server routing maps to direct the incoming SIP messages to the appropriate Avaya Communication Manager. Once the message arrives at the Avaya Communication Manager further incoming call treatment, such as incoming digit translations, class of service restrictions, etc. may be performed.

All outgoing calls to the PSTN are processed within Avaya Communication Manager and may be first subject to outbound features such as automatic route selection, digit manipulation and class of service restrictions. Once Avaya Communication Manager selects a SIP trunk, the SIP signaling is routed to the Avaya SES. Within the Avaya SES, host address maps direct the outbound SIP messages to the Onvoy gateway.

The dial plan for the configuration described in these Application Notes consists of 10-digit dialing for local and long-distance calls over the PSTN. In addition, Operator calls (0), Directory Assistance calls (411) and International calls (011+Country Code) were also supported. Avaya Communication Manager routes all calls using Automatic Route Selection (ARS), except for intra-switch calls. Configuring ARS is beyond the scope of these Application Notes and the reader should refer to [1] and [2] for additional information.

Avaya Communication Manager configuration was performed using the System Access Terminal (SAT). The general installation of the S8710 media server, G650 Media Gateway and circuit packs such as the CLAN is presumed to have been previously completed and is not discussed here.
3.1. SIP Trunk Configuration

Step 1: Confirm Necessary Optional Features
Using the SAT, verify that there exists sufficient SIP Trunks and Off-PBX Telephones capacities by displaying the System-Parameters Customer-Options form shown in Figure 5. The license file installed on the system controls the maximum permitted. If a required feature is not enabled or there is insufficient capacity, contact an authorized Avaya sales representative to add additional capacity.

On Page 1 of the System-Parameters Customer-Options form, verify that the number of OPS stations available is sufficient for the number of SIP telephones to be used.

```
display system-parameters customer-options

G3 Version: V13
Location: 1           RFA System ID (SID): 1
Platform: 8           RFA Module ID (MID): 1

USED
Platform Maximum Ports: 44000 86
Maximum Stations: 36000 36
Maximum XMOBILE Stations: 0 0
Maximum Off-PBX Telephones - EC500: 0 0
Maximum Off-PBX Telephones - OPS: 100 17
Maximum Off-PBX Telephones - SCCAN: 0 0

(NOTE: You must logoff & login to effect the permission changes.)
```

Figure 5: System-Parameters Customer-Options Form – Page 1
On Page 2, verify that the number of SIP trunks supported by the system is sufficient for the combination of trunks to the Onvoy network, SIP endpoints and any other SIP trunks used. Note that each SIP OPS telephone on a call with Onvoy uses two SIP trunks for the duration of the call.

```
<table>
<thead>
<tr>
<th>Display System-Parameters Customer-Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Features</td>
</tr>
<tr>
<td>IP Port Capacities</td>
</tr>
<tr>
<td>Used</td>
</tr>
<tr>
<td>Maximum Administered H.323 Trunks: 0</td>
</tr>
<tr>
<td>Maximum Concurrently Registered IP Stations: 100</td>
</tr>
<tr>
<td>Maximum Administered Remote Office Trunks: 0</td>
</tr>
<tr>
<td>Maximum Concurrently Registered Remote Office Stations: 0</td>
</tr>
<tr>
<td>Maximum Concurrently Registered IP eCons: 0</td>
</tr>
<tr>
<td>Max Concur Registered Unauthenticated H.323 Stations: 0</td>
</tr>
<tr>
<td>Maximum Video Capable H.323 Stations: 0</td>
</tr>
<tr>
<td>Maximum Video Capable IP Softphones: 0</td>
</tr>
<tr>
<td>Maximum Administered SIP Trunks: 100</td>
</tr>
<tr>
<td>Maximum Number of DS1 Boards with Echo Cancellation: 0</td>
</tr>
<tr>
<td>Maximum TN2501 VAL Boards: 1</td>
</tr>
<tr>
<td>Maximum G250/G350/G700 VAL Sources: 0</td>
</tr>
<tr>
<td>Maximum TN2602 Boards with 80 VoIP Channels: 2</td>
</tr>
<tr>
<td>Maximum TN2602 Boards with 320 VoIP Channels: 2</td>
</tr>
<tr>
<td>Maximum Number of Expanded Meet-me Conference Ports: 0</td>
</tr>
<tr>
<td>(NOTE: You must logoff &amp; login to effect the permission changes.)</td>
</tr>
</tbody>
</table>
```

Figure 6: System-Parameters Customer-Options Form – Page 2

Step 2: Assign Node Names

In the **IP Node Names** form, assign the node name and IP address for Avaya SIP Enablement Services at the enterprise site. In this case “SES” and “10.1.1.86” are being used, respectively. The SES node name will be used throughout the other configuration screens of Avaya Communication Manager.
In this example “CLAN” and “10.1.1.84” are the name and IP address assigned to the TN799DP Control-Lan card. The CLAN entry was previously created during the installation of the system. Note, in smaller gateways such as an Avaya G350, the S8300 processor address (procr) is used as the SIP signaling interface instead of the CLAN interface.

<table>
<thead>
<tr>
<th>Name</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAN</td>
<td>10.1.1.84</td>
</tr>
<tr>
<td>default</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>ipsi</td>
<td>10.1.1.109</td>
</tr>
<tr>
<td>medpro-hw11</td>
<td>10.1.1.116</td>
</tr>
<tr>
<td>procr</td>
<td>.</td>
</tr>
<tr>
<td>SES</td>
<td>10.1.1.86</td>
</tr>
<tr>
<td>vall-tn2501ap</td>
<td>10.1.1.122</td>
</tr>
</tbody>
</table>

(11 of 11 administered node-names were displayed)

Use 'list node-names' command to see all the administered node-names
Use 'change node-names ip xxx' to change a node-name 'xxx' or add a node-name

Figure 7: IP Nodes Names Form

Step 3: Define IP Network Region

The **IP Network Region** form specifies the parameters used by the SIP trunk group serving the Avaya SES proxy (used to reach Onvoy and any optional SIP endpoints). Note that these parameters also apply to any other elements (such as H.323 phones, MedPro cards, etc.) also assigned to this region. In the **IP Network Region** form:

- The **Authoritative Domain** field is configured to match the domain name configured on the Avaya SES. In this configuration, the domain name is *devcon.com*. This field is required for endpoints to call the public network.
- By default, **IP-IP Direct Audio** (shuffling) is enabled to allow audio traffic to be sent directly between SIP endpoints without using media resources such as the TN2302AP IP Media Processor (MedPro) card.
- The **Codec Set** is set to the number of the IP codec set to be used for calls within the IP network region. In this configuration, this codec set will apply to calls with Onvoy as well as any IP phone (H.323 or SIP) within the enterprise.

In this case, the SIP trunk is assigned to the same IP network region as the G650 Media Gateway, CLAN and MedPro cards. If multiple network regions are used, Page 3 of each **IP Network Region** form must be used to specify the codec set for inter-region communications.

Note also that the **IP Network Region** form is used to set the packet parameters that provides priority treatment for signaling and audio packets over other data traffic on Onvoy’s Converged Access. These parameters may need to be aligned with the specific values provided by Onvoy.
Step 4: Define IP Codecs
Open the IP Codec Set form using the ip-codec value specified in the IP Network Region form (Figure 8) and enter the audio codec type to be used for calls routed over the SIP trunk. The settings of the IP Codec Set form are shown in Figure 9. Note that the IP Codec Set form may include multiple codecs listed in priority order to allow the codec for the call to be negotiated during call establishment. For Onvoy, only G.711MU or G.729A can be included in this list.

Step 5: Configure the Signaling Group
Configure the Signaling Group form shown in Figure 10 as follows:

- Set the Group Type field to sip.
The **Transport Method** field will default to *tls* (Transport Layer Security). TLS is the only link protocol that is supported for SIP trunking with Avaya SIP Enablement Services.

Specify the Avaya Control-Lan card (node name “CLAN”) and the Avaya SIP Enablement Services Server (node name “SES”) as the two ends of the signaling group in the **Near-end Node Name** and the **Far-end Node Name** fields, respectively. These field values are taken from the **IP Node Names** form shown in **Figure 7**. For smaller media server platforms, the near (local) end of the SIP signaling group may be the S8300 media server processor (procr) rather than the CLAN.

Ensure that the recommended TLS port value of 5061 is configured in the **Near-end Listen Port** and the **Far-end Listen Port** fields.

Enter the IP Network Region value assigned in the ip-network-region form (**Figure 8**). Note that if the **Far-end Network Region** field is different from the near-end network region, the preferred codec will be selected from the IP codec set assigned for the inter-region connectivity for the pair of network regions. In this case, the same ip network region (Network Region 1) was used for local and PSTN calls; however, different network regions can be used in the field.

Enter the domain name of Avaya SIP Enablement Services in the **Far-end Domain** field. In this configuration, the domain name is *devcon.com*. This domain is specified in the Uniform Resource Identifier (URI) of the SIP “To” address in the INVITE message. Mis-configuring this field may prevent calls from being successfully established to other SIP endpoints or to the PSTN.

If calls to/from SIP endpoints are to be shuffled, then the **Direct IP-IP Audio Connections** field must be set to ‘y’.

The **DTMF over IP** field should remain set to the default value of *rtp-payload*. This value enables Avaya Communication Manager to send DTMF transmissions using RFC 2833.

The default values for the other fields may be used.
Step 6: Configure the Trunk Group

Configure the Trunk Group form as shown in Figure 11 using the “add trunk-group” command. In this case the trunk group number chosen is 1. On Page 1 of this form:

- Set the **Group Type** field to *sip*.
- Choose a mnemonic **Group Name**.
- Specify an available trunk access code (TAC).
- Set the **Service Type** field to *tie*.
- Specify the signaling group associated with this trunk group in the **Signaling Group** field as previously specified in Figure 10.
- Specify the **Number of Members** supported by this SIP trunk group.

Note that one trunk member is required for each call between a non-SIP endpoint and Onvoy. Calls involving a SIP endpoint and Onvoy will use two trunk members for the duration of the call.
add trunk-group 1

TRUNK GROUP

Group Number: 1
Group Name: To SES
Direction: two-way
Dial Access? n
Queue Length: 0
Service Type: tie

Group Type: sip
CDR Reports: y
COR: 1
TN: 1
TAC: 101
Outgoing Display? n
Busy Threshold: 255
Night Service:

Signaling Group: 1
Number of Members: 24

TRUNK PARAMETERS

Unicode Name? y

Redirect On OPTIM Failure: 5000
SCCAN? n
Digital Loss Group: 18

Step 7: Configure Calling Party Number Information
Configure the Numbering Public/Unknown Format form to send the full calling party number to the far-end.

In this case, all stations with a 5-digit extension beginning with 7 should send the calling party number 952-55x-xxxx when an outbound call uses SIP trunk group #1. This calling party number will be sent to the far-end in the SIP “From” header.
Figure 13 shows the use of the “change public-unknown numbering” command to implement this rule.

<table>
<thead>
<tr>
<th>Ext</th>
<th>Ext</th>
<th>Trk</th>
<th>CPN</th>
<th>Len Code</th>
<th>Grp(s)</th>
<th>Prefix</th>
<th>CPN</th>
<th>Ext</th>
<th>Ext</th>
<th>Trk</th>
<th>CPN</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
<td>95255</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 13: Numbering Public/Unknown Format Form

Step 8: Configure Incoming Digit Translation

This step performs the steps necessary to map incoming DID calls to the proper extension(s).

The incoming digits sent in the INVITE message from Onvoy are manipulated as necessary to route calls to the proper extension on Avaya Communication Manager. Note that this step cannot be completed until the DID numbers and routing strategy defined in Sections 4.1 and 5 is known. Return to this step after the Section 5 work is completed if necessary.

In the examples used in these Application Notes, the incoming DID numbers provided by Onvoy do not have a direct correlation to the internal extensions assigned within Avaya Communication Manager. Thus all incoming called number digits are deleted and replaced by the assigned extension number.

To create a fully mapped extension number as shown in **Figure 14**:

- Open the **Incoming Call Handling Treatment** form for the SIP trunk group.
- For each extension assigned a DID number from Onvoy, enter 10 into the **Called Len** and **Del** fields, and the entire 10 digit DID number into the **Called Number** field.
- Enter the desired Avaya Communication Manager extension number into the **Insert** field.

Figure 14: Incoming Call Handling Treatment – Full Extension Mapping

If the customer’s extension numbering aligns with the DID numbers (i.e., the final DID digits match the extension), it is not necessary to define an entry for each DID number. Assuming a PBX dial plan that used the 5 digit extensions 71000 thru 71999 and assuming Onvoy provided DID numbers of 952-557-1000 thru 1999, the incoming number translation would be done similar to **Figure 15**. Note that the Called Number entry in this case represents the common...
matching portion applicable to all incoming numbers. Thus 9525571 matches all numbers in the assigned DID block from Onvoy.

<table>
<thead>
<tr>
<th>Service/Feature</th>
<th>Called Len</th>
<th>Called Number</th>
<th>Del</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>tie</td>
<td>10</td>
<td>9525571</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Figure 15: Incoming Call Handling Treatment – Simple Extension Mapping

Step 9: Save Avaya Communication Manager Changes
Enter “save translation” to make the changes permanent.

3.2. SIP Endpoint Configuration

This section describes the administration of SIP telephones and requires the preceding SIP Trunk configuration to have been completed. SIP telephones are optional and not required to use the Onvoy Converged IP Service.

Step 1: Assign a Station
The first step in adding an off-PBX station (OPS) for Avaya SIP telephones registered with Avaya SIP Enablement Services is to assign a station as shown in Figure 16.

Using the “add station” command from the SAT:

- Leave the station **Type** at the default “6408D+” value. (Note this is the Avaya recommended best practice that will prevent an alarm warning that occurs when 4600 series phone models are entered).
- Enter “X” in the **Port** field to indicate station administration without port hardware.
- Enter a **Name** for the station that will be displayed.
- The **Security Code** is left blank for SIP OPS extensions.

The remaining fields are configured per normal station administration that is beyond the scope of these Application Notes. Note that the Class of Restrictions (COR) and Class of Service (COS) will govern the features and call restrictions that apply to this station.
Figure 16: Station Administration – Page 1

On Page 2 of the **Station** form,

- **Set the Restrict Last Appearance** value to ‘n’ on phones that have 3 or fewer call appearances to maintain proper SIP conference and transfer operation.

Setting the **Restrict Last Appearance** value to ‘y’ reserves the last call appearance for outbound calls. Certain SIP conference and transfer features will not function properly if a third appearance is not available for incoming calls.

Figure 17: Station Administration – Page 2
On Page 3 of the **Station** form, configure the at least 3 call appearances for the SIP telephone as shown in **Figure 18**.

<table>
<thead>
<tr>
<th>add station 70000</th>
<th>Page 3 of 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE DATA</td>
<td></td>
</tr>
<tr>
<td>Room:</td>
<td>Headset? n</td>
</tr>
<tr>
<td>Jack:</td>
<td>Speaker? n</td>
</tr>
<tr>
<td>Cable:</td>
<td>Mounting: d</td>
</tr>
<tr>
<td>Floor:</td>
<td>Cord Length: 0</td>
</tr>
<tr>
<td>Building:</td>
<td>Set Color:</td>
</tr>
<tr>
<td>ABBREVIATED DIALING</td>
<td></td>
</tr>
<tr>
<td>List1:</td>
<td>List2:</td>
</tr>
<tr>
<td>List3:</td>
<td></td>
</tr>
<tr>
<td>BUTTON ASSIGNMENTS</td>
<td></td>
</tr>
<tr>
<td>1: call-appr</td>
<td></td>
</tr>
<tr>
<td>2: call-appr</td>
<td></td>
</tr>
<tr>
<td>3: call-appr</td>
<td></td>
</tr>
<tr>
<td>4:</td>
<td></td>
</tr>
<tr>
<td>5:</td>
<td></td>
</tr>
<tr>
<td>6:</td>
<td></td>
</tr>
<tr>
<td>7:</td>
<td></td>
</tr>
<tr>
<td>8:</td>
<td></td>
</tr>
</tbody>
</table>

Figure 18: Station Administration – Page 3

A similar number of call appearances should be configured on the SIP Telephone which is beyond the scope of these Application Notes. The parameters to administer call appearances (and many other settings) are described in Reference [6].

Step 2: Configure Off-PBX Station Mapping

The second step of configuring an off-PBX station is to configure the **Off-PBX Telephone** form so that calls destined for a SIP telephone at the enterprise site are routed to Avaya SIP Enablement Services, which will then route the call to the SIP telephone.

On the **Off-PBX-Telephone Station-Mapping** form shown in **Figure 19**:

- Specify the **Station Extension** of the SIP endpoint.
- Set the **Application** field to **OPS**.
- Set the **Phone Number** field to the digits to be sent over the SIP trunk. In this case, the SIP telephone extensions configured on Avaya SIP Enablement Services also match the extensions of the corresponding AWOH stations on Avaya Communication Manager. However, this is not a requirement.
Set the **Trunk Selection** field to ‘1’, which is the number assigned to the SIP trunk group used to route the call to the SIP station. This trunk group number was previous defined in Figure 11.

Set the **Configuration Set** value. In these Application Notes, Configuration Set 1 uses the default values of the Configuration Set form.

<table>
<thead>
<tr>
<th>Station Extension</th>
<th>Application</th>
<th>Dial Prefix</th>
<th>Phone Number</th>
<th>Trunk Selection</th>
<th>Configuration Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>70000</td>
<td>OPS</td>
<td>- 70000</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 19: Stations with Off-PBX Telephone Integration – Page 1

On Page 2, set the **Call Limit** field to the maximum number of calls that may be active simultaneously at the station. In this example, the call limit is set to ‘3’, which corresponds to the number of call appearances configured on the station form. Accept the default values for the other fields.

<table>
<thead>
<tr>
<th>Station Extension</th>
<th>Call Limit</th>
<th>Mapping Mode</th>
<th>Calls Allowed</th>
<th>Bridged Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>70000</td>
<td>3</td>
<td>both</td>
<td>all</td>
<td>both</td>
</tr>
</tbody>
</table>

Figure 20: Stations with Off-PBX Telephone Integration – Page 2

Step 3: Repeat for each SIP Phone
Repeat Steps 1 and 2 for each SIP phone to be added.

Step 4: Save Avaya Communication Manager Changes

Enter “save translation” to make the changes permanent.

4. Configure Avaya SIP Enablement Services

This section covers the administration of Avaya SIP Enablement Services (SES). Avaya SIP Enablement Services is configured via an Internet browser using the Administration web interface. It is assumed that Avaya SIP Enablement Services software and the license file have already been installed on Avaya SIP Enablement Services. During the software installation, the `initial_setup` script is run on the Linux shell of the server to specify the IP network.
properties of the server along with other parameters. For additional information on these installation tasks, refer to [4].

This section is divided into two parts: Section 4.1 provides the steps necessary to configure SIP trunking to Onvoy Converged IP Service. Section 4.2 provides the steps necessary to complete the administration for optional SIP endpoints (whose configuration was begun on Avaya Communication Manager in Section 3.2).

4.1. SIP Trunking to Onvoy

Step 1: Log in to Avaya SIP Enablement Services
Access the SES Administration web interface, by entering http://<ip-addr>/admin as the URL in an Internet browser, where <ip-addr> is the IP address of Avaya SIP Enablement Services server.

Log in with the appropriate credentials and then select the Launch Administration Web Interface link from the main screen as shown in Figure 21.
The SES administration home screen shown in Figure 22 should be displayed.

![Avaya SES Administration Home Page](image)

Figure 22: Avaya SES Administration Home Page

Step 2: Define System Properties
From the left pane of the Administration web interface, expand the Server Configuration option and select System Properties. This screen displays the CCS version and the network properties entered via the initial_setup script during the installation process.

In the System Properties screen,
- Enter the SIP Domain name assigned to Avaya SIP Enablement Services.
- Enter the License Host field. This is the host name, the fully qualified domain name, or the IP address of the SIP proxy server that is running the WebLM application and has the associated license file installed. This entry should always be localhost unless the WebLM server is not co-resident with this server.
- After configuring the System Properties screen, click the Update button.
Step 3: Enter Avaya SES Host Information

After setting up the domain in the System Properties screen, create a host computer entry for Avaya SIP Enablement Services. The following example shows the Edit Host screen since the host had already been added to the system.

The Edit Host screen shown in Figure 24 is accessible by clicking on the Hosts link in the left pane and then clicking on the edit option under the Commands section of the subsequent page that is displayed.

- Enter the Logical IP or Logical Name (shown in Figure 23) of this server in the Host IP Address field.
- Enter the DB Password that was specified while running the initial_setup script during the system installation.
- The default values for the other fields may be used as shown in Figure 24.
- Click the Update button.
Step 4: Add Avaya Communication Manager as Media Server
Under the Media Servers option in the Administration web interface, select Add to add the Avaya Media Server in the enterprise site. This will create the Avaya SES side of the SIP trunk previously created in Avaya Communication Manager.

In the Add Media Server screen, enter the following information:
- A descriptive name in the Media Server Interface field (e.g., S8710-CLAN).
- Select the home SES server in the Host field as specified in Figure 24.
Select TLS (Transport Link Security) for the **Link Type**. TLS provides encryption at the transport layer. TLS is the only link protocol that is supported for SIP trunking with Avaya Communication Manager.

- Enter the IP address of the Avaya S8710 Media Server CLAN board in the **SIP Trunk IP Address** field. (Note: This may be the IP address of the media server processor in smaller Avaya Communication Manager configurations such as an Avaya S8300 Media Server using an Avaya G350 Media Gateway.)
- After completing the **Add Media Server** screen, click on the **Add** button.

Figure 25: Add Media Server

Step 5: Specify Address Maps to Media Servers

Incoming calls arriving at Avaya SIP Enablement Services are routed to the appropriate Avaya Communication Manager for termination services. This routing is specified in a Media Server Address Map configured on Avaya SIP Enablement Services.

This routing compares the Uniform Resource Identifier (URI) of an incoming INVITE message to the pattern configured in the Media Server Address Map, and if there is a match, the call is routed to the designated Avaya Communication Manager. The URI usually takes the form of `sip:user@domain`, where `domain` can be a domain name or an IP address. Patterns must be
specific enough to uniquely route incoming calls to the proper destination if there are multiple Avaya Communication Manager systems supported by the Avaya SES server.

In these Application Notes, only incoming calls from the PSTN require a media server address map entry. Calls originated by Avaya SIP telephones configured as OPS are automatically routed to the proper Avaya Communication Manager by the assignment of an Avaya Media Server extension to that phone. Address map definitions for SIP endpoints not assigned a media server extension and connections to multiple service providers are beyond the scope of these Application Notes.

For the Onvoy Converged IP Service, the user portion of the SIP URI will contain the 10 digit value specified for the incoming direct inward dialed telephone number.

An example of a SIP URI in an INVITE message received from Onvoy would be:

```
sip:9525579404@10.1.1.86;user=phone;npdi=yes
```

The user portion in this case is the 10 digit DID number “9525579404”.

The strategy used to define the media server address maps will be to create a pattern that matches the DID numbers assigned to the customer by Onvoy. The SES will forward the messages with matching patterns to the appropriate CLAN interface of the S8710 media server.

To configure a Media Server Address Map:

- Select Media Servers in the left pane of the Administration web interface. This will display the List Media Servers screen.
- Click on the Map link associated with the appropriate media server to display the List Media Server Address Map screen.
- Click on the Add Map In New Group link. The screen shown in Figure 26 is displayed. The Host field displays the name of the media server that this map applies to.
- Enter a descriptive name in the Name field.
- Enter the regular expression to be used for the pattern matching in the Pattern field.

In this configuration, the DID numbers provided by Onvoy are 952-557-9400 thru 9409. The pattern specification (without the double quotes) for DID numbers assigned is: “^sip:952557940[0-9]$”. This means that URIs beginning with “sip:952557940” followed by any other digit will match the pattern and be routed to the interface defined for S8710-CLAN.

Appendix B provides a detailed description of the syntax for address map patterns.

- Click the Add button once the form is completed.
After configuring the media server address map, the **List Media Server Address Map** screen appears as shown in **Figure 27**.

Figure 27: List Media Server Address Map
Note that after the first **Media Server Address Map** is added, the **Media Server Contact** is created automatically. For the **Media Server Address Map** added in **Figure 26**, the following contact was created:

\[\text{sips:$(user)@10.1.1.84:5061;transport=tls} \]

The contact specifies the IP address of the CLAN and the transport protocol used to send SIP signaling messages. The incoming DID number sent in the user part of the original request URI is substituted for $(user).

Step 6: Specify Address Maps to Onvoy

Outbound PSTN calls are directed by Avaya Communication Manager automatic route selection (ARS) according to the customer’s network design guidelines. These guidelines determine what types of outgoing calls should be sent to the Onvoy Converged IP Service. The ARS routing decisions (for trunk group selection) will be customer specific and are beyond the scope of these notes.

SIP signaling messages for outbound calls sent to the SIP trunk are then routed to the Onvoy gateway using Host Address Maps within Avaya SIP Enablement Services. As with the inbound media server address maps, these Host Address Maps use pattern matching on the SIP URI to direct messages to the corresponding contact address (e.g., the Onvoy SIP signaling gateway).

In this configuration, the Avaya SES routing rule for the SIP trunk group will be to send all outbound PSTN traffic to Onvoy Converged IP Service. To perform this, several dialing patterns will be created in the Avaya SES.

- The first pattern (without the double quotes) of “^sip:1[0-9]{10}” will match on all sip calls having 1 followed by any 10 digits.
- The second pattern of “^sip:0” will route any sip call beginning with 0 (regardless of the following digits).
- Finally N11 service codes (such as 411, 611, etc.) will be recognized using the pattern “^sip:[2-9]11”.

Note that additional or more specific pattern matches would be used if necessary to selectively route SIP traffic to different destinations (such as multiple service providers serving different geographic regions). Also note that a user dialed access code (such as 9 to place a PSTN call) has been previously deleted (by ARS) prior to seizing the outbound SIP trunk.

The configuration of the host address map for all 1+ North America calls is shown in **Figure 28**.

- Access the Add Host Address Map screen by selecting the Hosts link in the left pane of the Administration web interface and then clicking on the Map link associated with the appropriate host (e.g., k2.devcon.com). The List Host Address Map screen is displayed.
- From this screen, click the Add Map In New Group link to display the Add Host Address Map screen shown in **Figure 28**.
- Enter a descriptive name for the map, such as “Onvoy_1Plus10”.
- Specify an appropriate pattern for the call type. In this example, the pattern used for North American calls is “^sip:1[0-9]{10}”.
- Leave the Replace URI checkbox selected.
- Click the Add button.

![Edit Host Map Entry](image)

Figure 28: Edit Host Map Entry
Additional Host Address Map patterns are added in a similar manner. **Figure 29** illustrates the entry for Operator “zero-minus” and “zero-plus” dialing.

![Figure 29: 0 and 0+ Address Map](image-url)
Figure 30 illustrates the host address map for the N11 service codes.

![Add Host Address Map](image)

Figure 30 - N11 Host Address Map

Step 7: Specify the Onvoy SIP Gateway Information

The next step is to enter the contact address for the Onvoy SIP gateway. In this example, the IP address 20.1.1.135 is used. The customer’s specific information will be provided by Onvoy.

To enter the Onvoy SIP gateway information:

- As described in Step 6, display the **List Host Address Map** screen.
- Click on the **Add Another Contact** link associated with the address map added in [Figure 28](#) and [Figure 29](#) to open the **Add Host Contact** screen. In this screen, the **Contact** field specifies the destination for the call and it is entered as:

  ```
sip:$(user)@20.1.1.135:5060;transport=udp
  
  The user part in the original request URI is inserted in place of the “$(user)” string before the message is sent to Onvoy.
- Click the **Add** button when completed.
After configuring the host address maps and contact information, the **List Host Address Map** screen will appear as shown in **Figure 31**.

![List Host Address Map](image)

**Figure 31: List Host Address Map**

**Step 8: Save the Changes**

After making changes within Avaya SES, it is necessary to commit the database changes using the **Update** link that appears when changes are pending. Perform this step by clicking on the **Update** link found in the bottom of the blue navigation bar on the left side of any of the SES Administration screens as shown in **Figure 32**.
Step 9: Specify the Onvoy SIP Gateway as a Trusted Host
The final step to complete the SIP trunk administration on Avaya SES is to designate the IP address of Onvoy SIP Gateway as a trusted host. As a trusted host, Avaya SES will not issue SIP authentication challenges for incoming requests from the designated IP address.¹

If multiple SIP proxies are used, the IP address of each SIP proxy must be added as a trusted host.

¹ Note, if the trusted host step is not done, authentication challenges to incoming SIP messages (such as INVITEs and BYEs) will be issued by the SES. This may cause call setup to fail, active calls to be disconnected after timeout periods, and/or SIP protocol errors.
To configure a trusted host:

- Log in to the Avaya SES using the administrative login and password.
- Enter the following `trustedhost` command at the Linux shell prompt:
  
  `trustedhost -a 20.1.1.135 -n k2.devcon.com -c Onvoy_Gway`
  
  The `-a` argument specifies the address to be trusted; `-n` specifies the SES host name; `-c` adds a comment.
- Use the following `trustedhost` command to verify the entry is correct:
  
  `trustedhost -L`

  Figure 33 illustrates the results of the `trustedhost` commands.²

- Complete the trusted host configuration by returning to the main Avaya SES Administration web page and again clicking on the Update link as shown in Figure 32.

  If the Update link is not visible, refresh the page by selecting Top from the left hand menu. Note this step is required even though the trusted host was configured via the Linux shell.

<table>
<thead>
<tr>
<th>Trusted Host</th>
<th>CCS Host Name</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1.1.135</td>
<td>k2.devcon.com</td>
<td>Onvoy_Gway</td>
</tr>
</tbody>
</table>

Figure 33: Configuring a Trusted Host

**Important Note:** After making any configuration changes on Avaya SIP Enablement Services, the user must click on the Update link in the Administration web interface for the changes to take effect.

² For completeness, the `-d` argument allows the trust relationship to be deleted. For example,

```
trustedhost -d 20.1.1.135 -n k2.devcon.com
```

removes the trust relationship added above.
# 4.2. Configuration for SIP Telephones

This section provides very basic instructions for completing the administration necessary to support the optional Avaya 46xx SIP telephones. Additional features such as the use of mnemonic addressing and instant messaging are also supported by Avaya SES but are beyond the scope of these Application Notes.

**Step 1: Add a SIP User**

Create the SIP user record as follows:

- In Avaya SES administration, expand the **Users** link in the left side blue navigation bar and click on the **Add** link.

- In the **Add User** screen, enter the extension of the SIP endpoint in the **Primary Handle** field.

- Enter a user password in the **Password** and **Confirm Password** fields. This password will be used when logging into the user’s SIP telephone.

- In the **Host** field, select the Avaya SIP Enablement Services server hosting the domain (*devcon.com*) for this user. Enter the **First Name** and **Last Name** of the user.

- To associate a media server extension with this user, select the **Add Media Server Extension** checkbox. Calls from this user will always be routed through Avaya Communication Manager over the SIP trunk for origination services.

- Press the **Add** button. This will cause a confirmation screen to appear.

- Press **Continue** on the confirmation screen.
**Step 2: Specify Corresponding Avaya Communication Manager Extension**

The SIP phone handle must now be associated with the corresponding extension on Avaya Communication Manager.

- In the **Add Media Server Extension** screen, enter the **Extension** configured on the media server, shown in Figure 16, for the OPS extension on Avaya Communication Manager previously defined in Section 3.2. Usually, the media server extension and the user extension are the same (recommended) but it is not required to be.
- Select the **Media Server** assigned to this extension.
- Click on the **Add** button.
To commit the configuration changes, click on the **Update** link in the left pane.

---

**Figure 35: Add Media Server Extension**

**Step 3: Repeat for Each SIP User**
Repeat Steps 1 and 2 for each SIP user.
5. Onvoy Converged IP Services Configuration

In order to use Onvoy Converge IP Services, a customer must request service from Onvoy using their sales process. The process can be started by contacting Onvoy via their corporate web site at http://www.onvoy.com/onvoy/about_contact.shtml and requesting information via the online sales links or telephone numbers.

During the signup process, Onvoy will require that the customer provide the public IP address used to reach the Avaya SIP Enablement Services server. (Note the address used within these Application Notes is 10.1.1.86; the actual IP address will be specific to the customer implementation).

Following signup, Onvoy will provide the following:

- IP address of the Onvoy SIP gateway
- Direct Inward Dialed (DID) Numbers

This information was necessary to complete the Avaya Communication Manager and Avaya SIP Enablement Services administration discussed in the previous sections.

6. Interoperability Compliance Testing

This section describes the interoperability compliance testing used to verify SIP trunking interoperability between Onvoy Converged IP Service and an Avaya IP Telephony Solution using SIP Trunking. This section covers the general test approach and the test results.

6.1. General Test Approach

A simulated enterprise site consisting of an Avaya IP telephony solution supporting SIP trunking was connected to the public Internet using a dedicated broadband connection. The enterprise site was configured to use the commercially available Converged IP Service provided by Onvoy. This allowed the enterprise site to use SIP trunking for PSTN calling.

The following features and functionality were covered during the SIP trunking interoperability compliance test:

- Incoming calls to the enterprise site from the PSTN were routed to the DID numbers assigned by Onvoy.
- Outgoing calls from the enterprise site were completed via Onvoy to the PSTN destinations.
- Calls using SIP, H.323, digital and analog endpoints supported by the Avaya IP telephony solution.
- Various call types including: local, long distance, international, toll free, operator and directory assistance calls.
- Calls using G.711 and G.729A codecs.
- DTMF transmission using RFC 2833.
- Voicemail coverage and retrieval for endpoints at the enterprise site.
- Direct IP-to-IP media (also known as “Shuffling”) which allows SIP endpoints to send audio (RTP) packets directly to each other without using media resources on the Avaya Media Gateway.

### 6.2. Test Results

All tests were completed successfully.

### 7. Verification Steps

This section provides verification steps that may be performed in the field to verify that the SIP, H.323, digital and analog endpoints can place outbound and receive inbound PSTN calls through Onvoy.

1. Verify that endpoints at the enterprise site can place calls to the PSTN and that the call remains active for more than 35 seconds. This time period is included to verify that proper routing of the SIP messaging has satisfied SIP protocol timers.
2. Verify that endpoints at the enterprise site can receive calls from the PSTN and that the call can remain active for more than 35 seconds.
3. Verify that the user on the PSTN can terminate an active call by hanging up.
4. Verify that an endpoint at the enterprise site can terminate an active call by hanging up.
5. If the Direct IP-to-IP media feature (a.k.a. Shuffling) is enabled, verify that a call originated or terminated on an Avaya 4600 Series SIP Telephone has the RTP path directly between the SIP phone and Onvoy. To determine if the call is shuffled, identify the trunk member active on the call by running the `status trunk <group>` command using the SAT of Avaya Communication Manager. Next, run the `status trunk group/member` command and check the Audio Connection field. If the call is shuffled, the field should be set to `ip-direct`; otherwise, the field would be set to `ip-tdm`.

### 8. Support

For technical support on Onvoy Converged IP Service, contact Onvoy Customer Service at 1-877-99ONVOY (877-996-6869) or [http://www.onvoy.com/onvoy/about_contact.shtml](http://www.onvoy.com/onvoy/about_contact.shtml).

### 9. Conclusion

These Application Notes describe the configuration steps required to connect customers using an Avaya Communication Manager and Avaya SIP Enablement Services telephony solution to the Onvoy Converged IP Service using SIP trunking. The Onvoy Converged IP Service is a robust Voice over IP solution for customers ranging from small businesses to large enterprises. SIP trunking uses the Session Initiation Protocol (SIP) to connect private company networks to the public telephone network via converged IP access. It provides businesses a flexible, cost-saving alternative to traditional hardwired telephony trunk lines.
10. References

This section references the Avaya documentation relevant to these Application Notes. The following Avaya product documentation is available at http://support.avaya.com.


APPENDIX A: Sample SIP INVITE Messages

This section displays the format of the SIP INVITE messages sent by Onvoy and the Avaya SIP network at the enterprise site. Customers may use these INVITE messages for comparison and troubleshooting purposes. Differences in these messages may indicate different configuration options selected.

Sample SIP INVITE Message from Onvoy to Avaya SIP Enablement Services:

```
INVITE sip:9525579404@10.1.1.86;user=phone;npdi=yes SIP/2.0
Via: SIP/2.0/UDP 20.1.1.135:5060;branch=z9hG4bK001lt120a8e03dg8g2c0.1
From: <sip:7325551327@20.1.1.135;user=phone>;tag=10000000-0-1329144095
To: <sip:9525579404@10.1.1.86;user=phone>
CSeq: 1 INVITE
Contact: <sip:7325551327@20.1.1.135:5060;transport=udp>
Call-ID: 976790137.192.21.199
Remote-Party-ID: <sip:7325551327@20.1.1.135;user=phone>;party=calling;id-type=subscriber;privacy=off;screen=yes
Max-Forwards: 69
Content-Type: application/sdp
Content-Length: 266

v=0
c=- 3352461117 3352461117 IN IP4 20.1.1.135
s=-
c=IN IP4 20.1.1.135
t=0 0
m=audio 1058 RTP/AVP 18 0 101
a=sendrecv
a=ptime:20
a=rtpmap:18 G729/8000
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15
a=fmtp:18 annexeB=no
```
Sample SIP INVITE Message from Avaya SIP Enablement Services to Onvoy:

```
INVITE sip:7325551327@20.1.1.135:5060;transport=udp SIP/2.0
Call-ID: 806a36cbbebcda15e16444264300
CSeq: 1 INVITE
From: "Dcp Phone62004"
<sip:9525579404@devcon.com:5061>;tag=806a36cbbebcda15d16444264300
Record-Route: <sip:10.1.1.86:5060;lr>,<sip:10.1.1.84:5061;lr;transport=tls>
To: "7325551327" <sip:7325551327@10.1.1.86>
Via: SIP/2.0/UDP 10.1.1.86:5060;branch=z9hG4bK8383830303036363634d9a.0,SIP/2.0/TLS
10.1.1.84;psrrposn=2;branch=z9hG4bK806a36cbbebcda15f16444264300
Content-Length: 160
Content-Type: application/sdp
Contact: "Dcp Phone62004" <sip:9525579404@10.1.1.84;transport=tls>
Max-Forwards: 69
User-Agent: Avaya CM/R013x.01.0.628.6
Allow: INVITE,CANCEL,BYE,ACK,PRACK,SUBSCRIBE,NOTIFY,REFER,OPTIONS
Session-Expires: 600;refresher=uac
Min-SE: 600
History-Info: <sip:7325551327@devcon.com>;index=1
History-Info: "7325551327" <sip:7325551327@devcon.com>;index=1.1
Supported: 100rel,timer,replaces,join,histinfo
P-Asserted-Identity:"Dcp Phone62004"<sip:9525579404@devcon.com:5061>

v=0
c=IN IP4 10.1.1.84
s=-
c=IN IP4 12.160.179.116
t=0 0
m=audio 2696 RTP/AVP 0 127
a=rtpmap:0 PCMU/8000
a=rtpmap:127 telephone-event/8000
```
APPENDIX B: Specifying Pattern Strings in Address Maps

The syntax for the pattern matching used within the Avaya SES is a Linux regular expression used to match against the URI string found in the SIP INVITE message.

Regular expressions are a way to describe text through pattern matching. The regular expression is a string containing a combination of normal text characters, which match themselves, and special metacharacters, which may represent items like quantity, location or types of character(s).

In the pattern matching string used in the Avaya SES:
- Normal text characters and numbers match themselves.
- Common metacharacters used are:
  - A period . matches any character once (and only once).
  - An asterisk * matches zero or more of the preceding characters.
  - Square brackets enclose a list of any character to be matched. Ranges are designated by using a hyphen. Thus the expression [12345] or [1-5] both describe a pattern that will match any single digit between 1 and 5.
  - Curly brackets containing an integer ‘n’ indicate that the preceding character must be matched exactly ‘n’ times. Thus 5{3} matches ‘555’ and [0-9]{10} indicates any 10 digit number.
  - The circumflex character ^ as the first character in the pattern indicates that the string must begin with the character following the circumflex.

Putting these constructs together as used in this document, the pattern to match the SIP INVITE string for any valid 1+ 10 digit number in the North American dial plan would be:

\[ ^{sip:1[0-9}\{10\} \]

This reads as: “Strings that begin with exactly sip:1 and having any 10 digits following will match.

A typical INVITE request below uses the shaded portion to illustrate the matching pattern.

INVITE sip:17325551638@20.1.1.54:5060;transport=udp SIP/2.0
©2006 Avaya Inc. All Rights Reserved.
Avaya and the Avaya Logo are trademarks of Avaya Inc. All trademarks identified by ® and ™ are registered trademarks or trademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective owners. The information provided in these Application Notes is subject to change without notice. The configurations, technical data, and recommendations provided in these Application Notes are believed to be accurate and dependable, but are presented without express or implied warranty. Users are responsible for their application of any products specified in these Application Notes.

Please e-mail any questions or comments pertaining to these Application Notes along with the full title name and filename, located in the lower right corner, directly to the Avaya DeveloperConnection Program at devconnect@avaya.com.