Signaling Server IP Line Applications
Fundamentals
Avaya Communication Server 1000

Release 7.5
NN43001-125
Issue 03.17
June 2013
© 2013 Avaya Inc.
All Rights Reserved.

Notice
While reasonable efforts have been made to ensure that the information in this document is complete and accurate at the time of printing, Avaya assumes no liability for any errors. Avaya reserves the right to make changes and corrections to the information in this document without the obligation to notify any person or organization of such changes.

Documentation disclaimer
“Documentation” means information published by Avaya in varying mediums which may include product information, operating instructions and performance specifications that Avaya generally makes available to users of its products. Documentation does not include marketing materials. Avaya shall not be responsible for any modifications, additions, or deletions to the original published version of documentation unless such modifications, additions, or deletions were performed by Avaya. End User agrees to indemnify and hold harmless Avaya, Avaya’s agents, servants and employees against all claims, lawsuits, demands and indemnities made or asserted against any party by reason of, or in connection with, subsequent modifications, additions or deletions to this documentation, to the extent made by End User.

Link disclaimer
Avaya is not responsible for the contents or reliability of any linked websites referenced within this site or documentation provided by Avaya. Avaya is not responsible for the accuracy of any information, statements or content provided on these sites and does not necessarily endorse the products, services, or information described or offered within them. Avaya does not guarantee that these links will work all the time and has no control over the availability of the linked pages.

Warranty
Avaya provides a limited warranty on its hardware and Software (“Product(s)”). Refer to your sales agreement to establish the terms of the limited warranty. In addition, Avaya’s standard warranty language, as well as information regarding support for this Product while under warranty is available to Avaya customers and other parties through the Avaya Support website: http://support.avaya.com. Please note that if you acquired the Product(s) from an authorized Avaya reseller outside of the United States and Canada, the warranty is provided to you by said Avaya reseller and not by Avaya. “Software” means computer programs in object code, provided by Avaya or an Avaya Channel Partner, whether as stand-alone products or pre-installed on hardware products, and any upgrades, updates, bug fixes, or modified versions.

Licenses
THE SOFTWARE LICENSE TERMS AVAILABLE ON THE AVAYA WEBSITE, HTTP://SUPPORT.AVAYA.COM/LICENSEINFO ARE APPLICABLE TO ANYONE WHO DOWNLOADS, USES AND/OR INSTALLS AVAYA SOFTWARE, PURCHASED FROM AVAYA INC., ANY AVAYA AFFILIATE, OR AN AUTHORIZED AVAYA RESELLER (AS APPLICABLE) UNDER A COMMERCIAL AGREEMENT WITH AVAYA OR AN AUTHORIZED AVAYA RESELLER. UNLESS OTHERWISE AGREED TO BY AVAYA IN WRITING, AVAYA DOES NOT EXTEND THIS LICENSE IF THE SOFTWARE WAS OBTAINED FROM ANYONE OTHER THAN AVAYA, AN AVAYA AFFILIATE OR AN AVAYA AUTHORIZED RESELLER; AVAYA RESERVES THE RIGHT TO TAKE LEGAL ACTION AGAINST YOU AND ANYONE ELSE USING OR SELLING THE SOFTWARE WITHOUT A LICENSE. BY INSTALLING, DOWNLOADING OR USING THE SOFTWARE, OR AUTHORIZING OTHERS TO DO SO, YOU, ON BEHALF OF YOURSELF AND THE ENTITY FOR WHOM YOU ARE INSTALLING, DOWNLOADING OR USING THE SOFTWARE (HEREINAFTER REFERRED TO INTERCHANGEABLY AS “YOU” AND “END USER”), AGREE TO THESE TERMS AND CONDITIONS AND CREATE A BINDING CONTRACT BETWEEN YOU AND AVAYA INC. OR THE APPLICABLE AVAYA AFFILIATE (“AVAYA”).

Heritage Nortel Software
“Heritage Nortel Software” means the software that was acquired by Avaya as part of its purchase of the Nortel Enterprise Solutions Business in December 2009. The Heritage Nortel Software currently available for license from Avaya is the software contained within the list of Heritage Nortel Products located at http://support.avaya.com/LicenseInfo under the link “Heritage Nortel Products”. For Heritage Nortel Software, Avaya grants Customer a license to use Heritage Nortel Software provided hereunder solely to the extent of the authorized activation or authorized usage level, solely for the purpose specified in the Documentation, and solely as embedded in, for execution on, or (in the event the applicable Documentation permits installation on non-Avaya equipment) for communication with Avaya equipment. Charges for Heritage Nortel Software may be based on extent of activation or use authorized as specified in an order or invoice.

Copyright
Except where expressly stated otherwise, no use should be made of materials on this site, the Documentation, Software, or hardware provided by Avaya. All content on this site, the documentation and the Product provided by Avaya including the selection, arrangement and design of the content is owned either by Avaya or its licensors and is protected by copyright and other intellectual property laws including sui generis rights relating to the protection of databases. You may not modify, copy, reproduce, republish, upload, post, transmit or distribute in any way any content, in whole or in part, including any code and software unless expressly authorized by Avaya. Unauthorized reproduction, transmission, dissemination, storage, and or use without the express written consent of Avaya can be a criminal, as well as a civil offense under the applicable law.

Third Party Components
“Third Party Components” mean certain software programs or portions thereof included in the Software that may contain software (including open source software) distributed under third party agreements (“Third Party Components”), which contain terms regarding the rights to use certain portions of the Software ("Third Party Terms"). Information regarding distributed Linux OS source code (for those Products that have distributed Linux OS source code) and identifying the copyright holders of the Third Party Components and the Third Party Terms that apply is available in the Documentation or on Avaya’s website at: http://support.avaya.com/Copyright. You agree to the Third Party Terms for any such Third Party Components.

Note to Service Provider
The Product may use Third Party Components that have Third Party Terms that do not allow hosting and may need to be independently licensed for such purpose.

Preventing Toll Fraud
“Toll Fraud” is the unauthorized use of your telecommunications system by an unauthorized party (for example, a person who is not a corporate employee, agent, subcontractor, or is not working on your company’s behalf). Be aware that there can be a risk of Toll Fraud associated with your system and that, if Toll Fraud occurs, it can result in substantial additional charges for your telecommunications services.

Avaya Toll Fraud intervention
If you suspect that you are being victimized by Toll Fraud and you need technical assistance or support, call Technical Service Center Toll Fraud Intervention Hotline at +1-800-643-2353 for the United States and Canada. For additional support telephone numbers, see the Avaya Support website: http://support.avaya.com. Suspected security vulnerabilities with Avaya products should be reported to Avaya by sending mail to: securityalerts@avaya.com.

Trademarks
The trademarks, logos and service marks (“Marks”) displayed in this site, the Documentation and Product(s) provided by Avaya are the registered or unregistered Marks of Avaya, its affiliates, or other third

Comments? infodev@avaya.com
parties. Users are not permitted to use such Marks without prior written consent from Avaya or such third party which may own the Mark. Nothing contained in this site, the Documentation and Product(s) should be construed as granting, by implication, estoppel, or otherwise, any license or right in and to the Marks without the express written permission of Avaya or the applicable third party.

Avaya is a registered trademark of Avaya Inc.

All non-Avaya trademarks are the property of their respective owners, and “Linux” is a registered trademark of Linus Torvalds.

Downloading Documentation

For the most current versions of Documentation, see the Avaya Support website: http://support.avaya.com.

Contact Avaya Support

See the Avaya Support website: http://support.avaya.com for product notices and articles, or to report a problem with your Avaya product. For a list of support telephone numbers and contact addresses, go to the Avaya Support website: http://support.avaya.com, scroll to the bottom of the page, and select Contact Avaya Support.
Contents

Chapter 1: New in this release

- Features ... 17
- Other ... 17
 - Revision history .. 17
 - Structure ... 19

Chapter 2: Customer service

- Navigation ... 23
- Getting technical documentation .. 23
- Getting product training .. 23
- Getting help from a distributor or reseller ... 23
- Getting technical support from the Avaya Web site ... 24

Chapter 3: Overview

- Hardware platforms .. 25
- Software installation .. 26
- Software delivery .. 26
- Software applications description .. 27
 - Line Terminal Proxy Server ... 27
 - SIP Line Service .. 27
 - SIP and H.323 signaling gateway (Virtual Trunk) ... 28
 - Application Server for the Personal Directory, Callers List, and Redial List feature 29
 - UCM - Common Services .. 29

- System configurations .. 30

Chapter 4: Description

- Contents ... 31
- Introduction ... 31
 - Digital Signaling Processor resources .. 31
 - DHCP server .. 33
- Interworking .. 33
- Required packages .. 34
- Fax/Modem pass-through ... 35
 - Modem traffic ... 37
- Recommendations for Fax configuration in the CS 1000 system .. 38
 - Typical scenarios ... 39
 - Recommendations for faxing in a data network ... 39
 - Configuration for analog line cards connected to faxes ... 40
- IP Phone registration on a CS 1000 system ... 40
 - IP Phone registration .. 41
 - IP Phone unregistration .. 41
- Voice Gateway Media Cards ... 41
- Media Card 32S .. 42
 - Secure Real-time Transport Protocol .. 42
 - Unsupported products ... 44
- Signaling and messaging ... 44
- Signaling protocols .. 44
Chapter 5: Features

Contents.. 51
Introduction.. 52
Live Dialpad.. 54
Diagnostics.. 55
Unicode... 55
Language synchronization... 56
Unicode Name Directory... 56
IP Client cookies... 60
e2dsetShow ()... 61
IP Phone Types... 62
Unique TN Types for existing IP Phone models... 62
Automatic IP Phone TN conversion (Flexible Registration).. 63
Manual IP Phone TN conversion.. 64
Active Call Failover for IP Phones... 65
Minimum requirements.. 66
ACF mode... 66
ACF scenarios.. 67
Firmware downloads... 71
WLAN Handsets 2210/2211/2212, Avaya 6120/6140 WLAN Handsets.. 71
Operating parameters... 71
Feature interactions... 74
Installation and configuration... 80
Configurable RUDP Time-out and Retries Count... 80
Overlay and command modifications... 81
Status definitions.. 81
LD 32 STAT command... 83
LD 80 TRAC command... 83
LD 117 STIP ACF command.. 84
Output.. 85
LD 117 STIP ACF in Element Manager.. 85
DSP peg counter for CS 1000E systems.. 86
Enhanced UNIStim Firmware Download for IP Phones... 87
Operating parameters... 87
Feature interactions.. 88
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>88</td>
</tr>
<tr>
<td>Download maxums</td>
<td>91</td>
</tr>
<tr>
<td>Immediate and delayed firmware downloads</td>
<td>92</td>
</tr>
<tr>
<td>Maintenance Mode</td>
<td>93</td>
</tr>
<tr>
<td>Call Server commands</td>
<td>95</td>
</tr>
<tr>
<td>LTPS CLI commands</td>
<td>98</td>
</tr>
<tr>
<td>Element Manager</td>
<td>101</td>
</tr>
<tr>
<td>IP Phone firmware management in Element Manager</td>
<td>102</td>
</tr>
<tr>
<td>Ethernet Diagnostics in Element Manager</td>
<td>102</td>
</tr>
<tr>
<td>Maintenance Mode commands in Element Manager</td>
<td>107</td>
</tr>
<tr>
<td>iset commands in Element Manager</td>
<td>111</td>
</tr>
<tr>
<td>Firmware download using UNIStim FTP</td>
<td>111</td>
</tr>
<tr>
<td>CLI commands</td>
<td>114</td>
</tr>
<tr>
<td>NAT Traversal feature</td>
<td>118</td>
</tr>
<tr>
<td>Echo Servers</td>
<td>119</td>
</tr>
<tr>
<td>Mapping</td>
<td>119</td>
</tr>
<tr>
<td>NAT Mapping Keep Alive</td>
<td>121</td>
</tr>
<tr>
<td>Mute and Hold considerations</td>
<td>121</td>
</tr>
<tr>
<td>NAT and VLAN</td>
<td>123</td>
</tr>
<tr>
<td>NAT Traversal and Proactive Voice Quality Management</td>
<td>123</td>
</tr>
<tr>
<td>Configuring NAT Traversal in Element Manager</td>
<td>124</td>
</tr>
<tr>
<td>Configuring NAT Traversal in LD 117</td>
<td>124</td>
</tr>
<tr>
<td>CLI commands</td>
<td>127</td>
</tr>
<tr>
<td>Corporate Directory</td>
<td>131</td>
</tr>
<tr>
<td>Personal Directory, Callers List, and Redial List</td>
<td>131</td>
</tr>
<tr>
<td>IP Call Recording</td>
<td>132</td>
</tr>
<tr>
<td>Enhanced IP Call Recording</td>
<td>132</td>
</tr>
<tr>
<td>Feature interactions</td>
<td>134</td>
</tr>
<tr>
<td>Identifying the IP Phone</td>
<td>135</td>
</tr>
<tr>
<td>Administration</td>
<td>136</td>
</tr>
<tr>
<td>LD 17</td>
<td>136</td>
</tr>
<tr>
<td>LD 11</td>
<td>137</td>
</tr>
<tr>
<td>LD 20</td>
<td>138</td>
</tr>
<tr>
<td>LD 80</td>
<td>138</td>
</tr>
<tr>
<td>LD 81</td>
<td>138</td>
</tr>
<tr>
<td>LD 83</td>
<td>139</td>
</tr>
<tr>
<td>LD 117</td>
<td>139</td>
</tr>
<tr>
<td>Examples of STIP output</td>
<td>139</td>
</tr>
<tr>
<td>pbxLink connection failure detection</td>
<td>140</td>
</tr>
<tr>
<td>Display pbxLink information using Element Manager</td>
<td>141</td>
</tr>
<tr>
<td>Display pbxLink information using LD 117 STAT SERV</td>
<td>141</td>
</tr>
<tr>
<td>IP Phone support</td>
<td>145</td>
</tr>
<tr>
<td>Element Manager support</td>
<td>146</td>
</tr>
<tr>
<td>Call Statistics collection</td>
<td>146</td>
</tr>
<tr>
<td>Counting IP Phones</td>
<td>146</td>
</tr>
<tr>
<td>IP Phone Zone Traffic Report 16</td>
<td>148</td>
</tr>
<tr>
<td>Programmable line/DN feature keys (self-labeled)</td>
<td>153</td>
</tr>
</tbody>
</table>
Chapter 6: Personal Directory application

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>169</td>
</tr>
<tr>
<td>Virtual Office</td>
<td>171</td>
</tr>
<tr>
<td>Media Gateway 1000B</td>
<td>171</td>
</tr>
<tr>
<td>User key for Personal Directory, Callers List, and Redial List</td>
<td>171</td>
</tr>
<tr>
<td>Personal Directory</td>
<td>172</td>
</tr>
<tr>
<td>Callers List</td>
<td>172</td>
</tr>
<tr>
<td>Call log options</td>
<td>173</td>
</tr>
<tr>
<td>Redial List</td>
<td>174</td>
</tr>
<tr>
<td>IP Phone Application Server configuration and administration</td>
<td>175</td>
</tr>
<tr>
<td>Configure the IP Phone Application Server and remote backup</td>
<td>175</td>
</tr>
<tr>
<td>Personal Directories Server Configuration</td>
<td>179</td>
</tr>
<tr>
<td>Alarms</td>
<td>180</td>
</tr>
<tr>
<td>IP Phone Application Server database maintenance</td>
<td>180</td>
</tr>
<tr>
<td>IP Phone Application Server database backup</td>
<td>181</td>
</tr>
<tr>
<td>Full database recovery</td>
<td>182</td>
</tr>
<tr>
<td>Selective database recovery for a single user</td>
<td>183</td>
</tr>
</tbody>
</table>
Chapter 11: Installation and initial configuration of an IP Telephony node

Contents

Introduction... 227
Installation and configuration procedures.................. 228
Equipment considerations.. 228

Required equipment... 228
Optional equipment... 229

Install the hardware components................................ 229

Voice Gateway Media Card... 229
Summary of installation steps..................................... 229
Installing and cabling the Media Card 32-port card.... 230

Voice Gateway Media Card ELAN and TLAN network interfaces.. 232

Initial configuration of MC 32S card.......................... 234

Initial configuration of IP Line data............................. 235

Configuring IP address for the system active ELNK Ethernet network interface (LD 117).............. 235
Configure VoIP bandwidth management zones (LD 117)... 236

Element Manager for Zone Configuration.................. 238

Configure virtual superloops for IP Phones.................. 239

Configure IP Phone features in LD 11........................ 240
Configure the IP Phone Key Expansion Module........... 242
Configure the Avaya 1100 Series Expansion Module..... 244
Configure the Avaya 1200 Series IP Deskphones Key Expansion Module.. 246

Configure the Expansion Module 2050......................... 247
IP Phone dedicated context-sensitive soft keys............. 249

Node election rules... 250

Chapter 12: Configuration of IP Telephony nodes using Element Manager

Contents

Introduction... 251

Configure IP Line data using Element Manager............ 252

Internet Explorer browser configuration................... 252

Summary of procedures.. 252

Manually add an IP Telephony node......................... 252

SNMP configuration.. 263

Configure Voice Gateway Profile data....................... 264

Configure Quality of Service..................................... 268

Configure file server access....................................... 269

Configure loss and level plan.................................... 271

Add card and configure the card properties of the Voice Gateway Media Card............................. 271
Transfer node configuration from Element Manager to the Voice Gateway Media Cards.............................. 274
Transmit node properties.. 274
Upgrade the Voice Gateway Media Card and IP Phone firmware.. 275
Upgrade procedure steps... 275
Upgrade options.. 276
IP Phone firmware requirements.. 276
Determine Voice Gateway Media Card software version.. 277
Download the current loadware and IP Phone firmware... 277
Upload the loadware and firmware files to the Signaling Server.. 277
Upgrade the Voice Gateway Media Card loadware.. 278
Restart the Voice Gateway Media Card.. 280
Re-enable the Voice Gateway Media Card.. 281
Upgrade the IP Phone firmware... 281
Assemble and install an IP Phone.. 285
Change the default IPL CLI Shell password.. 285
Configure the IP Phone Installer Passwords.. 285
Import node configuration from an existing node.. 286
Changing the Node ID on an Existing CS 1000 System... 287
Procedure 28: Changing the Node ID on existing CS 1000 system.. 287

Chapter 13: IP Line administration.. 289
Contents.. 289
Introduction... 289
IP Line feature administration.. 290
Private Zone configuration... 291
Virtual Office... 291
802.1Q.. 294
Password security.. 294
SNMP community strings... 295
CLI Shell user name and password.. 295
Node password synchronization.. 296
IP phone Installer Password.. 298
Default user name and password.. 305
IP configuration commands... 306
TLAN network interface configuration commands.. 307
Display the number of DSPs... 308
Display IP Telephony node properties.. 308
Display Voice Gateway Media Card parameters.. 309
Packet loss monitor... 311
Transfer files using the CLI.. 311
Reset the Operational Measurements file... 313

Chapter 14: IP Line administration using Element Manager... 315
Contents.. 315
Introduction... 315
Element Manager administration procedures... 315
Turn off browser caching... 315
IP Line Operational Measurement report scheduling and generation... 316
Collection period.. 317
Chapter 15: Numbering Groups

Numbering group attributes

Numbering group validation rules

Calling Line Identification Uniform Resource Identifier Generation for Subscriber Telephony Account Numbering group validation rules

CLID/URI Generator

Manage numbering groups

Export numbering groups into a CSV file

Import numbering groups from a CSV file

Restore numbering groups

Invoke telephony account CLID/URI generation

View numbering groups report

Chapter 16: Corporate Directory

Forming Dialing Prefixes

Corporate Directory prerequisites

Manage Corporate Directory reports

Generate Corporate Directory report

Upload Corporate Directory report

Export Corporate Directory report

Import Corporate Directory report

Restore Corporate Directory report

View history of Corporate Directory report

Blocking concurrent user operations in Corporate Directory

Chapter 17: IP Media Services

Contents

Introduction

System architecture

Call Server

Resource selection in mixed deployments

Signaling Server

Resource registration

Media Application Servers
Chapter 18: IP Media Services configuration

Contents
Configure Media Services Routing Number using Element Manager
Configure IP Media Services using Element Manager
Enable IP Media Services using Element Manager
Configure a proxy server using Element Manager
Configure a local media server using Element Manager
Configure the SIP URI Map using Element Manager
Configure the Port Settings using Element Manager
Configure IP Attendant Gateway using Element Manager
Configure IP Media Services using Avaya Aura® System Manager
Configuring IP Media Services as a SIP entity
Configuring the SIP entity link for IP Media Services
Configuring MAS as a SIP entity
Configuring the SIP entity link for MAS
Configuring bandwidth management for a MAS SIP entity
Configuring the Routing Policy and Dial Pattern for MAS
Configuring the MAS SIP Domain, Trusted Nodes and Routes for IP Media Services
Configure the MAS the MAS media source using Element Manager
Configure Zone and VPN information using Network Routing Service Manager
Configure support for MAS clusters
Configure survivable IP Tones
Configure Music on Hold based on phone type

Chapter 19: Maintenance

Contents
Introduction
IP Line and IP Phone maintenance and diagnostics
LD 32
LD 117
TN
Physical TN
Virtual TN
Chapter 1: New in this release

The following sections describe what's new for Signaling Server IP Line Applications Fundamentals for Avaya Communication Server 1000 (Avaya CS 1000) Release 7.5.

• Features on page 17
• Other on page 17

Features

See the following sections for information about feature changes.

G.722 codec
New codec type G.722 is introduced in the Communication Server 1000 release 7.5. For more information on this codec type see sections Codecs on page 73, Codec selection on page 192, Codec selection in Element Manager on page 193, and Codec sorting methods on page 198

IP Media Services
Communication Server 1000 Release 7.5 introduces the following changes for IP Media Services:

• Support for proxy mode interaction with Avaya Aura® Session Manager
• Support for MAS clusters using Aura® Session Manager
• Floating licenses for MAS 7.0

For more information about IP Media Services, see IP Media Services on page 385

Other

Revision history

June 2013 Standard 03.17. This document is up-issued to include updates to the IP Media Services and IP Media Services configuration chapters.
New in this release

June 2013 Standard 03.16. This document is up-issued to include an update to the IP Media Services feature restrictions and limitations section.

May 2013 Standard 03.15. This document is up-issued to mention that User Profile Management replaces Subscriber Manager in System Manager 6.2 and also to add the IP Media Services feature restrictions and limitations section to the IP Media Services chapter.

November 2012 Standard 03.14. This document is up-issued to include an update to the Forming Dialing Prefixes section in the Corporate Directory chapter.

October 2012 Standard 03.13. This document is up-issued to include an update to the procedure for configuring IP Media Services as a SIP Entity.

May 2012 Standard 03.12. This document is up-issued to include updated terminology.

April 2012 Standard 03.11. This document is up-issued to include additional information in the IP Network-wide Virtual Office section.

March 2012 Standard 03.10. This document is up-issued to include updates to support Communication Server 1000 Release 7.5.

October 2011 Standard 03.09. This document is up-issued to include an update to the procedure for generating Corporate Directory reports.

August 2011 Standard 03.07 and 03.08. This document is up-issued to support the removal of content for outdated features, hardware, and system types as well as to include an update to the Synchronize IP Nodes procedure. A note was added that users might have to log off the Call Server if no extra TTYs are available.

June 2011 Standard 03.05 and 03.06. This document is up-issued to add recommendations for fax configurations and changes to the TN_TYPE for the 6120 and 6140 WLAN Handsets for the Communication Server 1000 Release 7.5 as well as an update to the VGMC loadware upgrade procedure.

March 2011 Standard 03.04. This document is up-issued to add missing information regarding configuring a node on an existing CS 1000 system for Communication Server 1000 Release 7.5.

January 2011 Standard 03.03. This document is up-issued to support Communication Server 1000 Release 7.5.

November 2010 Standard 03.01 and 03.02. This document is up-issued to support Communication Server 1000 Release 7.5.

June 2010 Standard 02.01. This document is up-issued to support Communication Server 1000 Release 7.0.

February 2010 Standard 01.04. This document is up-issued to support Communication Server 1000 Release 6.0.

June 2009 Standard 01.03. This document is up-issued to support Communication Server 1000 Release 6.0.
May 2009 Standard 01.01 and 01.02. This document is up-issued to support
Communication Server 1000 Release 6.0.

Structure

Legacy products and releases

This document contains information about systems, components, and features that are compatible with Avaya Communication Server 1000 software. For more information about legacy products and releases, see www.avaya.com.

Related information

The following documents are referenced in this document:

- Converging the Data Network with VoIP Fundamentals, NN43001-260
- Transmission Parameters Reference, NN43001-282
- Branch Office Installation and Commissioning, NN43001-314
- WLAN IP Telephony Installation and Commissioning, NN43001-504
- Emergency Services Access Fundamentals, NN43001-613
- Element Manager System Reference—Administration, NN43001-632
- Unified Communication Management Fundamentals, NN43001-116
- IP Deskphones Fundamentals, NN43001-368
- Software Input Output Reference—System Messages, NN43001-712
- Avaya Communication Server 1000M and Meridian 1 Large System Planning and Engineering, NN43021-220
- Communication Server 1000M and Meridian 1 Large System Maintenance, NN43021-700
- Communication Server 1000E Planning and Engineering, NN43041-220
- IP Phone 2001 User Guide, NN43115-102
- IP Phone 2002 User Guide, NN43116-104
- IP Phone 2004 User Guide, NN43117-102
- Avaya 2033 IP Conference Phone User Guide, NN43111-100
Conventions

In this document, the following systems are referred to generically as system:

- Communication Server 1000E (CS 1000E)
- Communication Server 1000M (CS 1000M)

In this document, the following hardware is referred to generically as Media Gateway:

- Option 11C Mini Chassis (NTDK91) and Expander chassis (NTDK92) - legacy hardware
- Option 11C Cabinet (NTAK11) - legacy hardware
- MG 1000E Chassis (NTDU14) and Expander chassis (NTDU15)
- MG 1010 Chassis (NTC310)
- IPE module (NT8D37) with MG XPEC card (NTDW20)

In this document, the following hardware platforms are referred to generically as Server:

- Call Processor Pentium IV (CP PIV) card
- Common Processor Pentium Mobile (CP PM) card
- Common Processor Media Gateway (CP MG) card
- Common Processor Dual Core (CP DC) card
- Commercial off-the-shelf (COTS) servers
 - IBM x360m server (COTS)
 - HP DL320 G4 server (COTS)
 - IBM x3350 server (COTS2)
 - Dell R300 server (COTS2)
In this document, the following cards are referred to generically as Gateway Controller:

- Media Gateway Controller (MGC) card (NTDW60 and NTDW98)
- Media Gateway Extended Peripheral Equipment Controller (MG XPEC) card (NTDW20)
- Common Processor Media Gateway (CP MG) card (NTDW56 and NTDW59)

The following table shows supported roles for common hardware platforms:

Table 1: Hardware platform supported roles

<table>
<thead>
<tr>
<th>Hardware platform</th>
<th>VxWorks Server</th>
<th>Linux Server</th>
<th>Co-res CS and SS</th>
<th>Gateway Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP IV</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>CP PM</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>CP DC</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>CP MG</td>
<td>no</td>
<td>no</td>
<td>yes (see note)</td>
<td>yes (see note)</td>
</tr>
<tr>
<td>MGC</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>MG XPEC</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>COTS1</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>COTS2</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Note:

The CP MG card functions as a Server and the Gateway Controller while occupying slot 0 in Media Gateway.

For information about CP MG, see *Linux Platform Base and Applications Installation and Commissioning, NN43001-315*.

In this document, the following terms apply:

- On systems where System Manager is available, the term UCM in the documentation refers to UCM in System Manager. On systems where System Manager is not available, the term UCM in the documentation remains unchanged.
- On systems where System Manager 6.2 is available, the term Subscriber Manager in the documentation refers to User Profile Management in System Manager; on systems where System Manager 6.1 is available, the term Subscriber Manager refers to Subscriber Manager in System Manager. On systems where System Manager is not available, the term Subscriber Manager in the documentation remains unchanged.
- On systems where Session Manager is available, the term NRS in the documentation refers to Session Manager. On systems where Session Manager is not available, the term NRS in the documentation remains unchanged.
New in this release
Chapter 2: Customer service

Visit the Avaya Web site to access the complete range of services and support that Avaya provides. Go to www.avaya.com or go to one of the pages listed in the following sections.

Navigation

- Getting technical documentation on page 23
- Getting product training on page 23
- Getting help from a distributor or reseller on page 23
- Getting technical support from the Avaya Web site on page 24

Getting technical documentation

To download and print selected technical publications and release notes directly from the Internet, go to www.avaya.com/support.

Getting product training

Ongoing product training is available. For more information or to register, go to www.avaya.com/support. From this Web site, locate the Training link on the left-hand navigation pane.

Getting help from a distributor or reseller

If you purchased a service contract for your Avaya product from a distributor or authorized reseller, contact the technical support staff for that distributor or reseller for assistance.
Getting technical support from the Avaya Web site

The easiest and most effective way to get technical support for Avaya products is from the Avaya Technical Support Web site at www.avaya.com/support.
Chapter 3: Overview

This document describes the functional and operational characteristics of IP Line applications, and associated features, in Avaya Communication Server 1000 (Avaya CS 1000). It also describes how to install, configure, administer and maintain an IP Telephony node.

The IP Line applications manage IP Phone signaling, Session Initiation Protocol (SIP) gateway signaling, H.323 gateway signaling, Personal Directory, and IP Peer Networking, in Avaya CS 1000E and Avaya CS 1000M systems.

Hardware platforms

Server cards

- Common Processor Pentium Mobile (CP PM)
- Common Processor Dual Core (CP DC)
- Common Processor Media Gateway (CP MG) 32
- Common Processor Media Gateway (CP MG) 128

The Server cards can host a Co-resident Call Server and Signaling Server configuration. For more information, see Co-resident Call Server and Signaling Server Fundamentals, NN43001-509.

COTS Servers

- IBM x306m (COTS1)
- HP DL320-G4 (COTS1)
- IBM x3350 (COTS2)
- DELL R300 (COTS2)

In this document, the generic term COTS refers to all COTS servers. The term COTS1 or COTS2 refers to the specific servers in the preceding list.

The CP PM and CP DC platforms are circuit cards hosted in Media Gateway slots in CS 1000E systems or in slots of Universal Equipment Modules (UEM) in CS 1000M SG and CS 1000M MG systems. The CP MG platform is a circuit card and is hosted in slot 0 of a Media Gateway in CS 1000E systems.

The other platforms are commercial off-the-shelf (COTS) servers. For more information about the platforms, and instructions to install, see Linux Platform Base and Applications Installation and Commissioning, NN43001-315.
All hardware platforms have an ELAN and a TLAN network interface. The IP Line applications communicate with the system Call Processor through the system ELAN subnet.

Software installation

IP Line applications are deployed to a Linux-based Signaling Server (hardware platform) from the Primary Security Server in the CS 1000 system by using the Deployment Manager tool in the Unified Communications Management (UCM) application. This is known as Central Deployment.

You can also deploy IP Line applications to a Linux-based Signaling Server by using the Deployment Manager tool on the local Signaling Server. This is known as Local Deployment. Local Deployment allows a hardware platform to be initialized prior to joining the primary security domain.

Local Deployment and Central Deployment require that all IP Line application software be copied to the Signaling Server prior to the software deployment. In effect, the Signaling Server acts as the Primary Security Server and deploys IP Line applications software to itself.

Important:
Avaya recommends that you deploy IP Line applications from the Primary Security Server (Central Deployment) to ensure application consistency on all hardware platforms targeted to host IP Line applications in your CS 1000 system.

You can install IP Line applications on more than one Signaling Server in CS 1000E and CS 1000M systems to provide a load-sharing, redundant configuration for high scalability and enhanced reliability. See Redundancy on page 48.

Software delivery

IP Line software is deployed using Deployment Manager. For more information, see Linux Platform Base and Applications Installation and Commissioning, NN43001-315.
Software applications description

A Signaling Server provides a signaling interface to the IP network using the following software applications:

- Line Terminal Proxy Server
- SIP signaling gateway
- H.323 signaling gateway
- Application Server for the Personal Directory (Unicode Directory), Callers List, and Redial List features
- UCM - common services

Line Terminal Proxy Server

The Line Terminal Proxy Server (LTPS) application is the signaling interface for IP Phones. The LTPS application runs on the primary Signaling Server and the Signaling Servers added to the network for load balancing and redundancy. Each instance of the LTPS application supports a maximum of 5000 IP Phones.

With the Call Server, the LTPS delivers a full suite of telephone features. If the Signaling Server is co-resident with the Call Server, the maximum number of IP Phones is 1000. For more information, see Co-resident Call Server and Signaling Server Fundamentals, NN43001-509.

The Unified Network IP Stimulus protocol (UNIStim) is the stimulus-based protocol used for communication between IP Phones and the LTPS. The LTPS also manages the firmware for all connected IP Phones.

For a list of all support Avaya IP Deskphones, see IP Phones Fundamentals, NN43001-368.

Phase 2 IP Phones support all CS 1000 Release 7.0 and higher features. Phase 1 IP Phones do not.

You can configure each IP Phone through the Dynamic Host Configuration Protocol (DHCP) to register with a Call Server for feature control. For more information, see DHCP server on page 33.

SIP Line Service

The SIP Line Service fully integrates Session Initiation Protocol (SIP) endpoints in the CS 1000 system and extends CS 1000 telephony features to SIP IP Phones. Signaling Server software includes the SIP Line Service.
SIP and H.323 signaling gateway (Virtual Trunk)

The Virtual Trunk application manages the SIP and H.323 signaling gateways on the system.

Session Initiation Protocol trunking

Session Initiation Protocol (SIP) is a signaling protocol for creating, modifying, and terminating sessions with one or more participants. These sessions can include IP Phone calls, multimedia distribution, and multimedia conferences. Basic SIP connectivity, referred to as SIP trunking, provides a direct media path between users in a network.

The SIP trunking software functions as

- SIP User Agent
- signaling gateway for all SIP Phones

SIP trunking provides a direct media path between users in a network. The maximum number of SIP Trunks is 3700.

For more information about SIP trunking, see IP Peer Networking Installation and Commissioning, NN43001-313 and Network Routing Service Fundamentals, NN43001-130.

H.323 trunking

H.323 is a standard that specifies the components, protocols, and procedures that provide multimedia communication services over packet networks.

The H.323 signaling software (Virtual Trunk) provides the industry-standard H.323 signaling interface to H.323 gateways. It supports both en bloc and overlap signaling. This software uses an H.323 Gatekeeper to resolve addressing for systems at various sites.

Note:

For overlap signaling to provide the maximum benefit, Avaya highly recommends that all Signaling Servers in the network be overlap-enabled. Failure to do so results in call-completion delays caused by converting between overlap and en bloc.

The H.323 gateway supports direct, end-to-end voice paths using Virtual Trunks with the following benefits:

- elimination of multiple IP Telephony to circuit-switched conversions
- improved voice quality
• simplified troubleshooting
• interoperability

For more information about H.323 signaling, see *IP Peer Networking Installation and Commissioning, NN43001-313* and *Network Routing Service Fundamentals, NN43001-130*.

Application Server for the Personal Directory, Callers List, and Redial List feature

The Application Server for the Personal Directory, Callers List, and Redial List features (IP Phones Application Server) runs on the Signaling Server. Only one database can exist in the network; redundancy is not supported. The IP Phones Application Server database can coexist with the other software applications on a Signaling Server. However, if you have more than 1000 users, Avaya recommends that you store the database on a dedicated Signaling Server (preferably a Follower). The IP Phones Application Server cannot be run on a Signaling Server at a branch office.

You can configure a standalone PD server. You can create a node for the PD where LTPS and VTRK applications are disabled.

UCM - Common Services

The following UCM common services are supported in CS 1000:

• **Security server**: Security Services enables element and service management applications to access a common application security infrastructure. The framework manages secure access to Web applications and provides security for Web interfaces and Web utilities.

• **Element Manager**: Element Manager is a Web interface that provides an alternative to the traditional CLI and overlays.

• **Deployment Manager**: Linux platform uses Centralized Deployment Manager (CDM) to remotely deploy application software from the primary security server to other Linux servers located in the same security domain.

• **Subscriber Manager**: Subscriber Manager is deployed as a plug-in application above the UCM framework. Subscriber Manager provides a centralized location for the management of subscriber information for enterprise services. With Subscriber Manager, users can easily manage subscribers and subscriber accounts (phone services) within a network.
System configurations

Although you can use IP Line applications in various system configurations and the use can vary in those configurations, support is available for two basic system configurations in CS 1000. See Table 2: Possible system configurations on page 30.

Avaya Communication Server 1000 systems have a Signaling Server in the network configuration. The Signaling Server is a server that provides signaling interfaces to the IP network. The Signaling Server central processor drives the signaling for IP Phones and IP Peer networking.

The LTPS runs on the Signaling Server. Avaya IP Deskphones or redirect supported IP Phones list register with the Signaling Server.

Table 2: Possible system configurations

<table>
<thead>
<tr>
<th>System</th>
<th>Signaling Server applications present</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1000E</td>
<td>Yes</td>
</tr>
<tr>
<td>CS 1000M</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Chapter 4: Description

Contents

This chapter contains the following topics:

- Introduction on page 31
- Interworking on page 33
- Required packages on page 34
- Fax Modem pass-through on page 35
- Recommendations for Fax configuration in the CS 1000 system on page 38
- Voice Gateway Media Cards on page 41
- Virtual superloops, Virtual TNs, and physical TNs on page 46
- Licenses on page 46
- Administration on page 49

Introduction

The IP Line application provides an interface that connects IP Deskphones to an Avaya Communication Server 1000 (CS 1000) Call Server. Avaya CS 1000 requires a Signaling Server. This chapter provides a description of the IP Line application.

Important:

The IP Line version of software must match the Call Server version.

Voice Gateway Media Cards cannot run IP Line application software.

Digital Signaling Processor resources

Digital Signal Processor (DSP) resources provide DSP ports to connect IP and Time Division Multiplexing (TDM) devices in a Media Gateway. DSP resources can be provided by the Media
Gateway Controller (MGC) card DSP daughterboards, the Common Processor Media Gateway (CPMG) 32, the CP MG 128, and Voice Gateway Media Cards.

- 32 port daughterboard
- 96 port daughterboard
- 128 port daughterboard

The CP MG card is available with 32 or 128 DSP ports.

A Gateway Controller with DSP resources can provide an optional solution to installing many Voice Gateway Media Cards in a Media Gateway. However, support for Voice Gateway Media Cards remains available to add additional DSP resources to a Media Gateway. The MGC is only used in a Media Gateway chassis, cabinet, or in an MG 1010.

Speech path delay can occur when DSP resources are involved in call scenarios with a modified speech path. This affects IP-TDM calls combined with the following features:

- Conferencing
- ACD Observe
- Call monitoring
- OVR - Override
- BKin - Break-In
- QPR - QSIG Path Replacement
- TRO - Trunk Route Optimization
- ROP - Route Optimization
- EES - End to End Signaling

The delay sums up from a time required to close used channel, to fill in ARP header for new channel and a time required to bring the DSP in working mode on a micro-engine level. The delay depends on the Media Card type and on the number of DSP resources that are taken in any given call scenario. The more DSP resources involved the more open/close pairs need to be processed, increasing the delay. The longest possible delay is up to 3 seconds for MC/ITG cards, up to 1 second for MGC/MS32S cards.

For more information about Voice Gateway Media Cards, see [Voice Gateway Media Cards](#) on page 41.

For more information about Gateway Controller DSP resources, see [Avaya Communication Server 1000E Installation and Commissioning, NN43041-310](#).
DHCP server

A Dynamic Host Configuration Protocol (DHCP) server can be used to provide the required information so that the IP Phone network connection can connect to the Line Terminal Proxy Server (LTPS).

For more information about DHCP, see *Converging the Data Network with VoIP Fundamentals, NN43001-260* and *IP Phones Fundamentals, NN43001-368*.

Interworking

The IP Phone uses the IP network to communicate with the LTPS and the optional DHCP server. *Figure 1: System architecture* on page 34 shows a diagram of the system architecture.
Figure 1: System architecture

Required packages

IP Phones require the software packages listed in Table 3: Required packages on page 34.

Table 3: Required packages

<table>
<thead>
<tr>
<th>Package mnemonic</th>
<th>Package number</th>
<th>Package description</th>
<th>Package type (new, existing, or dependency)</th>
<th>Applicable Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSET</td>
<td>88</td>
<td>M2000 Digital Sets</td>
<td>Existing</td>
<td>All</td>
</tr>
</tbody>
</table>
Fax/Modem pass-through

The Fax/Modem pass-through feature provides a modem pass through allowed (MPTA) class of service (CoS) for an analog phone TN. MPTA CoS dedicates an analog phone TN to a modem or a fax machine terminal. A connection that initiates from the dedicated TN or calls that terminate at the dedicated TN through a Digital Signal Processor (DSP), use a G.711 NO VAD codec on the Call Server.

Modem pass-through is a specific configuration of a G.711 VoIP channel that improves modem performance compared to standard VoIP configuration. Automatic switching to Voice Band Data (VBD) is a feature of the DSP; the DSP monitors the data stream to distinguish between voice and data calls. The DSP reconfigures to modem pass through mode when it determines the call is a modem call.

The DSP mode on the Mindspeed DSP (MC32S/DB96/DB32) for MPTA to MPTA fax or modem calls displays ModemPT in the dspMode field of the vgwShow command. The Telogy DSP (ITGSA) displays PassThrough.

For modem calls between CS 1000 systems connected by analog and digital trunks, you must configure MPTA CoS on the Call Server of each CS 1000 system for analog units connected to modems. MPTA CoS configuration is necessary because the call setup negotiation does not occur end to end as it is for virtual trunks. If the analog unit on one Call Server uses MPTA CoS and the analog unit on the other Call Server uses modem pass through denied (MPTD) CoS, the modem call fails.

When you configure MPTA CoS on a TN, support is no longer available for the T.38 protocol for that particular TN. Any call setup with an analog phone TN that has MPTA configured must use G.711 codec exclusively, as this is the only codec available for making calls using this TN. G.711 codec exists by default in the DSP configuration.

To ensure the MPTA CoS works correctly, you must select the Enable Modem/Fax pass-through mode check box in the Gateways section of Element Manager. This check box is selected by default in Element Manager. To enable SG3 fax calls over Telogy DSP, you must select the Enable V.21 FAX tone detection check box in Element Manager must. For SMC and MC32S cards, this setting is available in the codec profile section on the Nodes summary page.

In the modem pass-through mode of operation, the DSP state appears as MPT on the Gateway Controller and MC32S cards and as PassThru on SMC cards.

Important:
To configure IP Line in groups five to seven on Option 81C or CS 1000M MG, you need the Fiber Network (FIBN) software package 365.

<table>
<thead>
<tr>
<th>Package mnemonic</th>
<th>Package number</th>
<th>Package description</th>
<th>Package type (new, existing, or dependency)</th>
<th>Applicable Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIE</td>
<td>170</td>
<td>Aries Digital Sets</td>
<td>Existing</td>
<td>All</td>
</tr>
</tbody>
</table>
BCM 50 supports only modem pass-through over G.711 in Release M50R3.

Only the G.711 codec supports MPT CoS. MPT CoS includes no other codecs. The packet interval for G.711 codec is assigned a value of 20 milliseconds (ms) in MPT.

The maximum speed supported for modem and fax is 33.6 Kbps. This limit is imposed by the analog line card.

MPT allows CS 1000 to support the following:

- modem pass through
- Super G3 (SG3) fax at V.34 (33.6 Kbps)
- V.34 rate (33.6 Kbps) modems
- Fax machines that support V.17, V.27, V.29, and V.34

Note:

IP trunks do not support MPT CoS.

When the TN on the CS 1000 is configured with MPTA CoS, it supports V.17, V.27 and V.29 Fax calls. However, the DSP mode is “FaxBegin,” not “ModemPT”. The MPTA CoS forces calls originated or terminated on the TN to use the G.711 NO VAD Codec. This codec selection supersedes the existing bandwidth management strategy on the CS 1000.

When a CS 1000E connects with a system from another vendor, the modem pass-through feature works if the third-party system supports the modem pass-through mode of operation.

The Voice Gateway application displays different auto-switch states (ModemPT, Passthru) in the dspMode field of the vgwShow command, based on tones detected by the DSP. These tones are generated by modem and fax machines connected in the TDM domain. The Voice Gateway application does not control auto-switch states during fax and modem calls, and the dspMode reports tone indications from DSP. The Mindspeed DSP sends tone-detection events to the host processor and changes to Modem Passthrough and Pass-through auto-switch states (with or without Redundancy), based on the tones detected, as it is configured in Auto-switch mode.

For interface commands, responses, and definitions for MPT, see Table 4: Interface commands and responses on page 36.

Table 4: Interface commands and responses

<table>
<thead>
<tr>
<th>Command prompt</th>
<th>User response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLS</td>
<td>MPTA</td>
<td>Turn on the MPT feature.</td>
</tr>
<tr>
<td>CLS</td>
<td>MPTD</td>
<td>Turn off the MPT feature.</td>
</tr>
</tbody>
</table>

Important:

CLS MPTA and CLS MPTD are included in LD 10 for analog line card units.

MPTA-to-MPTA and MPTA-to-MPTD fax or modem calls succeed over the G.711 codec in ModemPT DSP mode. However; MPTD-to-MPTD modem calls fail.

MPTD-to-MPTD fax calls succeed (best effort) over G.711 if the Enable Modem/Fax pass through mode and Enable V.21 FAX tone detection options are configured to On in the
gateway. If the Enable Modem/Fax pass through mode is cleared, the fax call goes over the T.38 codec. Avaya recommends the T.38 fax codec for fax calls over SIP and H.323 trunks. To select the T.38 fax codec, the analog line units at both originating and terminating systems must be set to MPTD CoS.

For information about feature packaging requirements, see Table 5: Feature packaging requirements on page 37.

Table 5: Feature packaging requirements

<table>
<thead>
<tr>
<th>Package mnemonic</th>
<th>Package number</th>
<th>Package description</th>
<th>Package type (new, existing, or dependency)</th>
<th>Applicable market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softswitch</td>
<td>402</td>
<td>Identifies a softswitch system</td>
<td>Existing</td>
<td>All</td>
</tr>
<tr>
<td>IPMG</td>
<td>403</td>
<td>Identifies a system that is equipped with IPMGs</td>
<td>Existing</td>
<td>All</td>
</tr>
</tbody>
</table>

Modem traffic

CS 1000E supports modem traffic in a campus-distributed network with the following characteristics:

- Media card configuration:
 - G.711 codec
 - 20 ms packet size
- one-way delay less than 5 ms
- low packet loss
- V.34 rate (33.6 Kbps)

Performance degrades significantly with packet loss (must be less than 0.5 percent) and when the delay (round trip) is greater than 50 ms and mean jitter is greater than 5 ms.

Important:

Avaya conducted extensive but not exhaustive tests of modem-to-modem calls, data transfers, and file transfers between a CS 1000E and a MG 1000E, using Virtual Trunks and PRI tandem trunks. While all tests succeeded, Avaya cannot guarantee that all modem brands can operate properly over all G.711 Voice over IP (VoIP) networks. Before you deploy modems, test the modem brand within the network to verify reliable operation. Contact your system supplier or your Avaya representative for more information.
Recommendations for Fax configuration in the CS 1000 system

Fax settings and performance over Voice over IP (VoIP) solutions vary depending on the network configuration. In order to achieve a successful faxing environment, the VoIP solution must be engineered properly. This section describes the configuration and network design aspects that need to be taken into consideration when implementing faxing in VoIP solutions.

CODECs:

T.38:

• Older fax machines use V.21
• For lower speeds such as V.21, T.38 protocol should be used in the VoIP segments of the call

Modem pass-through (G.711):

• Newer fax machines use modem protocols to achieve higher speeds (V.34)
• The Modem pass-through feature is intended for modems and high speed faxes employing V.34, using clear channel G.711 over the VoIP segments of the call.
• The Modem pass-through feature detects the phase reversal tone negotiation used for higher speeds and instructs the Digital Signal Processors (DSPs) involved in the call to disable echo cancellation and all other non-linear components.
• The Modem Pass-Through Denied (MPTD) class of service (CoS) for analog fax lines allows the DSPs to switch between T.38 protocol for lower speeds and G.711 protocol for higher speeds.
• The MPTD CoS must be used on analog line card (ALC) units connected to fax machines when there are trunk cards present in the IP Media Gateway (IPMG) and other IPMGs that connect to the TN. The MPTD class of service is required in order to support T.38 and V.34 faxes that could originate or terminate from/to the TN.
• In order for MPTD CoS to work, a system bandwidth strategy of BQ (Best Quality) must be used.
• The Modern Pass-Through Allowed (MPTA) CoS should be used only for modems, as it will force all calls to use G.711 protocol.
• When going to the TN, there is no control over the far-end; however, if the far-end supports T.38 and Modem pass-through, speeds of 33.6 Kbps should be achievable.

Important:
Fax performance at higher speeds (33.6 Kbps) requires that all network elements are properly engineered to support it. When high speed faxes cannot be achieved with a
consistent success rate, Avaya recommends that the fax units be set at a lower speed (14.4 Kbps).

Typical scenarios

Typical scenarios for faxing in a CS 1000E solution are:

- two faxes connected to analog lines in the same Media Gateway Controller (MGC)
- two faxes connected to analog lines in different MGCs of the same CS 1000E system
- one fax connected to an analog line in an MGC, to an IP trunk, to a remote system with a fax
- one fax connected to an analog line in an MGC, to an analog trunk in the same MGC, and then to a TN (Local or Long Distance (LD)) fax
- one fax connected to an analog line in an MGC, to a digital trunk in the same MGC, and then to a TN (Local or LD) fax
- one fax connected to an analog line in an MGC, to a digital trunk in a different MGC of the same CS 1000E system, to a TN (Local or LD) fax

Note:

The following scenario is not supported for faxing: one fax connected to an analog line in an MGC, to an analog trunk in a different MGC of the same CS 1000E system, to a TN (Local or LD) fax.

Recommendations for faxing in a data network

Depending on the fax scenario used, fax calls can traverse the IP network, either internally (e.g., MGC to MGC) or externally (e.g., IP trunks). It is important to engineer the data network to support the following:

- Media card configuration:
 - G.711/T.38 codecs
 - 20 ms packet size
- Round trip delay must be less than 50 ms
- Packet loss must be less than 0.5%
- V.34 rate (33.6 Kbps) can be used as long as the far end supports the Modem pass-through feature
- Mean jitter is less than 5 ms
Important:
Performance degrades significantly with packet loss (must be less than 0.5%) and when the delay (round trip) is greater than 50 ms and the mean jitter is greater than 5 ms.

Important:
Avaya conducted extensive but not exhaustive test of fax calls in different scenarios. While all tests succeeded, Avaya cannot guarantee that all fax brands can operate properly over all G.711 Voice over IP (VoIP) networks. Before you deploy faxes, test the fax within the network to verify reliable operation. Contact your system supplier or your Avaya representative for more information.

Configuration for analog line cards connected to faxes

The typical configuration recommended for analog line cards connected to faxes is as follows:

• MGCs:
 - Enable Modem pass-through mode in the Element Manager
 - Enable V.21 FAX tone detection in the Element Manager
 - Set Voice Gateway (VGW) trunks to the zone with Best Quality (BQ)

• Analog lines:
 - Use Class of Service FAXA to set the proper trunk capability for fax calls
 - Use Class of Service Modem Pass-Through Denied (MPTD). This setting allows lower speed faxes (up to 14.4 Kbps) to use T.38, and higher speed faxes to use G.711 clear channel (no echo cancellation, no non-linear DSP features)

IP Phone registration on a CS 1000 system

On an Avaya Communication Server 1000 (Avaya CS 1000) system, the IP Phones register with the LTPS on the Signaling Server. If more than one Signaling Server exists, the IP Phone registrations are distributed equally among the Signaling Servers to aid in load balancing.

The LTPS maintains a count of the number of IP Phones registered to each LTPS. Each IP Telephony node has one active Leader. The active Leader broadcasts to all LTPS and requests a response if it has room for another IP Phone.

For more information about Signaling Server load-balancing and redundancy, see Avaya Communication Server 1000M and Meridian 1 Small System Planning and Engineering, NN43011-220.
IP Phone registration

Table 6: Registration process on page 41 describes the registration process.

Table 6: Registration process

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The IP Phone receives the IP address of the Connect Server (co-located with the LTPS) through either DHCP or manual configuration.</td>
</tr>
<tr>
<td>2</td>
<td>The IP Phone contacts the Connect Server.</td>
</tr>
<tr>
<td>3</td>
<td>The Connect Server instructs the IP Phone to display a message requesting the customer IP Telephony node number and TN.</td>
</tr>
<tr>
<td>4</td>
<td>The node number and TN are entered. The Connect Server redirects the IP Phone to the Node Leader.</td>
</tr>
<tr>
<td>5</td>
<td>The IP Phone contacts the Node Leader. The Node Leader redirects the IP Phone to the LTPS.</td>
</tr>
<tr>
<td>6</td>
<td>The IP Phone contacts the LTPS.</td>
</tr>
<tr>
<td>7</td>
<td>If the IP Phone is valid, the LTPS registers it with the system.</td>
</tr>
</tbody>
</table>

IP Phone unregistration

Table 7: Unregistration process on page 41 describes the unregistration process.

Table 7: Unregistration process

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>If the LTPS detects a loss of connection with one of the registered IP Phones, it logs the event.</td>
</tr>
<tr>
<td>2</td>
<td>The LTPS then sends an unregister message to the system for that IP Phone.</td>
</tr>
</tbody>
</table>

Voice Gateway Media Cards

In this document, Media Card 32-port card and Media Card 32S card are referred to as Voice Gateway Media Card, unless explicitly stated. The media cards plug into shelf slots in Intelligent Peripheral Equipment (IPE) units in Avaya CS 1000M systems and into slots on Media Gateway 1000E units and Media Gateway 1000E Expander units in CS 1000E systems. The MC32-port and Media Card 32S cards occupy one slot.
The Media Card 32-port card provides a channel density of 32 ports.

The Media Card 32S card provides the following features:

• channel density of 32 ports
• Secure Real-time Transport Protocol (SRTP)
• two Digital Signal Processors (DSP), based on an ARM processor

ITG-P media cards are not supported.

IP Line applications are not supported on the Voice Gateway Media Cards.

Important:

In a CS 1000 system, the ELAN (Embedded LAN) subnet isolates critical telephony signaling between the Call Server and the other components. The ELAN subnet is also known as the Embedded LAN subnet. The Telephony LAN (TLAN) subnet carries telephony, voice, and signaling traffic. The TLAN subnet, also known as the Voice LAN subnet, connects to the customer network.

Voice Gateway Media Cards have an ELAN network interface (10BaseT) and a TLAN network interface (10/100BaseT) on the I/O panel.

There is an RS-232 Maintenance Port connection on the Media Card faceplates.

Caution:

Do not connect maintenance terminals to both the faceplate and the I/O panel serial maintenance port connections at the same time.

For more information about the card faceplates and components, see *Circuit Card Reference, NN43001-311*.

Media Card 32S

The Media Card 32S provides a security layer to secure IP media paths between cards.

Secure Real-time Transport Protocol

The MC32S media card uses Secure Real-time Transport Protocol (SRTP) to secure the IP media path between the card and another MC32S media card or associated DSP daughterboards. When Media Security is configured to On, the Call Server sends a message to the Voice Gateway software on the MC32S card to activate SRTP for the media connection established for that call.

The system administrator configures Media Security.
For information about SRTP, see *IP Phones Fundamentals, NN43001-368* and *System Management Reference, NN43001-600*.

There are two processors on the MC 32S card:
- Control and Signaling Processor (CSP) which runs application and signaling code
- Media Stream Processor (MSP) which processes the media streams.

Table 8: Files downloaded to the MC 32S card on page 43 lists the file names and paths for files that are downloaded from the Signaling Server to the MC 32S card.

Table 8: Files downloaded to the MC 32S card

<table>
<thead>
<tr>
<th>File name</th>
<th>Path on Signaling Server</th>
<th>Path on MC 32S card</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPL6.00XX.mc32s</td>
<td>/var/opt/cs1000/tps/fw/</td>
<td>/p</td>
<td>Software binaries</td>
</tr>
<tr>
<td>bootp.tab</td>
<td>/etc/opt/cs1000/sigServerShare/config/</td>
<td>/u</td>
<td>bootp parameter file</td>
</tr>
<tr>
<td>config.ini</td>
<td>/etc/opt/cs1000/sigServerShare/config/</td>
<td>/u</td>
<td>config file</td>
</tr>
</tbody>
</table>

The software for the MC 32S consists of five files, which are located in the IPL6.00XX.mc32s zipped file stored on the Signaling Server. All Gold versions of firmware are loaded on the MC 32S when the card is shipped from the factory. The Gold Boot Code, the upgradeable Boot Code, the Gold MSP Image, the Gold VxWorks Kernel for CSP Image, the Gold App Image, and the upgradeable Field-programmable Gate Array (FPGA) image are stored in separate areas of the MC 32S FLASH memory. A new load can be programmed into the appropriate area of FLASH memory under software control.

Table 9: Files within the zipped file

<table>
<thead>
<tr>
<th>File name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bootrom.bin</td>
<td>MC 32S boot code image</td>
</tr>
<tr>
<td>mainos.sys</td>
<td>VxWorks 6.0 Kernel image for the Control and Signaling Processor (CSP). The CSP runs the application and signaling code.</td>
</tr>
<tr>
<td>mainos.sym</td>
<td>mainos.sys and mainos.sym files form the CSP image</td>
</tr>
<tr>
<td>ldvoice.axf</td>
<td>Media Stream Processor (MSP) load. The MSP runs the media stream processing code. This load is a binary image.</td>
</tr>
<tr>
<td>fpga.xsvf</td>
<td>MC 32S board FPGA load</td>
</tr>
</tbody>
</table>
Unsupported products

The following remote service products do not support the Media Card 32-port line card and Media Card 32S line card:

- Carrier Remote
- Mini-carrier Remote
- Fiber Remote
- Fiber Remote Multi-IPE

Signaling and messaging

The LTPS sends Scan and Signaling Distribution (SSD) messages to the Call Processor through the system ELAN subnet. When tone service is provided, the service is signaled to the LTPS by using new SSD messages sent through the ELAN subnet.

Signaling protocols

The signaling protocol between the IP Phone and the IP Telephony node is the Unified Networks IP Stimulus Protocol (UNIStim). The Reliable User Datagram Protocol (RUDP) is the transport protocol.

UNIStim

The Unified Network IP Stimulus protocol (UNIStim) is the single point of contact between the various server components and the IP Phone.

UNIStim is the stimulus-based protocol used for communication between an IP Phone and an LTPS on the Signaling Server.

Reliable User Datagram Protocol

Reliable User Datagram Protocol (RUDP) is used for the following purposes:

- signaling between the Call Server and the LTPS
- signaling between the IP Telephony node and the IP Phones
For more information, see ELAN TCP transport on page 45.

Description

Signaling messages between the LTPS and IP Phones use RUDP. Each RUDP connection is distinguished by the IP address and port number. RUDP is another layer on top of the User Datagram Protocol (UDP). RUDP is proprietary to Avaya.

The features of RUDP are as follows:

- reliable communication system over a network
- packets are resent if an acknowledgement message (ACK) is not received following a time-out
- messages arrive in the correct sequence
- duplicate messages are ignored
- loss of contact detection

When a data sequence is packetized and sent from source A to receiver B, RUDP adds a number to each packet header to indicate the order in the sequence.

- If the packet is successfully transmitted to B, B returns an ACK to A, acknowledging that the packet was received.
- If A receives no message within a configured time, it retransmits the packet.
- If B receives a packet without first receiving the predecessor, it discards the packet and all subsequent packets, and a NAK (no acknowledge) message, which includes the number of the missed packet, is sent to A. A retransmits the first missed packet and continues.

ELAN TCP transport

Although TCP is the signaling protocol between the Call Processor and the Signaling Server, RUDP remains for the keepalive mechanism for the link. This means that RUDP messages are exchanged to maintain the link status between the Call Server and the Signaling Server.

The TCP protocol enables bundled messages. Unlike the RUDP transport that creates a separate message for every signaling message (such as display updates or key messages), the TCP transport bundles a number of messages and sends them as one packet.

The Call Server and LTPS software use handshaking to automatically enable TCP. The LTPS application checks the software version each time it attempts to establish a TCP link with the CS 1000 CPU. TCP transports messages, whereas RUDP establishes and maintains the link.
The LTPS software version must match the Call Processor software version; otherwise, the LTPS terminates the link and logs an error message.

Virtual superloops, Virtual TNs, and physical TNs

Virtual TNs (VTN) enable configuration of service data for an IP Phone, such as key layout and CoS, without requiring the IP Phone to be dedicated (hard-wired) to a TN.

The concentration of IP Phones is made possible by dynamically allocating a port (also referred to as a physical TN) for a circuit-switched-to-IP Phone call. All system speech path management occurs with a physical TN instead of a virtual TN. Calls occur between an IP Phone and circuit-switched telephone or trunks using the full CS 1000 feature set. Digital Signal Processor (DSP) channels are allocated dynamically to perform the encoding or decoding required to connect the IP Phone to the circuit-switched network.

The IP Phones (virtual TN) are defined on virtual superloops. To create an IP Phone using VTNs, create a virtual superloop in LD 97 or in Element Manager. See Configure virtual superloops for IP Phones on page 239.

A virtual superloop is a hybrid of real and phantom superloops. Like phantom superloops, no hardware (for example, XPEC or line card) is used to define and enable units on a virtual superloop. As with real superloops, virtual superloops use the time slot map to handle IP Phone(virtual TN)-to-IP Phone calls.

Each Media Card 32-port card provides 32 physical TNs. The physical TNs are the gateway channels (DSP ports). The channels (ports) on the Voice Gateway Media Cards are pooled resources.

Configure the physical TNs (IPTN) in LD 14. They appear as VGW data blocks.

Licenses

Three types of licenses exist:

- Temporary IP User Licence for IP Phones configured for Branch Office or network-wide redundancy
- Basic IP User License for the IP Phone 2001, Avaya 2033 IP Conference Phone, Avaya 1110 IP Deskphone, and Avaya 1210 IP Deskphone
If insufficient Temporary IP User Licenses are available, you can use Basic IP User License and IP User License.

If insufficient Basic IP User Licenses are available for the IP Phone 2001, Avaya 2033 IP Conference Phone, Avaya 1110 IP Deskphone, and Avaya 1210 IP Deskphone then you can also use the IP User License.

If no Basic IP User Licenses are available for the IP Phone 2001, Avaya 2033 IP Conference Phone, Avaya 1110 IP Deskphone, and Avaya 1210 IP Deskphone and IP User Licenses are used, an error message appears:

SCH1976: Basic IP User License counter has reached its maximum value. IP User License was used to configure <data> basic IP Phone type 2001. Action: (Recommended) Purchase additional Basic IP User Licenses for IP Phones type 2001, instead of using higher-priced IP User Licenses.

Each time you configure an IP Phone, the system TN ISM counter decrements.

Customers must purchase one license for each IP Phone installed on a CS 1000 system. A new license uses the existing keycode to enable the IP Phone in the system software. The default is zero.

To expand the license limits for the IP Phones, order and install a new CS 1000 keycode. See Features and Services Fundamentals—Book 4 of 6, NN43001-106.

Important:

Functional Pricing does not support individual licenses. With Functional Pricing, licenses are provisioned in blocks of eight.

License limits

The total number of TNs configured with Temporary IP User Licenses must not exceed 100. The total number of TN configured with Basic IP User Licenses must not exceed 32767. The total number of TN configured with IP User Licenses must not exceed 32767. The total number of IP Phones configured within the system must not exceed the allowable system capacity limit controlled by customer keycodes.

Scalability

The following table summarizes the operational limits of a single Signaling Server. Use the values in the table as a quick overview for planning. For detailed calculations, see Communication Server 1000E Planning and Engineering, NN43041-220 or Avaya Communication Server 1000M and Meridian 1 Large System Planning and Engineering, NN43021-220 as appropriate for your CS 1000 system.
Note:

You must consider real-time capacity for a specific application, which can constrain an application in reaching resource limits.

<table>
<thead>
<tr>
<th>Signaling Server application</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Proxy Server (TPS)</td>
<td>up to 5 000 IP Phones on non Co-Res systems and up to 1 000 IP Phones on Co-Res SS-CS systems.</td>
</tr>
<tr>
<td>Virtual Trunk</td>
<td>Up to 3700 trunks.</td>
</tr>
</tbody>
</table>

Note:

This limit depends on the split between SIP and incoming and outgoing H.323 calls. For more information see the Planning and Engineering documentation appropriate for your system.

| PD | Up to 2250040000 IP Phones for each PD server. Up to 2000 IP Phones on Co-Res SS only systems. Up to 1 000 IP Phones on Co-Res SS-CS systems. |

Redundancy

Redundancy provides load-sharing for the Terminal Proxy Server (TPS) and an alternative route for the SIP and H.323 Gateway software. Signaling Server redundancy ensures that telephony services can withstand single hardware and network failures.

When you plan survivability strategies for the Signaling Server, include a second Signaling Server in the plan to load share. One Signaling Server is a Leader Signaling Server that is the primary TPS. The other Signaling Server is a Follower Signaling Server that is a secondary, redundant TPS.

If the Leader Signaling Server fails, an election process occurs and the Follower Signaling Server becomes the primary TPS. The IP Phones reregister to the Follower Signaling Server, and system operation resumes. If the Follower fails, the IP Phones registered to the Follower reregister to the Leader Signaling Server.

The following scenario explains how redundancy works:

- The IP Phones are distributed between the two Signaling Servers (load-sharing). The SIP and H.323 Gateways run on the Leader Signaling Server.
- The Leader Signaling Server fails.
- The Follower Signaling Server takes on the role of the Leader Signaling Server and acquires the IP address of the Leader Signaling Server if necessary.
• The Time-to-Live (TTL) of IP Phones registered with the failed Signaling Server expires, which causes those IP Phones to reset and register with the new Leader Signaling Server.

Note:

Only IP Phones registered with the failed Signaling Server are reset.

• The new Leader Signaling Server assumes responsibility for the SIP and H.323 Gateways.

• Normal operation resumes.

Administration

The following administration interfaces are available to manage IP Line applications:

• **Element Manager**: Element Manager is used to administer IP Line application software.

• **Command Line Interface (CLI)**: The CLI prompts depend on the type of Voice Gateway Media Card in the system. IPL> prompt appears for the Media Card 32-port. oam> or PDT> prompt appears for the Media Card 32S card.

• **CLI on the Signaling Server**: Access the CLI through the Linux shell. The commands that you can access will depend on the security role that you use to log on. Use a space between Linux CLI parameters.

• Administration and maintenance overlays of Call Servers.

Element Manager

Element Manager is a Web-based user interface used to configure and maintain CS 1000 components. Use the Element Manager to configure and manage IP Line from a Web browser.

The Element Manager Web server resides on the Signaling Server within Unified Communications Manager (UCM) framework. For more information about Element Manager residing on a Signaling Server, see *Element Manager System Reference—Administration, NN43001-632*.

Command Line Interface

The Command Line Interface (CLI) provides a text-based interface to perform specific installation, configuration, administration, and maintenance functions.
Access

Establish a CLI session by connecting a Teletype (TTY) or PC to the card serial port or SSH through the ELAN or TLAN network interface IP address.

For more information about the CLI commands, see IP Line CLI commands on page 439.

Overlays

For information about the overlays, see Software Input Output — Administration, NN43001-611.
Chapter 5: Features

Contents

This section contains the following topics:

- Introduction on page 31
- Active Call Failover for IP Phones on page 65
- DSP peg counter for CS 1000E systems on page 86
- Enhanced UNISTim Firmware Download for IP Phones on page 87
- Firmware download using UNISTim FTP on page 111
- NAT Traversal feature on page 118
- Personal Directory, Callers List, and Redial List on page 131
- IP Call Recording on page 132
- pbxLink connection failure detection on page 140
- Display pbxLink information using LD 117 STAT SERV on page 141
- IP Phone support on page 145
- Corporate Directory on page 131
- Element Manager support on page 146
- Call Statistics collection on page 146
- Programmable line/DN feature keys (self-labeled) on page 153
- Zones on page 154
- Network wide Virtual Office on page 156
- Branch Office and Media Gateway 1000B on page 160
- 802.1Q support on page 160
- Data Path Capture tool on page 161
- IP Phone firmware on page 161
- Hardware watchdog timer on page 162
- Codecs on page 162
Introduction

Table 10: IP Line feature support on page 52 outlines the IP Line features available for Avaya Communication Server 1000 (Avaya CS 1000) systems with Avaya CS 1000 software.

Table 10: IP Line feature support

<table>
<thead>
<tr>
<th>Feature</th>
<th>CS 1000M</th>
<th>CS 1000E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for Element Manager</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Support for Signaling Server</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Support for the following IP Phones:</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• IP Phone 2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• IP Phone 2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• IP Phone 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Avaya 2007 IP Deskphone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Avaya 2033 IP Conference Phone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Avaya 1110 IP Deskphone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Avaya 1120E IP Deskphone, Avaya 1140E IP Deskphone, Avaya 1150E IP Deskphone, Avaya 1165E IP Deskphone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Avaya 1210 IP Deskphone, Avaya 1220 IP Deskphone, Avaya 1230 IP Deskphone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• WLAN Handset 2210, 2211, 2212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Avaya 6120, 6140 WLAN Handsets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support for the following software clients:</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Avaya 2050 IP Softphone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Mobile Voice Client (MVC) 2050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support for the IP Phone Key Expansion Module (KEM)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Support for the Avaya 1100 Series Expansion Module (Expansion Module)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Avaya 1200 Series IP Deskphone Key Expansion Module (KEM)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Live Dialpad</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Feature</td>
<td>CS 1000M</td>
<td>CS 1000E</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Unicode support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IP Client cookies</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>New IP Phone Types</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Active Call Failover</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DSP peg counter for the CS 1000E</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Enhanced UNIStim firmware downloads for IP Phones</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Support for external server applications</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Enhanced VLAN support on Phase II IP Phones; support for Voice VLAN</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>hardware filter providing enhanced traffic control on IP Phone and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC port</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Address Translation (NAT) Traversal</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Personal Directory, Callers List, and Redial List with password</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIStim File Transfer Protocol (UFTP) for IP Phone firmware downloads</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IP Call Recording</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>pbxLink connection failure detection</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynamic Loss Plan</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Network-wide Virtual Office</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Patching</td>
<td>Partial</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1Q support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Corporate Directory</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Data Path Capture tool</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Self-labeled line/programmable feature keys</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Private Zone</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Graceful TPS Disable</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Run-time download</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Watchdog Timer</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Password Guessing Protection</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ringer and buzzer volume adjustment</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Set-based installation</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Maintenance Audit enhancement</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multilanguage support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Live Dialpad

IP Line provides support for the Live Dialpad feature. Live Dialpad activates the primary line/DN key when the user makes a call by pressing the keys on the dialpad without lifting the handset, by pressing a line/DN key or the handsfree key.

The Live Dialpad feature is supported on the following IP Phones:

- IP Phone 2001
- IP Phone 2002
- IP Phone 2004
- Avaya 2007 IP Deskphone
- Avaya 2033 IP Conference Phone
- Avaya 2050 IP Softphone
- WLAN Handset 2210/2211/2212
- Avaya 6120/6140 WLAN Handset
- Avaya 1110 IP Deskphone
- Avaya 1120E IP Deskphone
- Avaya 1140E IP Deskphone
- Avaya 1150E IP Deskphone
- Avaya 1165E IP Deskphone
- Avaya 1210 IP Deskphone
- Avaya 1220 IP Deskphone
- Avaya 1230 IP Deskphone

Live Dialpad is enabled and disabled in the Telephone Options menu on the IP Phone. Feature processing occurs on the LTPS. The Call Server stores the on or off state for the Live Dialpad feature.

<table>
<thead>
<tr>
<th>Feature</th>
<th>CS 1000M</th>
<th>CS 1000E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced Redundancy for IP Line nodes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Avaya 2050 IP Softphone user-selectable codec (not applicable to MVC 2050 as it only supports G.711 codec)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>You can use the patching CLI command of the Media Card 32-port card and MC 32S card.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diagnostics

Output of the vxShell command `e2dsetShow()` contains a state of the Live Dialpad feature.

Unicode

IP Phones use the Unicode feature to work in languages other than English. Using the Unicode feature, the Call Processor can display multilingual text on the following types of IP Phones:

- Avaya 2007 IP Deskphone
- Avaya 1120E IP Deskphone
- Avaya 1140E IP Deskphone
- Avaya 1150E IP Deskphone
- Avaya 1165E IP Deskphone
- IP Phone 2050V3
- Avaya 1110 IP Deskphone
- Avaya 1210 IP Deskphone

The Call Processor can display text in the following languages on the specified types of IP Phones:

- Japanese – Kanji
- Japanese – Katakana
- Chinese – Traditional
- Chinese – Simplified
- Arabic
- Korean
- Hebrew
- Greek

The languages listed are not available on IP Phones that do not have Unicode support. If an IP Deskphone without Unicode support registers to a TN with a Unicode-only language configured, the IP Phones defaults to English.

Personal Directory, Callers List, and Redial List support Unicode functionality. Corporate Directory, Calling Party Name Display (CPND) and user-defined feature key labels do not support Unicode functionality.

Japanese – Katakana and Japanese – Kanji cannot be supported simultaneously.

You can enter only a limited subset of Unicode characters locally using an IP Phone dialpad. The Special Characters Input Screen includes the character set used by the currently
configured language. For languages with large amounts of characters (for example, Traditional Chinese, Japanese, and Korean), support is not available for localized dialpad input. The Pop-up and USB keyboard add-ons support English input only.

On IP Phones that support Unicode, you use the desired language command in the Telephone Options, Language menu option when configuring the IP Phone. All IP Phones that support Unicode need a special font file to support Asian languages. This font file must be loaded to the IP Phones during configuration using TFTP.

Language synchronization

Language synchronization occurs strictly through UNIStim messaging. If the IP Phone receives an Assign IT Language from the Call Processor, the IP Phone changes the local prompts to match the specified language.

If a user configures the IP Phone language using the Telephone Options menu, the IP Phone sends a UNIStim Assign NI Language message to the Call Processor. The Call Processor then synchronizes the language with the IP Phone. The Call Processor can use the Query IT Language message at any time to determine the current language of the IP Phone. If there is no default or programmed mapping for a language specified by the Call Processor, then the IP Phone uses the same language that is previously used.

The Call Processor determines the languages for which the IP Phone has fonts and font mappings. The Call Processor retrieves a list of language codes using the Display Manager Query Supported IT Languages.

Unicode Name Directory

The Unicode Name Directory supports the display of called or caller party name (CPND) in multiple languages on IP Phone that support Unicode. The Unicode Name Directory (UND) is integrated with the Personal Directory (PD), and is part of the PD installation.

You use Unicode Name Directory to:

- display localized names in UTF-8 Unicode character encoding for incoming and outgoing calls
- store up to seven localized names in the database for a subscriber
- support traditional and simplified Chinese, Korean, Japanese and other Unicode languages for called or caller party name display

The content of UND is managed through Unicode Name Directory functionality in the Subscriber Manager (SM) application. This functionality provides the ability to provision localized names for each subscriber account. It also generates calling line IDs/URLs (CLID/URL) for each subscriber telephony account. All of this information is stored in Subscriber Manager for ease of access by all system elements. UND synchronizes with Subscriber Manager to obtain data. For more information about provisioning localized subscriber
telephony accounts using Unicode Name Directory functionality in Subscriber Manager, see *Subscriber Manager Fundamentals* (NN43001-120).

Unicode Name Directory configuration

You can configure the Unicode Name Directory (UND) application using Element Manager (EM) on the member server where the UND application is installed, or from the CLI of the Call Processor. You can configure the UND only if the Personal Directory (PD) application is configured.

Configuration of the UND application consists of two steps:

• Enable the UND application.

• Schedule automatic synchronization of the Unicode Name Directory (UND) with the Subscriber Manager.

When you configure the UND application using EM, the scheduling parameters for the automatic synchronization of the UND data with the Subscriber Manager are retrieved from the UCM primary security server and used to populate the Unicode Name Directory web page.

For instructions to configure the UND using EM, see [Configuring the Unicode Name Directory using EM](#) on page 57.

Configuring the Unicode Name Directory using EM

1. Log on to Element Manager on the member server where the UND application is installed.

2. Choose **System > IP Network > Unicode Name Directory**.

 The Unicode Name Directory window appears.
3. Select the **Name directory Application** check box to enable the PD/UND.

Note:
If the Personal Directory application is not configured, you are redirected to the **Server Configuration** option in the Personal Directory section of Element Manager. For information about the Personal Directory application and configuration, see **Personal Directory application** on page 169.

4. Enter a value in the **Lookup timeout** field.

 This value is a time in milliseconds.

 Allowed values are 500 to 10000. The default value is 3000.

5. Select a **Synchronization type**.

 The **Manual** check box is always selected and cannot be cleared.

 Select the **Scheduled** check box to schedule synchronizations of the UND data with the Subscriber Manager data.

6. Enter a value in the **Hours** field.

 Valid values are 1 to 24.

7. Enter a value in the **Minutes** field.

 Valid values are 0 to 59.

8. Select a **Security level** for the synchronization.

 Enables or disables a secure SSL connection for the UND <-> Subscriber Manager synchronization.
9. Click **Save**.

10. The content of UND is managed through Unicode Name Directory functionality in the Subscriber Manager (SM) application. For detailed information about management, data migration, and configuration of numbering groups, refer to *Subscriber Manager Fundamentals* (NN43001-120).

Note:
To synchronize the UND with the Subscriber Manager data, use the Linux shell command (nd ldapSync) on the member server to start a manual synchronization. Otherwise, the data will be synchronized at the scheduled time.

Unicode Name Directory synchronization

The PD/UND server retrieves user names and phone numbers from Subscriber Manager using the secure LDAP protocol. Entries in the PD/UND database that are associated with subscribers are updated for each subscriber. If the LDAP connection is lost during the synchronization, only those subscribers processed prior to the failure are updated (synchronized). The remaining entries are not updated. Start UND <-> Subscriber Manager synchronization by running the `SYNC SYS` command in LD 117.

PD/UND synchronization is initiated in one of three ways:

- **Scheduled synchronization**

 Synchronization is initiated automatically once a day at the specified time to retrieve data from Subscriber Manager.

 Note:

 Avaya recommends that you schedule synchronization for various PD/UND servers at different times to facilitate load balancing.

- **Manual synchronization**

 Synchronization can start manually from a Virtual Terminal (VT). VT starts from the Links, Virtual Terminal or System, IP Network, Maintenance and Reports section of EM, on the member server where the PD/UND application is configured.

 You can also use the Unicode Name Directory shell on the member server to start a manual synchronization using the following command:

  ```bash
  [admin2@und-pd ~]$ nd ldapSync
  ```

- **UND application startup**
Unicode Name Directory requirements for IP Phones

The Unicode Name Directory application requires that you configure a Calling or Called Party Name Display (CPND) block on the Call Processor for each customer in the CS 1000 system, to correctly display the calling or called party names on customer IP Phones. In addition, you must configure the CNDA and DNDA CoS on each IP Phone to properly display the calling or called party names.

Language selection on an IP Phone occurs through the Telephone Options, Language command, during initial configuration of the IP Phone, or as required.

Virtual Office interaction

Virtual Office logon can occur from an IP Phone that does not support Unicode, to an IP Phone with Unicode entries in the Personal Directory (PD) or the Unicode Name Directory (UND). `<Unicode name>` appears instead of the entry name.

IP Client cookies

IP Client cookies provide a transparent transfer of data from the Call Server to third-party applications, for example, Citrix AG. The cookies are a set of UTF-8 variable names and values, which are duplicated and synchronized between the LTPS and the IP Phone. IP Line uses public cookies that are visible to both the IP Phone and third-party applications. IP Client cookies are not supported on Avaya Phase I IP Phones and third-party IP Phones, such as WLAN Handset 2210/2211/2212, Avaya 6120/6140 WLAN Handset, and Avaya 2033 IP Conference Phone.

Table 11: Cookie definitions

<table>
<thead>
<tr>
<th>Cookie name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrimeDN</td>
<td>A string of digits containing the current primary DN of the IP Phone.</td>
</tr>
<tr>
<td>AgentPosition</td>
<td>A string of digits containing the current agent position of the IP Phone.</td>
</tr>
<tr>
<td>CallState</td>
<td>A UTF-8 string indicating the current call processing state of the IP Phone.</td>
</tr>
<tr>
<td>CustNo</td>
<td>A string of digits indicating the IP Phone customer number.</td>
</tr>
</tbody>
</table>

• BUSY: an active call is established
• IDLE: no active calls (there can be calls on hold)
• RINGING: IP Phone is ringing
<table>
<thead>
<tr>
<th>Cookie name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone</td>
<td>A string of digits indicating the IP Phone zone.</td>
</tr>
<tr>
<td>VPNI</td>
<td>A string of digits containing the Virtual Private Network Identifier configured for the IP Phone.</td>
</tr>
<tr>
<td>TN</td>
<td>UFT-8 string containing the TN currently associated with the IP Phone in hexadecimal format. The maximum number of TNs is FFFF.</td>
</tr>
</tbody>
</table>

Although cookie names and values are UTF-8 strings, the IP Phone need not support Unicode.

Output from the `e2dsetShow()` command shows the contents of all display lines, soft keys, feature keys (including feature keys on KEM and Expansion Module) and programmable line/DN keys associated with the IP Phone. This command is available only from the VxShell.

e2dsetShow ()

The `e2dsetShow ()` command expects a pointer to a DSET emulator, which you can obtain by running the `dsetShow ()` command.

```
Figure 2: dsetShow
```
IP Phone Types

IP Phone Types provide the following functionality:

• unique TN types for existing IP Phone models
• special emulation mode for IP Phones that are not known to the TPS
• automatic and manual IP Phone TN type conversion
• enhanced Model Names support is accessed from LD 20

Unique TN Types for existing IP Phone models

TN Types match the brand name of the IP Phone model. The following table identifies the TN_TYPE for each IP Phone model.

Table 12: TN Type naming convention

<table>
<thead>
<tr>
<th>IP Phone model name</th>
<th>TN_TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Phone 2001</td>
<td>2001P2</td>
</tr>
<tr>
<td>IP Phone 2002 Phase I</td>
<td>2002P1</td>
</tr>
<tr>
<td>IP Phone 2002 Phase II</td>
<td>2002P2</td>
</tr>
<tr>
<td>IP Phone 2004 Phase 0/I</td>
<td>2004P1</td>
</tr>
<tr>
<td>IP Phone 2004 Phase II</td>
<td>2004P2</td>
</tr>
<tr>
<td>Avaya 2033 IP Conference Phone</td>
<td>2033</td>
</tr>
<tr>
<td>Avaya 2050 IP Softphone</td>
<td>2050PC</td>
</tr>
<tr>
<td>Mobile Voice Client 2050</td>
<td>2050MC</td>
</tr>
<tr>
<td>WLAN Handset 2210</td>
<td>2210</td>
</tr>
<tr>
<td>WLAN Handset 2211</td>
<td>2211</td>
</tr>
<tr>
<td>WLAN Handset 2212</td>
<td>2212</td>
</tr>
<tr>
<td>Avaya 6120 WLAN Handset</td>
<td>1120</td>
</tr>
</tbody>
</table>
| | **Important:**
| | The Avaya 6120 WLAN Handset is configured using TN_TYPE 1120 or as an alternative, you can use generic 2210. |
| Avaya 6140 WLAN Handset | 1140 |
Important:
The Avaya 6140 WLAN Handset is configured using TN_TYPE 1140 or as an alternative, you can use generic 2210.

<table>
<thead>
<tr>
<th>IP Phone model name</th>
<th>TN_TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avaya 2007 IP Deskphone</td>
<td>2007</td>
</tr>
<tr>
<td>Avaya 1110 IP Deskphone</td>
<td>1110</td>
</tr>
<tr>
<td>Avaya 1120E IP Deskphone</td>
<td>1120</td>
</tr>
<tr>
<td>Avaya 1140E IP Deskphone</td>
<td>1140</td>
</tr>
<tr>
<td>Avaya 1150E IP Deskphone</td>
<td>1150</td>
</tr>
<tr>
<td>Avaya 1165E IP Deskphone</td>
<td>1165</td>
</tr>
<tr>
<td>Avaya 1210 IP Deskphone</td>
<td>1210</td>
</tr>
<tr>
<td>Avaya 1220 IP Deskphone</td>
<td>1220</td>
</tr>
<tr>
<td>Avaya 1230 IP Deskphone</td>
<td>1230</td>
</tr>
</tbody>
</table>

Emulation Mode

During IP Phone registration, the LTPS determines the IP Phone TN Type (TN_TYPE) by looking up the User Interface capabilities (UI_TYPE) and Firmware ID (FW_ID) in a mapping table. The mapping table maps the IP Phone UI_TYPE and FW_ID with TN_TYPE. If an IP Phone has a known UI_TYPE but an unknown UI_TYPE and FW_ID combination, the IP Phone registers in Emulation Mode.

Use the isetShow command or LD 20 to list the IP Phones registered in Emulation Mode.

Automatic IP Phone TN conversion (Flexible Registration)

Flexible Registration Class of Service (CoS) for all IP Phones is configured in LD 11. Flexible Registration CoS can be one of the following values:

- FRA-Flexible Registration Allowed (default)
- FRU-Flexible Registration on Upgrade
- FRD-Flexible Registration Denied

Use LD 81 to list the IP Phone TNs that have Flexible Registration Allowed (FRA), Flexible Registration on Upgrade (FRU), and Flexible Registration Denied (FRD) classes of service.
When the LTPS attempts to register an IP Phone with the Call Server, the following occurs:

- If the TN has FRD CoS, the Call Server checks the IP Phone type against the TN type. Registration is rejected if the types do not match. The Call Server checks the Emulation Flag and blocks registration in the Emulation Mode.

- If the TN has FRA CoS, the Call Server checks the IP Phone type against the TN type. If the types are compatible, the TN is converted, and the IP Phone registers.

- If the TN has FRU CoS, the Call Server checks the IP Phone type against the VTN type. If the types are compatible, the TN is converted and the IP Phone registers. After the TN is converted, the Flexible Registration CoS value becomes FRD. The Call Server checks the Emulation Flag and blocks registration in the Emulation Mode.

The following table lists groups of IP Phone types that can be converted or interchanged without losing configuration.

Table 13: IP Phone TN_TYPE groups

| 2002P1, 2002P2, 1120, 1220, 6120 |
| 2001P2, 2033, 1110, 1210 |
| 1230 |
| 1150 |
| 1165 |

Manual IP Phone TN conversion

Manual IP Phone TN conversion lowers the administrative effort required to replace an IP Phone with another model while preserving the IP Phone features. Use LD 11 to convert an IP Phone TN to another IP Phone TN while preserving the IP Phone features.

Table 14: LD 11 IP Phone interface commands

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ</td>
<td>CHGTYEP</td>
<td>Change the IP Phone TN type</td>
</tr>
<tr>
<td>TN</td>
<td>Iscu</td>
<td>For Large Systems</td>
</tr>
<tr>
<td>Prompt</td>
<td>Response</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>PROCEED</td>
<td>YES</td>
<td>Perform or reject the IP Phone TN conversion</td>
</tr>
</tbody>
</table>

Active Call Failover for IP Phones

The Active Call Failover (ACF) for IP Phones feature allows active IP calls to survive the following failures:

- IP/IP calls and IP/TDM calls survive signaling path TLAN subnet failures.

 IP/IP calls means both parties are IP Phones. IP/TDM calls means one party is an IP Phones and the other party is a TDM telephone or trunk.

- IP and IP/TDM calls survive Signaling Server restarts.

- IP and IP/TDM calls survive LTPS ELAN subnet failures.

- IP calls survive a Call Server cold start and Call Server failures in system configurations with a redundant Call Server of the following types
 - Media Gateway 1000B for a branch office configuration
 - Geographic Redundancy Secondary Call Server. The feature addresses the Primary Call Server failures.

IP Phone to IP Phone calls survive the Call Server failures listed above.

- For Call Server call processor types CP PIV and CP-PM:
 - IP/IP calls survive a cold start on all systems.
 - IP/IP and IP/TDM calls survive a warm start on all systems.
 - Graceful switchover and graceful failover to the redundant Logical Call Processor (LCP) side of the Call Server makes the failure transparent and allows all the calls to survive without any loss.

When the IP Phone with an active call re-registers, the call data is rebuilt if the Call Server does not know about the call, using the internal IP Phone information.

The ACF feature for IP Phones meets Joint Interoperability Test Command (JITC) requirements if the LAN/WAN network is engineered to provide full redundancy: that is, if a LAN/WAN network component fails, an alternate path between the clients and LTPS server is provided.
Minimum requirements

The ACF feature for IP Phones has the following minimum requirements:

- Call Server must run CS 1000 Release 4.5 or later.
- IP Phones (including Avaya 2050 IP Softphone) must support UNIStim Version 2.9 or later. (Use the `isetShow` command to determine the UNIStim version. One of the columns in the `isetShow` output is `UNIStimVsn`.

ACF mode

The ACF feature for IP Phones enables an IP Phone to re-register in the ACF mode during a supported system failure.

The ACF mode preserves the following:

- active media session
- LED states of the Mute, Handsfree, and Headset keys
- DRAM content

All other elements (the self-labeled line/programmable feature keys, context-sensitive soft keys, and text areas) are retained until the user presses a key or the connection with the Call Server resumes. If the user presses a key during the failover, the display clears and a localized "Server Unreachable" message appears.

The IP Phone uses this new mode of re-registration only when the Call Server explicitly tells the IP Phone to do so. IP Phones clear all call information if they register to a Call Server or LTPS that does not support the ACF feature.

IP Phone ACF timer

You can have one LTPS supporting the ACF feature and one LTPS that does not support the feature in the same system.

A situation can exist where it takes a long time to fix a failure and no failover Call Server is available. During this time, if the user released the call by pressing the Release key or hanging up the telephone, the call-associated resources are not used. The call-associated resources remain on the Call Server because they are not released. To prevent this, the 10-minute Call Server ACF timer is introduced for each call. The timer prevents call processing-related resources from being unnecessarily used when an IP Phone that had an active call unregisters and never re-registers.
The timer is configured if

- the ACF call status is Unregistered; that is, when both parties go offline.
- only one party is offline, and the other party does not support disconnect supervision.

ACF scenarios

Table 15: ACF behaviors on page 67 describes ACF behavior in different scenarios.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLAN subnet failure</td>
<td>The call is not lost as the IP Phones re-register.</td>
</tr>
<tr>
<td>• A call is established between IPPhones A and B registered with the same node.</td>
<td>In this scenario, the call exists on the Call Server during the failover time and has the following transitions: UNREGISTERED -> HALF-REGISTERED -> NO ACF</td>
</tr>
<tr>
<td>• TLAN subnet goes down.</td>
<td></td>
</tr>
<tr>
<td>• The IP Phones detect the lost connection and periodically try to re-register.</td>
<td></td>
</tr>
<tr>
<td>• The TLAN subnet is up in less than 10 minutes, or an election is called and another accessible LTPS node acquires the node IP address. The IP Phones re-register with the node again.</td>
<td></td>
</tr>
<tr>
<td>Signaling Server platform failure</td>
<td>The call is not lost as the IP Phones re-register.</td>
</tr>
<tr>
<td>• A call is established between IPPhones A and B registered with the same node.</td>
<td>The scenario is similar to the TLAN subnet failure, but the ACF call transition on the Call Server is instantaneous, because Offline events are generated in a group as the ELAN subnet goes down.</td>
</tr>
<tr>
<td>• The LTPS node goes down.</td>
<td></td>
</tr>
<tr>
<td>• The IP Phones detect the lost connection and periodically try to re-register.</td>
<td></td>
</tr>
<tr>
<td>• The LTPS node is up in less than 10 minutes, or an election is called and another accessible LTPS node acquires the node IP address. The IP Phones re-register with the node again.</td>
<td></td>
</tr>
<tr>
<td>Call Server warm restart</td>
<td>The call is not lost.</td>
</tr>
<tr>
<td>• A call is established between IPPhones A and B registered with the same Call Server.</td>
<td>The call is rebuilt after the warm restart and has the following transitions: UNREGISTERED->HALF REGISTERED->NO ACF. The transition is almost instantaneous because the Online messages are sent in a group as a response to the Sync Request.</td>
</tr>
<tr>
<td>• The Call Server warm restart (INI) occurs.</td>
<td></td>
</tr>
<tr>
<td>• The users of IP Phones A and B do not go on-hook or press any keys during the Call Server restart.</td>
<td></td>
</tr>
<tr>
<td>Scenario</td>
<td>Result</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Call Server cold restart</td>
<td>The call is not lost. The call cannot be rebuilt after the SYSLOAD. The PARTIAL REBUILT -> REBUILT transition is almost instant since the Online messages are sent in a group as a response to the Sync Request.</td>
</tr>
<tr>
<td>• A call is established between IP Phones A and B registered with the same Call Server.</td>
<td></td>
</tr>
<tr>
<td>• The Call Server cold restart (SYSLOAD) occurs.</td>
<td></td>
</tr>
<tr>
<td>• The users of IP Phones A and B do not go on-hook or press any keys during the Call Server cold restart.</td>
<td></td>
</tr>
<tr>
<td>Main office failure for branch office (scenario 1)</td>
<td>The call is not lost. The HALF REBUILT -> REBUILT transition occurs since the far end is known to the Call Server gateway to the Media Gateway 1000B.</td>
</tr>
<tr>
<td>• Branch IP Phones A and B register with the Media Gateway 1000B and are redirected to the main office.</td>
<td></td>
</tr>
<tr>
<td>• IP Phones A and B registered with the main office establish a call.</td>
<td></td>
</tr>
<tr>
<td>• A serious main office failure occurs. The active Branch IP Phones cannot re-register with the main office and re-register with the branch office in local mode. IP Phone A re-registers in local mode first.</td>
<td></td>
</tr>
<tr>
<td>Main office failure for branch office (scenario 2)</td>
<td>The call is not lost. Although the branch office LTPS wrote the IP Phones A and B data to its RLM table when it redirected the IP Phones to the main office, the RLM data is lost and cannot be restored when the branch office restarts. The transition is similar to a Call Server cold start: PARTIAL REBUILT -> REBUILT.</td>
</tr>
<tr>
<td>• IP Phones A and B register with the Media Gateway 1000B and are redirected to the main office.</td>
<td></td>
</tr>
<tr>
<td>• Branch office warm or cold starts.</td>
<td></td>
</tr>
<tr>
<td>• Branch users A and B registered with the main office establish a call.</td>
<td></td>
</tr>
<tr>
<td>• A serious main office failure occurs so the active branch IP Phones cannot re-register with the main office, and they re-register with the Branch office in local mode. IP Phone A re-registers in local mode first.</td>
<td></td>
</tr>
<tr>
<td>Primary Call Server failure WAN (geographically redundant system)</td>
<td>The call is not lost. IP Phones can be configured in two ways:</td>
</tr>
<tr>
<td>• A call is established between IP Phones A and B that are registered with the primary site in the geographically redundant system.</td>
<td>Site 1 is the secondary site and Site 2 is not configured. In this case the scenario is the same as main office failure for branch office (scenario 1): the HALF REBUILT-> REBUILT transition.</td>
</tr>
<tr>
<td>• The primary site fails.</td>
<td>IP Phones have Site 1 defined as the primary site while Site 2 is defined as the</td>
</tr>
<tr>
<td>• The IP Phones re-register with the secondary site. IP Phone A re-registers first.</td>
<td></td>
</tr>
<tr>
<td>Scenario</td>
<td>Result</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>secondary site. Registration by Site 1 fails.</td>
<td>In this case, the secondary site Call Server does not have the RLM entries for the re-registering IP Phones and the scenario is the same as main office failure for branch office (scenario 2): the PARTIAL REBUILT -> REBUILT transition.</td>
</tr>
<tr>
<td>Virtual Office logon failure (scenario 1)</td>
<td>The call is not lost. The following ACF transitions occur: NO ACF -> PARTIAL REBUILT -> IDLE -> HALF REBUILT -> REBUILT</td>
</tr>
<tr>
<td>• IP Phone A logs into IP Phone C and establishes a call with IP Phone B. All three IP Phones register with the same Call Server.</td>
<td></td>
</tr>
<tr>
<td>• TLAN subnet failure occurs. IP Phone A goes offline first, then IP Phone B.</td>
<td></td>
</tr>
<tr>
<td>• Active IP Phones A and B re-register with the system when the TLAN subnet restarts. IP Phone A re-registers first and then IP Phone B.</td>
<td></td>
</tr>
<tr>
<td>Virtual Office logon failure (scenario 2)</td>
<td>The call is not lost. The following ACF transitions occur: NO ACF -> PARTIAL REGISTERED -> IDLE -> HALF REBUILT -> REBUILT</td>
</tr>
<tr>
<td>• IP Phone A logs into IP Phone C and establishes a call with IP Phone B. All three IP Phones are registered with the same Call Server.</td>
<td></td>
</tr>
<tr>
<td>• TLAN subnet failure occurs. IP Phone B goes offline first, then IP Phone A.</td>
<td></td>
</tr>
<tr>
<td>• Active IP Phone A and B re-register with the system when the TLAN restarts. IP Phone A re-registers first and then IP Phone B.</td>
<td></td>
</tr>
<tr>
<td>Virtual Office logon failure (scenario 3)</td>
<td>IP Phone C cannot log on to the home TN if another active IP Phone is logged on to its TN. IP Phone C can log on to its home TN only when the call register is released or becomes PARTIAL REBUILT. See Virtual Office logon failure (scenario 1) on page 69 and Virtual Office logon failure (scenario 2) on page 69.</td>
</tr>
<tr>
<td>• IP Phone A logs into IP Phone C and establishes a call with IP Phone B. All three IP Phones are registered with the same Call Server.</td>
<td></td>
</tr>
<tr>
<td>• TLAN subnet failure occurs. IP Phones A and B fail and IP Phone C does not fail.</td>
<td></td>
</tr>
<tr>
<td>• IP Phone C tries to log on to home TN before IP Phones A and B go offline.</td>
<td></td>
</tr>
<tr>
<td>Network TLAN subnet failure</td>
<td>The call is not lost. The scenario is the same as if the far end were a local IP Phone.</td>
</tr>
<tr>
<td>Scenario</td>
<td>Result</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>IP Phone A has an IP Peer call with a remote</td>
<td>The call is not lost. The scenario is the same as if the far end were a local IP Phone.</td>
</tr>
<tr>
<td>user over a virtual trunk.</td>
<td></td>
</tr>
<tr>
<td>IP Phone A TLAN subnet connection fails.</td>
<td></td>
</tr>
<tr>
<td>Active IP Phone A re-registers with the Call</td>
<td></td>
</tr>
<tr>
<td>Server when the TLAN subnet restarts.</td>
<td></td>
</tr>
</tbody>
</table>

Network Call Server warm start

- IP Phone A has an IP Peer call with a remote user over a virtual trunk.
- The Call Server warm starts.
- Active IP Phone A re-registers with the Call Server as the TLAN subnet restarts.

Network Call Server cold start

- IP Phone A has an IP Peer call with a remote user over a virtual trunk.
- The Call Server cold starts.
- Active IP Phone A re-registers with the Call Server as the TLAN subnet restarts.

Network branch office

- Branch IP Phones A and B belong to different branches – Branch A and Branch B respectively. IP Phones A and B are registered on the main office Call Server.
- A call is established between IP Phones A and B.
- Main office Call Server failure occurs and IP Phones A and B register with the branches in local mode.

IP/TDM call with TLAN subnet failure

- IP Phone A has a call with a TDM telephone or trunk B.
- IP Phone A TLAN subnet connection fails.
- Active IP Phone A re-registers with the Call Server as the TLAN subnet restarts.

Network Call Server warm start

- The call is not lost.
- The scenario is the same as if the far end were a local IP Phone.

Features

Signaling Server IP Line Applications Fundamentals June 2013

Comments? infodev@avaya.com
Table: Scenario Result

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>• IP Phone A has an IP Peer call with a remote user over a virtual trunk.</td>
<td></td>
</tr>
<tr>
<td>• The Call Server warm starts.</td>
<td></td>
</tr>
<tr>
<td>• Active IP Phone A re-registers with the Call Server as the TLAN subnet restarts.</td>
<td></td>
</tr>
<tr>
<td>Network Call Server cold start</td>
<td>The call is lost as the Call Server restarts.</td>
</tr>
<tr>
<td>• IP Phone A has an IP Peer call with a remote user over a virtual trunk.</td>
<td></td>
</tr>
<tr>
<td>• The Call Server cold starts.</td>
<td></td>
</tr>
<tr>
<td>• Active IP Phone A re-registers with the server as the TLAN subnet restarts.</td>
<td></td>
</tr>
</tbody>
</table>

After some failover scenarios (PARTIAL REBUILT calls), call modifications (for example, hold, conf, transfer) are not allowed. In this case localized string “Postfailure Limited Mode” appears when the user initiates call modification.

Firmware downloads

If the IP Phone has an active media stream, the LTPS does not request the firmware download to avoid resetting the IP Phone and losing the call. Therefore, a system can have IP Phones with a mixture of firmware versions registered. The firmware can be downloaded later, after the idle IP Phone registers again or can be downloaded manually using appropriate CLI commands.

WLAN Handsets 2210/2211/2212, Avaya 6120/6140 WLAN Handsets

The Wireless LAN (WLAN) Handsets 2210/2211/2212 and Avaya 6120/6140 WLAN Handsets support Active Call Failover in the same manner as Phase II IP Phones if the firmware supports UNIStim 2.9.

Operating parameters

IP Peer calls

The Active Call Failover (ACF) feature does not support IP Peer calls. Therefore, it is not possible to guarantee that IP Peer calls will survive during Call Server or Signaling Server failures or restarts.
IP Peer calls do not survive the Call Server cold start; all virtual trunks are idled as the Call Server restarts after the cold start. In this case, the local IP Deskphone must go on-hook to become idle.

The zone bandwidth usage in the zone table remains zero for all IP Peer calls on this side; zone bandwidth usage is cleared for all calls as the Call Server restarts after the warm start. In this case, Network Bandwidth Management information is lost and the Call Server cannot restore the correct zone bandwidth usage for IP Peer calls.

IP/TDM calls

IP/TDM calls do not survive a Call Server cold start; all DSP channels are closed as the Call Server restarts after the cold start. In this case, the local IP Deskphone must go on-hook to become idle.

Dialing state

Only established calls survive failures. All calls having the DIALING state on the Call Server are released when an LTPS or signaling failure occurs that causes an IP Phone to unregister.

Ringing calls are handled as follows:

- If the IP Phone originating the ringing call unregisters, the call is released by the Call Server.
- If the IP Phone receiving the call unregisters, the call receives CFNA treatment if possible.

Held calls

From the ACF feature perspective, held calls are considered to be established. This means that the call is preserved on the Call Server despite TLAN subnet or LTPS failure. The IP Phone itself is unaware of the state of any held call.

Phase 0/1 IP Phones

Phase 0/1 Phones do not support ACF.

Feature key labels

If user-defined feature key labels changed but no datadump occurred, the changes are lost if the Call Server fails.
SIP telephones

SIP telephones appear as IP Peer endpoints to the system. See IP Peer calls on page 71.

NAT devices

The ACF feature cannot handle a NAT device changing the media path mapping between the IP Deskphone private address and public address during the failover period. No method exist to discover the mapping while the port is in use. For instance, if a main office failure occurs and the user re-registers in local mode, NAT mapping changes and the active call cannot survive.

Control messages

The LTPS sends the Audio Stream Control and LEDs Control commands in separate messages. If a failure occurs in the time between the two messages, the Audio Stream and LEDs states may not be synchronized. For example, it is possible for the Audio Stream to be muted and a network failure to occur at just the right moment to prevent the LED Control message for the mute LED from being received by the IP Phone.

Held Calls

When an idle IP Phone (one without an active speech path) re-registers, a firmware download can occur, if needed. If that IP Phone actually had calls on hold, then the held calls cannot be retrieved until after the firmware download finishes.

Codecs

Not all the codec properties are restored for the failed-over call. The following default codec properties are used for the active failover call:

- G.722 Working Rate is 64 Kb/s
- G.723 Working Rate is 5.3 Kb/s
- G.729 Annex is Annex A
- VAD is OFF
QoS monitoring

The QoS monitoring is always disabled for the failover call. This is only for the period of the failover call; for all subsequent calls, the QoS monitoring works as configured.

Virtual Office

Active Call Failover is not supported for the active call from an IP Phone logged on another IP Phone to a TDM resource or virtual trunk. Such a call is released when the LTPS detects that the connection to the IP Phone is lost.

For example, IP Phone A logs on to IP Phone B and talks to a TDM resource or a virtual trunk. If a TLAN subnet failure occurs and IP Phone A re-registers with the home TN, the active call is released as IP Phone A re-registers.

Handsfree

In this scenario, IP Phone A has handsfree denied and IP Phone B has handsfree allowed. IP Phone A logs on IP Phone B and talks to IP Phone C using handsfree.

If a TLAN subnet failure occurs and IP Phone A re-registers with the home TN (with handsfree disabled), handsfree is turned off and IP Phone A must go off-hook to continue the conversation.

ELAN subnet failure

The ACF state cannot be determined on the LTPS side during an ELAN subnet failure. This is because the ACF state is stored on the Call Server and it is not possible to send the ACF state on the LTPS side when the ELAN subnet fails.

Feature interactions

This section shows the ACF feature interactions with Virtual Office and Branch Office.

Branch Office

When the first failed IP Phone re-registers in local mode, the branch office Call Server looks up the far-end branch IP Phone local TN using the specified far-end IP address and builds a local call.
The call can be rebuilt only if both the IP Phones are branch users of the same branch office.

Example: A regular main office IP Phone talks to the branch IP Phone registered with the main office. A failure occurs at the main office, so that the branch IP Phone cannot register in normal mode again, and re-registers in local mode. Even if the main office IP Phone survives the failure, the call cannot be rebuilt because the call becomes an IP Peer call between the branch office and main office. This call becomes Partial Rebuilt and exists until released.

Virtual Office

It is possible that active IP Phone A, that logged on to IP Phone B before the failure, cannot re-register with the Call Server because IP Phone C performed a Virtual Office logon and uses IP Phone A TN. In this case, the Signaling Server locally handles the Release, Onhook, and Mute events from IP Phone A in the Logged Out state.

Survivable Remote Gateway

The Survivable Remote Gateway (SRG) 1.0 and SRG 50 do not support ACF. If the IP Phone is an SRG user, the active call, either in normal mode or local mode, does not survive a failure.

IP Call Recording

Established calls that are being recorded using the IP Call Recording feature and survive ACF continue to be recorded.

NAT

The NAT discovery is delayed for an IP Phone with an active call when it re-registers. NAT discovery messages are sent through the port used for the RTP stream. NAT discovery is not initiated if the LTPS detects that the IP Phone has an active RTP stream.

Personal Directory, Callers List, Redial List

The display content is cleared and the Personal Directory/Callers List/Redial List applications are reset when the active call failover process starts. The applications can be used again only after the IP Phone re-registers. A user who uses one of the Personal Directory/Callers List/Redial List menus sees the display clear and loses any data in that transaction that was not selected or saved with the Personal Directory/Callers List/Redial List feature.
ACF implementation does not maintain data present only on the Signaling Server. Transient
data (for example, the Services key submenu the user is currently in) is lost when the failover
occurs and the IP Phone re-registers.

Converged Desktop

If the Call Server maintains the active call information during the active call failover, and the
SIP Gateway maintains the link and information with the MCS5100 (the SIP Gateway did not
fail or is not on the Signaling Server that restarts if that is the failure mode), a Converged
Desktop call is maintained when the involved IP Phone re-registers to the system. If the Call
Server loses the call information or the SIP Gateway Signaling Server restarts, the Converged
Desktop call is affected.

A Converged Desktop consists of a telephone and multimedia PC Client (PCC) software.

The following are example scenarios.

Example 1: The IP Phone TLAN subnet fails and the IP Phone re-registers with the same or
a different TPS.

In this case, both the voice and multimedia sessions survive. If a SIP call is established with
the other party in the SIP domain, the call is not released as the IP Phone re-registers. The
multimedia applications still work. The presence is updated on PCC after the telephone re-
registers.

If the unregistered converged IP Phone releases the call during the TLAN subnet failure, the
Presence status is updated on PCC as the idle converged IP Phone re-registers.

Example 2: The IP Phone Signaling Server fails and the IP Phone re-registers with the same
or a different TPS (active converged IP Phone and SIP Gateway are on different Signaling
Servers on the same node).

In this case, both the voice and multimedia sessions survive; the scenario is the same as the
TLAN subnet failure in Example 1.

Example 3: The IP Phone ELAN subnet fails and the IP Phone re-registers with the same or
a different TPS.

The voice session survives. If the ELAN subnet restarts before the IP Phone changes the call
state (that is, releases the call), then the multimedia session is not affected.

If the IP Phone releases the call when the ELAN subnet is still down, the PCC status is updated
when the idle converged IP Phone re-registers with the system.

If the call is released by the supervisory timer, the status is updated on PCC after the ELAN
subnet restarts and the Converged Desktop AML ELAN subnet link is enabled (the CSA104
message is output on the Call Server).

Example 4: Call Server warm start.
The voice and multimedia sessions survive. The Presence status is updated on PCC as the converged IP Phone releases the call after the warm start.

Example 5: **Call Server cold start.**

The voice and multimedia sessions are closed as the Call Server comes up. The Presence status becomes Connected - Idle even if the call is rebuilt and active after the Call Server cold start.

IP Phone firmware downloads

The firmware is not downloaded to an IP Phone that has an active RTP stream open when it registers with the failover system. The firmware is downloaded later when the idle IP Phone registers again or by using appropriate CLI commands.

IP Call Recording

If an IP Phone is configured with a CLS of RECA (IP Call Recording Allowed) and survives an Active Call Failover, the Call Recording device continues to record the call.

IP Phone as ACD agent or supervisor telephone

If an IP Phone is used as an ACD agent (or supervisor) and the Call Server fails, the following can occur:

- In the case of a Call Server warm start (INI), the active calls are retained on the agent telephone.
- In the case of a Call Server cold start (SYSLOAD), the active calls are dropped and the agents are logged off.

This applies to both the in-calls (PRIMARY) key and any secondary DN key on the ACD telephone.

TPS failures do not affect general ACD functionality because the Call Server uses the ACD feature.

CS 1000 base features

No feature works when the active IP Phone disconnects and tries to re-register with the Call Server. All the features are available in the context of the failover call after the IP Phone re-registers (if it is not a PARTIAL REBUILT call).

The feature context is lost if the Call Server fails.
The feature context is not lost on the Call Server if the TLAN/ELAN subnet fails. Only the feature data on the IP Phone display is lost.

Feature context in Call Server failures

The context of any feature is lost on the Call Server if the Call Server fails (Call Server warm or cold start). The LTPS IP Phone display is lost as the IP Phone re-registers. This means if a feature is activated and the Call Server fails, all the user input and data is lost.

Example: IP Phone A is in a call; the user presses the Transfer key and starts to dial a DN. The Call Server cold or warm starts. Therefore, IP Phone A does not accept the user input and tries to re-register with the Call Server. When the Call Server restarts and the IP Phones re-register, IP Phone A does not have the Call Transfer activated. The held call is also lost; it is not rebuilt after INI or by the ACF feature, because the call is not active.

TLAN/ELAN subnet and LTPS failures

When a network or Signaling Server failure occurs and the active IP Phone has some features activated, the feature context and data is not lost on the Call Server. The user can use the feature after the IP Phone re-registers. Only the LTPS display is lost when the IP Phone re-registers.

Example: IP Phone A is in a call; the user presses the Transfer key and starts to dial a DN. A TLAN subnet failure occurs when the first digit is dialed. The user is unaware of the failure and continues dialing the DN. The digits dialed after the failure are ignored, the IP Phone detects the failure, clears the display, and tries to re-register with the server.

The TLAN restarts and the IP Phone re-registers. Although the IP Phone is now idle and the display is cleared, the IP Phone can resume dialing the DN starting from the second digit. The IP Phone can also return to the held call by pressing the held call DN key.

CDR

No ACF-specific information is added to the Call Detail Record (CDR) records.

If the Call Server fails, the CDR records for the call before the failure occurred are lost. CDR restarts as the active IP Phone re-registers. Therefore, the records are generated only for the post-failure period of time.

If the LTPS or network fails, CDR continues. The CDR stops only if

- the Call Server supervisory timer expires
- the IP Phone is idle when it re-registers
- the active IP Phone re-registers and then the call is released
The records include the failover time as well. This means that the user can be under-charged if the Call Server fails and over-charged if the LTPS or network fails.

CallPilot

ACF considers CallPilot to be a TDM resource and interaction of an IP Phone with CallPilot as an IP/TDM call. See [IP/TDM calls](#) on page 72 and [Table 15: ACF behaviors](#) on page 67.

Example: IP Phone A calls telephone B and is redirected to CallPilot on no answer. The IP/TDM call is established between the IP Phone A and CallPilot.

The media session between IP Phones and CallPilot is dropped due to INI. You can restart the session by, for example, cold start, warm start, or ungraceful switchover.

During any failure, user input does not pass to CallPilot. The user must resume entering responses after the IP Phone re-registers.

Interactions considered as IP/TDM calls

The ACF feature also considers interaction of an IP Phone with the following to be an IP/TDM call:

- CallPilot Mini
- Meridian Mail
- Meridian Mail Card Option
- Companion DECT Telephones (DMC8 version)
- Remote Office 9150
- Mini Carrier Remote
- Carrier Remote
- Periphonics Open IVR (VPS/is)
- Integrated Call Assistant
- Integrated Conference Bridge
- Integrated Recorded Announcer
- Integrated Personal Call Director
- Integrated Voice Services
Avaya NES Contact Center Management Server

The ACF feature interacts with the Avaya NES Contact Center Management Server environment in the following cases:

• Acquired ACD agent is an IP Phone.
 - If a failure occurs when the IP Phone is active, the ACD IP Phone behaves as described in IP Phone as ACD agent or supervisor telephone on page 77.
 - If the active unregistered ACD agent changes the call state during the failure period (for example, releases the call), the status message is sent to the Symposium and CTI applications as the idle agent re-registers with the system.

• Associated non-ACD telephone is an IP Phone.
 - If a failure occurs when the IP Phone is active, the ACD IP Phone behaves as any other IP Phone. If the active associated IP Phone changes the call state during the failure period (for example, releases the call), the status message is sent to the Symposium and CTI applications as the idle telephone re-registers with the system.

MCS 5100

The SIP calls between the CS 1000 IP Phone and a SIP party on the MCS 5100 side are IP Peer calls. Such calls survive any failure except a Call Server cold start.

Installation and configuration

The ACF feature for IP Phones requires no installation. It is active by default on any CS 1000 system running CS 1000 Release 4.5 or later.

On a system running CS 1000 Release 4.5 or later, every node running the CS 1000 Release 4.5 or later LTPS software has the ACF feature enabled for the registered IP Phones.

Configurable RUDP Time-out and Retries Count

When a network failure occurs and the IP Phone connection is lost, the IP Phone does not instantly start the failover. The IP Phone waits for a period of time for a reply from the server (the length of time is the value of RUDP timeout in milliseconds). If the IP Phone does not receive a reply from the server in that length of time, the IP Phone retransmits the message. The IP Phone retransmits the message the number of times of the Retries count value, and then starts the failover process; the IP Phone tries to reconnect to S1, then to S2, and so on.
You can configure the time-out and number of retries in the Linux shell of the Signaling Server. See Table 16: RUDP Timeout and Retries Count commands on page 81.

Table 16: RUDP Timeout and Retries Count commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>usiSetPhoneRudpRetries</td>
<td>Configure the RUDP Retries Count maximum for IP Phones 1 – (10) – 20</td>
</tr>
<tr>
<td>usiGetPhoneRudpRetries</td>
<td>Display the RUDP Retries Count maximum for IP Phones</td>
</tr>
<tr>
<td>usiSetPhoneRudpTimeout</td>
<td>Configure the RUDP Timeout value (in ms) for IP Phones 50 – (500) – 1000 in increments of 50 milliseconds</td>
</tr>
<tr>
<td>usiGetPhoneRudpTimeout</td>
<td>Display the RUDP Timeout value (in ms) for IP Phones</td>
</tr>
</tbody>
</table>

If the customer has a network with low network delays, one or both parameters can be reduced to make an IP Phone more responsive to failures. If the network delay values are high, you can increase the values to prevent the IP Phones from being reset due to significant network delay.

The configured values are saved in the [usiLib] section of the TPS.ini file and downloaded to all UNiStim IP Phones registered to the Signaling Server. When a supported IP Phone registers with the Signaling Server, the IP Phone downloads the new values.

You must configure these values on every Signaling Server in the node.

Overlay and command modifications

Because call failover is an exceptional situation, ACF information is output only if it exists.

Status definitions

UNREG

The ACF call is UNREGISTERED (UNREG). This occurs when both parties go offline. This state is always monitored by the 10-minute ACF timer. The call is released if the Call Server ACF timer expires.
HREG

The ACF call is **HALF-REGISTERED (HREG)**. This occurs when one telephone involved in the call is registered with the Call Server, but the other telephone fails or is not connected to the Call Server. The CS ACF timer is started only if the other party does not support disconnect supervision.

HREB

The ACF call is **HALF-REBUILT (HREB)**. This occurs when no call-associated data was found and the Call Server creates the data. HREB happens when the first of the two telephones involved registers with the Call Server, while another telephone is still not connected to the Call Server. When the far-end telephone registers, the partially-rebuilt call is promoted to REBUILT state.

PREB

The ACF call is **PARTIAL-REBUILT (PREB)**. This occurs when no call-associated data is found. The far-end IP address is not known on the Call Server, or the far-end IP address is translated to the virtual trunk TN. The Call Server creates the data leaving the far-end TN undefined.

This scenario happens when

- the far-end telephone is a local telephone, but while it was registered with the remote Call Server, the local Call Server cold started and TN-to-IP address associations were lost
- the far-end telephone is a remote telephone

The terminating-party TN in the PREB call is 0.

Important:

No signaling passes to the far-end telephone involved in the HREG, HREB, and PREB calls. This means that any features that involve both parties do not work with such calls.

REB

The ACF call is **REBUILT (REB)**. The calls have both parties available, but all call data except bandwidth and connected transducers is lost.
LD 32 STAT command

If ACF information exists for the requested IP Phone, it is output as follows:

```
ACF STATUS <status> TMR <timer>
```

<status> is

• UNREG for unregistered calls
• HREG for half-registered calls
• REB for rebuilt calls
• PREB for partially-rebuilt calls

<timer> is

• an integer value if the timer exists for the call
• N/A if there is no Call Server ACF timer attached

See Figure 3: LD 32 STAT output with ACF example on page 83.

![Figure 3: LD 32 STAT output with ACF example](image)

LD 80 TRAC command

If ACF information exists for the requested IP Phone, it is output as follows:

```
ACF STATUS <status> TMR <timer> ORIG <orig_state>
```

<status> is

• UNREG for unregistered calls
• HREG for half-registered calls
• REB for rebuilt calls
• PREB for partially-rebuilt calls
<timer> is

- an integer value if the timer exists for the call
- N/A if there is no Call Server ACF timer attached

ORIG <orig_state> can be REGISTERED or UNREGISTERED.

The following figure shows a sample output for IP Phones involved in UNREGISTERED and PARTIAL-REBUILT calls:

```
LD 117 STIP ACF command

A subcommand ACF is added to the existing LD 117 STIP command.

Table 17: LD 117 STIP ACF command

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| STIP ACF <status> | Displays the Active Call Failover (ACF) information. <status> – optional parameter. Specifies the status to be output. Outputs all IP Phones involved in the following types of calls:  
  • UNREG: UNREGISTERED calls  
  • HREG: HALF-REGISTERED calls |
```
Command Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• REB: REBUILT calls</td>
<td></td>
</tr>
<tr>
<td>• HREB: HALF-REBUILT calls</td>
<td></td>
</tr>
<tr>
<td>• PREB: PARTIAL-REBUILT calls</td>
<td></td>
</tr>
<tr>
<td>• ALL: all types of ACF calls</td>
<td></td>
</tr>
</tbody>
</table>

If no status parameter is entered, all types of ACF calls are output.

Output

The output is similar to the existing LD 117 STIP output, with the addition of a column titled ACF STATUS. If the call is in an inactive state, the value of the Call Server ACF timer follows that status, separated by a colon (:).

LD 117 STIP ACF in Element Manager

Support for the STIP ACF command in LD 117 is provided by Element Manager. Select System, Maintenance. Select LD 117 - Ethernet and Alarm Management. Select Ethernet Diagnostics. The Ethernet Diagnostics window appears.

Figure 5: LD 117 STIP ACF in Element Manager on page 86 illustrates the placement of the STIP ACF command with the other STIP commands.
A list of command parameters are available after you select the STIP ACF command. The ALL command parameter is the default.

Click the Submit button after you select an available parameters to run the command. The output appears in the box in the lower portion of the Web page.

Online Help describes the parameters available for the STIP ACF command.

DSP peg counter for CS 1000E systems

Digital Signaling Processor (DSP) resources residing on a Voice Gateway Media Card in the IP Media Gateway (IPMG) of a CS 1000E system convert TDM voice to IP packets. The Voice Gateway Media Cards have a limited number of DSP resources that perform the conversion. When all DSP resources are busy, IP-to-TDM calls and TDM-to-TDM calls between IPMGs are blocked. IP-to-IP calls are not blocked.

The DSP Peg Counter feature provides three counters. The first peg counter provides a count of the number of attempts to allocate a DSP resource on an IPMG. The second provides a count of the number of times calls were blocked on an IPMG due to a lack of DSP resources. If the call failed due to a lack of bandwidth, this is reflected in the third peg counter. The counters are a part of customer traffic measurement in LD 2.

For more information, see *Traffic Measurement: Formats and Output Reference, NN43001-750* and *Software Input Output — Administration, NN43001-611.*
Enhanced UNIStim Firmware Download for IP Phones

Firmware files are stored on and are downloaded from the Signaling Server.

The Enhanced UNIStim Firmware Download for IP Phones provides a method of delivering new firmware for Avaya IP Deskphones.

Specifically, this feature provides the following functionality:

- Enhanced firmware file header that includes the IT_TYPE and name string for each IP Phone type. Element Manager and the LTPS can read this information and automatically display the mapping to the administrator.

- Revised definition of the IP Client IP Phone identification.

- Maintenance Mode for the Signaling Server that allows simultaneous firmware downloads from the UFTP server. The administrator manually initiates Maintenance Mode (Turbo Mode) in which premarked node Signaling Servers use all possible resources for processing firmware upgrade jobs.

- Identification of the registered IP Phones using string names and providing detailed identification of IP Phones that register in Emulation Mode.

- UNIStim IP Phones can register with a previous version of firmware if the UFTP servers are busy, and then periodically offer the option to start the firmware upgrade to the IP Phone user.

- Introduction of missing firmware file retrieval to the Branch Office from the Main Office.

System management commands are provided to collect information about registered IP Phones, models, and firmware.

Operating parameters

Enhanced UNIStim Firmware Download feature is supported on the following systems running CS 1000 Release 4.5 or later.

- CS 1000M HG
- CS 1000M SG
- CS 1000M MG
- CS 1000E
The Enhanced UNIStim Firmware Download feature has the following operating parameters:

- Supports only firmware downloads performed by the UFTP server to the UNIStim IP Phones that support the UFTP download protocol.

- Enhanced functionality is provided only if the recommended commands are used. For example, using the shell `cp` command instead of the `firmwareFileGet` command bypasses the other features and is therefore not supported.

- Firmware retrieval mechanism described for the Branch Office LTPS retrieves only firmware files it finds missing. It does not compare the list of firmware on the Branch Office LTPS and Main Office LTPS to determine whether the Branch Office has the most recent firmware, or perform any automatic comparisons and update operations. The Branch Office LTPS receives firmware files only when the `umsUpgradeAll` command was issued on the Main Office LTPS.

Feature interactions

Active Call Failover for IP Phones

The Active Call Failover feature handles cases when an IP Phone registers with an active RTP stream (has a call active at the time of registration). The check of IP Phone firmware is skipped in this case, and the IP Phone registers with the LTPS.

The Active Call Failover scenario is the same as the postponed firmware upgrade scenario described in Table 22: IP Phones registration and download scenarios on page 92. After the call ends, the user is prompted to start the firmware upgrade.

For more information about Active Call Failover for IP Phones, see Active Call Failover for IP Phones on page 65.

System view

IP Phone firmware upgrades

Each IP Phone that registers with the LTPS is queried for the firmware ID and IT_TYPE. The system response depends on the results of the query. See Table 18: System response on page 89.
Table 18: System response

<table>
<thead>
<tr>
<th>Query result</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTPS software supports the reported IT_TYPE (see Table 19: Supported IT_TYPES on page 89) and the Upgrade Manager has firmware for the firmware ID.</td>
<td>Registration of the IP Phone continues. The IP Phone firmware upgrade occurs if possible.</td>
</tr>
<tr>
<td>LTPS software supports the reported IT_TYPE, but the Upgrade Manager has no firmware for the given firmware ID.</td>
<td>Registration of the IP Phone continues with no firmware download.</td>
</tr>
<tr>
<td>LTPS software does not support the IT_TYPE reported.</td>
<td>Registration of the IP Phone is rejected.</td>
</tr>
<tr>
<td>The branch office IP Phone is upgraded at the branch office before the IP Phone is redirected to the main office.</td>
<td>Registration of the IP Phone continues with no firmware download.</td>
</tr>
</tbody>
</table>

Firmware file management

To manage available firmware, the following information is collected about each firmware file on the Signaling Server:

- firmware ID
- firmware version
- applicable IT_TYPE (see Table 19: Supported IT_TYPES on page 89)
- applicable model names

IT_TYPES

Table 19: Supported IT_TYPES on page 89 lists the IT_TYPES supported by the Upgrade Manager for CS 1000 Release 5.5

Table 19: Supported IT_TYPES

<table>
<thead>
<tr>
<th>ITTYPE</th>
<th>IP Deskphone</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x02</td>
<td>IP Phone 2004, Avaya 2007 IP Deskphone, WLAN 2210/2211/2212, Avaya 6120/6140 WLAN Handset, Avaya 1140E IP Deskphone, Avaya 1165E IP Deskphone</td>
</tr>
<tr>
<td>0x03</td>
<td>IP Phone 2002, Avaya 1120E IP Deskphone 1120E</td>
</tr>
<tr>
<td>0x04</td>
<td>IP Phone 2001, Avaya 2033 IP Conference Phone, Avaya 1110 IP Deskphone</td>
</tr>
<tr>
<td>0x20</td>
<td>Avaya 2050 IP Softphone, Mobile Voice Client 2050</td>
</tr>
</tbody>
</table>
Two events provide data about firmware files to be updated by the LTPS:

1. LTPS restart
2. new firmware file upload from either the LTPS Command Line Interface (CLI) or Element Manager

In the first case, the LTPS explores possible locations of firmware files and collects information about found files in the internal database. In the second case, when a new firmware file is uploaded, the LTPS updates the internal database with information extracted from the file.

Element Manager uses data from the firmware file to provide information about the firmware file and the IP Deskphones to which the firmware can be downloaded.

Firmware file names

Firmware file names are originally in the format SSFFYxx.bin. See Table 20: Original firmware file name format on page 90.

Table 20: Original firmware file name format

<table>
<thead>
<tr>
<th>Designator</th>
<th>Definition</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>Site code where firmware was built</td>
<td>06 – Calgary 30 – Ottawa</td>
</tr>
<tr>
<td>FF</td>
<td>Firmware type</td>
<td>02 – Phase 0/1 IP Phone 2004 03 – Phase 1 IP Phone 2002 04 – Phase 2 IP Phone 2001, IP Phone 2002, IP Phone 2004</td>
</tr>
<tr>
<td>Y</td>
<td>Alphabetic character</td>
<td>A – 0 B – 1 C – 2 D – 3 (and so on)</td>
</tr>
<tr>
<td>XX</td>
<td>Release number</td>
<td>Two-digit decimal integer (for example, .38)</td>
</tr>
</tbody>
</table>

The files are renamed according to the following rules:

• Phase 0/1 IP Phone 2004 firmware is renamed to x00.fw
• Phase 1 IP Phone 2002 firmware is renamed to x01.fw
• All other firmware files are renamed to xFF.fw:
 - x emphasizes that FF is a hexadecimal number
- FF is the firmware ID for the file

Table 21: Firmware file naming conventions

<table>
<thead>
<tr>
<th>Firmware ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x00.fw</td>
<td>IP Phone 2004 Phase 0/1</td>
</tr>
<tr>
<td>x00.fw</td>
<td>IP Phone 2002 Phase 1</td>
</tr>
<tr>
<td>x02.fw</td>
<td>IP Phone 2004 Phase 2</td>
</tr>
<tr>
<td>x02.fw</td>
<td>IP Phone 2002 Phase 2</td>
</tr>
<tr>
<td>x02.fw</td>
<td>IP Phone 2001 Phase 2</td>
</tr>
<tr>
<td>x10.fw</td>
<td>Avaya 2033 IP Conference Phone</td>
</tr>
<tr>
<td>x21.fw</td>
<td>Avaya 2007 IP Deskphone Phase 2</td>
</tr>
<tr>
<td>x23.fw</td>
<td>Avaya 1110 IP Deskphone</td>
</tr>
<tr>
<td>x24.fw</td>
<td>Avaya 1120E IP Deskphone</td>
</tr>
<tr>
<td>x25.fw</td>
<td>Avaya 1140E IP Deskphone</td>
</tr>
<tr>
<td>x27.fw</td>
<td>Avaya 1150E IP Deskphone</td>
</tr>
<tr>
<td>x2A.fw</td>
<td>Avaya 1200 IP Deskphone</td>
</tr>
</tbody>
</table>

The xFF.fw format also applies to the firmware file for the Phase 2 IP Phone 2001, IP Phone 2002, and IP Phone 2004. The file was named IPP2SET.fw but is renamed to x02.fw to conform to the naming convention.

Download maximums

The following modifications are available on the Signaling Server to the Upgrade Manager:

- The default number of allowed simultaneous downloads is 50.
- Maintenance Mode (Turbo Mode) that the administrator manually initiates is available in which premarked node Signaling Servers use all possible resources to process firmware upgrades. The following commands are used to manage the Maintenance Mode:
 - uftpTurboMode
 - uftpTurboModeTimeoutSet
 - uftpTurboModeShow

The uftpTurboMode command is used with RST FW (hard-resets all IP Deskphones with specified F/W ID) and RST ZONE (hard-resets all IP Phones) commands in LD 117. For more information about commands in a specified zone, see Table 23: Maintenance Mode commands on page 94.

For more information about Maintenance Mode, see Maintenance Mode on page 93.
Immediate and delayed firmware downloads

The IP Phones display various messages to indicate the status of IP Phone registration and firmware downloads. Table 22: IP Phones registration and download scenarios on page 92 lists some scenario examples with the resulting IP Phone information.

Table 22: IP Phones registration and download scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal firmware download for known IP Phone type</td>
<td>The IP Phone is connecting to the LTPS. The firmware download starts.</td>
</tr>
<tr>
<td></td>
<td>If download is successful, IP Phone continues with normal registration.</td>
</tr>
<tr>
<td>Postponed firmware upgrade</td>
<td>The IP Phone is connecting to the LTPS. IP Phone cannot download firmware. It can proceed with registration using old firmware. At the completion of call (if download resources are available), IP Phone displays "Upgrade F/W now?" IP Phone displays Yes and No soft keys to use to select choice. If you select Yes, the firmware download begins. If you choose nothing, the IP Phone downloads the firmware after the timer expires. If you select No, the IP Phone display returns to idle state. Off-hook dialing, on-hook dialing, and external events such as an incoming call imply a No response.</td>
</tr>
<tr>
<td>Unknown firmware ID for known IT_TYPE</td>
<td>The IP Phone is connecting to the LTPS. No firmware upgrade occurs, but the IP Phone can register.</td>
</tr>
<tr>
<td>Unknown IT_TYPE</td>
<td>IP Phone has no display. The IP Phone resets continuously. IP Phone registration is not allowed. Log message is sent to LTPS administrator.</td>
</tr>
<tr>
<td>Branch Office LTPS determines IP Phone requires firmware upgrade</td>
<td>The firmware download is initiated. The IP Phone is placed into local mode. The message appears until firmware is downloaded. The IP Phone upgrade starts. If firmware download is unsuccessful after 10 retries, the IP Phone remains in local mode.</td>
</tr>
</tbody>
</table>

Note:

When you issue the umsUpgradeAll command on TPS all IP Phones (with "old" Firmware) are restarted and try to upgrade to the new firmware. However, if TPS is not in maintenance mode and doesn't have enough resources to start a firmware upgrade then some IP Phones might be registered with "old" firmware. Please refer to "Postponed firmware upgrade" section in the table "IP Phone registration and download scenarios". If TPS is in maintenance...
mode, umsUpgradeAll upgrades all IP Phones. If there are not enough resources for
upgrade, then IP Phone will be put in pending queue and upgraded as soon as TPS has
CPU resources to proceed.

Maintenance Mode

Maintenance Mode enables the UFTP server to use most of the processing resources to handle
the downloads.

The actual number of simultaneous downloads is determined by measuring the CPU idle time,
so each new firmware download session starts if there are less than 50 download sessions for
the Signaling Server already taking place and one of the following is true:

- there are less than five download sessions currently active
- Signaling Server is in regular mode (not in Maintenance Mode) and its CPU usage is less
 than 85 percent
- Signaling Server is in Maintenance Mode and its CPU usage is less than 100 percent

The UMS tries to start a pending download session every 5 seconds.

Important:

When Maintenance Mode is enabled, UFTP download process can affect call processing
signaling.

Maintenance Mode can be exited in several ways:

- manually, by using the `uftpTurboMode "stop"` command
- automatically, after the Upgrade Manager is idle for MM minutes after at least one
download starts This prevents a time-out while the system is configured and the
downloads start. After a download starts, if MM minutes pass with no new firmware
upgrade jobs starting, the normal mode of operation resumes. Configure the idle timeout
timer using the `uftpTurboModeTimeoutSet` command.
- automatically, after expiration of the Maintenance Mode period

Active firmware upgrade jobs are not cancelled when the Maintenance Mode exits. No
new jobs are added until the number of active jobs is below the default value.

Maintenance Mode is available only on the Signaling Server. Maintenance Mode affects
only Signaling Servers designated for Maintenance Mode. Some Signaling Servers in the
node can operate in Maintenance Mode while others do not. The Signaling Server is
designated for Maintenance Mode with the `uftpTurboMode "on"` command. The
Maintenance Mode designation is saved and maintained even if the Signaling Server is
power-cycled or restarted. Firmware downloads do not affect Call processing for
Signaling Servers operating in normal mode.
Firmware upgrades are postponed when at least one Signaling Server is in Maintenance Mode.

Table 23: Maintenance Mode commands on page 94 lists the commands used for Maintenance Mode.

Table 23: Maintenance Mode commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| uftpTurboMode <"HH:MM/start/stop/on/off">, <MM> <"show"> | Configures Maintenance Mode
HH:MM: time to enter Maintenance Mode in 24-hour format
start: enter Maintenance Mode immediately
stop: stop Maintenance Mode
on: allow Signaling Server to enter Maintenance Mode
off: do not allow Signaling Server to enter Maintenance Mode
MM: optional parameter that defines the length of time in minutes that Maintenance Mode is to be maintained
show: displays the same output as uftpTurboModeShow
If you enter no parameter, Upgrade Manager uses uftpturboMode "start". |
| uftpTurboModeTimeoutSet <MM> | Configures the idle timeout timer for Maintenance Mode
MM: optional parameter that defines the number of minutes the Upgrade Manager waits after the last firmware download job starts before returning the Signaling Server to normal mode If this parameter is 0 (zero), the Upgrade Manager never exits Maintenance Mode unless the umsUpgradeModeSet command is issued with the "stop" parameter.
If you enter no parameter, then the current timeout setting appears. |
| uftpTurboModeShow | Displays current status of Maintenance Mode. |

The following is an example of output when Maintenance Mode is to start at 11:00 p.m.

uftpTurboMode "23:00"

The log file /var/log/cs1000/ss_common.log will contain the following record:

Mar 31 02:53:12 si-linux tps: (INFO) tUMS: F/W download Turbo Mode is scheduled for 23:00. Will run after 408 seconds
Call Server commands

LD 20

A response ISET is introduced to the LD 20 TYPE prompt. When you enter ISET, the prompt MODEL_NAME appears. The MODEL_NAME prompt allows you to specify the Short Model Name mnemonic to filter TN block output. If you use only the ISET response, printed TN blocks contain the long IP Phone Model Name.

Table 24: LD 20 Listing or printing TN blocks of specified IP Phone model

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ</td>
<td>LTN</td>
<td>List TN blocks.</td>
</tr>
<tr>
<td></td>
<td>PRT</td>
<td>Print TN blocks.</td>
</tr>
<tr>
<td>TYPE</td>
<td>ISET</td>
<td>Enable filtering by IP Phone model name.</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>MODEL_NAME</td>
<td>xxxxxx</td>
<td>IP Phone model (for example, 2004P2).</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

The following is an example of the input and output.

```
>ld 20
REQ: PRT
TYPE: ISET
TN
CUST
TEN
DATE
PAGE
DES
MODEL_NAME: 2004P2
KEM_RANGE
IP_PHONE_MODEL: IP PHONE 2004 PHASE2
DES FAKE
TN 064 0 00 00 VIRTUAL
TYPE 2004P2
CDEN 8D
CUST 0
ZONE 000
FDN
TGAR 1
LDN NO
NCOS 0
SGRP 0
RNPG 0
SCI 0
SSU
XLST
SCPW 6400
SFLT NO
```
LD 117

LD 117 commands are as follows:

- **STIP FW <XX> <A> <BB> <FF>:** list IP Phone with specified firmware ID and, optionally, firmware version. If no parameters are entered, output is a list of available model names.
- **STIP MODL <MMMM>:** list IP Phones of specified model name.
- **RST ZONE <ZoneNumber> <START/STOP> <HH:MM>:** reset IP Phones in specified zone.
- **RST FW <FWID> <START/STOP> <HH:MM>:** reset IP Phones with specified F/W ID.

See Table 25: LD 117 commands on page 97.

Table 25: LD 117 commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| STIP FW <XX> <A> <BB> <FF> | Displays information from the Resource Locator Module (RLM) for IP Phones with specified firmware ID and running specified firmware version.
 <XX>: firmware ID
 <A>: major version designator
 <BB>: minor version designator
 <FF>: filter to apply on firmware version; can be one of the following:
 =: equal to
 ~: not equal to
 <: less than
 >: greater than
 Only the XX parameter is required.
 STIP FW <XX> <A> <BB> is equivalent to STIP FW <XX> <A> <BB> EQ.
 STIP FW <XX> <A> lists all registered IP Phones with firmware ID equal to <XX> and major version designator equal to <A>.
 STIP FW <XX> lists all registered IP Phones with firmware ID equal to <XX>. |
| STIP MODL <MMMM> | Displays information from the RLM for all IP Phones of the specified model, where:
 MMMM = IP Phone model
 If you omit the <MMMM> parameter, a table of existing model names and associated mnemonics appears. |
| RST ZONE <ZoneNumber> | Immediately hard-resets all IP Phones, where:
 ZoneNumber = zone number |
| RST ZONE <ZoneNumber> <START/STOP> <HH:MM> | Schedule or cancel hard-resets of all IP Phones in specified zone. |
LTPS CLI commands

LTPS CLI commands are as follows:

- firmwareFileGet
- uftpAutoUpgradeTimeoutSet
- isetFWShow

See Table 26: LTPS CLI commands on page 98.

Table 26: LTPS CLI commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>firmwareFileGet "ServerIP", "UserID", "Password", "/path/to/file", "file name" ProtocolID</td>
<td>Uploads a firmware download from a specified FTP server. After the download is completed, the downloaded file is checked for Enhanced Header (or proper naming). If the file is a valid firmware file, the UMS database is updated accordingly. ServerIP: FTP server IP address to download the firmware from. UserID, Password: credentials for logging on to the FTP server</td>
</tr>
</tbody>
</table>
Command Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/path/to/file: absolute or relative path to the firmware file (does not include the file name)</td>
<td>Use the firmwareFileGet command instead of firmwareFileGet2004, firmwareFileGet12002, and firmwareFileGetIPP2. ProtocolID: 0 - FTP protocol; 1 - SFTP protocol. ProtocolID is optional. SFTP is used by default.</td>
</tr>
<tr>
<td>uftpAutoUpgradeTimeoutSet <MM></td>
<td>Configures the length of time the IP Phone waits for a user response after "Upgrade F/W now?" appears before automatically beginning the firmware upgrade. MM: user response timeout in minutes. A value of 0 (zero) means Print current settings. If no parameter is entered, the current value prints.</td>
</tr>
<tr>
<td>isetFWShow</td>
<td>Displays the status of IP Phones firmware.</td>
</tr>
</tbody>
</table>

firmwareFileGet example

```
firmwareFileGet "192.168.0.1","admin1","0000 
"/var/opt/nortel/tps/fw"
```

firmwareFilePut example

```
firmwareFilePut "192.168.0.1","admin1","0000 
"/var/opt/nortel/tps/fw"
```

uftpAutoUpgradeTimeoutSet output example

```
uftpAutoUpgradeTimeoutSet 4  
Log file /var/log/nortel/ss_common.log will contain the following line: Mar 31 02:53:12 si-linux tps: (INFO) tUMS: New value of auto F/W upgrade timeout is 240 seconds.
```

isetFWShow output example

```
isetFWShow  
Set Information
```
LTPS CLI commands

The output for the following commands prints IP Phone model name (long or short), firmware ID, firmware version:

- `uftpShow`
- `umsPolicyShow`
- `isetGet`

Short model name example is 2004P2. Long model name example is IPPhone2004 Phase 2.

uftpShow output example

The output displays the IP Phone Model Name, firmware ID, and firmware version in ABB format.

```
uftpShow
----------- UFTP Server Configuration -----------
UFTP Server IP address......... 192.168.29.42 [port: 5105]
Concurrent downloading limit.... 15 sets
Total firmware = 5
0x00 B.65 IP Phone 2004 DEFAULT /ums/i2004.fw
0x02 D.44 IP Phone 2004 Ph2 DEFAULT /ums/i2004.fw
----------- Run Time Data -----------
Last UFTP reset................. 1/14/2096 08:38:19
Cumulation Period............... 0004 01:55:01
Successful downloads............ 1
Fail downloads........... 0
----------- Active Downloads -----------
Current downloading sets........ 0
Model IP Address Downloaded[KByte]
```
isetGet output

The output displays the IP Phone Model Name and firmware version in ABB format.

Element Manager

To support the Enhanced UNIStim Firmware Download for IP Phones feature, Element Manager provides the following functions:

- Extraction and display of information from the Enhanced firmware file. For example, when new firmware is downloaded to Element Manager firmware location from the FTP server, Element Manager examines the file for the text string containing firmware ID, firmware version, applicable IT_TYPES, and model names.

- Ability to upload a new firmware file to the LTPS using the `firmwareFileGet` command.

- An interface to initiate or obtain the status for the firmware download Maintenance Mode using the CLI commands `uftpTurboMode`, `uftpTurboModeShow`, and `uftpTurboModeTimeoutSet`.

The `uftpTurboMode` CLI commands are used with the RST FW and RST ZONE commands.

- An interface to reset IP Phones by firmware ID and zone using the LD117 commands `RST FW` and `RST ZONE`.

See Table 23: Maintenance Mode commands on page 94 for a description of LD 117 commands.
• Output of either ECNT MODL is parsed to obtain the list of available IP Phone models. Use this output to allow a user to transparently specify the model name; that is, Element Manager replaces the actual model name with associated mnemonic.

• An interface to display the output of the LD 117 commands ECNT MODEL, ECNT FW, ECNT PEC, STIP MODL, and STIP FW.

• Management of the compatibility matrix of various firmware versions with the Call Server and LTPS software release using the output of these LD 117 commands.

• Interaction with the Avaya Software Download Web site to download bundles of firmware files.

IP Phone firmware management in Element Manager

For information about updating the IP Phone firmware in Element Manager, see [Upgrade the Voice Gateway Media Card and IP Phone firmware](#) on page 275.

Ethernet Diagnostics in Element Manager

To access Ethernet Diagnostics in Element Manager, perform the steps in [Accessing Ethernet Diagnostics in Element Manager](#) on page 102.

Accessing Ethernet Diagnostics in Element Manager

1. In the Element Manager navigator, select **System > Maintenance**.

 The Maintenance window appears. See [Figure 6: Maintenance window](#) on page 103.
Figure 6: Maintenance window

By default, Select by Overlay is selected.

2. Select LD 117 – Ethernet and Alarm Management in the <Select by Overlay> list, and then select Ethernet Diagnostics in the <Select Group> list.

The Ethernet Diagnostics window appears. See Figure 7: Ethernet Diagnostics window on page 104.

Alternatively, select Select by Functionality.

Select Ethernet Diagnostics from the <Select by Functionality> list. See Figure 8: Select by Functionality list on page 104.

The Ethernet Diagnostics window appears.
Features

![Ethernet Diagnostics window](image1)

Figure 7: Ethernet Diagnostics window

![Select by Functionality list](image2)

Figure 8: Select by Functionality list

For more information about the LD 117 commands, see [LD 117 on page 97](#).

ECNT commands

The following commands are available in LD 117 under ECNT in the Status Command list. See [Figure 9: ECNT commands](#) on page 105.

- ECNT FW
- ECNT MODL
• ECNT PEC
• ECNT CARD
• ECNT NODE
• ECNT SS
• ECNT ZONE

Important:
ECNT CARD, ECNT NODE, ECNT SS, and ECNT ZONE were formerly found in LD 32.

Figure 9: ECNT commands

STIP commands

STIP MODL and STIP FW are listed in the STIP commands in the Status Command list. See Figure 10: STIP commands on page 106.
RST commands

RST ZONE and RST FW are listed in the RST commands in the Status Command list. Both RST commands reset IP Phones for the parameters specified. See Figure 11: RST commands on page 106.
Maintenance Mode commands in Element Manager

The Signaling Server Maintenance Mode (Turbo Mode) commands are as follows:

- uftpTurboMode
- uftpTurboModeShow
- uftpTurboModeTimeoutSet
- uftpAutoUpgradeTimeoutSet

uftpTurboMode

Use the uftpTurboMode command to designate one or more Signaling Servers for firmware upgrade Maintenance Mode, or to schedule Maintenance Mode on the designated Signaling Server to either start immediately or at a specific time. See [Figure 14: uftpTurboMode window in Element Manager](#) on page 108.

To access the uftpTurboMode command, perform the steps in [Accessing the uftpTurboMode command](#) on page 107.

Accessing the uftpTurboMode command

1. In the navigator, select **IP Network, Maintenance and Reports**.

 The Node Maintenance and Reports window appears. See [Figure 12: Node Maintenance and Reports window](#) on page 107.

 ![Figure 12: Node Maintenance and Reports window](#)

2. Click the plus sign (+) to the left of the Node ID of the desired node to view the node elements.

3. Click **GEN CMD** for a Signaling Server.

 The General Commands window appears. See [Figure 13: General Commands window](#) on page 108.
4. From the **Group** list, select uftp.

5. From the **Command** list, **uftpTurboMode**.

6. If you select **HH:MM**, enter the time in the Hours and Minutes boxes. No other option requires parameters.

7. Click **Run**.

 The command output appears in the pane below the command.

uftpTurboModeShow

The uftpTurboModeShow command displays the current status of Maintenance Mode (None, Active, or Scheduled). To access the uftpTurboModeShow command using Element Manager, perform the steps in **Accessing the uftpTurboModeShow command** on page 108.

Accessing the uftpTurboModeShow command

1. In the navigator, select **IP Network > Maintenance > Reports**.
The Node Maintenance and Reports window appears. See Figure 12: Node Maintenance and Reports window on page 107.

2. Click the plus sign (+) to the left of the Node ID of the desired node to view the node elements.

3. Click GEN CMD for the desired Signaling Server.

 The General Commands window appears. See Figure 13: General Commands window on page 108.

4. From the Group list, select uftp.

5. From the Command list, select uftpTurboModeShow. See Figure 15: uftpTurboModeShow window in Element Manager on page 109.

 Figure 15: uftpTurboModeShow window in Element Manager

 The command output appears in the pane below the command.

6. Click Run. uftpTurboModeTimeoutSet

 The uftpTurboModeTimeoutSet command configures the idle timer for Maintenance Mode. To access the uftpTurboModeTimeoutSet command using Element Manager, follow Accessing uftpTurboModeTimeoutSet command on page 109.

 Accessing uftpTurboModeTimeoutSet command

 1. In the navigator, select IP Network > Maintenance > Reports.

 The Node Maintenance and Reports window appears.

 2. Click the plus sign (+) to the left of the Node ID of the desired node to view the node elements.

 3. Click GEN CMD for a Signaling Server.

 The General Commands window appears. See Figure 13: General Commands window on page 108.

 4. From the Group list, select uftp.

 5. From the Command list, select uftpTurboModeTimeoutSet. See Figure 16: uftpTurboModeTimeoutSet window on page 110.
This command accepts the MM parameter.

Figure 16: uftpTurboModeTimeoutSet window

6. Enter the time in minutes in the Timeout In box.
7. Click Run.

The command output appears in the pane below the command.

uftpAutoUpgradeTimeoutSet

The uftpAutoUpgradeTimeoutSet command configures the idle timer for starting the firmware download. To access the uftpAutoUpgradeTimeoutSet command using Element Manager, follow [Accessing uftpAutoUpgradeTimeoutSet command](#) on page 110.

Accessing uftpAutoUpgradeTimeoutSet command

1. In the navigator, select IP Network > Maintenance > Reports.
 The Node Maintenance and Reports window appears.
2. Click the plus sign (+) to the left of the Node ID of the desired node to view the node elements.
3. Click GEN CMD for a Signaling Server.
 The General Commands window appears. See [Figure 13: General Commands window](#) on page 108.
4. From the Group list, select uftp.
5. From the Command list, select uftpAutoUpgradeTimeoutSet. See [Figure 17: uftpAutoUpgradeTimeoutSet window in Element Manager](#) on page 111.

This command accepts the MM parameter.
Figure 17: `uftpAutoUpgradeTimeoutSet` window in Element Manager

6. Enter the time in minutes in the **Timeout In** box.
7. Click **Run**.

The command output appears in the pane below the command.

iset commands in Element Manager

Access `isetFWShow` in the General Commands window from the iset group in the **Group** list. See [Figure 18: `iset` commands](#) on page 111.

Figure 18: `iset` commands

Firmware download using UNISTim FTP

Previously, IP Phones on CS 1000 systems downloaded firmware using Trivial File Transfer Protocol (TFTP). Firewalls often have the well-known TFTP port (port 69) disabled to maintain
security. When port 69 is blocked, IP Phones cannot obtain firmware downloads. This situation prevents the IP Phone from registering and coming into service.

To eliminate the file transfer problem with the firewalls and TFTP, a UNIStim File Transfer Protocol (UFTP) download solution is implemented.

UFTP enhances security, because it is a proprietary protocol, as opposed to TFTP which is an open protocol. It enables end users to improve the firewall security by closing port 69 to block TFTP in the firewall and policy-based switches and routers.

Important:

For the UFTP IP Phone firmware download to work, you must explicitly open port 5100 (UNIStim signaling) and port 5105 (UFTP signaling).

If a network firewall is in use, you must explicitly open ports 5100 (UNIStim signaling) and 5105 (UFTP signaling) in the IP Phone-to-UFTP server direction. Opening these ports enables UNIStim and UFTP firmware download messages to travel through the firewall. Firewalls can safely enable both ports. See [Table 27: Source and destination port usage on either side of the connection](#) on page 112.

Table 27: Source and destination port usage on either side of the connection

<table>
<thead>
<tr>
<th>Port</th>
<th>IP Phone signaling</th>
<th>IP Phone UFTP</th>
<th>UFTP Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source port</td>
<td>5000 (see below)</td>
<td>5000 (see below)</td>
<td>5105</td>
</tr>
<tr>
<td>Destination port</td>
<td>5100</td>
<td>5105</td>
<td>5000 (see below)</td>
</tr>
</tbody>
</table>

Important:

The UFTP firmware download is compatible with the NAT Traversal feature. If the IP Phone is behind a Network Address Translation (NAT) device, then a different public signaling port is used. The public signaling port is assigned dynamically. See [Figure 19: Using NAT with UFTP](#) on page 113.
Figure 19: Using NAT with UFTP

Two Download log files log the results of the UFTP firmware downloads: uftplog0.txt and uftplog1.txt. One file is active and one file is inactive. When a file is full, it becomes the inactive file, and the other file is written to. The active file displays the most recent entries.

On the Signaling Server, the log files are in the /var/log/cs1000/ folder. The Download log files are limited to 400 K each, for a total of 800 K. Approximately 5000 log messages can be saved in each log file.

The Download log files are generated during initialization of the UFTP Server task. If the Download log files do not exist during the startup of the UFTP Server task, new Download log files are created.

The Download log file is a circular file, writing over the oldest information when the log file is full. Each log file entry contains the following download information about the IP Phone:

- Firmware download date
- Firmware download start time
- Firmware download status (specifies if the download succeeded or failed)
- IP Address of the IP Phone
- IP Phone type
- Firmware download error code. If the Firmware download was successful, this field is empty. The following is the list of all possible error codes:
 - 00 = F/W not exist
 - 01 = F/W size is 0
 - 02 = F/W corrupt
 - 03 = RUDP connection down
 - 04 = Response time out
 - 05 = Reason: Unknown

The format of the download log message is as follows:
The following is an example of the Download log message.

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Detailed Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>31/01/04</td>
<td>17:04:36</td>
<td>F/W Dnld fail:(47.11.215.44) i2004 Ph2 (F/W Corrupted)</td>
</tr>
<tr>
<td>31/01/04</td>
<td>17:05:46</td>
<td>F/W Dnld success:(47.11.215.44) i2004</td>
</tr>
</tbody>
</table>

CLI commands

The following CLI commands support UFTP firmware downloads:

- uftpNodeShow
- uftpShow
- uftpRunTimeDataReset
- activeDlogShow
- inactiveDlogShow
- dnldFailShow

uftpNodeShow

The **uftpNodeShow** command provides a complete UFTP IP Deskphone firmware download summary of each node. This includes the configured cards in the node that are not responding.

Each node summary contains the following information:

- Index
- TN - LL S CC or C C
- Host Type
- TLAN IP Address
- Data Period
- Active Download Count (Act)
- Server Up Time (Srv Up Time)
- Successful Download Count (Ok)
- Failure Download Count (Fail)

Figure 20: uftpNodeShow command output on page 115 is an example of output from the **uftpNodeShow** command.
Figure 20: uftpNodeShow command output

uftpShow

The uftpShow command displays the following information:

• configuration information about UFTP
• count of successful downloads because the Signaling Server restarted
• count of downloads that failed or prematurely ended because the Signaling Server restarted
• number of active downloads, and a list of each, including the following information:
 - type of IP Phone
 - IP addresses of the IP Phones that downloaded firmware
 - number of bytes downloaded

Figure 21: uftpShow command output on page 116 is an example of output from the uftpShow command.
The `uftpRunTimeDataReset` command resets the run-time data field in the UFTP data block.

Figure 22: `uftpRunTimeDataReset` command output on page 116 is an example of output from the `uftpRunTimeDataReset` command.

```text
ugam> uftpRunTimeDataReset
Run time data reset OK.
-------------- Run Time Data --------------
Successful downloads .................. 0
Fail downloads ...................... 0
```

Figure 22: `uftpRunTimeDataReset` command output

activeDlogShow

The `activeDlogShow` command displays the active log file information for UFTP IP Phone firmware downloads. When you enter no parameter, the output displays the contents of the
entire active log file. When you enter a line number, `activeDlogShow[numOfLine]`, the output displays the active log file by the number of lines.

Figure 23: activeDlogShow command output on page 117 is an example of output from the `activeDlogShow` command.

```
0am> activeDlogShow
Active F/W download file: /u/log/UFTPLOG0.TXT
Space remaining: 55

/u/log/UFTPLOG0.TXT
-------------
12/29/03 19:58:41 F/w dndl success: (47.11.217.11) 12004
12/29/03 20:24:30 F/w dndl success: (47.11.217.12) 12004
12/29/03 21:42:11 F/w dndl success: (47.11.217.13) 12002
12/29/03 22:17:40 F/w dndl success: (47.11.217.20) 12004
```

Figure 23: activeDlogShow command output

inactiveDlogShow

The `inactiveDlogShow` command displays the nonactive dlog file information for UFTP IP Phone firmware downloads. When you enter no parameter, the output displays the contents of the entire file. When you enter a line number, `inactiveDlogShow [numOfLine]`, the output displays the nonactive dlog file by the number of lines.

Figure 24: inactiveDlogShow command output on page 117 is an example of output from the `inactiveDlogShow` command.

```
0am> inactiveDlogShow
inactiveDlogShow
Active F/W download file: /u/log/UFTPLOG0.TXT
Space remaining: 399755

Inactive F/W download file: /u/log/UFTPLOG1.TXT
/u/log/UFTPLOG1.TXT
-------------
12/27/03 19:58:41 F/w dndl success: (47.11.217.11) 12002
12/27/03 20:24:30 F/w dndl success: (47.11.217.12) 12002
12/27/03 21:42:11 F/w dndl success: (47.11.217.13) 12002
12/27/03 22:17:40 F/w dndl success: (47.11.217.20) 12004
```

Figure 24: inactiveDlogShow command output

dnldFailShow

The `dnldFailShow` command displays the download failed status logged in the active and inactive files. When you enter no parameter, the output displays all the failed UFTP download information in the active and inactive files. When you enter a line number,
dnldFailShow[numOfLine], the output displays the download fail status in the active and inactive files by the number of lines.

Figure 25: dnldFailShow command output on page 118 is an example of output from the dnldFailShow command.

```
oam> dnldFailShow
Active F/W download file: /u/log/UFTPLOG0.TXT

12/29/03 19:58:41 F/W dnld fail: (47.11.217.11) I2004 (F/W not exist)
12/29/03 20:24:30 F/W dnld fail: (47.11.217.12) I2004 (F/W size is 0)
12/29/03 21:42:11 F/W dnld fail: (47.11.217.15) I2002 (RUDP connection down)
12/29/03 22:17:40 F/W dnld fail: (47.11.217.20) I2004 (Response time out)

inactive F/W download file: /u/log/UFTPLOG1.TXT

12/28/03 19:58:41 F/W dnld fail: (47.11.217.11) I2004 (RUDP connection down)
12/28/03 20:24:30 F/W dnld fail: (47.11.217.12) I2004 (RUDP connection down)
12/28/03 21:42:11 F/W dnld fail: (47.11.217.15) I2002 (RUDP connection down)
12/28/03 22:17:40 F/W dnld fail: (47.11.217.20) I2004 (Response time out)
```

Figure 25: dnldFailShow command output

NAT Traversal feature

Network Address Translation (NAT) provides the following benefits:

- the ability to network multiple sites with overlapping private address ranges
- added security for servers on a private network
- conservation of public IP address allocation

A NAT device (router) exists between a private network and a public network. The NAT device maps private addresses to public addresses.

With the NAT Traversal feature, several IP Phones are now supported behind a single Cone NAT router with, or without, Virtual Private Network (VPN) capabilities. This support enables large-scale deployment of Voice over Internet Protocol (VoIP) in teleworking and Small Office/Home Office (SOHO) environments.

The following Cone NAT routers are supported:

- Full Cone
- Restricted Cone
- Port Restricted Cone
Important:
A Cone NAT router with more than one connected IP Phone must support hairpinning. Hairpinning occurs when an IP Phone behind a NAT router can send packets to the Public IP address and port of another IP Phone connected to the same NAT router.

Important:
Support is not available for Symmetric NAT routers. If the IP Phone is behind a Symmetric NAT, IP Phone registration is unsuccessful and the IP Phone displays a "NAT Error! ITG3053" message.

Echo Servers

NAT Traversal is a function of CS 1000 Release 4.5 or later, and not a function of the NAT router. NAT Traversal uses two Echo Servers that reside on the Signaling Server. Echo Server 1 detects the presence of a NAT router, while Echo Server 2 detects the type of NAT router. Both Echo Server 1 and Echo Server 2 are required for the NAT Traversal feature to function properly.

If a compatible NAT router is detected, successful IP Phone registration occurs and the software invokes the NAT Mapping Keep Alive function to prevent loss of the IP connection. If an incompatible NAT is detected, an error appears on the IP Phone display and the IP Phone cannot register.

Mapping

When an IP Phone is used in a private network behind a NAT device, the NAT router strips the IP Phone private IP address and private port number and assigns a public IP address and public port number.

To support multiple IP Phones behind one NAT device, NAT must map between public/private IP addresses, and ports for each IP Deskphone behind it. A mapping exists for both a signaling port and a media (voice) port.

Placing an IP Phone behind Multiple NAT devices is an unsupported configuration. If you need a configuration with multiple NATs between the IP Phone and the Voice Gateway Media Card, all NATs on the path must follow the rules described in the following sections for signaling and media streams.

Use the NAT device to implement and configure mapping. The IP Line application implements no mappings.
NAT and signaling

NAT hides the true identity of the IP Phone from the LTPS. The LTPS is aware of an IP Phone based only on the public IP address and port of the signaling messages. A signaling message originates from the IP Phone on the private side from port 5000. That signaling message then maps from the private side to a public IP and port; that is, the IP address detected by the LTPS.

Signaling messages between the Voice Gateway Media Card and IP Phones are carried by RUDP. Each RUDP connection is distinguished by the IP address and port number.

The NAT device performs private-to-public mapping for the signaling port for each IP Phone behind it to support multiple IP Phones. The TPS uses fixed port numbers for signaling. The NAT device must perform consistent private-to-public mapping for these port numbers. Table 28: Signaling UDP Ports on page 120 lists the UDP port number used.

Table 28: Signaling UDP Ports

<table>
<thead>
<tr>
<th>UDP Port</th>
<th>Device</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 000</td>
<td>IP Phone</td>
<td>Incoming signaling messages to the IP Phones, including UFTP messaging</td>
</tr>
<tr>
<td>5 100</td>
<td>LTPS</td>
<td>Incoming call processing messages to the LTPS</td>
</tr>
<tr>
<td>5 105</td>
<td>UFTP</td>
<td>Incoming UFTP packets to the UFTP server</td>
</tr>
<tr>
<td>4 100</td>
<td>LTPS</td>
<td>Incoming registration message to Connect Server</td>
</tr>
<tr>
<td>7 300</td>
<td>LTPS</td>
<td>Incoming registration messages to node Master</td>
</tr>
</tbody>
</table>

Port numbers on the Voice Gateway Media Card use a fixed numbering scheme where the starting number for the port range is configurable. The first port on the card uses the configured starting port number; the remainder of the port numbers follow in sequence. Each port has two sequential numbers: one for RTP and one for RTCP.

Do not change this port at any time. Map this port to port 5200 on the IP Phones.

Table 29: IP Line UDP Ports

<table>
<thead>
<tr>
<th>UDP Port</th>
<th>Device</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 200–5 262</td>
<td>Media Card</td>
<td>RTP packets (configurable starting port number – IP Phone port matches it)</td>
</tr>
<tr>
<td>5 201–5 263</td>
<td>Media Card</td>
<td>RTCP packets into Media Card (port number is RTP port number + 1)</td>
</tr>
</tbody>
</table>
UDP Port | Device | Use
--- | --- | ---
5 200 | IP Phone | RTP packets into IP Phone (port matches first RTP port of the Voice Gateway Media Card)
5 201 | IP Phone | RTCP packets into IP Phone (port matches first RTCP port of the Voice Gateway Media Card)

NAT Mapping Keep Alive

The normal operation of the LTPS and the IP Phone requires the LTPS to send a periodic Watchdog Reset UNISIm message. This message resets the hardware watchdog timer running on the IP Phone and specifies the period for the timeout. If the LTPS does not send the Watchdog Reset message before the watchdog timer expires, the IP Phone resets and begins a new registration cycle with the LTPS.

To avoid loss of the IP connection, the NAT Mapping Keep Alive function sends the Watchdog Reset message more frequently. Avaya recommends using the default values. However, if you must increase the frequency of the Reset Watchdog message, increase the NAT Mapping Keep Alive timer value.

You can configure NAT Traversal to provision the length of time the audio and signaling port mapping is refreshed. You can configure NAT Traversal in Element Manager, or on the Call Server in LD 117.

By default, all IP Phone behind a NAT device have the signaling and audio path kept alive. The default value is 30 seconds. You can decrease the value to 20 seconds or increase it to 600 seconds.

Mute and Hold considerations

IP Line software has two special situations when interworking with NAT: Mute and Hold.

Mute

Table 30: Mute process on page 121 describes the Mute process.

Table 30: Mute process

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>When a user enables Mute, the LTPS sends a Mute Transmit (Tx) command to the IP Phone. That command forces the IP Phone to generate silence in the transmit direction.</td>
</tr>
</tbody>
</table>
Hold

The Hold function differs from the Mute function as Hold does not cause problems with the audio stream. *Table 31: Hold process* on page 122 describes the Hold process.

Table 31: Hold process

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 When an IP Phone user places a call on Hold, the audio stream in both the Transmit (Tx) and Receive (Rx) directions closes.</td>
</tr>
<tr>
<td>2 The NAT device begins aging the translation. When the audio stream is closed and no voice path is present, the IP Phone sends periodic non-RTP packets to keep the NAT translation alive. Therefore, when a call is placed on Hold, the IP Phone defaults to sending these non-RTP packets.</td>
</tr>
<tr>
<td>3 When the call is retrieved from Hold, a new set of open audio-stream messages is issued by the LTPS and new connections are established reusing the same NAT translation.</td>
</tr>
</tbody>
</table>
NAT and VLAN

Support of Virtual LAN (VLAN) depends entirely on the Layer 2 switch to which the IP Phone is immediately connected. Users behind a NAT router may find that the configuration of a VLAN ID is unsupported by the NAT router. See the documentation of the NAT router to determine if VLAN ID support is available.

Users who attempt to use an IP Phone with VLAN enabled on a NAT router that does not support VLAN cannot connect to the CS 1000 system. If DHCP is used, the IP Phone cannot obtain an IP address.

Important:

Most NAT routers do not support 802.1Q Tagging. If 802.1Q Tagging is not supported on the NAT device, the check box 802.1Q support in Element Manager under the QoS section must remain unchecked. See [Figure 26: 802.1Q Tagging on Node Summary page in Element Manager](#) on page 123. If 802.1Q Tagging is enabled for IP Phones behind NAT, the IP Phones can send the initial "Resume Connection" message, but then the IP Phones reset and no call path is established.

![Figure 26: 802.1Q Tagging on Node Summary page in Element Manager](#)

NAT Traversal and Proactive Voice Quality Management

Real-Time Control Protocol (RTCP) signaling provides statistics (for example, latency, packet loss, and jitter) about the Real-Time Transfer Protocol (RTP) stream. For the RTCP signaling to be successful, the PUBLIC RTCP port number must be the RTP port number plus 1. For example, if the PUBLIC RTP port is 12 000, then the PUBLIC RTCP port must be 12001.
The NAT router typically assigns the RTCP port number as RTP port number plus 1. However, the NAT router is not guaranteed to properly assign the RTCP port number; in which case, the RTCP message exchange fails and the Proactive Voice Quality Management feature does not receive the required RTCP data. A message appears on the LTPS console and syslog file and an SNMP trap (ITG3054) is generated.

The NAT Traversal feature attempts a best effort approach to initiate the NAT router to properly assign the RTPC port number. The best effort approach depends on the NAT router implementation, can vary from NAT router to NAT router, and cannot be guaranteed by the NAT Traversal feature.

Configuring NAT Traversal in Element Manager

To configure the Echo Servers IP addresses, port numbers and NAT Keep Alive time-out setting using Element Manager, in the Element Manager navigator select IP Network, Network Address Translation.

See [Figure 27: NAT configuration](#) on page 124.

![Figure 27: NAT configuration](image)

Configuring NAT Traversal in LD 117

Commands are available in LD 117 to configure and print the Echo Servers IP addresses, port numbers and NAT Keep Alive time-out setting.

Echo Servers require no configuration to work. The default IP address of 0.0.0.0 means that Echo Server 1 uses the TLAN network interface IP address. The default IP address of 0.0.0.0 means that Echo Server 2 uses the Node IP address.

An IP address of 0.0.0.0 means the default local Echo Server is enabled.

Important:
The NAT Traversal feature is essentially automatic. Change the IP addresses or ports only in exceptional cases when you use an Echo Server external to the CS 1000 system.

If IP addresses are specified, they must be for servers external to the system. The IP addresses cannot be the same. You can use duplicate IP addresses only if the default of 0.0.0.0 is used. If the IP addresses are the same (and not 0.0.0.0), an error message is generated and the input is not accepted.

Table 32: LD 117 commands for NAT

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHG ES1 <Echo Server 1 IP Address> <Echo Server 1 Port></td>
<td>Change Echo Server 1 IP address and port number:</td>
</tr>
<tr>
<td></td>
<td>• Default Echo Server 1 IP Address = 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td>• Default Echo Server 1 Port number = 10000</td>
</tr>
<tr>
<td></td>
<td>Echo Server 1 default IP address uses the TLAN IP address of the LTPS.</td>
</tr>
<tr>
<td>CHG ES2 <Echo Server IP Address> <Echo Server Port></td>
<td>Change the Echo Server 2 IP address and port number, where:</td>
</tr>
<tr>
<td></td>
<td>• Default Echo Server 2 IP Address = 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td>• Default Echo Server 2 Port number = 10000</td>
</tr>
<tr>
<td></td>
<td>Echo Server 2 default IP address uses the node IP address on the node leader card.</td>
</tr>
<tr>
<td>PRT ES1</td>
<td>Print Echo Server 1 IP address and port number.</td>
</tr>
<tr>
<td>PRT ES2</td>
<td>Print Echo Server 2 IP address and port number.</td>
</tr>
<tr>
<td>PRT ESS</td>
<td>Print both Echo Servers IP addresses and port numbers.</td>
</tr>
<tr>
<td>CHG NKT <time-out setting></td>
<td>Change NAT Mapping Keep Alive Time-out setting of port mapping for devices behind a NAT router time out setting = 20-(30)-600 seconds</td>
</tr>
<tr>
<td>PRT NKT</td>
<td>Print NAT Mapping Keep Alive Time-out setting of port mapping for devices behind a NAT router.</td>
</tr>
</tbody>
</table>

CHG ES1/CHG ES2

If the IP addresses entered for ES1 and ES2 are the same and both are not 0.0.0.0 or for external servers, an error message is generated and the input is not accepted. You can enter any value from 1000 to 60000 for the port. If the port value is outside of that range, an error message is generated. You can configure only the port (and not the IP addresses) by entering data similar to the following:
The value 0 for the IP address is interpreted as 0.0.0.0. This means the Echo Server runs locally using the configured port value.

The port values both default to 10 000. If you configure an IP address, you must configure the port. If you configure no port or IP address, then an error message appears.

If you configure neither Echo Server, then the LTPS on the Signaling Server uses two local instances of the Echo Server. If you configure both Echo Servers, then the LTPS uses the external Echo Servers. If an external Echo Server fails, that functionality is lost unless the external Echo Server implements a transparent redundancy scheme. The external Echo Server handles its own redundancy and reliability.

PRT commands

Figure 28: PRT commands output on page 126 is an example of the output of the PRT commands when the default values are used. If other IP addresses or port numbers are configured, then these appear in place of the 0.0.0.0 or 10 000 in the examples in *Figure 28: PRT commands output* on page 126.

```
=>chge 0 5400

The value 0 for the IP address is interpreted as 0.0.0.0. This means the Echo Server runs locally using the configured port value.

The port values both default to 10 000. If you configure an IP address, you must configure the port. If you configure no port or IP address, then an error message appears.

If you configure neither Echo Server, then the LTPS on the Signaling Server uses two local instances of the Echo Server. If you configure both Echo Servers, then the LTPS uses the external Echo Servers. If an external Echo Server fails, that functionality is lost unless the external Echo Server implements a transparent redundancy scheme. The external Echo Server handles its own redundancy and reliability.

PRT commands

*Figure 28: PRT commands output* on page 126 is an example of the output of the PRT commands when the default values are used. If other IP addresses or port numbers are configured, then these appear in place of the 0.0.0.0 or 10 000 in the examples in *Figure 28: PRT commands output* on page 126.

```

```

*Figure 28: PRT commands output*
CLI commands

The CLI commands described in this section provide information about IP Phones behind a NAT device and the Echo Servers.

isetReset

The isetReset command resets an IP Phone based on the entered IP address or TN. The IP address must be the Public IP address for IP Phones behind a NAT. If the entered IP address identifies an IP Phone that is behind a NAT and no other IP Phone shares the address, then the IP Phone is reset.

However, if the entered IP address identifies multiple IP Phones (multiple IP Phones behind a NAT sharing the same public IP address), then an error message is printed. This message, as shown in the following example, indicates there is more than one IP Phone using the IP address, lists the IP Phones and the TNs, and recommends that you use the isetReset TN command.

isetReset "47.11.217.102"
WARNING: There are 2 IP Phones that use the public IP address of 47.11.217.102
Please reset the IP Phone using the TN: isetReset "TN".

The number of IP Phones that share the same public IP address is printed.
Commands such as isetScpwQuery, isetScpwModify, and isetScpwVerify have the same error handling as isetReset. If you enter an IP address that multiple IP Phones use, an error message prints, as shown in the following example.

WARNING: There are 2 IP Phones that use the public IP address of 47.11.217.102.

isetGet

The isetGet command can search on the NAT type.

NAT = xxx where x is:

• C: the IP Phone is behind a Cone NAT
• S: the IP Phone is behind a Symmetric NAT
• U: the IP Phone is behind a NAT of unknown type (response only received from Echo Server 1)
• P: waiting on a response from the IP Phone, or the IP Phone never received a response from Echo Server 1
• ..: Blank space: the IP Phone is not behind any kind of NAT (normal case)
• Y: true when an IP Phone NAT is C, S or U
• N: true when an IP Phone NAT is . . (blank), meaning no NAT is detected

The following example shows:

```bash
isetGet "NAT == Y"
```

displays the output (partial output from the left side of the screen):

<table>
<thead>
<tr>
<th>IP Address</th>
<th>NAT Type</th>
<th>RegType</th>
<th>State</th>
<th>Up Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.11.179.168</td>
<td>C</td>
<td>i2004</td>
<td>Regular</td>
<td>online</td>
</tr>
<tr>
<td>47.11.179.167</td>
<td>C</td>
<td>i2004</td>
<td>Regular</td>
<td>online</td>
</tr>
</tbody>
</table>

**echoServerShow**

The `echoServerShow` command provides configuration information about the Echo Servers and information about interactions with the Echo Servers for the IP Phones on an LTPS. Use this command on an LTPS card to investigate a problem with an IP Deskphone registered to that LTPS card. The command provides information about the Echo Servers from the viewpoint of the LTPS on the card where you enter the command.

The command has one optional parameter, action; the only valid value is 99. When you enter `echoServerShow 99`, the counter values are reset after they appear. When you enter only `echoServerShow`, the counter values appear without the counter being reset.

The output for each Echo Server displays the following information:

• Configured: the IP address port configured for this Echo Server in LD 117
• Actual: the IP address port used for this Echo Server, followed by an explanation in parentheses. This is different from the Configured parameter only when the default address (0.0.0.0) is configured. The explanation in parentheses is one of the following:

  - (TLAN IP, this card): the IP address used is the TLAN network interface of this card; the Echo Server is active on this card.
  - (node IP, this card): the IP address used is the Node IP address; the Echo Server is active on this card because it is the node leader.
  - (node IP, other card): the IP address used is the Node IP address, but another card is currently the Node leader; the Echo Server is not active on this card.
  - (not this card): the IP address is not the card TLAN IP address or the Node IP address; the Echo Server is not active on this card.
• LTPS request sent: the number of Resolve Port Mapping Request messages sent from the LTPS to IP Phones, with this Echo Server identified as the one to contact.
• Failed resp rec.d: the number of Resolve Port Mapping Ack messages received from the IP Phones that had the public IP address and port configured as 0.0.0.0:0000. Each
increment of this counter indicates an IP Phone never received the Discover Port Mapping Ack response from the Echo Server (all 10 attempts failed).

The two peg counts indicate the interaction this LTPS is having with the Echo Server. It is not a direct sign of the health of the Echo Server; network conditions for IP Phones registered to this LTPS may prevent communication with this Echo Server while another LTPS IP Phones have no problem. The echoServerShow command output can help to understand why a particular IP Phone registered to a LTPS may be having difficulties or helps to uncover patterns of communication problems between IP Phones and Echo Servers.

A sample output is shown in Figure 29: echoServerShow sample output on page 129.

```
->echoServerShow
Echo Server 1
--
Configured: 0.0.0.0:10000
Actual: 47.11.212.54:10000 (TLAN IP, this card)
LTPS request sent: 112665
Failed resp rec'd: 0

Echo Server 2
--
Configured: 0.0.0.0:10000
Actual: 47.11.212.60:10000 (node IP, other card)
LTPS request sent: 82291
Failed resp rec'd: 0
NAT Timeout: 30 seconds
```

Figure 29: echoServerShow sample output

When you enter the echoServerShow command with the reset parameter 99, the counter values appear and then reset. If you enter the echoServerShow command again and no subsequent requests, the counter values appear as 0.

A sample output is shown in Figure 30: echoServerShow 99 sample output on page 130.
vgwShow

The vgwShow command permits the optional entry of an IP Phone IP address and port. A search is made of all the Voice Gateway Media Cards in the node to find the IP Phone IP address and port. With the introduction of NAT Traversal, more than one IP Phone can map to a single IP address. You can enter the public port number for an IP Phone.

vgwShow "IPAddr", <port>

If you enter no port number, the first entry found with the specified IP address on a Voice Gateway Media Card is returned. An example is shown in Figure 31: vgwShow with IP address command output on page 131.
Figure 31: vgwShow with IP address command output

When the IP address is found in the list of VGW channels for a card other than the card where you entered the command, the VGW channel information for the first occurrence is returned, plus a count of the number of times the IP address occurs in that card list. Multiple instances can occur when the customer network is configured so that multiple IP Phones are behind a NAT device sharing the NAT device public IP address.

If more than one match occurs, the administrator can log on to that specific card and enter the vgwShow command without entering an IP address and port number. This command prints all the busy channels on the card. To quickly find an IP Phone, use the IPDN or DNIP commands in LD 117 to obtain the IP Phone media stream public IP address and port number; then enter the public IP address and port number as parameters for the vgwShow command.

---

**Corporate Directory**

The Corporate Directory feature is based on the Avaya 3900 Digital Deskphone Corporate Directory feature.

For more information about the Corporate Directory feature, see Corporate Directory on page 375

---

**Personal Directory, Callers List, and Redial List**

The Personal Directory, Callers List, and Redial List features are supported on CS 1000 systems running CS 1000 software.

Use the Personal Directory feature to enter or copy names into a personal directory, and to edit or delete all entries in the directory.

The Callers List and Redial List are call log features. The content of these lists is generated during call processing. A user can scroll through the Callers List to see who called. The user can dial a number from the Redial List.
Password protection is available to control access to a user Personal Directory, Callers List, and Redial List.

**Important:**
Configure Calling Party Name Display (CPND) on the system to enable Personal Directory, Callers List, and Redial List.

For more information, see [Personal Directory application](#) on page 169.

---

**IP Call Recording**

IP Call Recording provides the IP address and port information for an IP Phone in Information Elements (IE) over Application Module Link (AML) for Meridian Link Services (MLS). This information correlates the TN of a specific IP Phone with the associated IP address for a call recording application. When enabled in LD 17, IP Call Recording sends a modified AML message for each call. The modified message identifies the call IP endpoint and makes it possible to correlate the RTP packets for that call to a particular IP Phone.

IP Call Recording introduces the IE pair:

- This Party IP IE (monitored party)
- Other Party IP IE (remote party)

The IP IE pair is similar to the existing IE pairs:

- For DN: This Party DN IE, Other Party DN IE
- For TN: This Party TN IE, Other Party TN IE

The IP IEs are optional in the Unsolicited Message Status (USM) (Active) and USM (Restore) messages:

- If the USM message applies to a monitored key on a digital telephone, then the IP IEs are not sent.
- If the USM message applies to a monitored key on an IP Phone, then the IP IEs are sent: one for the monitored party and one for the remote party.

A call recording application is provided with status update messages for the call keys of any IP Phone it monitors. These USM messages contain the IP address and port number for the monitored IP Phone and the remote party in the active call. By using a Layer 2 switch that supports port mirroring, the call recording device can monitor the media stream for the active call and record it.

---

**Enhanced IP Call Recording**

IP Call Recording provides a direct method to capture and record VoIP calls. The feature enhancement implements a mechanism to record the IP media stream to an external media-
recording device by instructing the IP Phone to send a duplicate media stream to a third-party call-recording application, which provides the recording and playing function for the IP calls.


The Avaya 1210 IP Deskphone, Avaya 1220 IP Deskphone, and Avaya 1230 IP Deskphone do not support IP Call Recording.

The IP Call Recording enhancement enables the following types of recording:

• Bulk Call Recording: All calls are automatically recorded for an IP Phone. The Call Recording application issues a Start Recording Request message for the User ID, and all calls are recorded until the Call Recorder application issues a Stop Recording Request.

• Quality Monitor Recording: The Call Recorder records conversation for a call. The Call Recording application can monitor the Call Recording application (CR) data such as Calling Line ID (CLID) or Automatic Number Identification (ANI) to determine if it needs to record a call. The Call Recording application issues a Start/Stop Recording Request to the User ID for only the duration of the specific call. Quality monitor recording enables manual recording of individual calls with the following options:
  - You can start or stop call recording at any time during a call.
  - You can repeatedly pause and restart call recording during a call, to record excerpts from a conversation.
  - You can retroactively begin call recording. At any time during the conversation, you can save the entire call. You need not start recording when the call begins.
  - You can configure call recording to maintain ACD Emergency key functionality.

The CR initiates the IP Call Recording. A Start Recording Request message contains the User ID to be recorded and the IP addresses and port information of where the duplicate media stream is to be sent.

In LD 11, the CoS RECA/RECD (IP Call Recording Allowed/IP Call Recording denied) is available for the IP Phones that support IP Call Recording. The default is RECD. See LD 11 on page 137.

Warning tones

If you require a Recording Warning Tone, you can turn on and off this tone on the Call Server by using the existing UNIStim message Stream Based Tone on or off. The message requires the predefined parameters for the tone, such as tone ID, frequency, and volume.
Bandwidth requirements

The use of IP Call Recording doubles the bandwidth requirements of the call.

For example, in a call using the G.711 codec, one voice packet data stream requires approximately 80 K. As the IP Call Recorder uses two separate streams for the incoming and outgoing calls, there are four streams that require a total of 320 K for the voice packet data. In a typical 100 Mb/s LAN network environment, if 80 percent of the bandwidth was configured for voice data, then this network could support a maximum of 500 simultaneous IP Phone calls.

\[(100 \times 1000 \times 0.8/160) = 500\]

When you enable the IP Call Recording feature, the network is limited to a maximum of 250 calls.

For remote users connecting to the IP Call Recorder Server through a WAN connection, consider the impact of the bandwidth usage to the QoS. In this case, the IP Call Recorder Server must provide the QoS parameters when it instructs the IP Phone to echo the voice data.

Depending on the ability of the IP Call Recorder Server to handle the RTP stream, you might require more than one IP Call Recorder Server in a large call center environment. Middleware (software that connects two sides of an application and passes data between them) must have an algorithm to balance the traffic between servers.

Feature interactions

This section describes IP Call Recording feature interactions.

Mute key

When you press the Mute key, the IP Phone keeps both the primary and the duplicate audio stream open. When you press the Mute, the recording state remains active, but only the incoming conversation is recorded. Press the Mute key a second time to resume normal recording.

Hold key

When you press the Hold key, a Stop Recording Request message is sent from the Call Server, and the duplicate media stream is closed. A new audio stream is opened for the other active call. When the hold is released, a new Start Recording Request is sent from the Call Server to the IP Deskphone and recording begins again.
Transfer key

After you press the Transfer key and the transfer is accepted, the current audio stream is closed. A new audio stream for the new call is opened, followed by a Start Recording Request message. If the IP Phone that accepted the transferred call does not have call recording enabled, the transferred call is not recorded.

Call Forward

When you forward a call, the audio stream is opened for the destination IP Phone. If the destination IP Phone does not have call recording enabled, the forwarded call is not recorded.

Conference call

In a conference call, each IP Phone opens a media stream. The IP Phone duplicate media stream to the CR is maintained if that IP Phone is part of the conference.

Agent Observe injects a tone that interferes with the Recording Warning tone.

Identifying the IP Phone

IP Call Recording requires the unique identification of each IP Phone to be recorded.

In an Multiple Appearance Directory Number (MADN) configuration, the Call Server enables the association of two MADN keys on a particular TN. A maximum of two associated (AST) keys exists for each TN.

In a Multiple Appearance DN Redirection Prime (MARP) configuration, the Call Server enables the association of MARP DNs on different TNs. A maximum of two associated (AST) keys exists for each TN.

The following table provides an example of AST configuration in LD 11.

Table 33: LD 11 AST configuration

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>ASTKEY1</td>
<td>Key numbers to be associated on this TN.</td>
</tr>
<tr>
<td></td>
<td>ASTKEY2</td>
<td>ASTKEY1 and ASTKEY2 are the numbers of the keys to be associated. In this example, ASTKEY1 = 0 and ASTKEY2 = 1.</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Administration

This section describes how to administer the IP Call Recording feature.

**LD 17**

LD 17 provides the Enhanced Unsolicited Status Message (USM) IE enable (IPIE) prompt.

The IPIE prompt enables or disables system-wide IP Call Recording. The functionality is disabled by default. When IP Call Recording is enabled, a modified Application Module Link (AML) message that identifies the IP endpoint is sent for each call. The IPIE prompt is in LD 17 under system parameters (PARM).

**Table 34: LD 17 IP Call Recording**

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ</td>
<td>CHG</td>
<td>Change existing data</td>
</tr>
<tr>
<td>TYPE</td>
<td>PARM</td>
<td>Change system parameters</td>
</tr>
<tr>
<td>LPIB</td>
<td>96 – 7500</td>
<td>Low priority Input Buffers</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
Element Manager does not support LD 17 for PARM.

**LD 11**

Use the CoS RECD/RECA responses to configure whether an IP Phone allows call recording.

**Table 35: LD 11 Service change request for CoS RECA/RECD**

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ</td>
<td>ADD</td>
<td>Add new data</td>
</tr>
<tr>
<td></td>
<td>CHG</td>
<td>Change existing data</td>
</tr>
<tr>
<td>TYPE</td>
<td>aaaa</td>
<td>Supported IP Phone type</td>
</tr>
<tr>
<td>TN</td>
<td>l s c u</td>
<td>Terminal Number of IP Phone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Where l = loop, s = shelf, c = card, u = unit</td>
</tr>
<tr>
<td>CLS</td>
<td>RECA</td>
<td>IP Call Recording allowed</td>
</tr>
<tr>
<td></td>
<td>(RECD)</td>
<td>IP Call Recording denied</td>
</tr>
</tbody>
</table>

If the RECA CoS applies to a non-IP Phone, error SCH1599 message is generated.

If the CoS on an IP Phone changes during an active call, the Call Server tears down the call. If an IP Phone TN is deleted during an active call on the IP Phone, the Call Server tears down the call.
LD 20

The CoS options RECA/RECD appear in LD 20 when you request a printout for an IP Deskphone, as shown in the following example.

```
> ld 20
REQ: PRT
TYPE: TNB
CUST: 0
......
CLS CTD FBD
......
RECD (or RECA)
......
```

LD 80

In LD 80, the output of the call trace command includes IP Call Recording-related information.

```
trak <TN>
.trak 61 9
ACTIVE VTN 061 0 00 09
ORIG VTN 061 0 00 02 KEY 0 SCR MARP CUST 0 DN 4002 TYPE I2002
MEDIA ENDPOINT IP: 47.11.215.40 PORT: 5200
VTN 061 0 00 09 KEY 0 SCR MARP CUST 0 DN 4009 TYPE I2004
MEDIA ENDPOINT IP: 47.11.215.47 PORT: 5200
IPCR Tx MEDIA FAREND ENDPOINT IP: 47.11.181.174 PORT: 5000 *
IPCR Rx MEDIA FAREND ENDPOINT IP: 47.11.181.174 PORT: 5001 *
MEDIA PROFILE: CODEC G.711 MU-LAW PAYLOAD 20 ms VAD OFF
DIAL DN 4009
MAIN_PM ESTD
TALKSLOT ORIG 19
EES_DATA:
NONE
QUEU NONE
CALL ID 500 799
......
```

The asterisk (*) indicates Call Recording information.

LD 81

Use the RECA/RECD responses to the FEAT prompt in LD 81 to count the number of IP Phones with the CoS RECA or RECD.
Table 36: LD 81 Count the IP Phones with CoS RECA or RECD

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ</td>
<td>LST CNT</td>
<td>List the IP Phones</td>
</tr>
<tr>
<td>CUST</td>
<td>xx</td>
<td>Count the IP Phones</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>Customer number</td>
</tr>
<tr>
<td>FEAT</td>
<td>RECA RECD</td>
<td>IP Phones with IP Call Recording allowed</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>IP Phones with IP Call Recording denied</td>
</tr>
</tbody>
</table>

LD 83

In LD 83, the RECA/RECD CoS appears when the IP Phone TNB prints.

LD 117

In LD 117, the output of the following STIP commands includes IP Call Recording-related status information.

- STIP NODE: Displays the Resource Locator Module information for the specified node
- STIP TN: Displays the Resource Locator Module information for the specified TN or group of TNs
- STIP TYPE: Displays the Resource Locator Module information for the specified TN type
- STIP ZONE: Displays the Resource Locator Module information for the specified zone
- STIP TERMIP: Displays the Resource Locator Module information for the specified IP address

Examples of STIP output

Example 1:

```shell
=> stip termip 47.11.215.101
TN type HWID STATUS HOSTIP SIGNALING IP
61 0 0 1 i2001 MAC: REG 47.11.216.138 47.11.215.101:5000
18000ae401da5f6602 CODEC(BW): G711u noVAD(1904), G711a noVAD(1904), G729A(784), G723(544)
MODEL: IP Phone 2001 Phase 2 FWID: 2 FWVer: D99 PEC: NTDU90AA
Under Recording: No Warning Tone: Not Required
```
pbxLink connection failure detection

The pbxLink Connection Failure Detection feature provides a way to detect the link status of registered elements. An alarm is generated if the pbxLink is not detected after the Call Server warm or cold starts.

The Call Server monitors the pbxLink.

The Call Server maintains a list of all known registered elements (Signaling Servers). When restarted, a Call Server has a 5-minute delay to enable these known elements to reestablish contact with the Call Server.

If a known element fails to register with the Call Server, an ELAN0028 alarm is generated.

If an unknown Signaling Server registers with the Call Server, an ELAN0029 alarm is generated.

Display pbxLink information by using Element Manager or LD 117. See the following sections for more information.
Display pbxLink information using Element Manager

For CS 1000 systems, use the Element Manager IP Network, Maintenance and Reports, Gen Cmds, Group - pbxLink, Command - pbxLinkShow window to display the pbxLink information. See Figure 32: pbxLinkShow in Element Manager on page 141.

![Figure 32: pbxLinkShow in Element Manager](image)

Display pbxLink information using LD 117 STAT SERV

The suite of STAT SERV (Statistics Services) commands enables a technician to display link-status information for Signaling Servers that are registered to a Call Server.

STAT SERV can provide consolidated link-status information by application type, IP address, host name, and IP Telephony Node ID.

STAT SERV status information includes the following:

- node ID
- host name
- ELAN IP address
- element role
- platform type
- connection ID
- enabled applications
- registered and unregistered endpoints, such as IP Phones
Features

• information about the pbxLink and enabled applications
• Signaling Server resource count

The Signaling Server resource count helps to determine the number of virtual trunks that you can configure.

pbxLink information

The STAT SERV command provides the following pbxLink information:

• the time the pbxLink was last established
• the time the pbxLink was lost, if previously established
• the time the pbxLink last attempted to establish a connection, if the pbxLink failed to establish a connection
• the Signaling Server resource count

Application information

If an active link to an element is established, the Call Server obtains information about the applications that run on the element.

Table 37: Queried information in STAT SERV on page 142 lists the applications and describes the information provided by those applications.

Table 37: Queried information in STAT SERV

<table>
<thead>
<tr>
<th>Application or element</th>
<th>Information provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTPS application</td>
<td>Number of registered IP Phone.</td>
</tr>
<tr>
<td></td>
<td>Number of busy IP Phones.</td>
</tr>
<tr>
<td>VTRK application</td>
<td>Number of registered VTRKs.</td>
</tr>
<tr>
<td></td>
<td>Number of busy VTRKs.</td>
</tr>
<tr>
<td>Signaling Servers</td>
<td>Time that the element established the link with the Call Server.</td>
</tr>
<tr>
<td></td>
<td>Elements that failed to register or lost the link.</td>
</tr>
</tbody>
</table>

Figure 33: Sample LD 117 STAT SERV output on page 143 shows an example of LD 117 STAT SERV output.
Figure 33: Sample LD 117 STAT SERV output

Table 38: STAT SERV response fields and description on page 143 lists the descriptions for the fields in the STAT SERV response.

Table 38: STAT SERV response fields and description

<table>
<thead>
<tr>
<th>STAT SERV response field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE ID</td>
<td>Identifies the related node. Value is a number from 0–9999.</td>
</tr>
<tr>
<td>HOSTNAME</td>
<td>Identifies the alias that the system gives the host.</td>
</tr>
<tr>
<td>STAT SERV response field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ELANIP</td>
<td>Identifies the element IP connection to the Call Server. Value is an IP address.</td>
</tr>
<tr>
<td>LDR</td>
<td>Specifies if the element is the Leader for the related node. Value is Yes or No.</td>
</tr>
</tbody>
</table>
| SRV                      | Specifies the element type:  
  • SS: Signaling Server |
| APPS                     | Specifies the application running on the element:  
  • LTPS  
  • VTRK |
| PBXLINK STATE            | Specifies the element current pbxLink state:  
  • LINK UP  
  • LOST  
  • FAILED  
  • INV CONN (element is connected, but the configuration is not on the Call Server, which indicates that this element might be connected to the wrong Call Server) |
| PBXLINK DATE/TIME        | Specifies when the element pbxLink state last changed. |
| CONNECTED                | Specifies the element connection ID. |
| Sets                     | Values are as follows:  
  • reg: the number of IP Phones registered to the element  
  • busy: the number of IP Phones that are currently busy |
| VGWs                     | Values are as follows:  
  • reg: the number of voice gateways (DSP resources) are configured on the element  
  • busy: the number of voice gateways (DSP resources) active or busy on the element |
| VTRK                     | Values are as follows: |
### STAT SERV response field

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• reg: the number of VTRK channels configured on the element</td>
</tr>
<tr>
<td>• busy: the number of VTRK channels active or busy on the element</td>
</tr>
</tbody>
</table>

### SSRC
- Signaling Server capacity

---

## IP Phone support

The IP Line application supports the following IP Phones:

- IP Phone 2001. See *IP Phone 2001 User Guide*
- IP Phone 2002 Phase II. See *IP Phone 2002 User Guide*
- IP Phone 2004 Phase II. See *IP Phone 2004 User Guide*
- IP Audio Conference Phone 2033. See *Avaya 2033 IP Conference Phone User Guide*
- Avaya 1110 IP Deskphone. See *Avaya 1110 IP Deskphone User Guide*
- Avaya 1120E IP Deskphone. See *Avaya 1120E IP Deskphone User Guide*
- Avaya 1140E IP Deskphone. See *Avaya 1140E IP Deskphone User Guide*
- Avaya 1150E IP Deskphone. See *Avaya 1150E IP Deskphone User Guide*
- Avaya 1165E IP Deskphone. See *Avaya 1165E IP Deskphone User Guide*
- Avaya 1210 IP Deskphone. See *Avaya 1210 IP Deskphone User Guide*
- Avaya 1220 IP Deskphone. See *Avaya 1220 IP Deskphone User Guide*
- Avaya 1230 IP Deskphone. See *Avaya 1230 IP Deskphone User Guide*
- Avaya 2050 IP Softphone. See *Avaya 2050 IP Softphone User Guide*
- Mobile Voice Client (MVC) 2050. See *Mobile Voice Client 2050 User Guide*
- WLAN Handset 2210. See *WLAN Handset 2210 User Guide*
- WLAN Handset 2211. See *WLAN Handset 2211 User Guide*
- WLAN Handset 2212. See *WLAN Handset 2212 User Guide*
- Avaya 6120 WLAN Handset; Avaya 6140 WLAN Handset. See *Avaya 6120/6140 WLAN Handset User Guide*

For additional information, see the following documents:

- *Avaya 1100 Series Expansion Module User Guide, NN43130-101*
- *Avaya 1200 Series IP Deskphones Key Expansion Module User Guide*
Element Manager support

Element Manager is installed using the Unified Communications Management (UCM) Common Services security framework on a Dell R300, IBM x306, IBM x3350, or an HP DL320 D4 commercial off the shelf (COTS) server, and CP PM servers. Element Manager is accessed through the UCM Common Services framework. The framework supports Single Sign-on so that the user can access multiple systems. Access the framework through Microsoft Internet Explorer 6.02600 or later. For information about how to log on to UCM Common Services, configure the UCM Common Services framework, and log on to Element Manager, see *Unified Communication Management Fundamentals, NN43001-116*.

Element Manager is a Web interface that provides an alternative to the traditional CLI and overlays. The interface is available if you use a Web browser on a PC. No special client software is required.

You can use Element Manager to configure an IP Telephony Node, check and upload loadware and firmware files, and retrieve the CONFIG.INI and BOOTP.TAB configuration files from the Call Server.

For more information, see *Element Manager System Reference—Administration, NN43001-632*.

Call Statistics collection

You can collect statistics on the Quality of Service (QoS) of calls connected by the Call Server.

Commands in LD 32 and LD 117 print the number of IP Phones registered on a zone, node, or Signaling Server. Traffic printouts are available for each zone at user-configurable intervals for the following:

- blocked calls
- bandwidth used
- call attempts and completions

Counting IP Phones

The commands to count registered IP Phones are available in LD 32 and LD 117.
Commands in LD 117 are as follows:

- ECNT FW <XX> <A> <BB> <FF>: count the number of IP Phones with specified firmware ID and, optionally, firmware version.
- ECNT MODL <MMMM>: count the number of IP Phones of the specified <model>. If you omit the MMMM parameter, the IP Phone Model Names and the associated mnemonics are listed.
- ECNT PEC <PEC>: count the number of IP Phones with a specified Product Engineering Code (PEC).

Previously, all ECNT commands were in LD 32. The following existing LD 32 ECNT commands are now duplicated in LD 117 to maintain a consistent interface. However, they continue to be maintained in LD 32.

- ECNT CARD <Loop> <Shelf> <Card> <CustomerNumber>
- ECNT NODE <NodeNumber>
- ECNT SS <HostName>
- ECNT ZONE <ZoneNumber> <CustomerNumber>

Table 112: LD 117 Count registered IP Phones on page 434 describes these commands.

Error messages appear when you enter invalid data for these commands. The messages include information such as the correct ranges for the command parameters. See the following tables for the error messages:

- Table 39: ECNT Card command error messages on page 147.
- Table 40: ECNT Zone command error messages on page 148.
- Table 41: ECNT Node command error messages on page 148.
- Table 42: ECNT SS command error message on page 148.

Table 39: ECNT Card command error messages

<table>
<thead>
<tr>
<th>Error</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot out of range error</td>
<td>Slot out of range. Range: [61–99]</td>
</tr>
<tr>
<td>Slot non-virtual loop error</td>
<td>Slot does not correspond to a virtual loop.</td>
</tr>
<tr>
<td>Slot not configured loop error</td>
<td>Slot corresponds to a virtual loop but it is not configured.</td>
</tr>
<tr>
<td>Customer out of range error</td>
<td>Customer out of range. Range: [0–31]</td>
</tr>
<tr>
<td>Customer not configured error</td>
<td>Customer does not exist.</td>
</tr>
<tr>
<td>Combination of invalid slot and invalid customer</td>
<td>Slot does not correspond to a virtual loop. Customer out of range. Range: [0–31]</td>
</tr>
</tbody>
</table>
Table 40: ECNT Zone command error messages

<table>
<thead>
<tr>
<th>Error</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone out of range error</td>
<td>Zone out of range. Range: 0-8000</td>
</tr>
<tr>
<td>Zone not configured error</td>
<td>Zone not configured.</td>
</tr>
<tr>
<td>Customer out of range error</td>
<td>Customer out of range. Range: [0–31]</td>
</tr>
<tr>
<td>Customer not configured error</td>
<td>Customer does not exist.</td>
</tr>
<tr>
<td>Combination of invalid zone and invalid</td>
<td>Zone not configured.</td>
</tr>
<tr>
<td>customer error</td>
<td>Customer out of range. Range: [0–31]</td>
</tr>
</tbody>
</table>

Caution:
Beginning in Release 7.0, Adaptive Network Bandwidth Management provides bandwidth zone numbers in the range 0–8000. If you are interoperating with an earlier release you must use bandwidth zone numbers in the range 0–255; call processing issues occur if you use bandwidth zone numbers greater than 255.

Table 41: ECNT Node command error messages

<table>
<thead>
<tr>
<th>Error</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node out of range error</td>
<td>Node out of range. Range: [0–9 999]</td>
</tr>
<tr>
<td>Node not configured error</td>
<td>Node not registered.</td>
</tr>
</tbody>
</table>

Table 42: ECNT SS command error message

<table>
<thead>
<tr>
<th>Error</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS not found in system error</td>
<td>Signaling Server &lt;name&gt; does not exist.</td>
</tr>
</tbody>
</table>

IP Phone Zone Traffic Report 16

A system traffic report, IP Phone Zone Traffic Report 16, in LD 2 is created on the system to print IP Phone data at the zone level. The data prints for the following categories at the end of each collection period for each zone:

- Total inter and intrazone calls made
- Total inter and intrazone calls blocked
- Percent average inter and intrazone bandwidth used
• Percent maximum inter and intrazone bandwidth used
• Total inter and intrazone bandwidth threshold exceeded count

The counters are reset after the data prints.

The Total inter/intra zone bandwidth threshold exceeded count prints the number of times a user-configured bandwidth threshold was exceeded for the zone during the collection period. LD 2 commands to configure the system threshold use a value defined for the bandwidth threshold.

**Table 43: System threshold commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTHS TH tv</td>
<td>Prints the current system thresholds.</td>
</tr>
<tr>
<td>STHS TH tv -- TV</td>
<td>Configures the system thresholds.</td>
</tr>
</tbody>
</table>

A TH value of 5 is used for the zone bandwidth threshold. The system thresholds TV value is the percentage of the zone maximum bandwidth. The range values are 000 to 999, where 000 corresponds to 00.0% and 999 corresponds to 99.9%. The default is 90.0%.

The following example first configures the system bandwidth to 75 percent and then prints the actual value.

```plaintext
.STHS 5 750
.TTHS 5
```

**Table 44: IP Phone Zone Traffic Report 16 intrazone data output** on page 149 describes the intrazone IP Phone Zone Traffic Report 16 output data.

**Table 44: IP Phone Zone Traffic Report 16 intrazone data output**

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmi</td>
<td>Intrazone calls made</td>
</tr>
<tr>
<td>cbi</td>
<td>Intrazone calls blocked</td>
</tr>
<tr>
<td>pi</td>
<td>Intrazone peak bandwidth (%)</td>
</tr>
<tr>
<td>ai</td>
<td>Intrazone average bandwidth usage (%)</td>
</tr>
<tr>
<td>vi</td>
<td>Intrazone bandwidth usage threshold (%)</td>
</tr>
<tr>
<td>cmip</td>
<td>Counts of measuring interval</td>
</tr>
<tr>
<td>cul</td>
<td>Counts of unacceptable latency</td>
</tr>
<tr>
<td>cupl</td>
<td>Counts of unacceptable packet loss</td>
</tr>
<tr>
<td>cuj</td>
<td>Counts of unacceptable jitter samples</td>
</tr>
<tr>
<td>cur</td>
<td>Counts of unacceptable R factor</td>
</tr>
<tr>
<td>Data</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------------------------------</td>
</tr>
<tr>
<td>cuerl</td>
<td>Counts of unacceptable Echo Return Loss</td>
</tr>
<tr>
<td>cwl</td>
<td>Counts of warning latency</td>
</tr>
<tr>
<td>cwj</td>
<td>Counts of warning jitter</td>
</tr>
<tr>
<td>cwpl</td>
<td>Counts of warning packet loss</td>
</tr>
<tr>
<td>cwr</td>
<td>Counts of warning R factor</td>
</tr>
<tr>
<td>cwerl</td>
<td>Counts of warning Echo Return Loss</td>
</tr>
<tr>
<td>ccms</td>
<td>Calls completed with media security</td>
</tr>
<tr>
<td>ccnms</td>
<td>Calls completed without media security</td>
</tr>
<tr>
<td>cfnp</td>
<td>Calls failed by near end policy</td>
</tr>
<tr>
<td>cffr</td>
<td>Calls failed by incoming release</td>
</tr>
<tr>
<td>cosr</td>
<td>Outgoing calls switched to RTP</td>
</tr>
<tr>
<td>cisr</td>
<td>Incoming call switched to RTP</td>
</tr>
<tr>
<td>cfnr</td>
<td>Calls failed due to lack of resources (SRTP-capable DSPs)</td>
</tr>
</tbody>
</table>

**Table 45: IP Phone Zone Traffic Report 16 interzone data output** on page 150 describes the interzone IP Phone Zone Traffic Report 16 output data.

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmo</td>
<td>Interzone calls made</td>
</tr>
<tr>
<td>cbo</td>
<td>Interzone calls blocked</td>
</tr>
<tr>
<td>po</td>
<td>Interzone peak bandwidth (%)</td>
</tr>
<tr>
<td>ao</td>
<td>Interzone average bandwidth usage (%)</td>
</tr>
<tr>
<td>vo</td>
<td>Interzone bandwidth usage threshold violations</td>
</tr>
<tr>
<td>cmip</td>
<td>Counts of interval measuring samples</td>
</tr>
<tr>
<td>cul</td>
<td>Counts of unacceptable latency samples</td>
</tr>
<tr>
<td>cupl</td>
<td>Counts of unacceptable packet loss</td>
</tr>
<tr>
<td>cuj</td>
<td>Counts of unacceptable jitter samples</td>
</tr>
<tr>
<td>cur</td>
<td>Counts of unacceptable R factor samples</td>
</tr>
<tr>
<td>cuerl</td>
<td>Counts of unacceptable Echo Return Loss</td>
</tr>
<tr>
<td>cwl</td>
<td>Counts of warning latency</td>
</tr>
<tr>
<td>cwj</td>
<td>Counts of warning jitter</td>
</tr>
<tr>
<td>Data</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------------------------------------</td>
</tr>
<tr>
<td>cwpl</td>
<td>Counts of warning packet loss</td>
</tr>
<tr>
<td>cwr</td>
<td>Counts of warning R factor samples</td>
</tr>
<tr>
<td>cwerl</td>
<td>Counts of warning Echo Return Loss</td>
</tr>
<tr>
<td>ccms</td>
<td>Calls completed with media security</td>
</tr>
<tr>
<td>ccnms</td>
<td>Calls completed without media security</td>
</tr>
<tr>
<td>cfnp</td>
<td>Calls failed by near end policy</td>
</tr>
<tr>
<td>cffr</td>
<td>Calls failed by incoming release</td>
</tr>
<tr>
<td>cosr</td>
<td>Outgoing calls switched to RTP</td>
</tr>
<tr>
<td>cisr</td>
<td>Incoming call switched to RTP</td>
</tr>
<tr>
<td>cfnr</td>
<td>Calls failed due to lack of resources (SRTP-capable DSPs)</td>
</tr>
</tbody>
</table>
Figure 34: Example of the output from Traffic Report 16

All other commands (SOPS, COPS, TOPS) function in the normal manner. Table 46: SOPS, COPS, TOPS commands on page 152 shows the SOPS, COPS, and TOPS commands:

Table 46: SOPS, COPS, TOPS commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.tops 1 2 3 4 5 14</td>
<td>Display the current system report list</td>
</tr>
<tr>
<td>.sops 1 2 3 4 5 14 -- 16</td>
<td>Add report 16 to print</td>
</tr>
<tr>
<td>.tops 1 2 3 4 5 14 16</td>
<td>Display system report list with report 16 added</td>
</tr>
<tr>
<td>.cops 1 2 3 4 5 14 16 -- 16</td>
<td>Delete report 16</td>
</tr>
<tr>
<td>.tops 1 2 3 4 5 14</td>
<td>display system report list with report 16 deleted</td>
</tr>
</tbody>
</table>
Programmable line/DN feature keys (self-labeled)

An IP Phone user can program the label on the feature key. This label change is saved and then displayed on the feature key.

Availability

Table 47: Feature key availability on IP Phones on page 153 describes the feature key availability on the IP Phones.

Table 47: Feature key availability on IP Phones

<table>
<thead>
<tr>
<th>Model</th>
<th>Feature keys</th>
<th>Feature keys using Shift</th>
<th>Maximum label character length</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Phone 2002</td>
<td>4</td>
<td>N/A</td>
<td>10</td>
</tr>
<tr>
<td>IP Phone 2004</td>
<td>6</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Avaya 2050 IP Softphone</td>
<td>6</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>MVC 2050</td>
<td>6</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Avaya 1120E IP Deskphone</td>
<td>6</td>
<td>N/A</td>
<td>10</td>
</tr>
<tr>
<td>Avaya 1140E IP Deskphone</td>
<td>6</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Avaya 1150E IP Deskphone</td>
<td>6</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Avaya 1165E IP Deskphone</td>
<td>8</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Avaya 1220 IP Deskphone</td>
<td>4</td>
<td>N/A</td>
<td>9</td>
</tr>
<tr>
<td>Avaya 1230 IP Deskphone</td>
<td>10</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>

The IP Phone 2001, Avaya 2033 IP Conference Phone, Avaya 1110 IP Deskphone, and Avaya 1210 IP Deskphone do not support feature keys.

The feature key labels for each IP Phone are stored in the Call Server database. When the Call Server performs an EDD, the feature key labels are saved to the database. The feature key label information is retrieved from the file into memory during the sysload of the Call Server. When the system performs an INI or sysload, feature key label changes performed by users between the last EDD and the INI or sysload are lost.

When the IP Phone registers with the Call Server, the Call Server looks up the feature key label in the memory, based on the TN of the IP Phone. If the labels are found, they are sent to the IP Deskphone when the key map download occurs. If the labels are not found, the Call Server sends out the key number strings or key functions.
Zones

To optimize IP Line traffic bandwidth use between different locations, the IP Line network is divided into zones, representing different topographical areas of the network. All IP Phones and IP Line ports are assigned a zone number, which indicates the zone to which they belong.

For more information about zones and zone configuration, see *Converging the Data Network with VoIP Fundamentals, NN43001-260*.

Shared Zone

The current default zone type is a Shared Zone. IP Phones configured in Shared Zones use DSP resources configured in shared zones. If all gateway channels of the Shared Zones are used, the caller receives an overflow tone and the call is blocked.

Select gateway channels in the following order:

- Select a channel from the same zone as the zone where the IP Phone is configured.
- Select any available channel from the Shared Zones channels.

Private Zone

The Private Zone enables DSP channels configured in a Private Zone to be used only by the IP Phones that are configured for that Private Zone. If the IP Phones require additional DSP resources than are available in the zone, DSP from other Shared Zones are used.

IP Phones configured in Shared Zones cannot use the Private Zones channels.

Select the gateway channels in the following order:

- Select a channel from the same Private Zone as the zone where the IP Phone is configured.
- Select any available channel from the pool of Shared Zones channels.
Resource-sharing for Shared and Private Zones

If a resource-critical IP Phone is configured for a Private Zone, and the zone has insufficient resources, the search continues into the Shared Zones within the same customer for an available DSP channel.

However, if an IP Phone is configured in a Shared Zone, the Call Server limits the search to the pool of shared DSP channels. The search does not extend into the Private Zones' channels.

When you configure the allocation of shared versus private resources, consider the required number of private resources. You must configure enough DSP resources to prevent the IP Phones in Shared Zones from running out of channels.

Warning:
Zones used for IP Media Gateway (IPMG) purposes must be configured as Shared so that other IP devices that are not in the same Zone can gain access to the IPMG devices.

The Call Server does not search for voice gateway channels in Private Zones when the IP Phone is configured in a Shared Zone. Only IP Phones configured in the same Private Zone can use the Private Zone voice gateway channels.

Because the voice gateway channels in the Private Zone are not accessible to IP Phones in the Shared Zone, ensure that only enough private channels are configured to cover the IP Phones in the Private Zone. Do not configure more channels than are required in the Private Zone as the Shared Zone IP Phones cannot access these channels.

Lack of DSP resources

DSP resources for each customer are placed in one common pool. A DSP channel is allocated to an IP-to-circuit-switched call based on a round-robin search algorithm within the pool.

If an available resource is not found, the overflow tone is given. For most installations, this approach works because all IP Phone users share the IP Line DSP resources. The DSP can be provisioned using a DSP-to-IP Phone ratio similar to trunk resources, because the DSP are used only for circuit-switched access or conference calls.

When IP-to-PSTN calls are used, such as with ACD agents or other users who consistently use trunk resources to make calls, it becomes difficult to provision the system to guarantee an available DSP channel when these users need it. If the other users suddenly make a lot of conference calls or trunk calls, the DSP resources can deplete and calls cannot be made. This occurs because all DSP channels are in one pool.
DSP resources and Private Zones

IP Line provides the Private Zone Configuration feature for DSP configuration and allocation to the zone configuration. This feature enables the configuration of one or more gateway channels as a private resource. This guarantees DSP availability for critical or ACD agent IP Phone.

You can configure a zone as shared or private.

Network wide Virtual Office

Network-wide virtual office allows a user to log on to any IP Phone within the network.

The Virtual Office feature provides a call service to travelling users who want to use a different physical IP Phone (other than the IP Phone they normally use). Users can log on to another IP Phone using their DN and preconfigured Station Control Password (SCPW).

After a user logs on, they can access their DN, autodial numbers, key layout, feature keys, and voice mail indication and access that are configured on their own home or office IP Phones. For example, if a user goes to another office or to a different location within the same office, they can log on to any available IP Phone and have all the features of the home or office IP Phone. When the user logs off the IP Phone, the features that were transferred to that IP Phone are removed.

Virtual Office for multi-customer configuration

The IP Network-wide Virtual Office feature supports only one customer group. If you configure more than one customer group, the IP Network-wide Virtual Office feature supports the one with the lowest customer number.

Network Wide Virtual Office and the Network Routing Server

Network Wide Virtual Office is limited to a single Network Routing Server (NRS) zone. As long as Virtual Offices share the same NRS, a Virtual Office logon can redirect an IP Phone to any system.

Requirements

A Signaling Server or stand-alone NRS is required in the network.
**Supported IP Phones**


For IP Phone 2004, Avaya 2050 IP Softphone, MVC 2050, Avaya 2007 IP Deskphone, Avaya 1140E IP Deskphone, Avaya 1165E IP Deskphone, WLAN Handsets 2210/2211/2212, and Avaya 6120/6140 WLAN Handsets, users can log on from an IP Phone 2002 and Avaya 1120E IP Deskphone under certain conditions. See [IP Phone type checking and blocking](#) on page 163.

*Table 48: Virtual Office logon from various IP Phones* on page 157 shows which users can log on to particular IP Deskphones.

<table>
<thead>
<tr>
<th>IP Deskphone User</th>
<th>Virtual Office logon</th>
</tr>
</thead>
</table>
IP Deskphone User | Virtual Office logon
--- | ---
2210/2211/2212, Avaya 6120/6140 WLAN Handsets, Avaya 1120E IP Deskphone, Avaya 1140E IP Deskphone, and Avaya 1165E IP Deskphone. See [IP Phone type checking and blocking on page 163.](#)


Virtual logon for an Avaya 2050 IP Softphone, and MVC 2050 user to an IP Phone 2001, Avaya 2033 IP Conference Phone, and Avaya 1110 IP Deskphone is blocked.

Avaya 1150E IP Deskphone | Log on from an Avaya 1150E IP Deskphone only. Virtual Office logon for an Avaya 1150E IP Deskphone to any other IP Phone is blocked. The agent IP Phone must have a secondary (or private) DN assigned, which is then used as the VO User ID.

Virtual Office User Allowed (VOUA) and Virtual Office logon Allowed (VOLA) must be configured on the IP Phones as follows:

- The IP Phone where the user wants to virtually log on (destination) must have Virtual Office User Allowed (VOUA) configured.
- The IP Phone where the user wants to log on (source) must have Virtual Office logon Allowed (VOLA) configured.

---

### Failed password attempt

Three failed password attempts to log on using the Virtual Office feature locks the user out from Virtual Office logon at the Call Server for one hour. The Call Server lock can be removed by an administrator using a LD 32 command to disable and re-enable that TN. See [IP Phone type checking and blocking on page 163.](#)
Passwords and IP Phone Registration

An IP Phone registers using the TN (in the EEPROM). A valid user ID and password determine the Home LTPS for the IP Phone during the Virtual Office connection. A Network Routing Server (NRS) is required if the Home LTPS is not the LTPS where the IP Phone is registered when the Virtual Office logon occurs.

Virtual Office capabilities

Virtual Office provides the following capabilities:

- A network-wide connection server (Network Routing Server [NRS]) is provides addressing information of call servers, based on a user DN.

- A key sequence is entered at an IP Deskphone to initiate the logon sequence. Then the current network DN and a user-level password is entered. The password is the Station Control Password configured in LD 11. If a SCPW is not configured, the Virtual Office feature is blocked.

- A user logs off on leaving the location.

For more detailed information about Virtual Office, see *IP Phones Fundamentals, NN43001-368*.

Bandwidth Management for Network wide Virtual Office

Bandwidth is calculated for IP users who use the Virtual Office feature to log on to their home IP Phones from various Call Servers within the network.

When an IP user moves from the home location to a location that has another Call Server and logs on to a Virtual Office from the home Call Server, the IP Phone used for Virtual Office registration obtains the following information:

- DN number associated with the user ID
- TN parameters including the configured bandwidth zone

The zone information is saved in the Current Zone field. All features that depend on configured zone information receive the correct bandwidth calculations. Configured Zone and Current Zone fields replace the current Bandwidth Zone field. The Configured Zone field stores the configured zone number. This value changes only if the zone is reconfigured. The Current Zone field stores the current zone number. This value changes with each Virtual Office log on.
For more information about the Bandwidth Management for Network wide Virtual Office feature, see *Converging the Data Network with VoIP Fundamentals, NN43001-260*.

---

**Branch Office and Media Gateway 1000B**

The Media Gateway 1000B (MG 1000B) provides a way to extend CS 1000 features to one or more remotely located branch offices using the Branch Office feature. A branch office is a remote location in the network where IP Phones, PSTN access, and TDM telephones are located.

At least one Signaling Server must be at the main office and each branch office.

**Important:**
To provide NRS redundancy in a network with branch offices, Avaya recommends that you configure a Failsafe NRS at each branch office that is not otherwise configured with a Primary or Alternate NRS.

For more information about MG 1000B, see *Branch Office Installation and Commissioning, NN43001-314*.

The total number of IP Deskphones in all offices can be no greater than the capacity of the main office, as specified in *Avaya Communication Server 1000E: Planning and Engineering, NN43041-220* or *Avaya Communication Server 1000M and Meridian 1 Large System Planning and Engineering, NN43021-220*.

---

**802.1Q support**

The following IP Phones support 802.1Q:

- IP Phone 2001
- IP Phone 2002
- IP Phone 2004
- Avaya 2007 IP Deskphone
- Avaya 2033 IP Conference Phone
- Avaya 1210 IP Deskphone
- Avaya 1220 IP Deskphone
- Avaya 1230 IP Deskphone
- Avaya 1110 IP Deskphone
- Avaya 1120E IP Deskphone
- Avaya 1140E IP Deskphone
The Avaya 2050 IP Softphone supports 802.1Q through the PC operating system. This support defines the virtual LAN (VLAN) within a single LAN. This improves bandwidth management, limits the impact of broadcast and multicast messages, and simplifies VLAN configuration and packet prioritization. A higher level of security between network segments can result.

Configuration of 802.1Q on IP Phones

The 802.1Q support for the IP Phones is configured using the IP Phone user interface or DHCP. The DHCP approach eliminates the need to manually configure the VLAN ID during the installation.

To configure 802.1Q, configure the following values:

- p bits
- VLAN ID

For more information about manual or automatic IP Phone configuration, see IP Phones Fundamentals, NN43001-368.

Data Path Capture tool

IP Line contains the Data Path Capture tool, a built-in utility used to capture audio information. This tool helps debug audio-related gateway problems and allows after-the-fact analysis of what the user heard.

You can use CLI commands to use the Data Path Capture tool.

IP Phone firmware

See the ReadmeFirst documentation to determine the IP Phone minimum firmware (F/W) versions supported by IP Line.

Default location of firmware files

For CS 1000 system configurations, the default storage location for the firmware files is on the Signaling Server in the /var/opt/cs1000/tps/fw/ directory. Use Element Manager to load, remove and manage firmware files.
Hardware watchdog timer

A hardware watchdog timer is enabled on the Voice Gateway Media Cards. This feature enhances the existing exception handler and maintenance task audits.

The hardware watchdog timer handles scenarios such as the following:

- the CPU failing
- the code running and not triggering an exception
- resetting the card and returning it to normal operation

The timer runs on the Voice Gateway Media Cards processors. The card main processor is polled every 20 seconds. If three pollings are missed, then the card is reset. This gives the main processor 60 seconds to respond, which covers most normal operating conditions.

A reset reason is logged and saved when a card resets. The reset reason appears as a message during the startup sequence and appears in the SYSLOG file.

The following are examples of reset reasons:

- JAN 04 12:17:45 tXA: Info Last Reset Reason: Reboot command issued Output after card reset using the CLI command cardReboot .
- JAN 04 12:17:45 tXA: Info Last Reset Reason: Watchdog Timer Expired Output after card reset due to watchdog timer expiration.
- JAN 04 12:17:45 tXA: Info Last Reset Reason: Manual reset Output after card reset due to either the faceplate reset button press or a power cycle to the card.
- JAN 04 12:17:45 tXA: Info Last Reset Reason: Unknown Output after card reset due either the card F/W not supporting the reset reason or a corruption of the reset reason code.

The last reset reason can also appear at any time by entering the CLI command lastResetReason.

Linux servers also have hardware watchdog timers. For more information, see Linux Platform Base and Applications Installation and Commissioning, NN43001-315.

Codecs

Codec refers to the voice coding and compression algorithm used by the DSP on the Media Card. Different codecs provide different levels of voice quality and compression properties. The specific codecs and the order in which they are used are configured on the LTPS and CS 1000.
The G.723.1 codec has bit rates of 5.3 kb/s and 6.3 kb/s. In IP Line, the G.723.1 codec can only be configured with a 5.3 kb/s bit rate; however, the system accepts both G.723.1 5.3 kb/s and 6.4 kb/s from the far-end.

T.38 is the preferred codec type for fax calls over virtual trunks. However, the G.711 Clear Channel codec is used if the far-end does not support the T.38 codec.

The G.722 codec has bit rates 48 kb/s, 56 kb/s, and 64 kb/s. This codec can only be configured with a 64 kb/s bit rate, however, the system accepts both 48 kb/s and 56 kb/s from the far-end.

For detailed information about codecs, see Codecs on page 191.

---

**IP Phone type checking and blocking**

If the registration is a regular request (as opposed to a Virtual Office logon), the Call Server checks the configured TN type against the actual IP Phone type.

When the LTPS attempts to register the IP Phone with the Call Server, the following occur:

- If the TN has Flexible Registration Denied (FRD) CoS configured, the Call Server checks the IP Phone type against the TN type. If the types do not match, the registration attempt is rejected and registration in Emulation Mode is blocked.

- If the TN has the default Flexible Registration Allowed (FRA) CoS configured, the Call Server checks the IP Phone type against the TN type. If the types are compatible, the TN is converted and the IP Phone registers.

- If the TN has Flexible Registration on Upgrade CoS configured, the Call Server checks the IP Phone type against the Virtual TN (VTN) type. If the types are compatible, the TN is converted and the IP Phone registers. After the TN is converted, the Flexible Registration CoS is configured to FRD and registration in Emulation Mode is blocked.

However, if the registration request is a virtual logon, this check does not occur. All IP Phones can register on any IP TN type when the logon is through Virtual Office.


Special checking is required to prevent a user from logging on from an IP Phone that cannot display an incoming call because the IP Phone used to log on does not have the self-labeled line/programmable feature keys to display the incoming call. If the logon is permitted, the IP Phone can ring without providing the user a way to answer the call. The configuration of the logging on user is examined for self-labeled line/programmable feature key types that receive
incoming calls. If self-labeled line/programmable feature key types appear on any keys not on
the type of IP Phone being used for the logon, the logon is blocked.

The logon from an IP Phone 2002 is blocked for users configured for Automatic Call Distribution
(ACD).

IP Phone 2002, Avaya 1220 IP Deskphone, and Avaya 1120E IP
Dekphone logon restrictions

Because the IP Phone 2002, Avaya 1220 IP Deskphone, and Avaya 1120E IP Deskphone
support only four feature keys, a restricted VO logon is applied to IP Phone 2004, Avaya 2007
IP Deskphone, Avaya 2050 IP Softphone, Avaya 1230 IP Deskphone, Avaya 1140E IP
Deskphone, and Avaya 1165E IP Deskphone TN when they log on using an IP Phone 2002,
Avaya 1220 IP Deskphone, or Avaya 1120E IP Deskphone.

When the IP Phone 2004, Avaya 2007 IP Deskphone, Avaya 2050 IP Softphone, Avaya 1230
IP Deskphone, Avaya 1140E IP Deskphone, or Avaya 1165E IP Deskphone user logs on from
an IP Phone 2002, Avaya 1220 IP Deskphone, or Avaya 1120E IP Deskphone, the logon is
blocked if the user configuration has one of the following:

• key 0 defined as ACD
• any key from 4 to 15 defined as AAK, CWT, DIG, DPU, GPU, ICF, MCN, MCR, MSB,
  PVN, PVR, SCR, or SCN.

IP Phone 2001, Avaya 2033 IP Conference Phone, Avaya 1210 IP
Deskphone, and Avaya 1110 IP Deskphone logon restrictions

Because the IP Phone 2001, Avaya 2033 IP Conference Phone, Avaya 1210 IP Deskphone,
and Avaya 1110 IP Deskphone do not support feature keys, a restricted VO logon applies to
IP Phone 2002, Avaya 1220 IP Deskphone, Avaya 1230 IP Deskphone, IP Phone 2004, Avaya
2007 IP Deskphone, Avaya 2050 IP Softphone, Avaya 1110E IP Deskphone, Avaya 1140E IP
Deskphone, and Avaya 1165E IP Deskphone TN when the user logs on using an IP Phone
2001, Avaya 2033 IP Conference Phone, Avaya 1210 IP Deskphone, and Avaya 1110 IP
Deskphone.

When an IP Phone 2002, Avaya 1220 IP Deskphone, Avaya 1230 IP Deskphone, IP Phone
2004, Avaya 2007 IP Deskphone, Avaya 2050 IP Softphone, Avaya 1120E IP Deskphone,
Avaya 1140E IP Deskphone, or Avaya 1165E IP Deskphone user logs on from an IP Phone
2001, Avaya 2033 IP Conference Phone, Avaya 1210 IP Deskphone, or Avaya 1110 IP
Deskphone, the logon is blocked if the user configuration has one of the following:

• key 0 defined as ACD
• any other key (from 1 to 15) defined as AAK, CWT, DIG, DPU, GPU, ICF, MCN, MCR,
  MSB, PVN, PVR, SCR, or SCN.
The Enhanced Redundancy for IP Line nodes feature relaxes the checking performed by a node on the Node ID that is presented by a registering IP Phone. Under the circumstances described in this section, an IP Phone with a three-digit Node ID can register to a node configured with a four-digit Node ID. To enable the registration to be successful, the three-digit Node ID must match the first three digits of the node four-digit Node ID.

This feature enhances the IP Phone survivability in the case of network outages or equipment failure; it allows an IP Phone to register to more than one node on a system. By configuring the IP Phone S1 and S2 Connect Server IP addresses to the node addresses of two nodes, and properly configuring the Node IDs, the IP Phone can register to another secondary node if it cannot register to the primary node.

The rules are as follows:

• if the Node ID on the system has three digits or less, the Node ID from the IP Phone must match exactly

• if the Node ID on the system has four digits and

  - if the Node ID from the IP Phone has fewer than three digits, reject the registration.

  - if the Node ID from the IP Phone has only three digits and they match the first three digits of the four digit Node ID (left to right), then allow the IP Phone to register. If the first three digits do not match, reject the registration.

  - if the Node ID from the IP Phone has four digits, the Node ID must match exactly. If the four digits do not match, reject the registration.

Up to 10 nodes can be configured on a system (three-digit Node ID base plus 0 to 9 for the fourth digit). The IP Phones are distributed among the nodes by programming different S1 and S2 IP addresses into the IP Phones. The IP Phones register to the primary Connect Server (the S1 IP address) if possible.

If a network outage or equipment failure prevents the registration to the primary Connect Server, the IP Phone can register to a secondary Connect Server (the S2 IP address). This feature enables a node registered IP Phones to spread across the spare IP Phone registration capacity of the other nodes in the system in the event of a network outage or equipment failure.

**Example:**

The installer configures two nodes on a system with Node IDs 3431 and 3432. An IP Phone configured with Node ID 343 can register with either node.
If the IP Phone presents one of the following Node IDs, it is rejected for registration

- 3
- 34
- 3433

The TN must still match before the IP Phone is allowed to register.

If the customer does not want to use the Enhanced Redundancy for IP Line Nodes feature, programming two- or four-digit Node ID retains the exact match requirement.

---

**Patch Management**

Patching Manager (PM) is a centralized patch deployment application that supports patching for all Linux-based elements. This includes patching of all Linux bases and applications on these elements (except for Call Server on the Co-resident Call Server and Signaling Server).

**Note:**

Patching for the Call Server (on VxWorks or Linux) and other VxWorks devices such as media cards is supported by Element Manager.

Linux patching involves the patching of a specific version of an RPM. The RPM is the base building block of the Linux patching process.

RPM patches are issued only as Serviceability Updates (SU) and each Serviceability Update can contain only one RPM. Serviceability Updates have the same filename as the RPM file it contains; however, the Serviceability Update has a different extension.

Binary patches are created and distributed against a specific RPM name and release. Patches are given a unique patch name, which are automatically generated by the Meridian Patch Library (MPL). Binary patches are linked to their RPM using the patch header.

All other patching on Linux, such as JAR, WAR, and BIN are treated in the same manner as binary patches and each is tied to a specific release of an RPM.

Some patches may be dependent on one or more patches to be in-service before the latest patch is activated.

For more information about the Patching Manager, see *Patching Fundamentals, NN43001-407*.

---

**Migration from Solid database to MySQL**

The Solid RPM package will be replaced by two groups of RPMs. One group will be the MySQL third-party RPM. The other group is the Avaya application RPM which is renamed from Solid to dbcom. The two groups of RPMs are part of the Avaya application image and are included in the Linux application load-build.
There will not be any impact on the user interface due to MySQL migration.

**Note:**
When the Solid database is upgraded to MySQL, the database server TCP port is changed from 1313 to 3306.

**Note:**
When the Solid database is upgraded to MySQL, all Solid database utilities are removed.

**Database application creation and operation**

The dbcom application creation is based on the original Solid RPM creation and follows the Linux base RPM guidelines. The current Linux base appinstall and appstart are used for the MySQL installation and operation. After the application is installed, the default database configuration, accounts and passwords will be loaded. These include:

- NRS/NRS Manager: the account name “nrs” with the default password from the Secret Manager (SM) has full privileges on the databases NRS_A, NRS_B, and NRS_D. The databases will be empty initially.
- PD: the account name “pd” with the default password from the Secret Manager (SM) has full privileges on the database pddb. The database will be empty initially.
- EM/BCC: the account name “mgmt” with the default password from the Secret Manager (SM) has full privileges and it can create the databases on the fly. The default empty databases are systemdatabase and template_database.

Similar to operation of the Solid database, the following commands are supported under the admin2 account and should be used to start, stop, restart and check the status of the MySQL database engine:

- appstart dbcom start
- appstart dbcom stop
- appstart dbcom restart
- appstart dbcom status
Chapter 6: Personal Directory application

Contents

This section contains the following topics:

- Introduction on page 169
- Personal Directory on page 172
- Callers List on page 172
- Redial List on page 174
- IP Phone Application Server configuration and administration on page 175
- IP Phone Application Server database maintenance on page 180
- Call Server configuration on page 184
- Password administration on page 185
- Unicode Name Directory on page 187

Introduction

The Personal Directory application supports the creation of a Personal Directory for IP Phone users.


Personal Directory, Callers List, and Redial List are not supported on the IP Phone 2001, Avaya 2033 IP Conference Phone, Avaya 1210 IP Deskphone, and Avaya 1110 IP Deskphone.

The IP Phone Application Server ELAN network interface IP address must be configured. See IP Phone Application Server configuration and administration on page 175.
**Important:**
Calling Party Name Display (CPND) must be configured as a Class of Service (CoS) on the system to enable Personal Directory, Callers List, and Redial List.

An IP Phone user creates and manages the Personal Directory. The IP Phone user can enter or copy names to the Personal Directory and delete entries from the personal directory. Personal Directory is not a call log feature.

Callers List and Redial List are call log features. The content of these lists is generated during call processing. CPND must be configured as a CoS to generate the names in the logs. Content cannot be changed; however, a user can delete or, in some cases, copy entries or lists.

Table 49: Comparison of Personal Directory with Callers List and Redial List on page 170 compares the Personal Directory with the Callers List and Redial List features.

**Table 49: Comparison of Personal Directory with Callers List and Redial List**

<table>
<thead>
<tr>
<th>Operation</th>
<th>Personal Directory</th>
<th>Callers List and Redial List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display date and time of transaction</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Modify entry</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Dial from the list</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Delete entry</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Content view mode</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Delete list</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Edit and dial (Temporarily modify an entry and dial out. Does not modify record in database.)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Access through soft keys</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of entries</td>
<td>100</td>
<td>20 (Redial List) 100 (Callers List)</td>
</tr>
</tbody>
</table>
Virtual Office

Personal Directory, Callers List, and Redial List are available when you use Virtual Office (VO). Data is stored on the Signaling Server, not on the IP Phone. This means when a user logs on using Virtual Office or logs on in a branch office in Normal Mode, they can always access the stored names and numbers.

Media Gateway 1000B

Personal Directory, Callers List, and Redial List are supported in a branch office configuration when the Media Gateway (MG) 1000B in the branch office location is in Normal Mode. Personal Directory, Callers List, and Redial List are not available in Local Mode, as the entries are stored on the main office Signaling Server.

User key for Personal Directory, Callers List, and Redial List

An IP Phone Private Network Identifier (PNI) + Home Location Code (HLOC) + primary DN (PDN) make up the lookup key for the IP Phone Personal Directory, Callers List, and Redial List data.

For the HLOC, if a CLID table entry exists (CLID = yes in LD 15) for the Primary DN (PDN) or the first non-ACD key DN, the CLID table HLOC is used. When no CLID entry exists, the HLOC defined in LD 15 Network Data section is used (it might be 0 if HLOC is not configured).

The PNI ensures the HLOC + PDN is unique across customers on a system if the system is for multiple customers.

Because the user PDN and HLOC are used, then to identify a specific user, a user primary DN and HLOC must be unique to the network to support their specific Personal Directory, Callers List, and Redial List. If using Multiple Appearance DN (MADN) for a group of users and you must provide users with their own Personal Directory, Callers List, and Redial List, do not configure the Primary DN (PDN) as MADN.

If the MADN is used as the PDN for a group of users, this results in a shared Personal Directory, Callers List, and Redial List. This means that a call arriving on any IP Phone sharing the PDN MADN appears in the Callers List. Calls to a secondary DN on another IP Phone in the shared group appear in the Callers List for all IP Phones, even though the call did not ring on the other IP Phone.
**Personal Directory**

Personal Directory has the following specifications:

- maximum entries = 100
- maximum characters in name = 24
- maximum characters in DN = 31
- multiple actions:
  - add new entry
  - edit entry
  - delete entry
  - delete contents of directory
  - copy an entry from Personal Directory to Personal Directory
  - copy an entry from Corporate Directory to Personal Directory
  - dial the DN of an entry
  - name search
- password protection to control access to Personal Directory
- 1-minute time-out

Personal Directory is deployed as part of the Signaling Server software package. You can stop and restart the Personal Directory without stopping and restarting other Signaling Server applications.

**Note:**

To start Personal Directory on TPS it is not enough to provide TPS ELAN IP address in Element Manager, it is also necessary to enable Personal Directory service in Node configuration interface in Element Manager.

**Callers List**

Callers List has the following specifications:

- maximum entries = 100
- maximum characters in name = 24
- maximum characters in DN = 31
multiple actions:
- dial the DN of an entry
- edit the entry
- copy the entry
- delete the entry
sorted by the time the call is logged
contains caller name, DN, time of last call, and the number of times the caller calls this user
Idle Display option: displays and counts all calls or only unanswered calls
displays caller name (Redial List only displays the caller DN)
after the 100 entry limit is reached, the newest entry overwrites the oldest entry
1-minute time-out

Call log options

Use Call log options to configure the following preferences on the IP Phone:

- whether the Callers List logs all incoming calls or only unanswered calls
- whether Idle Set Display indicates when new calls are logged to the Callers List
- whether a name stored in the Personal Directory that is associated with the incoming call DN appears instead of the name transmitted by the Call Server
- the three area codes to display after the DN, rather than before it (for example, local area codes)

Follow the steps in Accessing the call log options on page 173 to access the call log options for the IP Phone.

Accessing the call log options

1. On the IP Phone, press the Services key.
   The Telephone Options menu appears.
2. Select Telephone Options, Call Log Options.
3. Select the desired options.

Important:
You can change the Call log option on the registered sets using LD 17 (DLAC).
Table 50: Call log options on page 174 summarizes the call log options.
Table 50: Call log options

<table>
<thead>
<tr>
<th>Call log option</th>
<th>Description</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log all or unanswered incoming calls</td>
<td>Configures the Callers List to log all incoming calls or only the unanswered incoming calls.</td>
<td>Log all calls. Can be changed in LD 17 (DLAC).</td>
</tr>
<tr>
<td>New Call Indication</td>
<td>When New Call Indication is on, a message appears on the IP Phone to inform the user of a new incoming call. If not configured, nothing appears.</td>
<td>On</td>
</tr>
<tr>
<td>Preferred Name Match</td>
<td>Configures whether the displayed caller name is the CPND from the Call Server or the name associated with the DN stored in the Personal Directory</td>
<td>CPND from the Call Server appears</td>
</tr>
<tr>
<td>Area code set-up</td>
<td>Configures how the incoming DN appears. If the area code of the incoming call matches a specified area code, the DN appears in the configured manner (for example, the area code can appear after the DN)</td>
<td>No area code</td>
</tr>
<tr>
<td>Name display format</td>
<td>Configures the format of the name display of the incoming call on the IP Phone</td>
<td>&lt;first name&gt; &lt;last name&gt;</td>
</tr>
</tbody>
</table>

The IP Phone 2002, Avaya 1220 IP Deskphone, Avaya 1230 Deskphone, and Avaya 1120E IP Deskphone do not display the New Call Indication on the idle screen at the same time as the date and time. Instead, the New Call Indication alternates with the date and time display.

---

Redial List

Redial List has the following specifications:

- maximum entries = 20
- maximum characters in a name = 24
- maximum characters in a DN = 31
- contains name, DN, and the time the last call to that DN occurred in each entry
- the newest entry overwrites the oldest entry after the 20-entry limit is reached
• sort by the time the call is logged
• multiple actions:
  - dial the DN of an entry
  - edit the entry
  - copy the entry
  - delete the entry
  - delete contents of a list
• 1-minute time-out

---

**IP Phone Application Server configuration and administration**

The IP Phone Application Server runs on the Signaling Server with the SS package deployed. For more information about deploying Signaling Server software, see Signaling Server software installation using Deployment Manager on page 207.

If less than 1000 users are supported, then the IP Phone Application Server can run on the same Signaling Server as Element Manager. If more than 1000 users are supported, then the IP Phone Application Server must run on another Signaling Server (preferably a Follower) with no co-located applications. Therefore, you must configure in Element Manager the ELAN network interface IP address of the Signaling Server where the IP Phone Application Server is installed. You must also enable the IP Phone Application Server in the IP Telephony node.

The IP Phone Application Server can be shared across multiple IP Telephony nodes on the same Call Server.

---

**Configure the IP Phone Application Server and remote backup**

To configure the IP Phone Application Server in an existing IP Telephony node see Configuring the IP Phone Application Server in an existing node on page 176.

To configure the IP Phone Application Server in a new node and if the IP Phone Application Server must support more than 1000 users, see Configuring the IP Phone Application Server on a new node on page 177.

The default transfer method is SFTP. If a backup was done in an earlier release than Avaya CS 1000 Release 6.0 to FTP server, then SFTP must be supported to do the restore. Otherwise, SFTP connect fails and PD restore will not be completed.
Configuring the IP Phone Application Server in an existing node

1. In the Element Manager navigator, select IP Network > Nodes: Servers, Media Cards. The IP Telephony Nodes window appears.

2. Select the link for a Node ID.

The Node Details window appears for that node.

![Node Details](image)

**Figure 35: Node Details**

**Note:**

The Node IPv6 address in the above screen displays a string of zeros due to the IPv6 address length. You can use the compressed form, where a single continuous sequence of 0 blocks are represented by a double colon (::). This symbol can appear only once in an address. For example, the multicast address FFED:0000:0000:0000:0000:BA98:3210:4562 in compressed form is FFED::BA98:3210:4562.

3. Click the Personal Directories (PD) link in the Applications (click to edit configuration) section of the window. The Personal Directory Server (PD) Configuration Details window appears.
4. Select the Enable Personal Directory (PD) service on this node check box.
5. Click Save.

   The Node Details window appears.
6. Click Save.

   The Node Saved window appears.
7. Click Transfer Now.

   The Synchronize Configuration Files window appears.
8. Select all servers and click Start Sync.

   The Synchronization Status changes to Sync in progress and then to Synchronized.
9. Select all servers and click Restart Applications.

Perform the steps in the following procedure to configure IP Phone Application server on a new node.

**Configuring the IP Phone Application Server on a new node**

1. In the Element Manager navigator, select IP Network, Nodes: Servers, Media Cards to configure a new node.

   The IP Telephony Nodes window appears.
2. Click Add.

   The Node Details window appears.
3. Enter a unique Node ID in the Node ID box.
4. Configure the IP addresses and subnet masks for the Signaling Server.
5. Select the necessary applications including Personal Directory (PD). If the IP Phone Application Server must support more than 1000 users, choose only Personal Directory (PD).
6. Click Next.
Figure 36: New IP Telephony Node - Personal Directory check box

7. Select from the list and click Add to associate servers with this node. If the IP Phone Application Server must support more than 1000 users, select only one server with the SS package deployed.

8. Select one of the servers and click Make Leader.

9. Click Next.

10. Additional configuration windows appear for each selected application. Configure each of them and click Next.


   The Node Saved window appears.

12. Click Transfer Now. The Synchronize Configuration Files window appears.

13. Select all servers and click Start Sync. The Synchronization Status changes to Sync in progress and then to Synchronized.

14. Select all servers and click Restart Applications.
Personal Directories Server Configuration

Because you can back up and restore the IP Phone Application Server database, you must configure information to support the backup and restore feature. See Figure 37: Personal Directories Server Configuration window on page 179.

The following parameters are configured:

- ELAN network interface IP address of the IP Phone Application Server where the database is located
- Check box to turn on or off the remote backup functionality
- IP address of the server where the backup is saved
- Path, file name, user ID, and password to support the backup and restore feature

![Server Configuration Window](image)

Figure 37: Personal Directories Server Configuration window

Table 51: Sample IP Phone Application Server configuration on page 180 provides a sample IP Phone Application Server configuration.
### Table 51: Sample IP Phone Application Server configuration

<table>
<thead>
<tr>
<th>Data field name</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server IP Address</td>
<td>92.168.10.12</td>
<td>IP address of the database server (for example, the Leader Signaling Server ELAN network interface IP address).</td>
</tr>
<tr>
<td>Backup Configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform scheduled remote backup</td>
<td>Check box is selected</td>
<td>Select check box to enable scheduled remote backups.</td>
</tr>
<tr>
<td>Remote backup time of day (hh:mm)</td>
<td>00:00</td>
<td>The time of day to perform the backup (default is 00:00 midnight).</td>
</tr>
<tr>
<td>Remote backup IP address</td>
<td>47.11.22.11</td>
<td>Remote backup server IP address.</td>
</tr>
<tr>
<td>Remote backup path</td>
<td>/auto/etherset</td>
<td>Remote path where the backup file is saved.</td>
</tr>
<tr>
<td>Remote backup file name</td>
<td>ipldb.db</td>
<td>File name of the backup file.</td>
</tr>
<tr>
<td>Remote backup userid</td>
<td>etherset</td>
<td>Logon name for the remote backup.</td>
</tr>
<tr>
<td>Remote backup password</td>
<td>etherset</td>
<td>Password for remote backup.</td>
</tr>
</tbody>
</table>

The Personal Directory, Callers List, and Redial List features are not available to the user if the IP Phones lose contact with the Signaling Server. The features are available again only when contact with the Signaling Server is reestablished.

---

### Alarms

If the IP Phone Application Server is not installed on the primary Signaling Server, and the other Signaling Server cannot contact the IP Phone Application Server, then an SNMP alarm is raised. The alarm indicates that the Personal Directory, Callers List, and Redial List are not available. If this occurs, the other Signaling Server tracks the Signaling Server where the IP Phone Application Server resides. When contact with the IP Phone Application Server is made, Personal Directory, Callers List, and Redial List access resumes.

---

### IP Phone Application Server database maintenance

Use Element Manager to maintain the IP Phone Application Server database.
Configure a daily backup to occur at a scheduled time.
You can recover an IP Phone Application Server database for all users or for one user entries.

---

**IP Phone Application Server database backup**

Follow the steps in [Backing up the IP Phone Application Server database server manually](#) on page 181 to manually back up the IP Phone Application Server database.

You can also schedule a backup of the database. See [Configure the IP Phone Application Server and remote backup](#) on page 175.

**Backing up the IP Phone Application Server database server manually**

1. In the Element Manager navigator, click **Tools, Backup and Restore, Personal Directories**.
   The Personal Directories Backup and Restore window appears.
2. Click **Personal Directories Backup**.
   The Personal Directories Backup window appears. See [Figure 38: Personal Directories Backup window](#) on page 181.

![Personal Directories Backup](image)

4. Click **Submit**.
Full database recovery

Perform the steps in Performing a full database recovery on page 182 to perform a full database backup for the IP Phone Application Server.

Performing a full database recovery

1. Select Tools, Backup and Restore, Personal Directories.

   The Personal Directories Backup and Restore window appears.

2. Click Personal Directories Restore.

   The Personal Directories Restore window appears. See Figure 39: Personal Directories Restore window on page 182.

3. From the Action list, select SFTP from Remote Site if the backup is saved on a remote server. If the backup is already saved locally on the server, go to Step 8.

4. Enter the data for the Remote backup IP address, Remote backup userid, Remote backup password, Remote backup path, and Remote backup file name fields.

5. Click Submit.

6. Click OK.

   After the file is transferred to the local drive, an message appears indicating successful file transfer.

7. Click OK.
The file is transferred to the server but the database is not yet restored.

8. Reset all the IP Phones using `isetResetAll` on every LTPS in the system and allow the IP Phones to register.

9. From the Action list, select **Restore All Users**.

10. Click **Submit**.

11. Click **OK**.

   The data for all users is restored and the existing data in the Personal Directories database is overwritten.

**Important:**
The length of time to restore a database depends on the number of records.

---

**Selective database recovery for a single user**

Follow the steps in [Performing a selective database recovery](#) on page 183 to recover a database for a single user. A valid backup file is required to recover a database.

**Performing a selective database recovery**

1. Select **Tools, Backup and Restore, Personal Directories**.
   
The Personal Directories Backup and Restore window appears.

2. Click **Personal Directories Restore**.
   
The Personal Directories Restore window appears.

3. From the **Action** list, select **Restore Single User**.
   
The Personal Directories Restore window for a single user opens. See [Figure 40: Personal Directories Restore for a single user window](#) on page 184.
4. Enter the **Customer Number** and **Directory Number (DN)** of the user.
5. Select the check boxes for the data that you want to restore.
6. Click **Submit**.

**Fault clearance**

The database recovery clears any faults.

<table>
<thead>
<tr>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avaya recommends that you install the IP Phone Application Server on a dedicated Signaling Server to ensure that database operations do not affect call processing.</td>
</tr>
</tbody>
</table>

**Call Server configuration**

To provide password protection for an IP Phone user Personal Directory, Callers List, and Redial List, Station Control Password (SCPW) must be configured on the Call Server. If SCPW is not configured, password administration on the IP Phone cannot be accessed.

In LD 15 and in Element Manager, a new prompt, DFLT_SCPW, is added to the Flexible Feature Code (FFC) parameters for the Call Server. When DFLT_SCPW is Yes, the system assigns a default password (the primary DN) to IP Phone users when an IP Phone is added or changed in LD 11.
Important:
System administrators must ensure that users change the default password on the IP Phone to control access, as the default password is the same on all IP Phones when DFLT_SCPW is Yes.

The new prompt DFLT_SCPW and the existing prompt Station Control Password Length (SCPL) are prompted for only if FFC package 139 is enabled.

The SCPL is also defined in LD 15 Flexible Feature Code (FFC) configuration parameters and in Element Manager. If the SCPL length changes, the change takes effect only after a data dump and then a sysload of the Call Server. The SCPL changes to the new length during the sysload. If the length is increased, then 0 is inserted at the beginning of the SCPW to conform to the new length. If the password length is reduced, then the leading digits are removed during the sysload.

Password administration

The Station Control Password (SCPW) controls access to the user private Personal Directory, Callers List, and Redial List information.

By default, when the IP Phone first registers to the system, the password protection is off. If a default password is defined for the user, the user can enable or disable password protection and change the password. The changed password is updated on the Call Server and can be viewed in LD 20. Other applications that use this password, such as Virtual Office and Remote Call Forward, are affected by the password change.

Initial password

When an IP Phone first registers with the system, by default the password protection is turned off. SCPW must be initially configured for each user. If no SCPW has been defined, password protection for the IP Phone cannot be enabled. The prompt DFLT_SCPW in LD 15 specifies that a default SCPW is assigned to an IP Phone user when an IP Phone is added or changed in LD 11. See Table 52: LD 15 Enable a default SCPW on page 185.

Table 52: LD 15 Enable a default SCPW

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ:</td>
<td>CHG</td>
<td>Change existing data.</td>
</tr>
<tr>
<td>TYPE:</td>
<td>FFC</td>
<td>Change Flexible Feature Code parameters.</td>
</tr>
<tr>
<td>CUST</td>
<td>0 to 99</td>
<td>Customer number.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Range for Large System and CS 1000E system.</td>
</tr>
<tr>
<td>Prompt</td>
<td>Response</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>0 to 31</td>
<td>Range for CS 1000M Small System and Media Gateway 1000B.</td>
</tr>
<tr>
<td>FFCS</td>
<td>(NO) YES</td>
<td>Change Flexible Feature Code end-of dialing indicator.</td>
</tr>
<tr>
<td>ADLD</td>
<td>(0) to 20</td>
<td>Auto Dial Delay (in seconds).</td>
</tr>
<tr>
<td>DFLT_SCPW</td>
<td>(NO) YES</td>
<td>Default Station Control Password. NO = disable Default Station Control Password (default). When DFLT_SCPW = YES, the system automatically assigns an SCPW when a new IP Phone 2002, IP Phone 2004, or Avaya 2050 IP Softphone is created. An SCPW is not automatically assigned to an existing IP Phone unless that IP Phone is given a service change.</td>
</tr>
</tbody>
</table>

**Password guessing protection**

A password retry counter tracks how many incorrect password entries are made. If the IP Phone password verification fails three times in one hour, the user is locked out for 1 hour. This means that the Personal Directory, Callers List, and Redial List cannot be accessed and password administration cannot occur. A message appears on the IP Phone to indicate that access is locked.

After 1 hour, the retry counter is reset and access is unlocked. The retry counter also resets when the user correctly enters the password.

The administrator can reset the counter and unlock the access either in Element Manager or in LD 32.

If a user is locked out from using the SCPW to access Personal Directory, Callers List, and Redial List, they also are blocked from access to their Virtual Office logon, because VO uses the same SCPW. Conversely, a user who is locked out from the VO logon is also locked out from accessing their Personal Directory, Callers List, and Redial List.

**Forgotten password**

If the user forgets the IP Phone password, the administrator can reset the retry counter and change the user password in Element Manager. After the administrator changes the password, the lock is released automatically.
Unicode Name Directory

With the Unicode Name Directory System feature, the CS 1000 caller or called party name appears in up to seven other languages. This new feature enhances the functionality of IP Phones that can display Unicode. The Unicode Name Directory feature provides localized names on a subscriber base and generates the Calling Line IDs and URIs on a subscriber telephony account on a network level to serve the Unicode Name Directory server.

The Unicode Name Directory provides the following features:

- display of localized name in UTF-8 Unicode character encoding for incoming and outgoing calls
- storage for up to seven localized names in the database for a particular subscriber
- support for Korean, traditional and simplified Chinese, Japanese and other Unicode languages for called or caller party name display
- ability to work with Avaya IP Deskphones 2007, 1120E, 1140E, 1150E, 1165E, 2050V3, 1110, 1210, 1220, 1230
- a Web interface for Unicode Name Directory server configuration

Unicode Name Directory integrates with Personal Directory (PD) is part of the Personal Directory installation. The Unicode Name Directory is enabled in the Call Server only if Personal Directory is configured. For more information about configuring Unicode Name Directory, see Element Manager System Reference—Administration, NN43001-632.

Personal Directory and Unicode Name Directory can be installed as a part of Local software deployment or Centralized software deployment. For more information about deployment options, see Linux Platform Base and Applications Installation and Commissioning, NN43001-315.

Unicode Name Directory feature restrictions and limitations

The following is a list of restrictions and limitations that apply to the UND feature.

- UND is not supported by SIP terminals that support Unicode.
- UND inherits all limitations of CPND and Preferred Name Match features.
- Manual intervention is required to migrate from Release 5.5 where the patched solution exists: backup and export the Release 5.5 PD database and UND database XML files. Convert XML file into CSV file. Restore and import the Release 5.5 PD database and UND database CSV files into the latest Release. Refer to Subscriber Manager Fundamentals, NN43001-120.
- UND is limited only for those user names and phone numbers which are propagated from Subscriber Manager to Unicode Name Directory database.
• Unicode name will not be displayed during a trunk call if the trunk side does not provide reliable Caller Line ID (CLID) and correct type of the call.

• Only characters supported by the IP Phone (including phone firmware and font files) can be used to display the name. If a system administrator enters for localized name Unicode characters not supported by the IP Phone, user name will be displayed incorrectly during the call.

• Cannot display Japanese, Chinese and Korean characters simultaneously. Avaya 1110 IP Deskphone, Avaya 1120E IP Deskphone and IP Phone 12x0 can store only one downloadable font in the firmware. Avaya 1140E IP Deskphone, Avaya 1150E IP Deskphone, Avaya 1165E IP Deskphone, and Avaya 2007 IP Deskphone can store four fonts simultaneously.

• The Primary and alternate redundancy model is not supported for the Unicode Name Directory application.

• Unicode Name Directory application as a part of PD cannot serve multiple telephone nodes located on different Call Servers.

• Only half-width Japanese Katakana font is supported for name displaying.

• Phone numbers entered in Subscriber Manager for a specific subscriber as ‘external’ should be unique. UND feature does not guarantee correct user name displaying in case the ‘external’ number is not unique.

• Signaling Server should have certificates signed by Primary Security server to establish secure LDAP connection with Subscriber Manager.

• UND service applies only to the primary Call Server system which provides calls under normal mode. When the Call Server system switches over to redundant systems (such as Geographic Redundant Call Server system and Branch Office Call Server system), UND service is not available.

IP Phones configuration

The following configuration of IP Phones must be in place before Unicode Name Directory can be properly used.

• CPND block configuration. To properly display names on an IP Phone, CPND block must be configured on the Call Server for each customer using UND.

• Class-of-Service configuration. The CNDA and DNDA classes of service must be enabled for each IP Phone that will use Unicode Name Directory.

• Language selection. For those IP Phones that support Unicode Name Directory, select the language through the Telephone Options, Language menu.
**Note:**

IP Phones that support Unicode require a special font file to display Asian languages. Download the font file to the IP Phone using TFTP server. For more information, see the installation guide for the specific IP Phone.
Personal Directory application
Chapter 7: Codecs

Contents

This section contains the following topics:

• Introduction on page 191
• Codec configuration on page 193
• Codec registration on page 194
• Codec negotiation on page 198
• Codec selection on page 200

Introduction

Codecs refers to the voice coding and compression algorithms used by the Digital Signal Processors (DSPs) on a Media Card. Codecs provide levels of audio quality and compression rates. IP Phones and Media Cards support different codecs. The codecs, and the order in which they are used, are configured on the LTPS and on the Avaya Communication Server 1000 (Avaya CS 1000) system. The Avaya CS 1000 system selects the appropriate codecs based on user-configurable parameters.

For instance, configure an IP Phone-to-IP Phone call in the same zone within a LAN using G.711 at 64 kb/s. Configure an IP Phone-to-IP Phone call over a WAN using G.729A or G.729AB at 8 kb/s. These data rates are for voice streams only. Packet overhead is not included.

Predefined codec table

The Line Terminal Proxy Server (LTPS) and the Voice Gateway Channel Server on a Media Card have a predefined table of codec option sets that can be supported.

The first entry in the table has the highest quality audio (BQ = Best Quality) and requires the largest amount of bandwidth. The last entry requires the least amount of bandwidth (BB = Best Bandwidth) with lower voice quality.
When the Call Server sets up a Call Server connection between an IP Phone-to-IP Phone, the predefined table determines which codec it selects for that connection. This information is provided to the system as part of the IP Phone registration sequence.

For more information about the registration sequence, see Converging the Data Network with VoIP Fundamentals, NN43001-260.

**Codec selection**

The systems use this information to set up a speech path and to select a codec that both endpoints support. As part of zone management, the system further selects the codec based on whether it tries to optimize quality (BQ) or bandwidth usage (BB).

**Caution:**
When voice compression codecs are used, voice quality is impaired if end-to-end calls include multiple compressions.

Table 53: Supported codecs on page 192 shows which codecs the CS 1000 system supports.

**Important:**
The G.723.1 codec has bit rates of 5.3 kb/s and 6.3 kb/s. The G.723.1 codec can only be configured with a 5.3 kb/s bit rate; however, the system accepts both G.723.1 5.3 kb/s and 6.3 kb/s from the far end.

**Important:**
T.38 is the preferred codec type for fax calls over virtual trunks. However, the G.711 Clear Channel codec is used if the far end does not support the T.38 codec.

**Table 53: Supported codecs**

<table>
<thead>
<tr>
<th>Codec</th>
<th>Payload size</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.711 a-law, G.711 mu-law, NOVAD</td>
<td>10, 20, and 30 ms</td>
</tr>
<tr>
<td>G.711 Clear Channel</td>
<td>Supported for fax calls on gateway channels</td>
</tr>
<tr>
<td>G.722</td>
<td>10 ms, 20 ms, 30 ms, and 40 ms</td>
</tr>
<tr>
<td>G.723.1</td>
<td>30 ms</td>
</tr>
<tr>
<td>G.729A</td>
<td>10, 20, 30, 40, and 50 ms</td>
</tr>
<tr>
<td>G.729AB</td>
<td>10, 20, 30, 40, and 50 ms</td>
</tr>
<tr>
<td>T.38</td>
<td>Supported for fax calls on gateway channels</td>
</tr>
</tbody>
</table>
The MVC 2050 supports only the G.711 codec with a 30-ms payload.

The G.722 codec is only supported on the following IP Phones with UNIStim 5.0 firmware:

- Avaya 1120 IP Deskphone
- Avaya 1140 IP Deskphone
- Avaya 1165 IP Deskphone
- Avaya 1220 IP Deskphone
- Avaya 1230 IP Deskphone

If multiple nodes are on a system and the same codec is selected on more than one node, ensure that each node has the same voice payload size configured for the codec.

---

**Codec configuration**

Configure the codec in the DSP Profile section of Element Manager.

---

**Codec selection in Element Manager**

[Figure 41: Codec list in Element Manager](#) on page 194 shows the list of codec types that appear in Element Manager.
You cannot clear the automatically selected G.711 and T.38 Fax codecs. Even though you cannot clear these codecs, you can change the payload size and the jitter buffer for G.711. For G.711 Clear Channel, only the jitter buffer can be changed.

Select any desired, or none of the G.722, G.723.1, and G.729A codecs. If the G.729A or G.722 codec is selected, the payload size and the jitter buffer settings can be changed. If the G.723.1 codec is selected, only the jitter buffer can be changed, as the only supported payload size is 30 ms.

For codec configuration in Element Manager, see Configure Voice Gateway Profile data on page 264.

---

**Codec registration**

After you configure the codecs, the IP Phones and DSPs must register the configured codecs with the Call Server.

---

**Codec registration for IP Phones**

The IP Deskphones always register both the G.711 a-law and mu-law codecs, and all user-configured codec. The codecs that the user can configure are G.729A, G.729AB, and G.723.1.
The minimum number of codecs registered for an IP Deskphones is two: G.711 a-law and G.711 mu-law (G.711 is always configured).

The maximum number of codecs registered for an IP Deskphones is six: G.711 a-law, G.711 mu-law, G.722, G.723.1, G729A, and G729AB.

**Important:**

IP Deskphones do not register the fax codecs (T.38 and G.711 Clear Channel).

Only certain IP Deskphones with UNIStim 5.0 firmware support the G.722 codec. If the IP Deskphone supports the G.722 codec, the codec appears in the list of codecs available for the user to configure.

**Example 1**

A user configures a G.711 mu-law codec (with a 30-ms payload) and a G.723.1 codec (with a 30-ms payload).

The following three codecs are actually registered:

- G.711 mu-law (30 ms)
- G.711 a-law (30 ms)
- G.723.1 (30 ms)

**Example 2**

A user configures four codecs:

- G.711 a-law codec with a 10 ms payload
- G.729A codec with 50 ms payload
- G.729AB codec with 30 ms payload
- G.723.1 codec with a 30 ms payload

The following five codecs are actually registered:

- G.711 a-law (10 ms)
- G.711 mu-law (10 ms)
- G.729A (50 ms)
- G.729AB (30 ms)
- G.723.1 (30 ms)
Codec registration for DSPs

DSPs register the following codecs:

- Both G.711 a-law and G.711 mu-law codecs are always registered.
- Both fax codecs (T.38 and G.711 Clear Channel) are always registered.
- One best bandwidth (BB) codec, if at least one of G.729A, G.729AB, or G.723.1 codecs is configured. The BB codec is based on the codec type. The order of preference for choosing the BB codec is G.729AB, G.729A, and then G.723.1.

Important:
When G.723.1 codec is configured on the Media Card 32-port cards, the number of channels is reduced to 24. This is a limitation of the DSP software. The unused channels are not registered; therefore, the Call Server software does not access them.

Minimum Codecs
The minimum number of codecs registered for DSPs is four:

- G.711 a-law
- G.711 mu-law
- T.38
- G.711 Clear Channel

Maximum Codecs
The maximum number of codecs registered for DSPs is six:

- G.711 a-law
- G.711 mu-law
- T.38
- G.711 Clear Channel
- one of G.729AB and/or G.729A, or G.723.1

Example 1
A user configures four codecs:

- G.711 a-law codec with a 10 ms payload
- G.729A codec with 50 ms payload
- G.729AB codec with 30 ms payload
- G.723.1 codec with a 30 ms payload

The following six codecs are registered:

- G.711 a-law (10 ms)
- G.711 mu-law (10 ms)
• G.729AB (30 ms)
• G.729A (50 ms)
• T.38
• G.711 Clear Channel

The G.729AB codec is selected, as it is the first in the order of preference of the BB codecs. The G.723.1 codec does not get registered.

Example 2
A user configures three codecs:
• G.711 mu-law codec with a 20 ms payload
• G.729A codec with 30 ms payload
• G.723.1 codec with a 30 ms payload

The following five codecs are actually registered:
• G.711 mu-law (20 ms)
• G.711 a-law (20 ms)
• G.729A (30 ms)
• T.38
• G.711 Clear Channel

The G.729A codec is selected, as it precedes the G.723.1 codec in the order of preference of the best bandwidth codecs.

Voice Gateway codec registration

The Voice Gateway registers codecs for the gateway channels as follows:

• G.711 a-law and G.711 mu-law are always registered.

• T.38 and G.711 Clear Channel fax codecs are always registered. G.711 Clear Channel is used for IP Trunk connections to Avaya Business Communications Manager (Avaya BCM), which does not support T.38 fax.

• A minimum of two codecs are registered if only G.711 is configured.

• A maximum of four codecs can be registered: the G.711 a-law and mu-law for BQ codec, and some BB codecs (defined by the following rules).
  - If the G.729A codec is configured, only the G.729A codec is registered with the Call Server.
  - If the G.729AB codec is configured, the G.729A codec and the G.729AB codec are registered with the Call Server.
  - If the G.723 codec is configured, the G.723 codec is registered with the Call Server.
Example 1
G.711 a-law, G.729A, G.729AB, and G.723.1 are configured. The Voice Gateway registers G.711 a-law, G.711 mu-law, G.729A, and G.729AB.

Example 2
G.711 mu-law, G.729A, and G.723.1 are configured. The Voice Gateway registers G.711 alaw, G.711 mu-law, and G.729A.

Example 3
G.711 mu-law and G.723.1 are configured. The Voice Gateway registers G.711 a-law, G.711 mu-law, and G.723.1.

Codec negotiation

Codec refers to the voice coding and compression algorithm used by DSPs. Each codec has different QoS and compression properties. For every virtual trunk call, a common codec must be selected for the call. This is known as codec negotiation.

IP Peer Networking supports the per-call selection of codec standards, based on the type of call (interzone or intrazone). The codec preference sequence sent over SIP or H.323.

For more information about interzone and intrazone, see Converging the Data Network with VoIP Fundamentals, NN43001-260.

Codec sorting

The codec preference sequence sent over SIP or H.323 depends on the bandwidth policy selected for the Virtual Trunk zone and the involved IP Phones. For Best Quality, the list is sorted from best to worst voice quality. For Best Bandwidth, the list is sorted from best to worst bandwidth usage.

Codec sorting methods

Two methods are available to sort the codec list:

- BQ sorting: the codec list is sorted so that the first codec in the list is the best BQ codec, the second codec is the second best BQ codec in the list, and so on.

- BB sorting: the codec list is sorted so that the first codec in the list is the best BB codec, the second codec is the second best BB codec in the list, and so on.

Table 54: BQ and BB codec sorting lists on page 199 shows the codec list sorting order for the BQ and BB codecs. To know if a codec is BQ (as compared to another codec), see the lists in columns 1 and 2. To determine if a codec is BB (as compared to another codec), see the lists in columns 3 and 4. The BQ or BB codec is listed at the top of the column.
## Table 54: BQ and BB codec sorting lists

<table>
<thead>
<tr>
<th></th>
<th>Best Quality (BQ) sorting</th>
<th>Best Bandwidth (BB) sorting</th>
</tr>
</thead>
<tbody>
<tr>
<td>For mu-law systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.722_64_10 ms</td>
<td>G.722_64_10 ms</td>
<td>G.729AB_50 ms</td>
</tr>
<tr>
<td>G.722_64_20 ms</td>
<td>G.722_64_20 ms</td>
<td>G.729AB_40 ms</td>
</tr>
<tr>
<td>G.722_64_30 ms</td>
<td>G.722_64_30 ms</td>
<td>G.729AB_30 ms</td>
</tr>
<tr>
<td>G.722_64_40 ms</td>
<td>G.722_64_40 ms</td>
<td>G.729AB_20 ms</td>
</tr>
<tr>
<td>G.722_56_10 ms</td>
<td>G.722_56_10 ms</td>
<td>G.729A_50 ms</td>
</tr>
<tr>
<td>G.722_56_20 ms</td>
<td>G.722_56_20 ms</td>
<td>G.729A_40 ms</td>
</tr>
<tr>
<td>G.722_56_30 ms</td>
<td>G.722_56_30 ms</td>
<td>G.729A_30 ms</td>
</tr>
<tr>
<td>G.722_56_40 ms</td>
<td>G.722_56_40 ms</td>
<td>G.729A_20 ms</td>
</tr>
<tr>
<td>G.711_mu_law_10 ms</td>
<td>G.711_a_law_10 ms</td>
<td>G.723.1_5.3 kb/s_30 ms</td>
</tr>
<tr>
<td>G.711_mu_law_20 ms</td>
<td>G.711_a_law_20 ms</td>
<td>G.723.1_5.3 kb/s_30 ms</td>
</tr>
<tr>
<td>G.711_mu_law_30 ms</td>
<td>G.711_mu_law_30 ms</td>
<td>G.723.1_6.4 kb/s_30 ms</td>
</tr>
<tr>
<td>G.711_a_law_10 ms</td>
<td>G.711_mu_law_10 ms</td>
<td>G.722_64_40 ms</td>
</tr>
<tr>
<td>G.711_a_law_20 ms</td>
<td>G.711_mu_law_20 ms</td>
<td>G.722_64_30 ms</td>
</tr>
<tr>
<td>G.711_a_law_30 ms</td>
<td>G.711_mu_law_30 ms</td>
<td>G.722_64_20 ms</td>
</tr>
<tr>
<td>G.722_48_10 ms</td>
<td>G.722_48_10 ms</td>
<td>G.722_64_10 ms</td>
</tr>
<tr>
<td>G.722_48_20 ms</td>
<td>G.722_48_20 ms</td>
<td>G.722_48_10 ms</td>
</tr>
<tr>
<td>G.722_48_30 ms</td>
<td>G.722_48_30 ms</td>
<td>G.722_48_10 ms</td>
</tr>
<tr>
<td>G.722_48_40 ms</td>
<td>G.722_48_40 ms</td>
<td>G.722_48_10 ms</td>
</tr>
<tr>
<td>G.729A_10 ms</td>
<td>G.729A_10 ms</td>
<td>G.729A_10 ms</td>
</tr>
<tr>
<td>G.729A_20 ms</td>
<td>G.729A_20 ms</td>
<td>G.729A_10 ms</td>
</tr>
<tr>
<td>G.729A_30 ms</td>
<td>G.729A_30 ms</td>
<td>G.729A_10 ms</td>
</tr>
<tr>
<td>G.729A_40 ms</td>
<td>G.729A_40 ms</td>
<td>G.729A_10 ms</td>
</tr>
<tr>
<td>G.729A_50 ms</td>
<td>G.729A_50 ms</td>
<td>G.729A_10 ms</td>
</tr>
<tr>
<td>G.729AB_10 ms</td>
<td>G.729AB_10 ms</td>
<td>G.729A_10 ms</td>
</tr>
<tr>
<td>G.729AB_20 ms</td>
<td>G.729AB_20 ms</td>
<td>G.729A_10 ms</td>
</tr>
<tr>
<td>G.729AB_30 ms</td>
<td>G.729AB_30 ms</td>
<td>G.729A_10 ms</td>
</tr>
<tr>
<td>G.729AB_40 ms</td>
<td>G.729AB_40 ms</td>
<td>G.729A_10 ms</td>
</tr>
<tr>
<td>G.729AB_50 ms</td>
<td>G.729AB_50 ms</td>
<td>G.729A_10 ms</td>
</tr>
<tr>
<td>G.723.1_5.3 kb/s_30 ms</td>
<td>G.723.1_5.3 kb/s_30 ms</td>
<td>G.723.1_5.3 kb/s_30 ms</td>
</tr>
<tr>
<td>G.723.1_6.4 kb/s_30 ms</td>
<td>G.723.1_6.4 kb/s_30 ms</td>
<td>G.723.1_6.4 kb/s_30 ms</td>
</tr>
<tr>
<td>T.38</td>
<td>T.38</td>
<td>T.38</td>
</tr>
<tr>
<td>G.711CC</td>
<td>G.711CC</td>
<td>G.711CC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Codec selection

For every Virtual Trunk call, a codec must be selected before the media path can be opened. When a call is setup or modified (that is, media redirection), one of two processes occurs:

- The terminating node selects a common codec and sends the selected codec to the originating node.
- The codec selection occurs on both nodes.

Each node has two codec lists: its own list and the far end list. To select the same codec on both nodes, it is essential to use the same codec selection algorithm on both nodes. The following conditions are met before codec selection occurs:

- Each codec list contains more than one payload size for a given codec type (depending on the codec configuration).
- Each codec list is sorted by order of preference (the first codec in the near end list is the near end most preferred codec, the first codec in the far end list is the far end preferred codec).

Codec selection algorithm

When the codec lists meet the above conditions, one of the following codec selection algorithms selects the codec to be used:

- H.323 Master/Slave algorithm
- SIP Offer/Answer model
- Best Bandwidth codec selection algorithm

H.323 Master/Slave algorithm

The H.323 Master/Slave algorithm operates in the following manner:

- The Master node uses its codec list as the preferred list and finds a common codec in the far end’s list. For example, the Master finds the first codec in its list (for example, C1), checks the list at the far end and if the codec matches the Master (also C1) than that is the selected codec. Otherwise, it finds the second codec in its list and verifies it against the far end. The process continues until a common codec is found between the Master and far end.
- The Slave node uses the far end’s list as the preferred list and finds in its own list the common codec.
SIP Offer/Answer model

The SIP codec negotiation is based on the Offer/Answer model with Session Description Protocol (SDP).

The following three cases of codec negotiation are supported:

- The calling user agent sends an SDP offer with its codec list in the invite message with a sendrecv attribute. In this case, the called user agent selects one codec and sends the selected codec in an SDP answer. The SDP answer is included in the 200 OK message (response to the INVITE) with the sendrecv attribute as the preferred method of operation.

- The calling user agent sends an SDP offer with its codec list in the invite message with a sendrecv attribute. The called user agent returns more than one codec in the SDP answer. In this case, that many codecs are included in the response, the calling user agent picks the first compatible codec from the called user agent list, and sends a new SDP offer with a single codec to lock it in.

- If the SDP of the calling user agent is not present in the INVITE message, then the called user agent sends its codec list in an SDP offer in the 200 OK message, with the sendrecv attribute. The calling user agent selects one codec and sends it in an SDP answer inside the ACK message, with a sendrecv attribute.

Best Bandwidth Codec Selection algorithm

The Best Bandwidth codec selection algorithm solves the issues caused by the H.323 Master/Slave algorithm. The Best Bandwidth algorithm selects one common codec based on two codec lists. Every time the selection is done with the same two lists, the selected codec matches. The Best Bandwidth codec decision is based on the codec type only. It does not consider the fact that some codecs, while generally using less bandwidth, can consume more bandwidth than others at certain payload sizes.

Best Bandwidth also applies to SIP.

Table 55: Best Bandwidth codec Selection between any two codecs types on page 201 shows the codec that would be selected between any two codecs. For example, if the two codecs are the G.729A and G.723.1, the selected codec is the G.729A.

Table 55: Best Bandwidth codec Selection between any two codecs types

<table>
<thead>
<tr>
<th>Codec type</th>
<th>G.711_a-Law</th>
<th>G.711_mu-Law</th>
<th>G.722</th>
<th>G.729 A</th>
<th>G.729AB</th>
<th>G.723.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.711_a-Law</td>
<td>G.711_a-Law</td>
<td>G.711_mu-Law</td>
<td>G.722</td>
<td>G.729 A</td>
<td>G.729AB</td>
<td>G.723.1</td>
</tr>
<tr>
<td>Codec type</td>
<td>G.711_a-Law</td>
<td>G.711_mu-Law</td>
<td>G.722</td>
<td>G.729 A</td>
<td>G.729AB</td>
<td>G.723.1</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>G.711_mu-Law</td>
<td>G.711_mu-Law</td>
<td>G.722</td>
<td>G.729 A</td>
<td>G.729AB</td>
<td>G.723.1</td>
<td></td>
</tr>
<tr>
<td>G.722</td>
<td>G.722</td>
<td>G.722</td>
<td>G.729 A</td>
<td>G.729AB</td>
<td>G.723.1</td>
<td></td>
</tr>
<tr>
<td>G.723.1</td>
<td>G.723.1</td>
<td>G.723.1</td>
<td>G.729 A</td>
<td>G.729AB</td>
<td>G.723.1</td>
<td></td>
</tr>
<tr>
<td>G.729A</td>
<td>G.729A</td>
<td>G.729A</td>
<td>G.729 A</td>
<td>G.729AB</td>
<td>G.729A</td>
<td></td>
</tr>
<tr>
<td>G.729AB</td>
<td>G.729AB</td>
<td>G.729AB</td>
<td>G.729 AB</td>
<td>G.729AB</td>
<td>G.729AB</td>
<td></td>
</tr>
</tbody>
</table>

For more information about codec selection and negotiation, see *Converging the Data Network with VoIP Fundamentals, NN43001-260*. 
Chapter 8: Installation task flow

Contents

This section contains the following topics:

- Introduction on page 203
- Before you begin on page 203
- Installation summary on page 203
- Table 56: IP Phone configuration data summary sheet on page 205

Introduction

Use the task flow information in this chapter to determine the proper steps for the installation or upgrade of the IP Line applications.

Read Codecs on page 191 before you install an IP Telephony node.

Before you begin

Ensure that the Avaya Communication Server 1000 (Avaya CS 1000) system runs the latest Avaya CS 1000 software Release.

Installation summary

Use the following summary of steps as a reference guide to install and configure an IP Telephony node. This summary is intended to serve as a pointer to the more detailed procedures in later chapters and to provide a sequential flow to the steps in the overall installation procedure.
Preinstallation and configuration steps

1. Complete the IP Phone configuration data summary sheet. See Table 56: IP Phone configuration data summary sheet on page 205.

2. Install the hardware components:
   a. Install the Voice Gateway Media Card. See Installing the Media Card on page 232 for installing the Media Card 32-port cards.
   b. Cable the Voice Gateway Media Cards:
      Install the Shielded 50-pin to Serial/ELAN/TLAN Adapter for the Media Card 32-port cards. See Installing the Shielded 50-pin to Serial/ELAN/TLAN Adapter onto the Media Card on page 234.

3. Configure IP Line data on the system:
   a. Configure the IP address for the ELAN network interface. See Configuring the ELAN network interface IP address for the active ELNK on page 235.
   b. Configure VoIP bandwidth management zones. See Configure VoIP bandwidth management zones (LD 117) on page 236.
   c. Configure IP Line physical TNs.
   d. Configure virtual superloops. See Configure virtual superloops for IP Phones on page 239.
   e. Configure IP Phone features. See Configure IP Phone features in LD 11 on page 240.

4. Configure IP Line data using Element Manager:
   b. Configure SNMP traps and community strings access for security. See Configuring SNMP trap destinations and community strings on page 263.
   c. Configure DiffServ CodePoint (DSCP) data, 802.1Q support, and NAT support. See Configure Quality of Service on page 268.
   d. Configure file server access. See Configure file server access on page 269.
   e. Configure the loss plan. See Configure loss and level plan on page 271.
   f. Configure Voice Gateway Media Card properties. See Add card and configure the card properties of the Voice Gateway Media Card on page 271.

5. Transmit Voice Gateway Media Card configuration data to the Voice Gateway Media Cards:
   Transmit node and card properties to the Leader. See Transmitting node properties to Leader on page 274.
6. Upgrade the card software and IP Phone firmware:
   b. Verify the IP Phone firmware release.
   c. Download software and firmware files from the Avaya Web site. See Download the current loadware and IP Phone firmware on page 277.
   d. Upload the software and firmware files to the file server. See Upload the loadware and firmware files to the Signaling Server on page 277.
   e. Upgrade the software on the Voice Gateway Media Card. See Upgrade the Voice Gateway Media Card loadware on page 278.
   f. Restart the card. See Restart the Voice Gateway Media Card on page 280.
   g. Upgrade the IP Phone firmware on the card. See Upgrade the IP Phone firmware on page 281.

7. Assemble and install an IP Phone. See IP Phones Fundamentals, NN43001-368.

8. Configure the IP Phone Installer Passwords (see IP phone Installer Password on page 298).
   a. Enable and configure the administrative IP Phone Installer Password. See Configuring the Administrative IP Phone Installer Password on page 302.
   b. If needed, enable and configure a temporary IP Phone Installer Password. See Configuring the temporary IP Phone Installer Password on page 305.

Avaya recommends that you complete an IP Phone configuration data summary sheet as you install and configure IP Phones.

Table 56: IP Phone configuration data summary sheet

<table>
<thead>
<tr>
<th>No DHCP</th>
<th>DHCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>Gateway IP address</td>
</tr>
<tr>
<td>Sub-net mask</td>
<td>Connect Server IP address*</td>
</tr>
<tr>
<td>Connect Server IP address*</td>
<td></td>
</tr>
</tbody>
</table>

*Connect Server IP address is the Node IP address of the IP Telephony node.
Installation task flow
Chapter 9: Signaling Server software installation using Deployment Manager

You must install Signaling Server software using Deployment Manager. For information about installing the Signaling Server software using Deployment Manager, see *Linux Platform Base and Applications Installation and Commissioning*, NN43001-315.

Contents

This chapter contains the following information:

- Introduction on page 207
- Software Deployment Packages on page 209
- Pre-installation checklist on page 209
- Linux Base installation on page 209
- Signaling Server application installation on page 210
- Access UCM on page 211
- Element Manager configuration on page 212

Introduction

This chapter explains how to deploy Signaling Server software and supported applications on the Avaya CS 1000 system.

When you install the Linux base platform, you deploy the Signaling Server software, which you can access through the Unified Communications Management (UCM) console. For more information about the Linux platform base install, see *Linux Platform Base and Applications Installation and Commissioning*, NN43001-315.
Installation Task Flow

This section provides a high-level task flow to install CS 1000 Release 7.5.

Figure 42: Linux base and applications installation task flow
Software Deployment Packages

Install Avaya applications using Deployment Manager.

You can deploy the Signaling Server software from one of the following predefined deployment packages:

- Signaling Server (SS)
- Signaling Server and Network Routing Service
- Call Server (CS) and Signaling Server (basic stand-alone Co-resident system. For more information about the Co-resident system, see Co-resident Call Server and Signaling Server Fundamentals, NN43001-509.

After you deploy the Signaling Server software, configure the software applications through Element Manager. The CS 1000 software applications include: LTPS, Vtrk (SIPgw and H.323GW), Personal Directory (PD). Voice Gateway Media Card loadware is also included as part of the Signaling Server software.

Pre-installation checklist

The Co-resident CS and Signaling Server requires a server hardware platform with a 40 GB hard drive and 2 GB of memory. The CP PM card BIOS must be Release 18 or later. You must determine the server BIOS version and upgrade the BIOS if necessary. For more information, see Co-resident Call Server and Signaling Server Fundamentals, NN43001-509.

For more information about BIOS versions for COTS platforms, see Linux Platform Base and Applications Installation and Commissioning, NN43001-315.

Linux Base installation

Note:

You must install the Linux base platform before you complete the procedures described in this section.

Perform the Linux Base installation from the command line interface (CLI) using a bootable Removable Media Device (RMD). The bootable RMD can be a Compact Flash (CF) card, USB 2.0 storage device, or a DVD, depending on your hardware platform. Configure the ELAN, TLAN IP address, gateway, subnet masks, and date and time settings during the Linux Base installation. A DVD install is available for COTS platforms.
Signaling Server software installation using Deployment Manager

For more information about the Linux Base installation, see *Linux Platform Base and Applications Installation and Commissioning, NN43001-315*.

**Note:**

After you complete the Linux base installation, you must configure the server as a primary, backup or member server in the UCM security framework. This configuration is completed using the default Avaya user ID and password when logging on TO UCM to perform the security configuration. For more information, see *Linux Platform Base and Applications Installation and Commissioning, NN43001-315*.

---

**Signaling Server application installation**

Use the Deployment Manager to install the Signaling Server application on the servers.

The Deployment Manager installs the Call Server, Signaling Server, and System Management applications as Linux Red Hat Package Manager (RPM) packages.

Deployment Manager access occurs through the Web-based CS 1000 UCM navigator.

The Deployment Manager can operate in two modes;

- **Centralized Deployment Manager (Remote):**
  
  The Deployment Manager runs on the UCM Primary Security Server. You must start the UCM navigator and log on to the UCM Primary Security Server. In this model, the Centralized Deployment Manager deploys application software to the target servers in the UCM security domain.

- **Local Deployment Manager:**

  The Deployment Manager runs on the target server. Accessing the Deployment Manager is similar to the Centralized Deployment option except you must log on to the local target server by using the default user ID and password. This mode is typically used when you want to install software on the target server before you configure it to join the UCM security framework.

In both Centralized and Local modes, the application software Application Image (NAI) on the software delivery media is uploaded from the client workstation to the server where Deployment Manager runs:

- For the Centralized Deployment Manager, the application software image is transferred to the hard disk of the UCM primary security server.

- For the Local Deployment Manager, the application software image is transferred to the hard disk on the target server.
Note:
For the Centralized Deployment Manager, you need to upload the application software only once. You can then deploy the software image to multiple target servers in the UCM security domain.

The Deployment Manager supports new installation and upgrades. Both processes are similar but contain the following differences:

• For the upgrade, you cannot remove or add any new type of application on the Co-res CS and SS; you must use the existing package configuration. You can upgrade only the existing applications to newer versions.

• For the upgrade, existing data is backed up and restored when you install the new version of the application software.

Note:
If you change the package configuration, you must manually back up data on the target by using the sysbackup command before you use the Deployment Manager to install a new package configuration on the Co-res CS and Signaling Server.

For detailed information, see Linux Platform Base and Applications Installation and Commissioning, NN43001-315.

Note:
The Signaling Servers in a network are configured as Master and Slave by providing the Node IP through Element Manager with the Node IP attached to the Network Interface. When the Master server is down, the Slave server automatically acts as Master and uses the existing Node IP to operate.

The Signaling Server is configured with IPv6 SIP Proxy address. The SIP GW registers to the SIP Proxy Server (SPS) through IPv4 or IPv6 interface depending on the IP version supported by SPS. The SIP GW registers both IPv4 and IPv6 addresses as its contact addresses, if SPS supports dual stack. If SPS supports IPv4 only, the SIP GW registers IPv4 address as its contact address.

Access UCM

Centralized Deployment Manager allows software application deployment from the primary security server to other Linux servers in the same security domain. The primary security server is the central repository for the software application load and deployment occurs remotely, which eliminates the need to log on to each target server. For more information, see Linux Platform Base and Applications Installation and Commissioning, NN43001-315

You must access UCM to deploy software through the Deployment Manager.
Deploying Signaling Server software to a server

1. Log on to the UCM Deployment Manager.
2. Select the **Software Deployment** link.

The Target Deployment window appears.

![UCM Deployment Manager](image)

**Figure 43: Target Deployment window**

3. Select a host name from the list, and click **Deploy**.
4. Select the check boxes for the software applications that you want to deploy to the server: EM, NRS, NRS+SS, SIPL, SS.

When you select a check box, other check boxes might then be unavailable if the selected software cannot co-reside with the unavailable software.

5. Click **Deploy**.

After you deploy the Signaling Server software, configure the VTRK (SIPgw and H.323gw) components. These features can be configured as part of IP Telephony node configuration. For more information, see [Manually add an IP Telephony node](#) on page 253.

IP Telephony nodes are configured through Element Manager. Ensure that Element Manager is deployed and configured. For more information, see *[Linux Platform Base and Applications Installation and Commissioning](#)*, NN43001-315.

---

**Element Manager configuration**

The following sections provide information to set up the Internet Explorer browser.
Configuring the Internet Explorer browser

System requirements for Element Manager

Element Manager requires Microsoft Internet Explorer 6.0.2600 or later with Service Pack 1. Element Manager is not supported on the Netscape browser.

The Element Manager Virtual Terminal Environment requires the Java Runtime Environment (JRE).

Configuring the browser

Before you can use Element Manager, you must complete the following tasks:

• Enable pop-ups in the browsers search utility (mandatory)
• Configure the Internet Explorer browser settings (mandatory)
• Configure the Windows Display settings (highly recommended)

Important:
Avaya discourages using the browser Back, Forward, and Refresh buttons.

Element Manager pages contain dynamic data content. Avaya does not recommend that you use the Back button. Element Manager provides a navigation path on the top of every page.

Avaya recommends that you use the navigation path to go to the previous page.

Note:
The interface for the Internet Explorer browser settings and Windows Display settings can vary by browser version and by operating system.

If you use a browser search utility (such as the Google search engine or the Yahoo! search engine), ensure that pop-ups are enabled. Typically, you enable pop-up windows from the toolbar of the search utility.

Important:
Do not block pop-ups if you use a search utility (such as Google or Yahoo!) in your browser.

Use the following procedure to configure the following Internet Explorer browser settings.

• Turn off Internet Explorer caching.
Internet Explorer caching interferes with the Element Manager, so you cannot see real-time changes as they occur.

- Configure empty session information.
- Clear the AutoComplete options.

**Configure the Internet Explorer browser settings**

1. Select **View, Text Size, Medium** to configure the text size in the browser.
2. Select **Tools, Internet Options** in the Internet Explorer browser window.

   The Internet Options window appears.
3. Turn off Internet Explorer caching:
   a. On the **General** tab under the **Temporary Internet files** section, click **Settings**.

      The Settings window appears.
   b. Under the **Check for newer versions of stored pages** section, select **Every visit to the page**.
   c. Click **OK**.
4. Configure empty session information:
   a. Select the **Advanced** tab.

      The Advanced Settings window appears.
   b. Under **Security**, select **Empty Temporary Internet Files folder when browser is closed**.
5. Clear the AutoComplete options.
   a. Select the **Content** tab.
   b. Under **Personal Information**, click **AutoComplete**.

      The AutoComplete Settings window appears.
   c. Under the **Use AutoComplete for** section, clear **Forms and User names and passwords on forms**.
6. (Optional) Configure the Windows display settings.
   a. Select **Start, Settings, Control Panel, Display**.

      The Display Settings window appears.
   b. Select the **Settings** tab.
   c. Select **True Color (32 bit)** from the **Colors** list.
   d. Under **Screen area**, select **1280 by 1024 pixels**.
   e. Click **OK**.
Chapter 10: Signaling Server Software upgrade

Avaya Communication Server 1000 (Avaya CS 1000) Signaling Server software requires a Linux platform and is updated using Deployment Manager. For information about upgrading the Signaling Server software using Deployment Manager, see Linux Platform Base and Applications Installation and Commissioning, NN43001-315.

Contents

This chapter contains the following information:

- Introduction on page 215
- Overview on page 216
- Before starting your upgrade on page 216
- Upgrade paths on page 217
- Upgrade procedures on page 219

Introduction

This chapter contains instructions to upgrade the software on your existing Signaling Server. Support is available to upgrade from Succession 1000 Release 3.0, CS 1000 Release 4.0, Communication Server 1000 Release 4.5, Communication Server 1000 Release 5.0, Communication Server 1000 Release 5.5, CS 1000 Release 6.0, and CS 1000 Release 7.0.

All Signaling Servers are subject to software upgrades in CS 1000 Release 7.5. CP PM, IBM X306m, and HP DL320-G4 Signaling Servers can not run software older than CS 1000 Release 5.0, so are subject to a software upgrade only from CS 1000 Release 5.0.

Note:

You can contact Avaya Services to assist you with your upgrade.

Important:

The Upgrade procedure includes options to copy new IP Phone firmware and Voice Gateway Media Card loadware to the Signaling Server. If you use these options during the
upgrade, ensure that you upgrade the firmware and loadware on all connected IP Phones and Voice Gateway Media Cards respectively.

Overview

In Succession 1000 Release 3.0, only H.323 signaling was supported on the Signaling Server. Session Initiation Protocol (SIP) signaling was introduced on the Signaling Server in CS 1000 Release 4.0. CS 1000 Release 4.0 also introduced Network Routing Service (NRS) functionality on the Signaling Server. When upgrading your Signaling Server from Succession 1000 Release 3.0 to a newer release, conversion of the H.323 signaling infrastructure to an NRS infrastructure is a critical component of the upgrade. For more information on an NRS upgrade, see Network Routing Service Installation and Commissioning, NN43001-130.

CS 1000 Release 7.5 Signaling Server software requires 2 GB of RAM to support operational requirements. CP PM, IBM X306m, and HP DL320-G4 Signaling Servers come with 1 or more GB of RAM already configured. For more information on system requirements, see Linux Platform Base and Applications Installation and Commissioning, NN43001-315.

Before starting your upgrade

Read through the following important information before getting started with your CS 1000 Release 7.5 upgrade:

• The Signaling Server is out of service during a software upgrade.

• Ensure that you back up all data to a remote device or FTP server.

ISP 1100 servers are not supported in CS 1000 Release 7.5; all saved data must be migrated to a supported hardware platform. For servers, all hard drives must be reformatted before an upgrade to CS 1000 Release 7.5.

• In earlier versions of CS 1000, there might be more than one database. For example, Signaling Server might be installed with IP Line and NRS. Ensure that you back up all databases that exist.

All databases might not be restored to the same platform in CS 1000 Release 7.5. For example, Signaling Server applications and NRS can be deployed to different platforms in Release 7.5.
Signaling Server software upgrade task flow

To upgrade Signaling Server to CS 1000 Release 7.5, complete the following tasks:

- Back up all databases to a remote device or FTP server. See the procedures in this chapter. For information about the NRS database, see Network Routing Service Installation and Commissioning, NN43001-130.

- Deploy the Linux base platform. For more information, see Linux Platform Base and Applications Installation and Commissioning, NN43001-315.

- Deploy and configure the Signaling Server package. For more information, see Signaling Server application installation on page 210

- Log on to Unified Communications Manager (UCM). For more information, see Access UCM on page 211

- Access Element Manager through UCM to restore your databases.

Upgrade paths

The following upgrade paths are available to upgrade your Signaling Server software:

- from Succession 1000 Release 3.0 to CS 1000 Release 7.5 (see Upgrade from Succession 1000 Release 3.0 on page 217)

- from CS 1000 Release 4.0 to CS 1000 Release 7.5 (see Upgrade from CS 1000 Release 4.0 on page 218)

- from CS 1000 Release 4.5, 5.0, and 5.5 to CS 1000 Release 7.5 (see Upgrade from Communication Server 1000 Release 4.5, 5.0, and 5.5 on page 218)

- from CS 1000 Release 6.0 to CS 1000 Release 7.5 (see Upgrade from Communication Server 1000 Release 6.0 on page 218)

Upgrade from Succession 1000 Release 3.0

The following task list contains all tasks necessary to upgrade your Signaling Server software from Succession 3.0 to CS 1000 Release 7.5.

Upgrade the Signaling Server software.
For instructions, see [Upgrading the Signaling Server software](#) on page 220.

---

**Upgrade from CS 1000 Release 4.0**

The following task list contains all of the tasks necessary to upgrade your Signaling Server software from CS 1000 Release 4.0 to CS 1000 Release 7.5.

1. Back up the IP Phone Application Server database (if present).
   
   For instructions, see [Backing up the IP Phone Application Server database](#) on page 219.

2. Determine if an NRS database is present.
   
   For more information about upgrading the NRS application, see *Network Routing Service Installation and Commissioning, NN43001-130*.

3. Upgrade the Signaling Server software.
   
   For instructions, see [Upgrading the Signaling Server software](#) on page 220.

4. Restore the IP Phone Application Server database (if present).
   
   For instructions, see [Restoring the IP Phone Application Server database](#) on page 224.

---

**Upgrade from Communication Server 1000 Release 4.5, 5.0, and 5.5**

The following task list contains the tasks necessary to upgrade your Signaling Server software from CS 1000 Release 4.5, 5.0, and 5.5 to CS 1000 Release 7.5.

- Perform the instructions to upgrade Signaling Server software (see [Upgrading the Signaling Server software](#) on page 220).

---

**Upgrade from Communication Server 1000 Release 6.0**

In Release 7.5, you must update the Signaling Server software using Deployment Manager. For information about upgrading the Signaling Server software using Deployment Manager, refer to *Linux Platform Base and Applications Installation and Commissioning, NN43001-315*.
Upgrade procedures

This section contains the procedures that you use during the Signaling Server software upgrade.

- Backing up the IP Phone Application Server database on page 219
- Upgrading the Signaling Server software on page 220
- Synchronize IP Telephony nodes on page 221
- Restoring the IP Phone Application Server database on page 224

Perform the following procedure to back up the IP Phone Application Server database.

**Backing up the IP Phone Application Server database**

1. In the Element Manager navigator, click **Tools, Backup and Restore, Personal Directories**.
   
The Personal Directories Backup and Restore window appears.

   ![Personal Directories Backup and Restore Window](image)

2. Click **Personal Directories Backup**.
   
The Personal Directories Backup window appears.
3. Enter the data for the Remote backup IP address, Remote backup userid, Remote backup password, Remote backup path, and Remote backup file name fields.

4. Click Submit.

Perform the following procedure to upgrade the software on your Signaling Server.

**Upgrading the Signaling Server software**

1. Log on to the Primary UCM Server using an administrator account.
2. Select **Network, CS 1000 Servers, Software Deployment**. The Target Deployment window appears.
3. Select the target server and click **Deploy**.
4. Select the SS and EM applications.
5. On the Element Manager Configuration window, select the Call Server ELAN IP address and click **Continue**.

The Call Server must be joined to the Security domain before you proceed with this step.

![Figure 46: Target Deployment - Software Applications window](image)

![Figure 47: Element Manager Configuration window](image)

The application deployment starts. Deploying applications might take a few minutes. When the deployment finishes, the Server Status is Deployed.

Perform the following procedure to synchronize the IP Telephony nodes using Element Manager.

**Synchronize IP Telephony nodes**

**Note:**
If there is only one TTY available, you may have to log off from the Call Server CLI before completing this procedure.

1. Log on to UCM using the Primary UCM Server ID and password credentials.
2. Log on to Element Manager.
3. Select **System, IP Network, Nodes: Server, Media Cards**. The IP Telephony Nodes window appears.

**Managing: 192.168.55.152**  **Username: admin2**

**System » IP Network » IP Telephony Nodes**

**IP Telephony Nodes**

Click the Node ID to view or edit its properties.

<table>
<thead>
<tr>
<th>Add...</th>
<th>Import...</th>
<th>Export...</th>
<th>Delete</th>
<th>Print</th>
<th>Refresh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node ID</td>
<td>Components</td>
<td>Enabled Applications</td>
<td>ELAN IP</td>
<td>Node/TLAN IPv4</td>
<td>Node/TLAN IPv6</td>
</tr>
<tr>
<td>353</td>
<td>1</td>
<td>PD, Presence Publisher, IP Media Services</td>
<td>-</td>
<td>0.0.0.78</td>
<td></td>
</tr>
<tr>
<td>444</td>
<td>1</td>
<td>NONE</td>
<td>-</td>
<td>0.0.0.2</td>
<td></td>
</tr>
</tbody>
</table>

**Figure 48: IP Telephony Nodes window**

4. Select the link for a Node ID. The Node Details window appears.

5. On the Node Details window ensure the information is correct. Select the various links (TPS, Gateway) to ensure that information is correct.

**Figure 49: Node Details window**

6. In the Associated Signaling Servers & Cards section of the window, select the Signaling Server from the Select to add list and click **Make Leader**.
7. Click Save.

**Note:**
If you have upgraded to Communication Server 1000 Release 7.x, you must configure the Application Node ID field before saving the node details.

8. Select the follower Signaling Server from the list and click Add. Click Save. The Node Saved window appears.

9. Click Transfer Now. The Synchronize Configuration Files window appears.
10. Select the check boxes for the nodes to synchronize and select **Start Sync**. The Synchronization Status column displays Synchronized when the synchronization finishes.

11. Click **Restart Applications** to restart the Signaling Server applications. The LTPS, Gateway (SIP and H.323), and PD applications are now successfully deployed.

Perform the following procedure to restore the IP Phone Application Server database.

**Restoring the IP Phone Application Server database**

1. In the Element Manager navigator, select **Tools, Backup and Restore, Personal Directories**.

The Personal Directories Backup and Restore window appears.

![Figure 52: Synchronize Configuration Files window](image)

**Figure 52: Synchronize Configuration Files window**

10. Select the check boxes for the nodes to synchronize and select **Start Sync**. The Synchronization Status column displays Synchronized when the synchronization finishes.

11. Click **Restart Applications** to restart the Signaling Server applications. The LTPS, Gateway (SIP and H.323), and PD applications are now successfully deployed.

Perform the following procedure to restore the IP Phone Application Server database.

**Restoring the IP Phone Application Server database**

1. In the Element Manager navigator, select **Tools, Backup and Restore, Personal Directories**.

The Personal Directories Backup and Restore window appears.

![Figure 53: Personal Directories backup and restore](image)

**Figure 53: Personal Directories backup and restore**

2. Click **Personal Directories Restore**.

The Personal Directories Restore window appears.
Figure 54: Personal Directories restore

3. From the Action list, select FTP from Remote Site if you saved the backup on a remote server.

4. Enter the data for the Remote backup IP address, Remote backup userid, Remote backup password, Remote backup path, and Remote backup file name fields.

5. Click Submit.

6. Click OK.

7. Select System, IP Networks, Maintenance and Reports. The Node Maintenance and Reports window appears.

8. Click Reset. The Base Manager window for the server appears.

Figure 55: Base Manager window


10. Click OK to confirm that you want to restart the application. The status of the Personal Directory restart updates when the restart finishes.
Important:
The length of time to restore an IP Phone Application Server database depends on the number of records.
Chapter 11: Installation and initial configuration of an IP Telephony node

Contents

This section contains the following topics:

- Introduction on page 227
- Equipment considerations on page 228
- Install the hardware components on page 229
- Initial configuration of IP Line data on page 235
- Node election rules on page 250

Introduction

This chapter explains how to install and initially configure a new IP Telephony nodes, Voice Gateway Media Cards (Media Card line cards), and associated cables.

Before you install an IP Telephony node, see Converging the Data Network with VoIP Fundamentals, NN43001-260 for information about IP network engineering guidelines.

Before configuring an IP Telephony node, you must:

- Install the server and deploy the Linux platform base. For more information, see Linux Platform Base and Applications Installation and Commissioning, NN43001-315.
- Deploy the Signaling Server package. For more information, see Signaling Server software installation using Deployment Manager on page 207.
Installation and configuration procedures

This chapter contains the following procedures:

- Installing the CompactFlash card on the Media Card on page 230
- Installing the Media Card on page 232
- Installing the Shielded 50-pin to Serial/ELAN/TLAN Adapter onto the Media Card on page 234
- Configuring the ELAN network interface IP address for the active ELNK on page 235

Equipment considerations

This section lists the required and optional equipment to install, configure, and maintain the Voice Gateway Media Cards and IP Phones.

Required equipment

The required equipment includes the following:

- a PC to manage IP Line, with Internet Explorer 6.0.2600 or later to run Element Manager for Avaya Communication Server 1000 (Avaya CS 1000) systems
- local TTY or terminal in a switch room (to configure a Leader)
- two shielded CAT 5 Ethernet cables to connect the Voice Gateway Media Card to an external switch (recommended) or hub equipment
- 10/100BaseT network interface (optional autosensing) to support TLAN and 10BaseT ELAN network interface connections
- 10/100BaseT network interface (optional autosensing) in each location where an IP Phone resides
- serial cables
Optional equipment

The optional equipment includes the following:

- a server configured with Dynamic Host Configuration Protocol (DHCP); for example, a NetID server
- an external modem router to enable a remote dial-up connection to the ELAN subnet for technical support (RM356 modem router is recommended)

Install the hardware components

For Media Card 32-port card installation instructions, see Installing the Media Card on page 232.

Voice Gateway Media Card

The Media Card 32-port card and the MC 32S card are known as Voice Gateway Media Cards.

Summary of installation steps

The following table summarizes the steps to install each Voice Gateway Media Card.

Table 57: Installation summary

<table>
<thead>
<tr>
<th>Step</th>
<th>Media Card line cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpack the card.</td>
<td>Remove all contents from the packaging box.</td>
</tr>
<tr>
<td>Install the CompactFlash Card.</td>
<td>Installing the CompactFlash card on the Media Card on page 230.</td>
</tr>
<tr>
<td>Install the Media Cards.</td>
<td>Installing the Media Card on page 232.</td>
</tr>
<tr>
<td>Install the A0852632 Shielded 50-pin to Serial/ ELAN/TLAN Adapter.</td>
<td>Installing the Shielded 50-pin to Serial/ ELAN/TLAN Adapter onto the Media Card on page 234.</td>
</tr>
<tr>
<td>Add the card and configure the card properties.</td>
<td>In Element Manager: Adding a card and configuring Voice Gateway Media Card properties on page 271.</td>
</tr>
</tbody>
</table>
Installing and cabling the Media Card 32-port card

The Media Card 32-port card requires only one slot in the IPE shelf.

**Caution:**

CAUTION WITH ESDS DEVICES

Wear an ElectroStatic Discharge strap when you handle Media Card line cards. As an additional safety measure, handle all cards by the edges, and when possible, with the loosened packaging material still around the component.

CompactFlash installation

The Media Card package contains the following items:

- Media Card
- CompactFlash card
- retaining pin

The CompactFlash card must be installed on the Media Card before you install the Media Card in the system. Perform the steps in Installing the CompactFlash card on the Media Card on page 230 to install the CompactFlash card.

If it is necessary to remove the CompactFlash card, perform the steps in Removing the CompactFlash on page 451.

Installing the CompactFlash card on the Media Card

1. Remove the Media Card and CompactFlash card from the packaging.

   Electrostatic alert:
   
   CAUTION WITH ESDS DEVICES

   Observe the precautions for handling ESD-sensitive devices. Wear a properly connected antistatic wrist strap while you remove the cards from the packaging and work on a static-dissipating surface.

2. Locate the CompactFlash card socket in the lower left corner of the Media Card. See Figure 56: CompactFlash card socket on Media Card on page 231.
3. Position the CompactFlash card with the label facing up, the metal clip pulled up, and the contact pins toward the socket as shown in Figure 57: Position the CompactFlash in socket on page 231.

4. Insert the CompactFlash card in the socket.

   Ensure force is applied equally at both ends of the CompactFlash when you insert it.

5. Gently insert the CompactFlash card, so that it is fully in contact with the connectors on the drive.

6. Push down the metal clip so that the CompactFlash card is locked in.
**Install the Media Card**

To install a Media Card, perform the steps in [Installing the Media Card](#) on page 232.

**Installing the Media Card**

1. For each Media Card in the node, identify the IPE card slot selected for the Media Card.

   Use the information from the [Table 58: Media Card installation by module type](#) on page 232.

   **Table 58: Media Card installation by module type**

<table>
<thead>
<tr>
<th>CS 1000 Modules</th>
<th>Media Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT8D37BA/EC IPE modules</td>
<td>All available IPE card slots</td>
</tr>
<tr>
<td>NT8D37AA/DC IPE modules</td>
<td>0, 4, 8, and 12</td>
</tr>
</tbody>
</table>

2. Remove existing I/O panel cabling associated with any card previously installed in the selected card slot.

3. Insert the Media Card into the card guides and gently push it until it contacts the backplane connector. Hook the locking devices.

   The red LED on the faceplate remains lit until you configure and enable the card in the software, at which point the LED turns off.

   The card faceplate window displays startup self-test results (T:xx) and status messages. A display F:xx indicates that a self-test failed. Some failures indicate that you must replace the card.

   See [Transfer node configuration from Element Manager to the Voice Gateway](#) Media Cards on page 274. See [Table 117: Media Card 32-port card faceplate maintenance display codes](#) on page 444 for a listing of the Media Card display codes.

**Voice Gateway Media Card ELAN and TLAN network interfaces**

**CS 1000M system**

The ELAN and TLAN network interfaces are provided by A0852632 Shielded 50-pin to Serial/ELAN/TLAN Adapter (see [Figure 58: Shielded 50-pin to Serial/ELAN/TLAN Adapter](#) on page 233)

The ELAN network interface supports 10BaseT operation and the TLAN network interface supports 10/100BaseT operation. To support the 100BaseT operation on Large Systems, the TLAN network interface requires specialized I/O panel mounting connectors, which replace the standard connectors on the system.
Cables and connectors for the ELAN and TLAN network interface functions include the following:

- the NTCW84JA I/O panel filter block
- NTMF94EA ELAN, TLAN, RS-232 Serial Maintenance I/O interface cable
- A0852632 Shielded 50-pin to Serial/ELAN/TLAN Adapter. Standard shielded, CAT5 LAN cables (less than 100 meters) are recommended to attach the LAN ports to the local network.

Install the Shielded 50-pin to Serial/ELAN/TLAN Adapter

The Media Card can support a single connector solution to access the TLAN and ELAN network interfaces. This connector (see Figure 58: Shielded 50-pin to Serial/ELAN/TLAN Adapter on page 233) is called the A0852632 Shielded 50-pin to Serial/ELAN/TLAN Adapter. It replaces the single NTMF94EA ELAN, TLAN, RS-232 Serial Maintenance I/O interface cable (octopus cable).

The adapter breaks out the signals from the I/O connector to the following components:

- ELAN network interface
- TLAN network interface
- one RS-232 (local console) port

![Figure 58: Shielded 50-pin to Serial/ELAN/TLAN Adapter](image)

On Large Systems, the NT8D81AA cable is used to bring all 24 Tip and Ring pairs to the I/O panel. The NTCW84JA I/O panel mounting block must be installed on Large Systems before the A0852632 Shielded 50-pin to Serial/ELAN/TLAN Adapter is installed. See Figure 58: Shielded 50-pin to Serial/ELAN/TLAN Adapter on page 233.

To ensure proper connection, install the adapter securely; otherwise, connectivity can be lost.
EMC Shielding Kit

An ITG EMC shielding kit (NTVQ83AA) must be installed on the ELAN and TLAN network interface cables to meet regulatory requirements at the installation site. As shown in Figure 59: ITG EMC Shielding Kit Deployment on page 234, a ferrite must be placed on both the ELAN and TLAN network interface CAT5 Ethernet cables during installation. Cable ties are then placed to retain the ferrites in the correct position.

![EMC Kit Deployment](image)

**Figure 59: ITG EMC Shielding Kit Deployment**

Perform the steps in Installing the Shielded 50-pin to Serial/ELAN/TLAN Adapter onto the Media Card on page 234 to install the ITG EMC shielding kit (NTVQ83AA) on the ELAN and TLAN network interface cables.

**Installing the Shielded 50-pin to Serial/ELAN/TLAN Adapter onto the Media Card**

1. Install the Shielded 50-pin to Serial/ELAN/TLAN Adapter into the card connector (1, 2, 3, or 4) where the Media Card is located.
2. Connect a shielded Cat 5 cable from the customer TLAN switch equipment to the port labeled TLAN.
3. Connect a shielded Category 5 cable from the customer ELAN hub or switch equipment to the port labeled ELAN.
4. Install the NTAG81CA serial cable into the faceplate maintenance port.

---

**Initial configuration of MC 32S card**

The MC 32S card ships from the factory with a blank compact flash card. When the card first powers up, it starts from a Gold Control and Signaling Processor (CSP) image. The Gold CSP image is a scaled-down version due to size restrictions on the on-board compact flash card.
You must format the compact flash card and install the full CSP software before the MC 32S card functions at full capability.

The software for the MC 32S card consists of five files, which are located in a zip file and stored on the Signaling Server. All Gold versions of firmware are loaded on the MC 32S when the card ships from the factory.

---

### Initial configuration of IP Line data

Before you start the configuration:

- Ensure the system is running CS 1000 Release 7.0 software.
- Verify the license system limit in LD 22. The license system limit must have sufficient unused units to support the number of IP Phones to be installed. For more information, see Software Input Output Reference — Maintenance, NN43001-711.
- Expand the license limit, if necessary, by ordering additional licenses. See Licenses on page 46 for more information.

---

### Summary of procedures

This section contains the following procedures:

- Configuring IP address for the system active ELNK Ethernet network interface (LD 117) on page 235.
- Configure VoIP bandwidth management zones (LD 117) on page 236.
- Configure virtual superloops for IP Phones on page 239.
- Configure IP Phone features in LD 11 on page 240.

---

### Configuring IP address for the system active ELNK Ethernet network interface (LD 117)

To configure the Call Server ELAN network interface IP address (active ELNK), perform the steps in Configuring the ELAN network interface IP address for the active ELNK on page 235.

#### Configuring the ELAN network interface IP address for the active ELNK

1. Go to LD 117.
2. Create host entries with the IP address on the ELAN subnet by entering one of the following commands:
NEW HOST PRIMARY_IP xx.xx.xx.xx
NEW HOST SECONDARY_IP xx.xx.xx.xx (for Large Systems only)

3. Assign the host entry IP address to active and inactive ELNK interfaces on the ELAN subnet by entering one of the following commands:
   CHG ELNK ACTIVE PRIMARY_IP
   CHG ELNK INACTIVE SECONDARY_IP (for Dual CPU only)

4. Verify the IP address for the Ethernet network interface by entering the following command: PRT ELNK.

5. Enter the following command: Update DBS.

6. Go to LD 137. Check the status of the Ethernet network interface by entering the command: STAT ELNK. If the ELNK network interface is disabled, enable it by entering: ENL ELNK.

Configure VoIP bandwidth management zones (LD 117)

You can define up to 8001 zones using LD 117. The Call Server uses the zones for VoIP bandwidth management. For more information, see Converging the Data Network with VoIP Fundamentals, NN43001-260.

Caution:
Beginning in Release 7.0, Adaptive Network Bandwidth Management provides bandwidth zone numbers in the range 0–8000. If you are interoperating with an earlier release you must use bandwidth zone numbers in the range 0–255; call processing issues occur if you use bandwidth zone numbers greater than 255.

The term intrazone means within the same zone. Interzone means between two zones.

Table 59: LD 117 bandwidth management zone configuration on page 237 lists the zone parameters as follows:

- p1: total bandwidth (kb/s) available for Intrazone calls
- p2: defines the codec for intrazone calls (that is, preserve voice quality or preserve bandwidth). Best Quality (BQ) provides the best voice quality but uses the most bandwidth. Best bandwidth (BB) uses the least amount of bandwidth but reduces voice quality.
- p3: total bandwidth available for interzone calls
- p4: preferred strategy for the choice of the codec for interzone calls
- p5: zone resource type. The type is either shared or private.

For information about Private Zone configuration, see Zones on page 154.
LD 117 also includes the DIS and ENL commands to disable or enable a zone. When a zone is created, the default state is enabled.

Caution:
You must first configure zone 0 in LD 117 before you configure other zones or all calls associated with zone 0 are blocked.

Table 59: LD 117 bandwidth management zone configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW ZONE xxxx p1 p2 p3 p4 p5</td>
<td>Create a new zone, where: xxxx = zone number = (0)–8000.</td>
</tr>
<tr>
<td></td>
<td><strong>Caution:</strong></td>
</tr>
<tr>
<td></td>
<td>Beginning in Release 7.0, Adaptive Network Bandwidth Management provides bandwidth zone numbers in the range 0–8000. If you are interoperating with an earlier release you must use bandwidth zone numbers in the range 0–255; call processing issues occur if you use bandwidth zone numbers greater than 255.</td>
</tr>
<tr>
<td></td>
<td>p1: intrazone available bandwidth = 0 – (10 000) – 100 000 (kb/s)</td>
</tr>
<tr>
<td></td>
<td>p2: intrazone preferred strategy = (BQ – Best Quality) or BB – Best Bandwidth</td>
</tr>
<tr>
<td></td>
<td>p3: interzone available bandwidth = 0 – (10 000) – 100 000 (kb/s)</td>
</tr>
<tr>
<td></td>
<td>p4: interzone preferred strategy = BQ for Best Quality or BB for Best Bandwidth</td>
</tr>
<tr>
<td></td>
<td>p5: zone resource type = (shared) or private</td>
</tr>
<tr>
<td>New ZONE xxxxxxxx</td>
<td>Create a zone with default values for the parameters: p1: 10 000 (kb/s) p2: BQ p3: 10 000 (kb/s) p4: BQ p5: shared</td>
</tr>
<tr>
<td>CHG ZONE xxxxxxxx p1 p2 p3 p4 p5</td>
<td>Change zone parameters. You must reenter all parameters, even those that are unchanged.</td>
</tr>
<tr>
<td>OUT ZONE xxxxxxxx</td>
<td>Remove a zone.</td>
</tr>
<tr>
<td>DIS ZONE xxxxxxxx</td>
<td>Disable a zone. No new calls are established inside, from, or toward a disabled zone.</td>
</tr>
<tr>
<td>ENL ZONE xxxxxxxx</td>
<td>Enable a zone.</td>
</tr>
<tr>
<td>PRT ZONE xxxxxxxx PRT ZONE ALL</td>
<td>Print zone and bandwidth information; xxxxxxxxxx specifies a zone. If no zone is specified, information for all zones is printed. PRT ZONE ALL also prints information for all zones.</td>
</tr>
</tbody>
</table>
Element Manager for Zone Configuration

Optionally, you can configure zones for CS 1000 systems using Element Manager instead of LD 117.

To view Element Manager for zone configuration, perform the steps in Viewing Element Manager for Zone Configuration on page 238

Viewing Element Manager for Zone Configuration

1. Log on to UCM and access Element Manager.
2. In the navigator, select IP Network > Zones.
   The Zones window appears. See Figure 60: Zone List on page 238.

Figure 60: Zone List

3. Under Configuration, click to Add to add a new zone.
   The Zone Basic Property and Bandwidth Management window appears. See Figure 61: Zone Basic Property and Bandwidth Management window on page 239.
Configure virtual superloops for IP Phones

You must configure one or more virtual superloops to support IP Phone Virtual TN (VTN) in LD 97 or in Element Manager.

Large Systems and CS 1000E

In Large Systems and CS 1000E, virtual superloops contend for the same range of loops with phantom, standard and remote superloops, digital trunk loops, and all service loops. Virtual superloops can reside in physically equipped network groups or in virtual network groups.

Group maximums

Without Fiber Network (FIBN) Package 365, a maximum of five network groups is available, 0 to 4. With Package 365, a maximum of eight network groups is available, 0 to 7.

For normal traffic engineering, provision up to 1024 VTN on a single virtual superloop for a Large System/CS 1000E. For nonblocking, do not exceed 120 VTN on a single virtual superloop for a Large System/CS 1000E.

Avaya recommends that configure virtual superloops starting in the highest non physically equipped group available. Table 60: LD 97 Virtual superloop configuration for Large Systems/CS 1000E on page 239 lists the prompts and responses required to configure virtual superloops in LD 97.

Table 60: LD 97 Virtual superloop configuration for Large Systems/CS 1000E

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ</td>
<td>CHG</td>
<td>Change existing data.</td>
</tr>
<tr>
<td>Prompt</td>
<td>Response</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>TYPE</td>
<td>SUPL</td>
<td>Superloop</td>
</tr>
<tr>
<td></td>
<td>Vxxx</td>
<td>V represents a virtual superloop and xxx is the number of the virtual superloop:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• xxx: 0 to 156 and multiple of four for a Large System without FIBN package 365</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• xxx: 0 to 252 and multiple of four for a Large System with FIBN package 365</td>
</tr>
</tbody>
</table>

**Configuring virtual superloops in Element Manager**

To configure a virtual superloop in Element Manager, perform the steps in Configuring a virtual Superloop in Element Manager on page 240.

**Configuring a virtual Superloop in Element Manager**

1. In the Element Manager navigator, select **System > Core Equipment > Superloops**.
   
The Superloops window appears. See Figure 62: Configuring a virtual superloop in Element Manager on page 240.

   ![Figure 62: Configuring a virtual superloop in Element Manager](image)

2. Select the superloop number from the **Choose a Superloop Number** list.
3. Select **Virtual** from the **type** list.
4. Click **to Add**.

**Configure IP Phone features in LD 11**

The existing License header that prints at the start of LD 11 includes the new License limit for the IP Phone. See Table 56: IP Phone configuration data summary sheet on page 205.
### Table 61: LD 11 Configure an IP Phone

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>REQ</strong></td>
<td>NEW, CHG, CHGTYP, PRT, OUT, CPY, MOV</td>
<td>New, Change, Change TN type, Print, Out, Copy, Move</td>
</tr>
<tr>
<td><strong>TN</strong></td>
<td>l s c u</td>
<td>l = loop, s = shelf, c = card, u = unit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enter loop (virtual loop), shelf, card, and unit (terminal number), where unit = 0 to 31.</td>
</tr>
<tr>
<td><strong>DES</strong></td>
<td>a...z</td>
<td>ODAS telephone designator.</td>
</tr>
<tr>
<td><strong>CUST</strong></td>
<td>xx</td>
<td>Customer number as defined in LD 15.</td>
</tr>
<tr>
<td><strong>ZONE</strong></td>
<td>0 to 8000</td>
<td>Zone number to which this IP Phone belongs. Verify that the zone number exists in LD 117.</td>
</tr>
<tr>
<td><strong>CLS</strong></td>
<td>ADD</td>
<td>ADD: Automatic Digit Display, default for IP Phone. For a complete list of responses, see Software Input Output — Administration, NN43001-611.</td>
</tr>
<tr>
<td><strong>KEY</strong></td>
<td>xx aaa yy zz...zz</td>
<td>IP Phone function key assignments: xx: keys 0 to 7 xx: keys 8 to 15 keys, using the Shift key for Avaya 1165E IP Deskphone xx: keys 6 to 11, using either the Shift key for IP Phone 2004, Avaya 2007 IP Deskphone, Avaya 1140E IP Deskphone, Avaya 1150E IP Deskphone, WLAN Handsets 2210/2211/2212, Avaya 6120 WLAN Handset, or Second Page functionality for Avaya 1165E IP Deskphone, WLAN Handsets 2210/2211/2212, Avaya 6120 WLAN Handset, or Second Page functionality for</td>
</tr>
<tr>
<td>Prompt</td>
<td>Response</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
|        | Avaya 1220 IP Deskphone and Avaya 1230 IP Deskphone  
|        | xx: keys 0 to 3 for the IP Phone 2002, Avaya 1220 IP Deskphone, Avaya 1230 IP Deskphone and Avaya 1120E IP Deskphone  
|        | These keys are self-labeled physical keys that you can program with any feature. For the WLAN Handset 2210, 2211, 2212, Avaya 6120 WLAN Handset, the keys are self-labeled virtual keys that you can program with any feature.  
|        | xx: 0 for the IP Phone 2001, Avaya 2033 IP Conference Phone, Avaya 1210 IP Deskphone, and Avaya 1110 IP Deskphone; any other key number entered returns an error message.  
|        | aaa: key name or function  
|        | yyy, zzz: additional information required for the key.  
|        | Keys 16 to 26 are reserved for dedicated IP Phone context-sensitive soft keys.  
|        | Table 66: LD 11 IP Phone dedicated context-sensitive soft key assignment on page 249 lists the dedicated IP Phone key name values (aaa). Other key name values are in Software Input Output — Administration, NN43001-611. |

**Configure the IP Phone Key Expansion Module**

Configure the optional IP Phone Key Expansion Module (KEM) in LD 11.

The IP Phone 2002 and IP Phone 2004 support the IP Phone KEM.

**Table 62: LD 11 Configure the IP Phone KEM**

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
</table>
| REQ :  | NEW      | Add new data.  
|        | CHG      | Change existing data.  
| TYPE :  | 2002P1, 2002P2,  
|        | 2004P1, 2004P2 | IP Phone 2002 (Phase I and Phase II)  
|        | ...      | IP Phone 2004 (Phase I and Phase II)  
<p>| ZONE   | 0 to 255 8000 | Zone number to which the IP Phone 2002 or IP Phone 2004 belongs. |</p>
<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEM</td>
<td>(0)-2</td>
<td>Number of attached IP Phone KEMs. Up to two IP Phone KEMs can be attached to an IP Phone. Press Enter without entering a number to leave the value unchanged.</td>
</tr>
<tr>
<td>KEY</td>
<td>xx aaa yyyy (cccc or D) zz..z</td>
<td>IP Phone function key assignments. The following key assignments determine calling options and features available to a telephone. The KEY prompt repeats until you press Enter. xx: key number. For IP Phone 2002: xx: 0 to 31, when KEM: 0 xx: 0 to 55, when KEM: 1 xx: 0 to 79, when KEM: 2 For IP Phone 2004: xx: 0 to 31, when KEM: 0 xx: 0 to 79, when KEM: 1 xx: 0 to 79, when KEM: 2 Type xx: NUL to remove a key function or feature. aaa: key name or function yyyyy: additional information required for the key zz..z: additional information required for the key aaa</td>
</tr>
<tr>
<td>PAGEOFST</td>
<td>&lt;Page&gt; &lt;KeyOffset&gt;</td>
<td>Automatically calculates the IP Phone KEM key based on the entered values. This prompt enables the system administrator to enter a Page number of 0 or 1 and a Key Offset number from 0 to 23. Once entered, the KEY prompt is prompted with the appropriate KEY value filled in. Enter &lt;CR&gt; to terminate data entry. Applies to an IP Phone 2004 with KEM = 1, and where &lt;CR&gt; was entered at the KEY prompt. This does not apply to an IP Phone 2002. When values are entered for Page and KeyOffset, the KEY xx prompt displays, followed by PAGEOFST prompt. This loop continues until no values (&lt;CR&gt; only) are entered at the PAGEOFST prompt.</td>
</tr>
</tbody>
</table>
Configure the Avaya 1100 Series Expansion Module

Configure the optional Avaya 1100 Series Expansion Module in LD 11.


Table 63: LD 11 Configure the Expansion Module

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ</td>
<td>NEW/CHG</td>
<td>Add new or change existing data.</td>
</tr>
<tr>
<td>TYPE</td>
<td>1120, 1140, 1150, 1165</td>
<td>For Avaya 1120E IP Deskphone, Avaya 1140E IP Deskphone, Avaya 1150E IP Deskphone, and Avaya 1165E IP Deskphone</td>
</tr>
<tr>
<td>KEM</td>
<td>(0) - 3/ &lt;CR&gt;</td>
<td>Number of attached Expansion Modules (0). Up to three Expansion Modules are supported.</td>
</tr>
<tr>
<td>Prompt</td>
<td>Response</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>CLS</td>
<td>KEM3</td>
<td>KEM3 CLS is defined.</td>
</tr>
</tbody>
</table>

**KEY**

<table>
<thead>
<tr>
<th>0 – &lt;seetext&gt;/ &lt;CR&gt;</th>
</tr>
</thead>
</table>
| Key number range expanded to support number of Expansion Modules specified by KEM prompt. The range on the IP Deskphone is as follows:
| xx: key number |
| For IP Phone 1120E: |
| xx: 0 to 31 when KEM: 0 |
| xx: 0 to 49 when KEM: 1 |
| xx: 0 to 67 when KEM: 2 |
| xx: 0 to 85 when KEM: 3 |
| For Avaya 1140E IP Deskphone and Avaya 1150E IP Deskphone: |
| xx: 0 to 31 when KEM: 0 |
| xx: 0 to 67 when KEM: 1 |
| xx: 0 to 67 when KEM: 2 |
| xx: 0 to 85 when KEM: 3 |

**PAGEOFST**

<table>
<thead>
<tr>
<th>&lt;Page&gt; KeyOff-set&gt; &lt;CR&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>You are prompted for PAGEOFST if an Avaya 1140E IP Deskphone, Avaya 1150E IP Deskphone, or an Avaya 1165E IP Deskphone is attached, if one Expansion Module is specified at the KEM prompt, and if &lt;CR&gt; is entered at the KEY prompt. This prompt enables you to enter a Page number of 0, or 1, and a Key Offset number from 0 to 17. Once entered, the KEY is prompted with the appropriate KEY value filled in. &lt;CR&gt; ends the input.</td>
</tr>
</tbody>
</table>

**KEY <key>**

<table>
<thead>
<tr>
<th>&lt;key conf data&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;key&gt; is the key number for the Page + Key Offset entered at PAGEOFST. Enter the key configuration &lt;CR&gt; or just &lt;CR&gt;.</td>
</tr>
</tbody>
</table>

**KEMOFST**

<table>
<thead>
<tr>
<th>&lt;KEM&gt; Key-Off-set&gt; &lt;CR&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>You are prompted for KEMOFST if an Avaya 1120E IP Deskphone is attached and if one, two, or three Expansion Modules are specified at the KEM prompt, and if &lt;CR&gt; is entered for KEY prompt. This prompt enables you to enter a KEM number of 1, 2, or 3 and a KEY Offset number from 0 to 17. Once entered, the KEY prompt is prompted with the appropriate KEY value filled in. &lt;CR&gt; ends the input.</td>
</tr>
</tbody>
</table>

**KEY <key>**

<table>
<thead>
<tr>
<th>&lt;key conf data&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;key&gt; is the key number for the KEM + Key Offset entered at KEYOFST. Enter the key’s configuration &lt;CR&gt; or just &lt;CR&gt;.</td>
</tr>
</tbody>
</table>
Configure the Avaya 1200 Series IP Deskphones Key Expansion Module

Configure the optional Avaya 1200 Series IP Deskphones Key Expansion Module (KEM) in LD 11.

The Avaya 1220 IP Deskphone and Avaya 1230 IP Deskphone support the Avaya 1200 Series IP Deskphones KEM.

Table 64: Configure the Avaya 1200 Series IP Deskphones KEM

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ</td>
<td>NEW/CHG</td>
<td>Add new or change existing data.</td>
</tr>
<tr>
<td>TYPE</td>
<td>1220, 1230</td>
<td>For Avaya 1220 IP Deskphone, Avaya 1230 IP Deskphone</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEM</td>
<td>(0) - 4/ &lt;CR&gt;</td>
<td>Number of attached Expansion Modules (0). Supports up to four Expansion Modules.</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEY</td>
<td>0 - &lt;see text&gt;/ &lt;CR&gt;</td>
<td>Key number range depends on the number of Avaya 1200 Series IP Deskphones KEM modules specified by KEM prompt: xx: key number For the Avaya 1230 IP Deskphone: xx: 0 to 31 when KEM: 0 xx: 0 to 55 when KEM: 1 xx: 0 to 79 when KEM: 2 xx: 0 to 67 when KEM: 3 xx: 0 to 79 when KEM: 4 For the Avaya 1220 IP Deskphone: xx: 0 to 31 when KEM: 0 xx: 0 to 43 when KEM: 1 xx: 0 to 55 when KEM: 2 xx: 0 to 67 when KEM: 3 xx: 0 to 79 when KEM: 4</td>
</tr>
<tr>
<td>PAGEOFST</td>
<td>&lt;Page&gt; &lt;KeyOff-set&gt; &lt;CR&gt;</td>
<td>This prompt appears if one or two Avaya 1200 Series IP Deskphones KEM are specified at the KEM prompt, if &lt;CR&gt; is entered at the KEY prompt, and if attached to an Avaya 1230 IP Deskphone. This prompt enables the administrator to enter: Page number: 0 for KEM 1 1 for KEM 1</td>
</tr>
</tbody>
</table>
when you configure 1 KEM and 2 KEM when you configure 2 KEMs 2 for KEM 1 3 for KEM 2 and a Key Offset number from 0 to 11.

KEY <key> <keys conf data> <key> is the key number for the Page + Key Offset entered at PAGEOFST. Enter the key configuration <CR> or just <CR>.

KEMOFST <KEM> <Key-Off-set> <CR> This prompt appears for the Avaya 1220 IP Deskphone or if three or four Avaya 1200 Series IP Deskphones KEMs are specified at the KEM prompt for the Avaya 1230 IP Deskphone and <CR> is entered for KEY prompt.
This prompt enables the administrator to enter a KEM number of 1, 2, 3, or 4 and a Key Offset number from 0 to 11. After you enter the KEM number, the KEY prompt appears with the appropriate KEY value filled in. <CR> ends the input.

KEY <key> <keys conf data> <key> is the key number for the KEM + Key Offset entered at KEYOFST. Enter the key configuration <CR> or just <CR>.

Configure the Expansion Module 2050

Configure the optional Expansion Module 2050 in LD 11.
The Avaya 2050 IP Softphone support the Expansion Module 2050.

Table 65: Configure the Expansion Module 2050

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ</td>
<td>NEW/CHG</td>
<td>Add new or change existing data.</td>
</tr>
<tr>
<td>TYPE</td>
<td>2050</td>
<td>For Avaya 2050 IP Softphone</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
### Prompt | Response | Description
--- | --- | ---
KEM | (0) - 3/ <CR> | Number of attached Expansion Modules 2050 (0). Supports up to three Expansion Modules 2050.

... | ... | ...

KEY | 0 - <see text>/ <CR> | Key number range expanded to support number of Expansion Modules 2050 specified by KEM prompt. The range on the Avaya 2050 IP Softphone is as follows:
xx: key number
xx: 0 to 31 when KEM: 0 xx: 32 to 49 when KEM: 1 xx: 50 to 67 when KEM: 2 xx: 68 to 85 when KEM: 3

PAGEOFST | <Page> <Key-Off-set> <CR> | PAGEOFST is prompted if one Expansion Module 2050 is specified at the KEM prompt and <CR> is entered at the KEY prompt. This prompt enables you to enter a Page number of 0 or 1 and a Key Offset number from 0 to 17. Once entered, the KEY is prompted with the appropriate KEY value filled in. <CR> ends the input.

KEY | <key> | <keys conf data> | <key> is the key number for the Page + Key Offset entered at PAGEOFST. Enter the key configuration <CR> or just <CR>.

KEMOFST | <KEM> <Key-Off-set> <CR> | KEMOFST is prompted if two or three Expansion Modules are specified at the KEM prompt and <CR> is entered for KEY prompt. This prompt enables you to enter a KEM number of 1, 2, or 3 and a KEY Offset number from 0 to 17. Once entered, the KEY prompt is prompted with the appropriate KEY value filled in. <CR> ends the input.

KEY | <key> | <keys conf data> | <key> is the key number for the KEM + Key Offset entered at KEMOFST. Enter the key configuration <CR> or just <CR>.
IP Phone dedicated context-sensitive soft keys

Remove unused feature keys by configuring the dedicated context-sensitive soft keys to NUL. Some features depend on the CoS.

If an attempt is made to configure anything other than the permitted response, the system generates an error code. For related error messages, see Software Input Output Reference—System Messages, NN43001-712.

Table 66: LD 11 IP Phone dedicated context-sensitive soft key assignment

<table>
<thead>
<tr>
<th>IP Phone key number</th>
<th>Responses Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key 16</td>
<td>MWK, NUL</td>
</tr>
<tr>
<td></td>
<td>MWK: Message Waiting key</td>
</tr>
<tr>
<td>Key 17</td>
<td>TRN, NUL</td>
</tr>
<tr>
<td></td>
<td>TRN: Call Transfer key</td>
</tr>
<tr>
<td>Key 18</td>
<td>A03, A06, NUL</td>
</tr>
<tr>
<td></td>
<td>AO3: 3-party conference key AO6 – 6-party conference key</td>
</tr>
<tr>
<td>Key 19</td>
<td>CFW, NUL</td>
</tr>
<tr>
<td></td>
<td>CFW: Call Forward key</td>
</tr>
<tr>
<td>Key 20</td>
<td>RGA, NUL</td>
</tr>
<tr>
<td></td>
<td>RGA: Ring Again key</td>
</tr>
<tr>
<td>Key 21</td>
<td>PRK, NUL</td>
</tr>
<tr>
<td></td>
<td>PRK: Call Park key</td>
</tr>
<tr>
<td>Key 22</td>
<td>RNP, NUL</td>
</tr>
<tr>
<td></td>
<td>RNP: Ringing Number pickup key</td>
</tr>
<tr>
<td>Key 23</td>
<td>SCU, SSU, SCC, SSC, NUL</td>
</tr>
<tr>
<td></td>
<td>SCU: Speed Call User SSU:System Speed Call User SCC: Speed Call Controller SSC: System Speed Call Controller</td>
</tr>
<tr>
<td>Key 24</td>
<td>PRS, NUL</td>
</tr>
<tr>
<td></td>
<td>PRS: Privacy Release key</td>
</tr>
<tr>
<td>Key 25</td>
<td>CHG, NUL</td>
</tr>
<tr>
<td></td>
<td>CHG: Charge Account key</td>
</tr>
</tbody>
</table>
Node election rules

A Signaling Server with Virtual Trunks configured wins an election because it registers on the NRS with an IP node. Because the IP node can be provided to a Branch Office system during redirection to normal mode or to another CS 1000 peer system during network-wide Virtual Office logon, the TPS application must be enabled on the Signaling Server which runs the VTRK application.

The rules for the node election process are as follows:

- A Leader always wins over a Follower.
- Within each class (Leader/Follower), the Signaling Server with the longest up time wins.
- If a tie for up time occurs, the Signaling Server with the lowest IP address wins.

The precedence of the rules is from 1 (highest) to 3 (lowest).
Chapter 12: Configuration of IP Telephony nodes using Element Manager

Contents

This section contains the following topics:

- **Introduction** on page 251
- **Configure IP Line data using Element Manager** on page 252
- **Transfer node configuration from Element Manager to the Voice Gateway Media Cards** on page 274
- **Upgrade the Voice Gateway Media Card and IP Phone firmware** on page 275
- **Assemble and install an IP Phone** on page 285
- **Change the default IPL CLI Shell password** on page 285
- **Configure the IP Phone Installer Passwords** on page 285
- **Import node configuration from an existing node** on page 286

Introduction

This chapter explains how to configure IP Telephony nodes using Element Manager. Access Element Manager using a PC with Internet Explorer 6.0.2600 or later. The PC must connect to a LAN that has access to the Signaling Server Node IP address, either directly or routed through the network.

The ELAN subnet IP address might be required, instead of the Node IP address, to access the Element Manager logon window in secure environments.

This chapter also provides instructions for upgrading IP Phone firmware.

Read the IP network engineering guidelines in *Converging the Data Network with VoIP Fundamentals, NN43001-260* before installing an IP Telephony node.
Configure IP Line data using Element Manager

Element Manager can be used to manually add and configure an IP Telephony node on Avaya Communication Server 1000 (Avaya CS 1000) systems. You can configure and manage more than one node using Element Manager.

Node Definition

A node is defined as a collection of Signaling Servers. Each node in the network has a unique Node ID. This Node ID is an integer value. A node has only one Primary Signaling Server. All other Signaling Servers are defined as Followers.

All IP addresses and subnet mask data must be in dotted decimal format. Convert subnet mask data from Classless Inter-Domain (CIDR) format. For more information, see .

Internet Explorer browser configuration

Element Manager requires Microsoft Internet Explorer 6.0.2600 or later. Element Manager is not supported on the Netscape Navigator browser. The PC should be a PIII with a 500 MHz processor (at minimum).

Important:

Internet Explorer caching interferes with the Element Manager application; you cannot see real-time changes as they occur. For this reason, you must turn off Internet Explorer caching.

See Configuring the Internet Explorer browser on page 213 for more information.

Summary of procedures

The following is the summary of the steps required to configure a node using Element Manager:

1. Manually add an IP Telephony node on page 253
2. Configuring SNMP trap destinations and community strings on page 263
3. Configure Voice Gateway Profile data on page 264
4. Configure Quality of Service on page 268
5. Configure file server access on page 269
6. Configure loss and level plan on page 271
Manually add an IP Telephony node

Follow the steps in Adding an IP Telephony node manually on page 253 to add an IP Telephony node using Element Manager.

When you work in the IP Network, Node: Servers, Media Cards window, Element Manager times out after a period of inactivity. A warning appears 5 minutes before Element Manager times out. If you click OK within the warning time-out period, the timer is reset. If you do not respond, the session terminates and you must log on again. Any data that you change but do not submit is lost.

Adding an IP Telephony node manually

1. Log on to UCM with appropriate credentials.
2. In Element Manager, select IP Network > Node: Servers, Media Cards.
   The IP Telephony Nodes window appears. See Figure 63: Adding a new node on page 253.

   If this is the first node to add, the No nodes are configured message appears. Two options are available: Add or Import.
   The IP Telephony Nodes window lists all configured nodes. To view a node and the elements, select the link for the Node ID.
3. Click Add.
   The New IP Telephony Node window appears. See Figure 64: New IP Telephony Node window - Step 1 on page 254
4. Type an identifier for the node in the **Node ID** field.

The Node ID can be a value between 0 and 9999. When you define the node number, determine if the Enhanced Redundancy for IP Line Nodes functionality is required. For more information on Enhanced Redundancy for IP Line Nodes, see Enhanced Redundancy for IP Line nodes on page 165. If it is required, factor the requirement into the node number assignment process.

The Node ID field corresponds to the Node ID field in the IP Phone configuration. Note the node number used during the IP Phone configuration.

5. Type the IP address for the Call Server in the **Call server IP address** field.

6. Select the radio button corresponding to the required value in the **TLAN address type** field.

   If the TLAN address type supports IPv4 only, select the value **IPv4 only**. If dual stack is supported, select the value **IPv4 and IPv6**.

7. Enter the details for the ELAN in the following fields:

   a. Type the ELAN subnet gateway IP address in dotted decimal format in the **Gateway IP address** field.

      This is the IP address of the router interface on the ELAN subnet, if present. If there is no ELAN subnet gateway, type 0.0.0.0.
b. Type the ELAN subnet mask address in dotted decimal format in the **Subnet mask** field.

8. Enter the details for the TLAN in the following fields as shown in the figure:

   a. Type the TLAN node IPv4 address in the **Node IPv4 address** field.
   b. Type the TLAN subnet mask address in dotted decimal format in the **Subnet mask** field.
   c. Type the TLAN node IPv6 address which is the global unicast address in the **Node IPv6 address** field.

   For example: 2001:DB8::214:c2ff:fe3b:3588

9. Select the check box corresponding to **SIP Line** to deploy the SIP Line software application to the element.
10. Select the check box corresponding to **UNIStim Line Terminal Proxy Server (LTPS)** to deploy the LTPS software application to the element.

11. Select the check box corresponding to **Virtual Trunk Gateway (SIPGw, H323Gw)** to deploy the Virtual Trunk Gateway software application.

   **Important:**
   Do not click **Save** until you enter all information for the node. If you click **Save**. You can click **Edit** to return to the IP Telephony Node window and continue the configuration.

12. Click **Next**.

   The next page of the New IP Telephony Node window appears.
13. Select the required Signaling Server from the Select to add field.
   
   If you select Media card, the New Media Card window appears.

14. To make a node as the leader, perform the following steps:
   
   a. Select the check box corresponding to the signaling server.
   
   b. Click Make Leader.

15. To associate servers with the node, click Add.

16. Click Next to proceed to the next window of the New IP Telephony node configuration.
17. If you selected the UNISim Line Terminal Proxy Server (LTPS) check box in the page one of the configuration, provide the information for the UNISim Line Terminal Proxy Server (LTPS).

![CS 1000 Element Manager Interface](image)

**Figure 66: New IP Telephony Node window - Step 3**

- **IP Address**: Type the IP address where the firmware for IP Phones are downloaded from.
- **File path**: Type the path where the files are located.
- **Server Account/User ID**: Type the server account name or user id.
- **Password**: Type the password for the server account.

18. Click **Next** to proceed to the next window of the New IP Telephony node configuration.

In this page you can configure the settings for the Virtual Trunk Gateway.
Provide the information corresponding to following parameters in the General tab of the window.

a. **Vtrk gateway application**: Provides option to select Gateway applications. The three supported modes are SIP Gateway (SIPGw), H.323Gw, and SIPGw and H.323Gw.

b. **SIP domain name**: The SIP Domain Name is the SIP Service Domain. The SIP Domain Name configured in the Signaling Server properties must match the Service Domain name configured in the NRS. The SIP Domain Name is used in building all SIP messages and appears in the phone context, and must be less than 128 characters in length. The valid characters are a-z, 0-9, period (.), hyphen (-), comma (,), and underscore (_). If the SIP Gateway application is enabled, you must enter a SIP Domain Name.

c. **Local SIP port**: The Local SIP Port is the port to which the gateway listens. The default value is 5060.

d. **Gateway endpoint name**: This is the user name that is used when authenticating this gateway with the NRS (SIP Proxy/Redirect Server) or the MCS 5100 Proxy Server.

e. **Gateway password**: This is the password that is used when authenticating this gateway with the NRS (SIP Proxy/Redirect Server) or the MCS 5100 Proxy Server.
f. **H.323 ID**: Each H.323 Gatekeeper is configured with an H.323 Gatekeeper alias name, which is an H323-ID. Enter any text string to describe the H.323 Virtual Trunk source in the H323 ID text box.

g. **Enable failsafe NRS**: Option to enable Failsafe NRS. This acts as a replica of the Primary SIP Redirect Server when Primary goes down.

h. **SIP ANAT** Select the IPv4 or the IPv6 button to establish a media session with the remote user. If the IP Phone is dual stack capable, then the user can choose IPv4 or IPv6 as a mode to communicate with the other dual stack capable IP Phone.

i. **Monitor IP Addresses** Select the check box to enable the virtual trunk health monitor. Enter an IP address in the Monitor IP box and click Add.

20. Select the **SIP Gateway Settings** link to view and enter all the parameters for the SIP gateway.
Configure IP Line data using Element Manager

Node ID: 353 - Virtual Trunk Gateway Configuration Details

**SIP Gateway Settings**

**TLS Security:** Security Disabled

**Port:**
- **Primary LAN IP address:** 0.0.0.0 (Port: 5061)
- **Secondary LAN IP address:** 0.0.0.0 (Port: 5060)
- **Tertiary IP address:** 0.0.0.0 (Port: 5060)

**Transport protocol:** TCP

**Options:**
- Support registration
- Primary CDS proxy
- Secondary CDS proxy
- Tertiary CDS proxy

*Required Value.

Note: Changes made on this page will NOT be transmitted until the Node is also saved.
Only IPv6 global unicast address space type is supported. The following table displays an example of global unicast IPv6 address:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>global routing prefix</td>
<td>subnet ID</td>
<td>Interface ID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21. Click **Next** to proceed to the next window of the New IP Telephony node configuration.

22. On the last window of the new node configuration, review the information and click **Finish**.
SNMP configuration

For more information about SNMP, see Communication Server 1000 Fault Management—SNMP, NN43001-519.

Configuring SNMP trap destinations and community strings

IP Line introduces single point configuration for SNMP traps. To configure the SNMP trap destinations and community strings for the Call Server, Signaling Server, and Media Gateway Controller in Element Manager, perform the steps in Configuring SNMP trap destinations on page 263.

Important:
You must perform a datadump to save the configuration information permanently whether the parameters are configured in Element Manager or in LD 117.

Configuring SNMP trap destinations

1. In the Element Manager navigator, click System > Alarms > SNMP.

   The SNMP Configuration window appears. See Figure 68: SNMP configuration window on page 263.

   ![Figure 68: SNMP configuration window](image)

2. In the Trap Source section, enter the following parameters:
   • Navigation Site Name
Configure Voice Gateway Profile data

Perform the steps in Configuring DSP Profile data on page 264 to configure the Voice Gateway Profile data.

Configuring DSP Profile data

1. In Element Manager, select System > IP Network > Nodes: Server, Media cards.
   The IP Telephony Nodes window appears.

2. Select a link for a Node ID.
   The Node Details window appears.
3. Select the **Voice Gateway (VGW) and Codecs** link.

4. The Voice Gateway (VGW) and Codecs window appears. See Figure 69: Voice Gateway and Codecs on page 265. This window displays VGW information and a list of codecs. Leave the default values unless Avaya Support directs you to change them.

**Figure 69: Voice Gateway and Codecs**

To select a codec, scroll through the list, and click the corresponding **Select** check box. A maximum of four codecs can be selected.

**Recommendation**

Avaya recommends that you configure the system with both G.711 and G.729A if a possibility exists that an Avaya 2050 IP Softphone can be configured with the "I use a modem to connect to the network" check box checked. If the node does not have G.729A or G.723 configured, Avaya 2050 IP Softphone users with that check box selected will have calls blocked.
Recommendation

This does not apply to the MVC 2050 as it supports only G.711 capability; no
dial-up capability is available.
For more information, see *IP Phones Fundamentals, NN43001-368*. 

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Provide information for the following parameters in the General section of the window.</td>
</tr>
<tr>
<td>a. <strong>Echo Cancellation</strong>: Echo cancellation is enabled by default. Do not clear this check box. Never disable echo canceller unless directed by Avaya Support.</td>
</tr>
<tr>
<td>b. <strong>Echo Cancellation</strong>: Echo cancellation is enabled by default. Do not clear this check box. Never disable echo canceller unless directed by Avaya Support.</td>
</tr>
<tr>
<td>c. <strong>Use canceller, with tail delay</strong>: Select the maximum value available. The default value is 128 ms. Never reduce the echo cancellation value unless directed by Avaya Support.</td>
</tr>
<tr>
<td>d. <strong>Voice activity detection threshold</strong>: The default value is –17 db. The range is –20 db to +10 db.</td>
</tr>
<tr>
<td>e. <strong>Idle noise level</strong>: The default value is –65 db. The range is –327 db to +327 db.</td>
</tr>
<tr>
<td>f. <strong>DTMF Tone detection</strong>: Select to enable DTMF tone detection. This is enabled by default.</td>
</tr>
<tr>
<td>g. <strong>Enable V.21 FAX tone detection</strong>: Select to enable V.21 FAX tone detection. This is enabled by default.</td>
</tr>
<tr>
<td>6. By default, the G.711, G711 Clear Channel, and T.38 FAX codecs are selected; you cannot clear them. However, you can change the following:</td>
</tr>
<tr>
<td>• The payload size, jitter buffer setting, and companding law for the G.711 codec. The default is G.711 mu-law.</td>
</tr>
<tr>
<td>• Only the jitter buffer can change for the G.711 Clear Channel codec.</td>
</tr>
<tr>
<td>Up to four additional codecs can be optionally selected: G.722, G.7231, G.729A, or G.729AB, codecs.</td>
</tr>
<tr>
<td>• If the G.722, G.729A or G.729AB codec are selected, the payload and jitter buffer can change. The payload defaults are the maximum supported payload.</td>
</tr>
<tr>
<td>• If the G.723.1 codec is selected, only the jitter buffer can change. The payload size of 30 ms is the only supported payload.</td>
</tr>
<tr>
<td>The supported G.723.1 codec has bit rates of 5.3 kb/s and 6.3kb/s.</td>
</tr>
</tbody>
</table>
Element Manager enables some jitter buffer adjustments on the browser side:

- A change of payload resets the Nominal Voice Playout (NVP) and Maximum Voice Playout (MVP) values to the default recommended values: NVP = 2 * payload, MVP = NVP + 2 * payload.
- A change of NVP value changes the MVP value to the default (MVP = NVP + 2 * payload) and changes the values listed in the MVP list so the minimum value does not violate the requirement of NVP + 2 * payload.
- The MVP value can be changed. The values range from the minimum recommended value to the maximum allowed value for the selected codec type.

7. Configure the following values for the codec:

a. **Codec Name:** The codec name is based on the selected codec.

b. **Voice payload size (ms/frame):** The payload size is determined by the selected codec. For each codec type, the payload uses the default value: 20 ms for G.711, 20 ms for G.722, 20 ms for G.729, and 30 ms for G.723.1. If a system has multiple nodes and the same codec is selected on more than one node, ensure that each node has the same voice payload size configured for the codec.

c. **Voice playout (jitter buffer) nominal delay:** Configure the nominal value to the highest setting that the device allows. The range is 20 to 200 ms and depends on the codec. Changing this value can automatically adjust the other settings for this codec. For more information, see *Converging the Data Network with VoIP Fundamentals, NN43001-260.*

d. **Voice playout (jitter buffer) maximum delay:** The maximum delay has a range of 60 to 500 ms and depends on the codec. Changing this value can automatically adjust the other settings for this codec.

e. **Voice Activity Detection (VAD)** Select this check box to enable Voice Activity Detection.

Because Avaya CS 1000 does not support VAD for G.722 and G723.1 codec, Element Manager does not support configuration of VAD for G.722 and G723.1.

8. Select parameters for the fax codecs.

a. **FAX maximum rate:** The FAX maximum rate is one of the following values: 2400, 4800, 7200, 9600, 12000, or 14400. The default value is 14400 bps.

b. **FAX playout nominal delay:** The default value is 100 ms. The range is 0 ms to 300 ms.

c. **FAX no activity timeout:** The default value is 20 seconds. The range is from 10 seconds to 32000 seconds.
d. **FAX packet size**: Select the desired FAX packet size. The default value is 30 bytes. The range is from 20 to 48 bytes.

9. Repeat step 5 for each selected codec.

---

### Configure Quality of Service

The Quality of Service (QoS) section includes the settings for the following:

- DiffServ CodePoint (DSCP)
- 802.1Q support

Perform the steps in [Configuring QoS](#) on page 268 to configure QoS.

#### Configuring QoS

1. In Element Manager, select System, IP Network, Nodes: Server, Media cards.
2. Select a link for a Node ID.

   The Node Details window appears.

3. Select the **Quality of Service (QoS)** link.

   The Quality of Service (QoS) window appears. See [Figure 70: Quality of Service (QoS) window](#) on page 268.

![Figure 70: Quality of Service (QoS) window](#)

4. The Differentiated Service (DiffServ) CodePoint (DSCP) value determines the priorities of the management and voice packets in the IP Line network. The range for both management and voice packet DiffServ is 0 to 63 inclusive.

   The DiffServ value can be configured, if required, to obtain better QoS over the IP data network (LAN/WAN).
The value entered depends on the policy in the customer data network.

**Important:**
Do not change DiffServ from the default values unless instructed by the IP network administrator.

Modify the Control packets priority and Voice packets priority values only if directed by the IP network administrator.

The recommended configuration values are as follows:

a. Control packets: A value of 40 - Class Selector 5 (CS5). The range is 0 to 63. This configures the priority of the signaling messaging.

b. Voice packets: A value of 46 Control DSCP - Expedited Forwarding (EF). The range is 0 to 63.

5. 802.1Q enables Virtual LANs (VLANs) to be defined within a single LAN. This improves bandwidth management and limits the impact of broadcast storms and multicast messages.

a. VLAN Tagging: 802.1Q support is disabled by default.

b. 802.1Q Bits value (802.1p): The priority field is a three-bit value, with a default value of 6. The range is 0 to 7. A value of 6 is recommended by Avaya. The p bits within the 802.1Q standard enables packet prioritization at Layer 2, which improves network throughput for IP telephony data.

6. Click **Save**.

---

**Configure file server access**

Firmware files for the IP Phones are stored on a Signaling Server. Each time a Follower Signaling Server powers up or restarts, IP Phone firmware files are retrieved from the Leader Signaling Server. You can configure the Leader Signaling Server to retrieve the IP Phone firmware files from an external sFTP site server during startup. All files, which match xFF.fw naming convention are retrieved and registered.

**Note:**
When you use the FTP Server to upload an IP Phone firmware version on the Signaling Server, any previous IP Phone firmware that was uploaded through the FTP Server will not be saved. To downgrade the firmware on IP Phone to the previous IP Phone firmware, repeat the process again by uploading the previous IP Phone firmware through the FTP Server.

To configure the file server, perform the steps in [Configuring access to the file server](#) on page 270.
Configuring access to the file server

1. Log on to UCM with appropriate credentials.
2. In Business Element Manager, select IP Network, Nodes: Servers, Media Cards. The IP Telephony window appears. See Figure 71: UNIStim Line Terminal Proxy (LTPS) Configuration Details window on page 270.
3. Select the link for a Node ID. The Node Details window appears.
4. Select the Terminal Proxy Server (TPS) link. The UNIStim Line Terminal Proxy (LTPS) Configuration Details window appears.

![Figure 71: UNIStim Line Terminal Proxy (LTPS) Configuration Details window]

5. Specify the parameters needed to connect to the file server:
   a. Firmware download server IP address: Enter the IP address of the file server where the firmware is downloaded.
   b. Firmware file path: Enter the path for the location of the firmware files.

   Note:
   You can point to another IP Telephony Node that already has firmware updated. If the Firmware download server IP Address is an existing IP Telephony Node, specify the Firmware File Path as /var/opt/cs1000/tps/fw/.
   c. User ID: Enter the User ID required to access the file server.
   d. Password: Enter the Password required to access the file server.

For information about the Enhanced UNIStim Firmware Download for IP Phones, see Enhanced UNIStim Firmware Download for IP Phones on page 87.
Configure loss and level plan

The loss and level plan determines parameters, such as transmission gain, that vary from country to country.

**Default Values**

The default values in the system are for the North American loss plan.

**Non-North American countries**

Installing IP Line in any other country requires that you configure the pad values in Table 15 to that country loss plan. If you install the system in other countries, the GPRI package (International 1.5/2.0 Mb/s Gateway package 167) must be used, and the NTP-specified values must be entered in LD 73. At the PDCA prompt, enter Table 15.

For more information, see *Transmission Parameters Reference, NN43001-282*

---

Add card and configure the card properties of the Voice Gateway Media Card

If the network administrator provides IP addresses and subnet masks in CIDR format, for example, 10.1.1.10/24, convert the subnet mask to dotted decimal format. See *Subnet Mask Conversion from CIDR to Dotted Decimal Format* on page 477.

In the Cards section, cards can be added, changed, or removed in the node one at a time.

Perform the steps in *Adding a card and configuring Voice Gateway Media Card properties* on page 271 to add a Voice Gateway Media Card and configure the properties or to configure the properties of an existing Voice Gateway Media Card.

**Adding a card and configuring Voice Gateway Media Card properties**

1. In Element Manager, select System, IP Network, Nodes: Server, Media Cards.
   
   The IP Telephony Nodes window appears.

2. Select the link for a Node ID.

3. In the Associated Signaling Servers & Cards section of the window, select Media Cards from the Select to add menu.

4. Click Add. The New Media Card Details window appears. See *Figure 72: New Media Card Details window* on page 272.
Configuration of IP Telephony nodes using Element Manager

### New Media Card Details

**Identification and Status**
- **HostName:** [Field]
- **Server type:** SA
- **Card TN:** [Field]
- **MAC address:** 00:00:00:00:00

**Network**
- **Embedded LAN (ELAN)**
  - **IP address:** 0.0.0.0
  - **Subnet mask:** 255.255.255.0
  - **Gateway IP address:** 0.0.0.0
- **Telephony LAN (FLAN)**
  - **IP address:** 0.0.0.0
  - **Subnet mask:** 255.255.255.0
  - **Gateway IP address:** 0.0.0.1

* Required Value.

---

**Figure 72: New Media Card Details window**

Managing: 192.168.55.152  Username: admin2
System > IP Network > IP Telephony Nodes > Node Details

### New Media Card Details

**Network**
- **Embedded LAN (ELAN)**
  - **IP address:** 0.0.0.0
  - **Subnet mask:** 255.255.255.0
  - **Gateway IP address:** 0.0.0.0
  - **Alternate call server1 IP:** 0.0.0.0
  - **Alternate call server2 IP:** 0.0.0.0
- **Telephony LAN (FLAN)**
  - **IP address:** 0.0.0.0
  - **Subnet mask:** 255.255.255.0
  - **Gateway IP address:** 0.0.0.1

* Required Value.
5. In the Identification and Status section of the window, enter the following information.
   a. **HostName**: This is the Host name.
   b. **Card TN**: Enter the card slot number from 1 to 50.
   c. **Server Type**: Select the server type.

   **Note:**
   DSP IPv6 address field is enabled only if you select the server type as MC32S card, and if IPv4 and IPv6 option is selected for TLAN address type of the corresponding node in Node Details page. If only IPv4 is selected for TLAN address type of the node, DSP IPv6 address field is displayed but the field is disabled during MC32S card configuration.
   d. **MAC Address**: This is the motherboard Ethernet address.

6. In the Network section of the window, enter the TLAN and ELAN network information.
   a. **Telephony LAN (TLAN) IP address**: This is the TLAN network interface IP address for the card.

      Communication Server 1000 supports dual stack capability and hence the TLAN network IP address information includes both the IPv4 and IPv6 addresses. Global unicast IPv6 addressing is the only supported IPv6 address type. If the IP Phone supports dual stack, then the user can prefer IPv4 or the IPv6 mode to communicate with the remote user. The user needs to enter the respective IP address in the **DSP IP address** and **DSP IPv6 address** fields.

   b. **Embedded LAN (ELAN) IP address**: This is the ELAN network interface IP address for the card. Element Manager and the system use this IP address to communicate with the card.

   **Note:**
   The Gateway IP address field usually displays the same value as the Node Gateway address, but this value can be different depending on how the card was configured.

7. Click **Save** to transfer the changes to the Call Server.

8. To add additional cards to the node, click **Add** again and enter the card information. Repeat this step for each card that you add to the node.

9. To edit the properties of a Voice Gateway Media Card, select the link for the card to display the card properties.
Transfer node configuration from Element Manager to the Voice Gateway Media Cards

Before you start the node configuration transfer, ensure the following:

- The Voice Gateway Media Cards and cables are installed.
- The ELAN and TLAN network interfaces of all cards have access to the IP network.
- To enable access to Element Manager through a Web browser, a network PC must be able to access the node Signaling Server, either directly or remotely.

The IP Telephony node and card properties are configured using Element Manager. The configuration data is saved to the Call Server and then transferred to the Voice Gateway Media Cards.

Saving the configuration

The configuration data is saved when Save in the Edit window is clicked. The files are saved to the Call Server. After the data is saved, the configuration must be transferred to the Voice Gateway Media Card. When Transfer/Status in the Edit window is clicked, Element Manager instructs each card where to retrieve the files using FTP. The Voice Gateway Media Card then retrieves the CONFIG.INI and BOOTP.TAB files.

Transmit node properties

To transmit the node properties to the Leader, perform the steps in Transmitting node properties to Leader on page 274.

Transmitting node properties to Leader

1. If you change the node or card configuration data, in the Node Details window, click Save to save the data to the Call Server.
   
   A confirmation dialog box appears.

2. Click OK to confirm the save of the node data.
   
   The Node Details window closes, and the Node Configuration window appears.

3. In the Node Configuration window, click Transfer/Status associated with the node.
   
   The Transfer/Status window appears.

4. Select the Leader card check box.

5. Click Transfer to Selected Elements.
A transfer confirmation dialog box appears.

6. Click **OK**.

Element Manager notifies the Leader and the Voice Gateway Media Cards, which then retrieve the CONFIG.INI and BOOTP.TAB files from the Call Server.

The Transfer Progress window appears and displays each Voice Gateway Media Card in the node.

The Voice Gateway Media Cards retrieve the CONFIG.INI and BOOTP.TAB files from the Call Server.

7. When the transfer is complete, click **OK** in the **Transfer Successful** dialog box.

   If the transfer is successful for a card, the Status column displays **Complete**. If the transfer is unsuccessful, the Status column displays **Fail**.

8. Restart the Signaling Server if any IP address information changes.

   **Warning:**
   Do not use a pencil to reset the Voice Gateway Media Card. The graphite carbon can create an electrical short circuit on the board.

**Upgrade the Voice Gateway Media Card and IP Phone firmware**

**Warning:**
Before you start the upgrade, ensure that you configure a PWD1 user name and password on the Call Server. If no PWD1 user name and password exists, configure them in LD 17. This is necessary to enable logon to the Signaling Server.

Ensure that the following software is installed on the PC:

- Software to extract zipped files (WinZip or equivalent)
- Microsoft Internet Explorer version 6.02 or later. NetScape Navigator is not supported.

**Upgrade procedure steps**

The following steps are required to upgrade the Voice Gateway Media Card loadware and IP Phone firmware:
1. Determine the version of the software currently installed on the Voice Gateway Media Card. See Determine Voice Gateway Media Card software version on page 277.

2. Determine the version of the IP Phone firmware.

3. Obtain the most recent software from the Signaling Server. See Download the current loadware and IP Phone firmware on page 277.

4. Upload the software and firmware files using the File Upload system utility in Element Manager. See Uploading loadware and firmware files on page 278.

5. Upgrade the Voice Gateway Media Card software. See Upgrading the card loadware on page 279.


---

**Upgrade options**

After the Voice Gateway Media Card loadware and IP Phone firmware is verified, there are three upgrade options:

1. Upgrade the Voice Gateway Media Card software only. It may be necessary to upgrade only the Voice Gateway Media Card software. This option is used most frequently; however, verify if an IP Phone firmware upgrade is also required.

2. Upgrade both the Voice Gateway Media Card software and the IP Phone firmware.

3. Upgrade only the IP Phone firmware.

   Restart all the IP Phones. Select a test IP Phone and reset the firmware only on that test IP Phone before you upgrade all IP Phones. If the upgrade works properly, use the umsUpgradeAll command to upgrade all the IP Phones.

   For more information, see Enhanced UNIStim Firmware Download for IP Phones on page 87.

---

**IP Phone firmware requirements**

UFTP

IP Phone use UNIStim File Transfer Protocol (UFTP) to transfer the firmware; therefore, the customer network must support UFTP. The customer network must open UDP port 5105.

If the firmware cannot be transferred due to firewall restrictions (such as when the IP Phone is behind a firewall that has port 5105 blocked), then upgrade the IP Phone with the current firmware version before you distribute the telephone.

Determine Voice Gateway Media Card software version

To determine the software version on the Voice Gateway Media Card, log on to the Voice Gateway Media Card. At the command line, enter swVersionShow to retrieve information as shown in the following example.

swVersionShow example

```
pdt> swVersionShow unixbld3's loadbuild - basedon ip1-5.92.22 (MC32S) was built on Tue Feb 10 07:39:49 EST 2009
Additional Modules: mainos.sym
BOOTCODE: ip1-5.92.22
HOST MSP: MAA05
DB2 MSP: 2AB01
FPGA: V007
```
Uploading loadware and firmware files

1. In the Element Manager navigator, click Software > File Upload.

The File Upload window appears. See Figure 73: Centralized File Upload window on page 278.

![Centralized File Upload window](image)

**Figure 73: Centralized File Upload window**

2. Click Browse.

The Choose File window appears. In the Choose File window, select the path and file to upload. Alternatively, enter the path and file name for the file to upload.

Only one loadware or firmware file can be uploaded at a time.

Once selected, the path and file name appear in the box to the left of the Browse button.

3. Click File Upload.

The uploaded file appears in the list at the top of the window.

To delete older versions of the firmware and loadware files, select the corresponding check box and click Delete at the top of the column of check boxes.

---

**Upgrade the Voice Gateway Media Card loadware**

After the files are uploaded to the file server, the Voice Gateway Media Cards must be upgraded to the newest loadware version. To upgrade the card loadware, perform the steps in Upgrading the card loadware on page 279.

**Warning:**

When upgrading a CS 1000 system from 4.5 to 7.0, remember to install the MPLR 24008 patch on the 4.5 system before upgrading. The patch ensures that the VGMC card upgrades properly.
Files in the /fw folder on the MC 32 VGMC card are read-only. You must remove this protection and delete the files in the /fw folder before you try to upgrade the loadware. You must perform these steps to remove the read-only attribute and delete the existing files from the /fw folder.

**Removing the read-only protection and delete existing files in the /fw folder**

1. Remove the flash memory card from the VGMC card.
2. Insert the flash memory card into your laptop or into the card reader on your computer.
3. Delete the files in the /fw folder on the flash memory card.
4. Reinstall the flash memory card in the VGMC.
5. Perform the steps in [Upgrading the card loadware](#) on page 279.

**Upgrading the card loadware**

*Important:*
If a VGMC is upgraded using Element Manager, both the card and Element Manager must be the same release.

1. In the Element Manager navigator, click **Software, Voice Gateway Media Card**.

   The Voice Gateway Media Card (VGMC) Loadware Upgrade window appears.
2. Expand the node by clicking the plus sign (+) to the left of the node.
3. Select the card to upgrade by selecting the check box to the left of the card information.

   Element Manager supports upgrading the software on up to four cards at the same time.
4. In the lower part of the window, select the most current software version.

   If the card receiving the upgrade is a Media Card 32S card, select the most current version of the Media Card 32S card software.
5. Click **Loadware Upgrade** at the bottom left of the window.

   A confirmation dialog box appears.
6. Click **OK** to confirm the card upgrade.

   The upgrade begins.
   The Loadware Upgrade Progress window appears.

   The upgrade status appears for each card selected to receive the upgrade. The upgrade status can be Work in progress, Upgrading, Fail, or Finished.
7. Click **OK**.
8. Repeat steps 3 to 7 to upgrade the other card.
Note:
If you are upgrading a VGMC to an inter-release, such as from Communication Server Release 4.0 to 7.0, you can minimize downtime by upgrading the VGMC and system in the following order:

- Upgrade the media card to the new release loadware using the previous (or current) release of Element Manager. Although the new loadware is installed, the card continues to run on the previous release software until the system is rebooted.
- Upgrade the Call Server, Signaling Servers, and Element Manager to the new release. There is a System and Node outage during the upgrade.
- Reboot the servers.
- When the system and servers come back up, the newly upgraded media cards are ready to register to the Call Server and process calls.

---

**Restart the Voice Gateway Media Card**

Perform the steps in Restarting the Voice Gateway Media Card on page 280 to restart a Voice Gateway Media Card.

**Restarting the Voice Gateway Media Card**

1. Disable the Voice Gateway Media Card.
2. Click the Element Manager navigator, select **IP Network, Maintenance and Reports**.
   
   The Node Maintenance and Reports window appears.
3. To expand the node containing the card to restart, click the plus sign (+) to the left of the node.
4. Click the Voice Gateway Media Card associated **Reset** button to restart the card.
   
   The cards remain in the Disabled state after the upgrade, so a Reset command can be used. You can also reset the card by using a pointed object to press the Reset button on the card faceplate.
5. Click the card **Status** button in the Node Maintenance and Reports window to verify the status of the Voice Gateway Media Card.
6. Use the LD 32 **ENLC** command to re-enable the Voice Gateway Media Cards.
7. Repeat these steps for each Voice Gateway Media Card that received the software upgrade.
Re-enable the Voice Gateway Media Card

Perform the steps in Re-enabling the Voice Gateway Media Card on page 281 to re-enable the Voice Gateway Media Card.

Re-enabling the Voice Gateway Media Card

1. In the Element Manager navigator, click System > Maintenance.

   The Maintenance window appears. See Figure 74: Maintenance window on page 281.

   ![Figure 74: Maintenance window](image)

2. From the Select by Overlay list, select LD 32 - Network and Peripheral Equipment.

   The Network and Peripheral Diagnostics window appears.

3. From the Card Commands list, select ENLC - Enable and reset card.
4. Under Command Parameters, enter card number.
5. Click Submit.
6. Repeat steps 3 to 5 for each Voice Gateway Media Card to re-enable.

Upgrade the IP Phone firmware

After you upgrade the the IP Line software on the Signaling Server, determine if you must also upgrade the IP Phone firmware. If an upgrade is required, you must upgrade the Signaling Server to the newest IP Phone firmware version.

Important:
A firmware download does not occur with IP Phones performing a Virtual Office logon or Media Gateway 1000B (MG 1000B) logon to a remote system. No firmware upgrade occurs
during a Virtual Office logon or MG 1000B user registration with the LTPS. The registration is allowed because the IP Phone firmware version must be 1.33 or later to perform a Virtual Office logon or MG 1000B user registration.

The `umsUpgradeAll` command has no impact on Virtual Office logon IP Phones. These IP Phones are not reset. If the Virtual Office logon is on the same Call Server, then the IP Phone firmware upgrade occurs after the user logs off. If the Virtual Office logon is between Call Servers, then the IP Phone registers to the home LTPS and follows the normal firmware rules for regular registration.

When the `umsUpgradeAll` command runs, MG 1000B user IP Phones that are on active calls are flagged. After the IP Phones become idle, the IP Phones are switched by the Call Server back to the MG 1000B for the firmware upgrade.

Perform the steps in Upgrading the IP Phone firmware on page 282 to upgrade IP Phone firmware.

**Upgrading the IP Phone firmware**

1. In the Element Manager navigator, click **Software > IP Phone Firmware**.

   The IP Phone Firmware window appears. See Figure 75: IP Phone Firmware window on page 282.

   ![Figure 75: IP Phone Firmware window](image)

   **Figure 75: IP Phone Firmware window**

2. Select the IP Telephony Node from the list to view the firmware on the Leader Terminal Proxy Server (TPS) of each Telephony Node configured on the Call Server.

3. Select the IP Phone type to update the firmware for the current IP Telephony node.

   The phones in the Phone Type column are the phones listed in the Currency file.

4. Click **Update**.
The Update Phone Firmware opens for the selected IP Phone type. See Figure 76: Update Phone Firmware window on page 283.

Figure 76: Update Phone Firmware window

5. Click **Browse** to locate the firmware file on the PC.

6. Click **Upload** to upload the firmware to the Leader TPS of the selected IP Telephony node.

   Check the status column to ensure the server placed the new file in service.

7. Click **Update** to distribute the firmware.

   Check the updated status message, which indicates that the file is in service.

   The IP Phones continue to run the old firmware until each IP Phone re-registers with the Signaling Server containing the new IP Phone firmware.

8. Repeat the preceding steps for all the card that have to be upgraded.

   Commands are available from the Linux shell to immediately upgrade a single IP Phone, all IP Phones immediately, or to schedule all IP Phones for an upgrade. Before you upgrade, verify that the Signaling Server has the correct IP Phone firmware version.

9. Select an IP Phone for test purposes.

10. SSH to the Signaling Server and then log on to the Linux shell, and enter the following:

    ```
 isetReset "xxx.xxx.xxx.xxx"
    ```

    **xxx.xxx.xxx.xxx** is the IP Address of the selected IP Phone.

11. Monitor the display on the test IP Phone. As the IP Phone upgrades the firmware, note the IP Address of the Signaling Server from which the IP Phone receives the upgrade.
12. Press the Services key (key with globe with arrow pointing East and West. The Services key enables access to the Telephone Options list.
   a. Press Select to select Telephone Options.
   b. Use the Navigation keys to scroll to Set Info.
   c. Press the Select soft key, then press the Navigation keys until it displays FW Version. Select the appropriate firmware on the Signaling Server.

13. Lift the IP Phone handset and make a call to verify the IP Phone works.

14. Enable and schedule Firmware Download Maintenance Mode to ensure that the Signaling Server uses the processing power for the firmware upgrade. For more information, see Enhanced UNISlim Firmware Download for IP Phones on page 87.

15. Before you proceed, ensure the time on the Signaling Server is configured correctly. Telnet to the Signaling Server and log on to the Linux shell, enter the following:

   umsUpgradeAll "hh:mma/p"

   hh:mma/p specifies the time when the upgrade occurs, a represents a.m., and p represents p.m. The time is in Standard format.

   For example, umsUpgradeAll "11:30a" or umsUpgradeAll "2:45p".

   At the time specified, all IP Phones registered to the Signaling Server go out of service. This can take several minutes.

   After the firmware upgrade, the IP Phones are brought online as they complete the firmware upgrade.

   **Caution:**

   If you use the umsUpgradeAll command without the time parameter, all IP Phones registered that are logged on are immediately removed from service. Use the time parameter with the command to prevent this.

   After the test IP Phone is working, the umsUpgradeAll command does not require the time parameter. However, if the time parameter is not used, the command immediately resets all the IP Phones currently registered on the Signaling Server.

16. Inspect the list to ensure all IP Phones have the correct firmware version.

17. For any IP Phones that did not upgrade successfully, try one of the following (in order):

   • Use the isetReset IP Address command.
   • Enter the following combination of key strokes at the telephone console:

     release, mute, up, down, up, down, 9, release.

     • Power the telephone off and then on again.

   If the upgrade failed on any IP Phone, the cause is probably one of the following:

   • The Signaling Server did not upgrade the software successfully.
• An IP Phone firmware version was unable to be upgraded by the Signaling Server in the normal manner.

• The `umsUpgradeAll` command was not issued.

If the upgrade failed, redo the appropriate procedure. If the upgrade fails again, contact a technical support representative for further assistance.

For more information about configuring the IP Phones, see *IP Phones Fundamentals, NN43001-368*.

---

**Assemble and install an IP Phone**

To assemble and install an IP Phone, see *IP Phones Fundamentals, NN43001-368*.

---

**Change the default IPL CLI Shell password**

The IPL> Command Line Interface (CLI) is password-protected to control Telnet access and access to the local maintenance port. The same user name and password also controls FTP access to the Voice Gateway Media Card. The IPL> CLI has a default user name of `admin1` and a default password of `0000`.

The default user name and password will be changed as a preventative security measure to `PWD1` after synchronization with CS.

---

**Configure the IP Phone Installer Passwords**

The IP Phone Installer Password, used to change the TN on the telephone, controls registration with a virtual line TN on the Call Server. See *IP phone Installer Password* on page 298 for more information about the IP Phone Installer Passwords.

To enable and configure the administrative IP Phone Installer Password, see *Configuring the Administrative IP Phone Installer Password* on page 302.

If required, enable and configure a temporary IP Phone Installer Password. See *Configuring the temporary IP Phone Installer Password* on page 305.

You can also use Element Manager to configure the IP Phone Installer Passwords. See *Setting the IP Phone Installer Password* on page 363.
Import node configuration from an existing node

You can import a node and the configuration data from an existing node into Element Manager.

For example, if Node 151 exists, but does not exist on the Call Server, then Node 151 can be imported into Element Manager. After you import a node, you can update and edit the configuration data.

Importing node files

1. In the Element Manager navigator, select IP Network, Nodes: Servers, Media Cards.

   The IP Telephony Nodes window appears.

2. Click Import Node Files.

   The Import Node Files window appears. See Figure 77: Import Node Files window on page 286.

3. Enter the Embedded LAN (ELAN) network interface IP address of the Leader card in the box. This address is used to retrieve the node files.

4. Click Import.

   If the node already exists on the Call Server, a message appears indicating that the node already exists on the Call Server.

   If the node does not exist, Element Manager tries to write the configuration to the Call Server. If it succeeds, a message appears indicating the import was successful. If Element Manager cannot write the configuration to the Call Server, the reason appears in the text area of the Import Node Files window.
In the message box, click OK to proceed to the Node Summary window. The node information can then be viewed and, if necessary, edited.

If the node import is not successful, an error message appears in the box area.

---

**Changing the Node ID on an Existing CS 1000 System**

**Background**

The IP Telephony nodes are pre-configured during software installation. The node configuration files - **BOOTP.TAB** and **CONFIG.INI**, are then imported into Element Manager for further configuration of the nodes.

The configuration files are copied on the Call Server in /u/db/node directory when the node configuration is saved.

The **BOOTP.TAB** file is saved as /u/db/node/nodexxxx.btp and the **CONFIG.INI** file is saved as /u/db/node/nodexxxx.cfg, where xxxx is the node ID:

- nodexxxx.btp is the **BOOTP.TAB** file
- nodexxxx.cfg is the **CONFIG.INI**

If a node is removed, the associated files are also removed. For every node that is created, a nodeyyyy.btp and nodeyyyy.cfg file are created in the /u/db/node directory.

The other node files are:

- /u/db/node/node.pch. **Node.pch** is read on click at the Node Summary link in Element Manager.
- /u/db/node/nodexxxx.xml. **Nodeexxxx.xml** is used to display the config in Element Manager. **Nodeexxxx.btp** is converted into **Nodeexxxx.xml** when editing a Node.

In order to change the Node ID on the system, changes need to be made in the bootp.tab configuration file. Follow the steps below.

Do not manually edit the node files. Manually editing these files can cause corruption of Element Manager.

---

**Procedure 28: Changing the Node ID on existing CS 1000 system**

**Procedure**

1. FTP to the Signaling Server using pdt2 level user and go to directory /u/config by entering: cd /u/config

2. Switch to binary mode and get the bootp.tab file via FTP: ftp> bin ftp>get bootp.tab

3. Open the file with a text editor (e.g. Notepad) and change the node ID which is the number after ".:to=": E.g. where the Node ID is 1:
4. FTP the new file back to the Signaling Server:

```
ftp> put bootp.tab
```

5. Quit the ftp session to the Signaling Server.

6. FTP to the Call Server and navigate to the directory /u/db/node

```
cd /u/db/node
```

7. Switch to binary mode and get all node files located there. Keep a copy of these files on your PC if needed for a backup.

8. Delete the node.pch file and the nodexxx.btp, nodexxxx.cfg and nodexxxx.xml files for the node ID you want to change (where xxxx is the Node ID). For example:

```
ftp> deletenode.pch
```

Example. For Node ID 1 we need to delete the first 4 files: node1.btp, node1.cfg, node1.xml, node.pch, node2.btp, node2.cfg, node2.xml etc.

9. Reboot the Signaling Server. It reboots with the new Node ID.

10. Launch Element Manager - there are no nodes listed.

11. In Element Manager, import Node files from the Signaling Server ELAN. Note: At this point we should have the node files re-created with the new Node ID.

12. Click on Save and then on Transfer all elements.

13. Reboot Media cards as required.

14. Change Node ID on the VTRK (SIP & H.323) routes: LD 16 CHG RDB. Note: Need to disable the routes first: LD 32 DIS VTRM<cust><rout> To enable: ENL VTRM<cust><rout>

15. Change Node ID on the sets after they register.
Chapter 13: IP Line administration

Contents

This chapter contains the following topics:

• Introduction on page 289
• IP Line feature administration on page 290
• Password security on page 294
• IP configuration commands on page 306
• TLAN network interface configuration commands on page 307
• Display the number of DSPs on page 308
• Display IP Telephony node properties on page 308
• Display Voice Gateway Media Card parameters on page 309
• Packet loss monitor on page 311
• Transfer files using the CLI on page 311
• Reset the Operational Measurements file on page 313

Introduction

This chapter explains how to administer IP Line and the Voice Gateway Media Cards on the Avaya Communication Server 1000 (Avaya CS 1000) system.

Administration procedures include activities such as monitoring the system status, operational reports, performing upgrades, changing configuration, and adding, changing, and removing cards.

The Voice Gateway Media Card provides four administration interfaces:

• Element Manager

Element Manager is a Web server that provides a GUI using the Internet Explorer 6.0.2600 or later Web browser. Element Manager is used to Telnet to the card, install and upgrade software and firmware, configure alarm event reporting, view and update card
property and configuration data, add new cards to a node, schedule reports, and other related tasks.

* IPL> and oam> Command Line Interface (CLI)

Use the CLI to display card and node status, change passwords, check channel states, and other card information. The CLI is also used for expert level support and debugging. The prompt for the CLI on the Media Card 32-port is IPL>. The prompt for the CLI on the Media Card 32S is oam>. Access the CLI through a direct serial connection to the I/O panel serial port, the Maint Port on the faceplate, or through a Telnet session. Use a VT-100 terminal emulation program set to 9600 baud, 8 bits, no parity, one stop bit.

* Overlays

---

**IP Line feature administration**

**Corporate Directory**
LD 11 accepts Class of Service (CoS) CRPA/CRPD for IP Deskphones.

**Note:**
Corporate Directory is not supported on the IP Phone 2001P2, Avaya 2033 IP Conference Phone, Avaya 1210 IP Deskphone, and Avaya 1110 IP Deskphone.

**Table 67: Corporate Directory: LD 11 configuration**

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ</td>
<td>NEW CHG</td>
<td>Add new data or change existing data.</td>
</tr>
<tr>
<td>TN</td>
<td>Iscru</td>
<td>Enter IP Phone TN.</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Comments? infodev@avaya.com
<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLS</td>
<td>CRPA CRPD</td>
<td>Enable or Disable the Corporate Directory feature for this TN.</td>
</tr>
</tbody>
</table>

The Call Server service change does not affect Corporate Directory immediately. If an IP Phone is in Corporate Directory mode, and there is a service change to configure CoS as CPRD, then the current display and key handling remain unaffected. The changed CoS occurs only when the user quits the Corporate Directory application and enters again.

For more information about the operation of the Corporate Directory feature, see

---

**Private Zone configuration**

DSP channels and IP Phones are Shared or Private based on zone configuration. Use the parameter zoneResourceType in the zone configuration commands in LD 117 to configure this setting.

The `<zoneResourceType>` parameter specifies the zone to be either shared or private.

A zone is configured in LD 117 as follows:

```plaintext
NEW ZONE <zoneNumber> [<intraZoneBandwidth> <intraZoneStrategy> <interZoneBandwidth> <interZoneStrategy>]
CHG ZONE <zoneNumber> [<intraZoneStrategy> <zoneResourceType>] [<intraZoneStrategy> <interZoneBandwidth> <interZoneStrategy> <zoneResourceType>]
```

By default, a zone is configured as Shared (zoneResourceType=shared).

---

**Virtual Office**

The IP Phone Virtual Office feature uses the Station Control Password (SCPW) feature. The SCPW password can be maintained either through LD 11 administration or by the user if Flexible Feature Code (FFC) code access is configured. If the SCPW is not configured for a TN registering by means of the Virtual Office feature, the logon is rejected. An error message appears to indicate to the user that a password must be configured.

Enable the SCPW in the Customer Data Block (CDB) by configuring the length of the SCPW (scpl). The SCPW must be at least four digits.

To logon using Virtual Office, the TN associated with the current IP Phone registration must be configured with the CoS VOLA (Virtual Office logon Allowed). The TN associated with the User ID for the logon must be configured with the CoS VOUA (Virtual Office User Allowed).
Two CoSs restrict Virtual Office usage:

- VOLA/VOLD: defines whether this TN (physical IP Phone) allows or disallows a Virtual Office logon option.
- VOUA/VOUD: defines if a specific remote user can log on to this TN (allows or disallows a particular user to logon using Virtual Office).

Table 68: LD 11 Virtual Office logon for IP Phones on page 292 shows the CoS for LD 11.

### Table 68: LD 11 Virtual Office logon for IP Phones

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Responses</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ:</td>
<td>NEW CHG</td>
<td>Add new data or change existing data.</td>
</tr>
<tr>
<td>CUST</td>
<td>xx</td>
<td>Customer number as defined in LD 15.</td>
</tr>
<tr>
<td>CLS</td>
<td>(VOLA) VOLD</td>
<td>Virtual Office logon operation is allowed or denied on this TN.</td>
</tr>
<tr>
<td>CLS</td>
<td>(VOUA) VOUD</td>
<td>Allow/Deny Virtual Office user on this TN using other IP Phone.</td>
</tr>
</tbody>
</table>

### Emergency Services Access while logged in to Virtual Office

If an IP Phone user dials 911 while logged on to Virtual Office, the LTPS redirects the 911 call to the local area 911 service (PSAP), not the remote Call Server 911 service. Table 69: e911 process for IP Phone logged on to Virtual Office on page 292 describes the process.

### Table 69: e911 process for IP Phone logged on to Virtual Office

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The LTPS terminates the call on the remote Call Server.</td>
</tr>
<tr>
<td>2</td>
<td>The LTPS displays Emergency Call on the IP Phone.</td>
</tr>
</tbody>
</table>
Emergency Services Access while logged off Virtual Office

If an IP Phone user dials 911 while logged off Virtual Office, the LTPS redirects the 911 call to the local area 911 service (PSAP), not the remote Call Server 911 service. The Call Server is provisioned with Emergency Service Access Terminal Numbers (ESTN). The ESTN is used to register the IP Phone with the Call Server. The logged out IP Phone can make ESA calls only. See Table 70: e911 process for IP Phone while logged out of Virtual Office on page 293.

Table 70: e911 process for IP Phone while logged out of Virtual Office

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The LTPS terminates the call on the remote Call Server.</td>
</tr>
<tr>
<td>2</td>
<td>The LTPS displays Emergency Call Only on the IP Phone.</td>
</tr>
<tr>
<td>3</td>
<td>The LTPS registers the IP Phone to the Call Server when the IP Phone goes off-hook, or when the Primary DN key, Handsfree key, or Headset key (IP Deskphone 1150E) are pressed. The Call Server allocates an ESTN and maps the ESTN key to the logged off IP Phone Primary DN. A 60-second timer is created for the logged off IP Phone, which has an ESTN allocated. If the ESA number is not dialed before the time expires, the ESTN is released and the IP Phones returns to the original logged off state. The user must re-initiate the call.</td>
</tr>
<tr>
<td>4</td>
<td>The LTPS starts the ESA call, thus reaching the correct PSAP. The timer is reset to a preconfigured period of time (default 20 minutes) in case the PSAP calls back the originator of the emergency call.</td>
</tr>
</tbody>
</table>

Emergency Services Access while logged off Virtual Office

The extra processing adds 5 seconds to the call setup time.

6 After the emergency call ends, the IP Phone remains registered to the Home LTPS as a normal telephone, in case the PSAP calls back the originator of the emergency call.

After the IP Phone is redirected to the Home Site, it cannot initiate a new operation for 5 minutes. This prevents the user from accidentally dialing the emergency DN and hanging up. In this case, the emergency response personnel might call back to confirm the accidental call (and thus confirm that no emergency exists). If the IP Phone immediately resumes a Virtual Office logon to another site, it cannot receive the call back.

If the local TN has another IP Phone Virtual Office logged on when it comes back, the nonemergency IP Phone is pre-empted. If this occurs, ESAxxx messages are generated on the system TTY.
When the timer expires, the LTPS unregisters the IP Phone from the Call Server. The IP Phone returns to the original logged off state and the IP Phone ESTN becomes available for other ESA calls from any other logged off IP Phone.

### Configuration

You must configure Emergency Services Access (ESA) on all nodes participating in Virtual Office logons. Enter the ESTN range in LD 24, and configure ESA in LD 11.

For more information, see *Emergency Services Access Fundamentals, NN43001-613* and *Branch Office Installation and Commissioning, NN43001-314*

### 802.1Q

You can use the telephone user interface or DHCP to configure the 802.1Q support for IP Phones. Using DHCP eliminates the need to manually configure the VLAN ID as part of the installation. The configuration comprises two items: setting the p bits and setting the VLAN ID.

Element Manager has two fields for configuring 802.1Q support:

- 802.1Q Support: Select this check box to activate 802.1Q support. The priority bits value is specified in the 802.1Q Bits value box. If the check box is not selected, the IP Phone sends out the default priority of 6.

- 802.1Q Bits value (802.1p): Enter a value in the box. The range is 0 to 7.

For more information, see *Configure Quality of Service* on page 268.

### Password security

The following password security features should be configured to work with the IP Line application:

- SNMP community strings
- IPL> or oam> CLI Shell password
- Call Server Level 1 Password (PWD1)
- IP Phone Installer Password
The SNMP community strings are configured for the entire system. IPL> and oam> CLI Shell passwords and the Call Server Level 1 Password (PWD1) operate at the card level. The IP Phone Installer Password works at the node level.

- The SNMP community strings are configured on the Call Server and synchronized to all devices, including the Voice Gateway Media Cards.
- The IPL> and oam> CLI Shell password is synchronized with the PWD1.
- The Level 1 Passwords (PWD1) is set at the Call Server and is sent to all Voice Gateway Media Cards in the node.
- The IP Phone Installer Password is first applied to one Voice Gateway Media Card in the node and then is applied to all the Voice Gateway Media Cards in the node.

---

**SNMP community strings**

SNMP community strings are required to access the Voice Gateway Media Card.

Element Manager is used to configure the community strings for CS 1000 systems.

---

**CLI Shell user name and password**

The Command Line Interface (CLI) is password-protected to control Telnet access and access to the local maintenance port. The same user name and password also controls FTP access to the Voice Gateway Media Cards.

---

**logon banner**

The IP Line logon banner information includes the IP Line Voice Gateway Media Card loadware version, ELAN network interface IP address, card type, firmware version, current time and date, system name, system location, and system contact.

---

**Password guessing protection**

Password guessing protection helps to block a hacker from attempting to log on to the Voice Gateway Media Card shell by repeatedly trying to guess the shell user ID and password.

The password guessing protection applies to either a tip session (direct maintenance port-connected TTY session) or a Telnet session.
The password guessing protection feature is described as follows:

- There is a logon failure threshold of three and a lockout period of 10 minutes. This is not user-configurable.
- When the logon failure threshold is exceeded (by 3 consecutive failed logon attempts), the system raises an ITG1038 critical alarm. This alarm is sent to indicate the card logon has been locked due to too many incorrect password entries.

Alarm value = ITG alarm 38  
perceivedSeverity = Critical  
probableCause = Unauthorized maximum access attempts  
Alarm text = IPL logon protection (logon locked)

When the 10 minute timer expires for the lockout period, the system raises an "ITG5038" cleared alarm. The clear message is sent after the lockout period expires.

perceivedSeverity = Cleared  
probableCause = Unauthorized maximum access attempts  
Alarm text = IPL logon protection (logon available)

- There is no online indication or warning during the failed logon attempt lockout state. Everything appears the same to the user trying to log on. The user is not informed that logon blocking was activated. The logon is ignored for 10 minutes.

Both the critical and cleared alarms are sent as SNMP traps to the system administrator. For security reasons, these two alarms do not call the syslog function as the other itgAlarms do, so no syslog message appears on the console or written in the syslog file.

- On the Voice Gateway Media Card, the faceplate displays GO38 (ITG1038) when the ITG1038 alarm is received because it is a critical alarm. The ITG5038 clears GO38 from the faceplate when the 10minute timer expires.

---

**Node password synchronization**

The BOOTP.TAB and CONFIG.INI must be the same on all cards in the system. The cards that can be in the system are the Media Card 32-port line card, the MC 32S card, and the Signaling Server. To maintain a consistent configuration within the system, files are transferred from Leader 0 to the Follower cards using FTP.

For the FTP process to work correctly, all cards in a node must be synchronized with the same user ID and password. After the Voice Gateway Media Cards synchronize with the Call Server, the user logon synchronizes with the Call Server PWD1. The cards can then only be accessed by using the Call Server Level 1 Password (PWD1) user ID and password.

A card uses the user ID and password when it tries to access another card to send files using an FTP session. Sending data using an FTP session fails unless all the cards have the same
user ID and password due to failed user authentication. Therefore, a unique user ID and password should be used within one system. Because most applications (except the NRS) communicate directly with the Call Server, the Call Server Level 1 PWD1 user ID and password is the unique password among all platforms.

**Level 1 Password (PWD1)**

The minimum password length on the Call Server is four characters. The minimum password on the Voice Gateway Media Card and the Signaling Server is eight characters.

For example, if the Call Server PWD1 is 0000, it is padded to the right with the four space characters to become 0000. You need not manually add the spaces.

**Password Updates**

The Call Server PWD1 user ID and password is sent to all Voice Gateway Media Cards at the following times:

- when the Voice Gateway Media Cards initially establish a connection with the Call Server across the ELAN subnet
- when an EDD occurs on the Call Server

After the PWD1 information is downloaded from the Call Server, it is saved in the Voice Gateway Media Card NVRAM. If a Voice Gateway Media Card has not yet established a link with the ELAN subnet, the user ID and password that are currently stored in the card NVRAM are used to log on. The user ID and password might not match the PWD1 on the Call Server because the Call Server has not yet downloaded the current PWD1 to the Voice Gateway Media Card. After the ELAN subnet connection is established, the user ID and password are synchronized on all Voice Gateway Media Cards, and the new user ID and password are saved in the card NVRAM.

Because all Voice Gateway Media Cards automatically receive the user ID and password from the Call Server, the password can be changed in a single location, the Call Server CLI. This eliminates the need to change the password on every card in the node (change the password once on the Call Server). When the password changes at the Call Server, the password is automatically sent to all the Voice Gateway Media Cards.

If the PWD1 changes and an EDD operation does not occur, the cards can contain a mixture of old and new passwords. This can happen if a new card is plugged in, an existing card restarts or loses and reestablishes the ELAN subnet connection. Avaya recommends that you perform an EDD when the PWD1 password changes on the Call Server to ensure that all cards have the new PWD1 user ID and password.

For more information about the PWD1 Level 1 password, see the LD 17 Gate Opener PWD (Password) section in *Software Input Output — Administration, NN43001-611*. 
IP phone Installer Password

An IP Phone displays the node ID and Terminal Number (TN) of the IP Phone for five seconds as the IP Phone starts. Password protection controls who can change the TN on the IP Phone. The IP Phone Installer Password protection controls registration with a virtual line TN on the Call Server.

The IP Phone Installer Password can also be configured using the CLI commands in Element Manager. See Setting the IP Phone Installer Password on page 363.

For more information about password protection support on an IP Phone, see IP Phones Fundamentals, NN43001-368

Administrator IP Phone Installer Password

The administrator password feature adds basic IP Phone Installer Password protection on the IP Phones to control registration with a virtual line TN on the Call Server. This feature does not provide a user password or a Station Control Password for IP Phones.

When the password is configured, the IP Phone 2004, Avaya 2007 IP Deskphone, Avaya 1140E IP Deskphone, Avaya 1150E IP Deskphone, Avaya 1165E IP Deskphone, or WLAN Handset 2210/2211/2212 and Avaya 6120/6140 WLAN Handsets screen shows the following information:

• The four-digit Node ID and a Password prompt instead of the Node ID and TN fields. For example, see Figure 80: IP Phone registration with no password checking on page 301 and Figure 81: IP Phone registration with password checking on page 302

• During password entry, an asterisk (*) appears for each digit entered. The password does not appear.

• After the Node ID and Password are entered, the user presses OK. If the password passes the Connect Server authentication, a screen appears with the TN field. For example, see Figure 81: IP Phone registration with password checking on page 302

When the password is configured, the IP Phone 2001, IP Phone 2002, Avaya 2033 IP Conference Phone, Avaya 1110 IP Deskphone, Avaya 1210 IP Deskphone, Avaya 1220 IP Deskphone, Avaya 1230 IP Deskphone, and Avaya 1120E IP Deskphone screen shows:

• The four digit Node ID screen appears first. For example, see Figure 79: IP Phone registration with password checking on page 301.

• The user is then prompted with the Password screen instead of the TN field screen. For example, see Figure 81: IP Phone registration with password checking on page 302 and Figure 78: IP Phone registration with no password checking on page 300
• During password entry, an asterisk (*) appears for each digit entered. The password does not appear.

• After the Password is entered, the user presses OK. If the password passes the Connect Server authentication, a screen appears with the TN field. For example, see Figure 81: IP Phone registration with password checking on page 302.

If the Node ID and Password are not entered, the registration continues after 5 seconds and the TN does not appear.

For an invalid Node ID password, the Node ID and Password screen appears again a maximum of two times to give the technician three chances to enter the password. After three failed attempts, the registration continues as if no password were entered. Restart the IP Phone and try again if more tries are needed.

If a zero length (null) password is entered, then the Node ID, TN, and Password screens do not appear on the IP Phone during the registration process. This provides maximum security by preventing entry of passwords or TN from the IP Phone.

Temporary IP Phone Installer Password

A Temporary IP Phone Installer Password can be configured, which provides temporary user access to the TN for configuration.

A temporary password removes the need to distribute the Node password and then change the password afterwards. The temporary password is automatically deleted after it is used the defined number of times or when the duration expires, whichever comes first.

The following are examples of situations where the Temporary IP Phone Installer Password can be used:

• A department installs an Avaya 2050 IP Softphone. The technician creates a temporary password, configures an appropriate number of uses (such as allowing two logons for each IP Softphone 2050 in case a problem occurs the first time) and configures the duration to expire by the end of the weekend. The password access automatically ends before Monday morning (or sooner if the number of uses expires).

• A telecommuter must install an IP Phone. The technician provides the temporary password that expires the next day or after two uses. When the IP Phone Installer Password protection is enabled, the Set TN does not appear as part of the Set Info item on the Telephone Option menu. The IP Phone TN can be retrieved on the core CPU through the LD 20 PRT DNB and LD 32 IDU, or LD 80 TRAC, rlmShow.

Registration screens with TN password feature

The IP Phone type and password protection determines the registration screen with the TN password feature.

Deskphone and Avaya 1110 IP Deskphone, see For IP Phones 2001/2002, and Avaya 2033/1210/1220/1230/1120E/1110 IP Deskphones on page 300


When you do not configure or enable password protection, the Password entry does not appear. The IP Phone displays the Node ID and TN. See Figure 78: IP Phone registration with no password checking on page 300.

Page 1:

| Node: __ __ __ __ | OK | BKSpace | Clear | Cancel |

Page 2:

| TN: __ __ __ __ __ __ __ __ __ __ __ __ __ | OK | BKSpace | Clear | Cancel |

Figure 78: IP Phone registration with no password checking

When you configure and enable password protection, the IP Phone displays the Node ID and password. The Password entry input field is blank (underscores do not appear). Therefore, the maximum length of the password is hidden. If you enter the correct password, the TN appears. See Figure 79: IP Phone registration with password checking on page 301.
When you do not configure or enable password protection, the Password entry does not appear. The IP Phone displays the Node ID and TN. See Figure 80: IP Phone registration with no password checking on page 301.

Figure 79: IP Phone registration with password checking

### IP Phone 2004, Avaya 2007/1140E/1150E/1165E IP Deskphones, WLAN Handset 2210/2211/2212, and Avaya 6120/6140 WLAN Handset

When you configure and enable password protection, the IP Phone displays the Node ID and password. The Password entry input field is blank (underscores are do not appear). Therefore,
the maximum length of the password is hidden. If you enter the correct password, the TN appears. See Figure 81: IP Phone registration with password checking on page 302.

Configure the IP Phone Installer Passwords

The IP Phone Installer Passwords are configured on a Signaling Server in the node. The passwords then apply to all Signaling Servers in the node.

If the IP Phone Installer Password is configured on the Signaling Server, the IP Phone Telephone Options, Diagnostics submenu is locked and the Set Info submenu does not display the Set IP Information or Ethernet Information options.

Administrative IP Phone Installer Password

The Administrative IP Phone Installer Password is used by the administrator to install a new IP Phone or change the configuration (node ID and TN) of an existing IP Phone.

To configure the Administrative IP Phone Installer Password, perform the steps in Configuring the Administrative IP Phone Installer Password on page 302.

Configuring the Administrative IP Phone Installer Password

1. Log on to a Signaling Server using the SecurityAdmin credentials.
2. In the Linux shell type the nodePwdShow command. This command displays the settings of the IP Phone Installer (node) password.
If in the default state, the IP Phone Installer Password was never assigned. The `nodePwdShow` command displays the following:

<table>
<thead>
<tr>
<th>NodeID</th>
<th>PwdEna</th>
<th>Pwd</th>
<th>TmpPwd</th>
<th>Uses</th>
<th>Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td>0d 0h 0m 0s</td>
</tr>
</tbody>
</table>

- **NodeID** – the IP Phone Installer Password configuration applies to all Signaling Servers on the same TLAN that belong to this Node ID.

- **PwdEna** – by default the cards should be in disabled state (PwdEna=No). The PwdEna setting specifies the enabled (Yes) or disabled (No) state of the IP Phone Installer Password.

- **Pwd** – this is the Administrator IP Phone Installer Password. In the default state, the Administrator password is null (zero-length).

- **TmpPwd** – this is the temporary IP Phone Installer Password. In the default state, the temporary password is null.

- **Uses** – the Uses parameter applies to the temporary IP Phone Installer Password. In the default state, this setting is null. If the card is not in the default state, the Uses parameter is a numeric value from 0 –1000. This number specifies the remaining number of uses for the temporary password. If zero is entered for the Uses parameter when setting the temporary password, the Time parameter is mandatory. When the Time parameter is in effect, the password expiration is based on time instead of the number of uses.

- **Timeout** – the Timeout heading corresponds to the Time parameter of the temporary IP Phone Installer Password. In the default state, the Time is null. If the card is not in the default state, this setting specifies the duration in hours in which the temporary password is valid. The range is 0 – 240 hours (which is a maximum of 10 days). The number specified under Timeout indicates the remaining time to expire of the temporary password. The Time parameter is optional if the Uses parameter is non-zero. The Time parameter is mandatory if the Uses parameter is set to zero.

If both the Uses and Time parameters are entered, the password expires based on whichever happens first: the number of Uses becomes zero or the Time expires. If both the Uses and Time parameters are entered and are set to zero, it is the same as not configuring the temporary password.

3. Configure the Administrator IP Phone Installer Password.

   The `nodePwdSet <"password">` command enables and configures the administrator password. The `<password>` parameter can be null, or 6 to 14 digits in length. The valid characters are 0 to 9, asterisk (*), and number sign (#). This command can be entered at any time. The new password overwrites the previous password.

   Configure the password, first with a null password and then with a password specified.
Warning:

By default, the `nodePwdSet` command with no parameter enables the administrator password and assigns a null (zero-length) password.

IP Phones cannot be installed if the administrator password is enabled and set to null.

Always specify the password parameter to install IP Phones.

4. Type `nodePwdSet` at the prompt to specify no password parameter.

Type `nodePwdShow` to see the following:

<table>
<thead>
<tr>
<th>NodeID</th>
<th>PwdEna</th>
<th>Pwd</th>
<th>TmpPwd</th>
<th>Uses</th>
<th>Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PwdEna : the password is now enabled (PwdEna=Yes).

Pwd : if you specify no `<"password">` parameter, the administrator password is null. A null password causes the node ID and Password screen to be skipped during a restart.

5. Type `nodePwdSet <"password">` at the prompt; the password parameter is 6 to 14 digits in length.

The valid character are 0 to 9, asterisk (*), and number sign (#). For this example, use 1234567 as the password.

6. Type `nodePwdShow` to see the following:

<table>
<thead>
<tr>
<th>NodeID</th>
<th>PwdEna</th>
<th>Pwd</th>
<th>TmpPwd</th>
<th>Uses</th>
<th>Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PwdEna : the administrator password is enabled (PwdEna=Yes).

Pwd : the administrator password, 1234567, appears.

Always specify the `<password>` parameter when you enter the `nodePwdSet` command.

The `nodePwdEnable` and `nodePwdDisable` commands enable and disable the administrative IP Phone Installer Password, respectively.

**Temporary IP Phone Installer Password**

A temporary IP Phone Installer Password can be configured. This enables temporary user access to the TN for configuration. A temporary password removes the need to distribute the administrative (node) password and the need to change it afterwards. If there is a null administrator password configured and a temporary password is created, the temporary password overrides the null administrative password.
The syntax for temporary IP Phone Installer Password specifies

- the password
- the number of times that the password can be entered
- the time that the password is valid

To configure a temporary IP Phone Installer Password, perform the steps in Configuring the temporary IP Phone Installer Password on page 305.

**Configuring the temporary IP Phone Installer Password**

1. At the Linux shell, type `nodeTempPwdSet <"password">, <uses>, <time>`;
   password is the temporary password string 6 to 14 digits in length, uses is a value
   from 0 to 1000, and time is from 0 to 240 hours.

   For example, `nodeTempPwdSet 987654, 15, 3`

2. Type `nodePwdShow` to see the following:

   | NodeID | PwdEna | Pwd       | TmpPwd    | Uses | Timeout | ======  ======== | |
   |--------|--------|-----------|-----------|------|---------|========|                |
   | 987654 | 15     | 0d 0h 0m 0s | 123       | 15   | 0d 0h 0m 0s | 1234567 |

   The temporary password is automatically deleted after it is used the defined number
   of times (Uses) or when the duration expires (Timeout), whichever comes first. To
   delete the temporary password before the number of uses or time expires, type the
   `nodeTempPwdClear` command at the prompt.

3. Type `nodePwdShow` to verify that the temporary password is deleted.

NodeID	PwdEna	Pwd	TmpPwd	Uses	Timeout	======  ========	
--------	--------	-----------	-----------	------	---------	========	
1234567	0	0d 0h 0m 0s	123	No	0d 0h 0m 0s		

---

**Default user name and password**

The IPL> CLI has a default user name of `admin1` and a default password of `0000`. The default
user name and password will be changed as a preventative security measure to PWD1 after
synchronization with the Call Server.

**Reset the CLI Shell user name and password**

If the authorized system management personnel do not have the current IPL> CLI Shell user
name and password, reset the user name and password to the default (`admin1` and `0000`).

To reset the IPL> CLI shell user name and password, perform the steps in Resetting the user
name and password to default on page 306. This procedure requires a connection to the local
maintenance port on the Voice Gateway Media Card and requires restarting the card, which
interrupts services.
Resetting the user name and password to default

1. Connect a terminal to the Maintenance port (labeled Maint) either directly or through a dial-up modem. The terminal communication parameters must be as follows:
   - 9600 bps
   - 8 data bits
   - no parity
   - 1 stop bit
2. Press the Enter key on the keyboard.
   The logon: prompt appears.

   Warning:
   Do not use a pencil to reset the Voice Gateway Media Card. The graphite carbon can create an electrical short circuit on the board.
3. Restart the card by pressing the RESET button on the faceplate of the card with a pointed object, such as a ball-point pen.
4. Start up messages are displayed on the terminal. Type jkl on the terminal keyboard when the prompt appears.
   jkl runs from BIOS or the boot ROM, which is printed early in the bootup process. You have 6 seconds to enter jkl at the prompt. If the prompt is missed, restart the card and repeat the above step.
5. After the card restarts from BIOS or boot ROM, a CLI prompt such as the BIOS> appears. Enter the following command:
   shellPasswordNvramClear at the prompt.
6. Type reboot at the prompt to restart the card.
7. Wait for the card to completely restart into the IP Line application. The password synchronization feature automatically changes the password on the card.

IP configuration commands

Table 71: IP configuration commands on page 307 describes the IP configuration commands.
Table 71: IP configuration commands

<table>
<thead>
<tr>
<th>IP configuration command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>setLeader</td>
<td>Performs all the necessary actions to configure a Leader. Sets IP address, gateway, subnet mask, boot method to static, and Leader bit in NVRAM.</td>
</tr>
<tr>
<td>clearLeader</td>
<td>Clears the Leader info in NVRAM and sets the boot method to use BOOTP, thus, making the card a Follower.</td>
</tr>
<tr>
<td>NVRIPShow</td>
<td>Prints the values of the IP parameters that reside in NVRAM.</td>
</tr>
</tbody>
</table>

For more information about commands, see Software Input Output Reference — Maintenance, NN43001-711.

**TLAN network interface configuration commands**

Autonegotiate mode can be disabled if the ports on some data network switches, and routers are manually configured. For example, configuring a port for 100BaseT full-duplex can disable autonegotiation on the signaling link.

The IP Phones default to half-duplex mode when no autonegotiation signaling occurs. The result is that the IP Phones operate in half-duplex mode, while the switch is in full-duplex mode. Communication continues, but random packet loss can occur which affects the correct operation and voice quality.

**Important:**

Configure ports for autonegotiation and autosense.

Configure the speed and duplex setting of the TLAN network interface using the following commands:

**tlAnSpeedSet speed** : this command configures the speed of the TLAN network interface. By default, the network interface autonegotiates to the highest speed supported by the switch. If the switch is 10/100BaseT, the network interface negotiates to 100BaseT. Use this command to debug Ethernet speed-related problems by forcing the network interface to 10BaseT operation immediately. The duplex mode setting is saved in NVRAM and read at startup. The parameter speed is set to the following:

- 10: disables autonegotiation and sets speed to 10 Mb/s 10100 – enables autonegotiation

**tlAnDuplexSet duplexMode** : this command immediately configures the duplex mode of the TLAN network interface while operating when autonegotiate is disabled and the
speed is fixed to 10 Mb/s (or 10BaseT mode). The duplex mode is saved in NVRAM and read at startup. The parameter duplexMode is set to the following:

0: enables full-duplex mode 1: enables half-duplex mode

If the autonegotiation is disabled, and the speed and duplex mode are forced using the CLI commands, Avaya recommends that half-duplex mode be used to interoperate with the far end when the far end is set to autonegotiate.

If the duplex mode is configured as full-duplex, the far end must be configured as full-duplex and autonegotiate must be turned off.

Half-duplex mode works with either half-duplex or autonegotiate at the far end. However, full-duplex at the near end operates only with full-duplex at the far end.

Display the number of DSPs

The DSPNumShow command displays the number of DSPs on the Voice Gateway Media Card.

At the IPL> or the oam> prompt, type: DSPNumShow.

Display IP Telephony node properties

The IPInfoShow command displays information about an IP Telephony node.

At the prompt, type: IPInfoShow

The following IP Telephony node information appears on the TTY:

- IP addresses for the ELAN and TLAN subnets
- default router for the ELAN and TLAN subnets
- subnet mask for the ELAN and TLAN subnets
- IP routing table
- IP configuration of the card (which is related to the IP configuration of the node)

The IPInfoShow command displays information similar to the following:

```
Maintenance Interface = lnlSa0
Maintenance IP address = 47.103.220.199
Maintenance subnet mask = 255.255.255.224
Voice Interface = lnPci1
Voice IP address = 47.103.247.221
Voice subnet mask = 255.255.255.0
```
### Table 72: ROUTE NET TABLE

<table>
<thead>
<tr>
<th>destination</th>
<th>gateway</th>
<th>flags</th>
<th>Refcnt</th>
<th>Use</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>47.103.247.1</td>
<td>3</td>
<td>7</td>
<td>5800883</td>
<td>lnPci1</td>
</tr>
<tr>
<td>47.103.220.192</td>
<td>47.103.220.199</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td>lnIsa0</td>
</tr>
<tr>
<td>47.103.247.0</td>
<td>47.103.247.221</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td>lnPci1</td>
</tr>
</tbody>
</table>

### Table 73: ROUTE HOST TABLE

<table>
<thead>
<tr>
<th>destination</th>
<th>gateway</th>
<th>flags</th>
<th>Refcnt</th>
<th>Use</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>lo0</td>
</tr>
</tbody>
</table>

value = 77 = 0x4d = M

---

**Display Voice Gateway Media Card parameters**

The following commands provide information about a Voice Gateway Media Card:

- **itgCardShow**
- **ifShow**
- **serialNumShow**
- **firmwareVersionShow**
- **swVersionShow**

**itgCardShow**

The **itgCardShow** command displays information about a Voice Gateway Media Card.

At the IPL> or oam> prompt, type: **itgCardShow**

The **itgCardShow** command displays information similar to the following:

```plaintext
Index : 1 Type : EXUT Role : Leader Node : 123 Leader IP : 47.103.247.220
Card IP : 47.103.247.221 Card TN : 44 0 10 Card State : ENBL Uptime
: 1 days, 19 hours, 43 mins, 11 secs (157391 secs) Codecs : G711Ul aw (default),
G711Al aw, G729AB LnPci stat : 100 Mb/s (Carrier OK) value = 1 = 0x1
```
Registered Cards
The following information appears for each card currently registered:

- platform
- TN
- ELAN network interface MAC
- TLAN network interface IP Address
- ELAN network interface IP Address
- the length of time the card has been registered
- the number of IP Phones registered to the card
- number of Time Outs

Unregistered Cards
The following information appears for each card currently not yet registered based on BOOTP.TAB:

- platform
- TN
- ELAN network interface MAC
- TLAN network interface IP Address
- ELAN network interface IP Address

Example
The following is an example of the output on a Signaling Server:

```
electShow Node ID : 678 Node Master : Yes Up
Time : 1 days, 3 hours, 1 mins, 58 secs TN : 00 00 Host Type : ISP
1100 IP TLAN : 47.11.215.55 IP ELAN : 47.11.216.139 Election Duration
: 15 Wait for Result time : 35 Master Broadcast period : 30 =====
master tps ===== Host Type TN TLAN IP Addr ISP 1100 00 00 47.11.215.55
Next timeout : 3 sec AutoAnnounce : 1 Timer duration : 60 (Next timeout
in 17 sec) ====== all tps ====== Num TN Host Type ELAN MAC TLAN IP
Addr ELAN IP Addr Up Time NumOfSets TimeOut 001 00 00 ISP 1100 00:02:B3:C5:50:C2
47.11.215.55 47.11.216.139 001 03:01:58 5 0 ===== Cards in node configuration
that are not registered ====== Num TN Host Type ELAN MAC TLAN IP Addr
ELAN IP Addr 001 7 0 SMC 00:60:38:BD:C1:C1 47.11.215.54 47.11.216.49
value = 27886252 = 0x1a982ac

When all cards configured in a node are registered, the last part of the output displays the following:

====== All cards in node configuration are
registered ======
```
Packet loss monitor

Monitor audio packet loss using the following commands:

- **vgwPLLog 0|1|2**: enables the packet loss monitor. Packet loss is measured in the receive direction and the two halves of a call are monitored and logged independently. This command is not available on the MC 32S card.
  - A value of zero (0) disables packet loss logging.
  - A value of one (1, the default) logs a message if packet loss during the call exceeds the threshold set with the `itgPLThreshold` command.
  - A value of two (2) indicates that log messages are printed as packet loss is detected during the call. A message is printed each time packet loss is detected indicating how many packets were lost at that moment.

- **itgPLThreshold xxx** – this command sets the packet loss logging and alarm threshold, where xxx is a number from 1 to 1000, and represents the threshold in 0.1 percent increments. Packet loss that exceeds the threshold generates an SNMP trap and writes a message to the log file if logging is enabled. The default value is 10 (1 percent).

Transfer files using the CLI

A number of special file transfer commands are available to Put and Get files from the IPL> CLI or oam> CLI. These commands are normally used as part of an expert support procedure if Element Manager is not available.

The commands in Table 74: File transfer on page 311, are for the Voice Gateway Media Card. If Get is part of the command, the file is transferred from the server to the Voice Gateway Media Card. If Put is part of the command, the file is transferred from the Voice Gateway Media Card to the external FTP Server.

The commands in Table 75: File transfer for the MC 32S card on page 312 are for the MC 32S card.

**Table 74: File transfer**

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>swDownload</td>
<td>&lt;hostname&gt; &lt;username&gt; &lt;password&gt; &lt;directory path&gt; &lt;filename&gt;</td>
</tr>
<tr>
<td>Command</td>
<td>Parameters</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>configFileGet</td>
<td>&lt;hostname&gt; &lt;username&gt; &lt;password&gt; &lt;directory path&gt; &lt;filename&gt;</td>
</tr>
<tr>
<td>bootPFileGet</td>
<td>&lt;hostname&gt; &lt;username&gt; &lt;password&gt; &lt;directory path&gt; &lt;filename&gt;</td>
</tr>
<tr>
<td>hostFileGet</td>
<td>&lt;hostname&gt; &lt;username&gt; &lt;password&gt; &lt;directory path&gt; &lt;filename&gt; &lt;ITGfile name&gt; &lt;listener&gt;</td>
</tr>
<tr>
<td>bootPFilePut</td>
<td>&lt;hostname&gt; &lt;username&gt; &lt;password&gt; &lt;directory path&gt; &lt;filename&gt;</td>
</tr>
<tr>
<td>currOMFilePut</td>
<td>&lt;hostname&gt; &lt;username&gt; &lt;password&gt; &lt;directory path&gt; &lt;filename&gt;</td>
</tr>
<tr>
<td>prevOMFilePut</td>
<td>&lt;hostname&gt; &lt;username&gt; &lt;password&gt; &lt;directory path&gt; &lt;filename&gt;</td>
</tr>
<tr>
<td>logFilePut</td>
<td>&lt;hostname&gt; &lt;username&gt; &lt;password&gt; &lt;directory path&gt; &lt;filename&gt;</td>
</tr>
<tr>
<td>configFilePut</td>
<td>&lt;hostname&gt; &lt;username&gt; &lt;password&gt; &lt;directory path&gt; &lt;filename&gt;</td>
</tr>
<tr>
<td>hostFilePut</td>
<td>&lt;hostname&gt; &lt;username&gt; &lt;password&gt; &lt;directory path&gt; &lt;filename&gt; &lt;ITGfile name&gt;</td>
</tr>
</tbody>
</table>

Table 75: File transfer for the MC 32S card

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>swDownload</td>
<td>swDownload [host user passwd dir file name]</td>
</tr>
<tr>
<td>configFileGet</td>
<td>spcPkgconfigFileGet [host user passwd hostDirPath hostfile name]</td>
</tr>
<tr>
<td>bootPFileGet</td>
<td>bootPFileGet [host user passwd hostDirPath hostfile name]</td>
</tr>
<tr>
<td>hostFileGet</td>
<td>hostFileGet [ftype listener host user passwd hostDirPath hostfile name loc alDirPath localfile name]</td>
</tr>
<tr>
<td>bootPFilePut</td>
<td>bootPFilePut [host user passwd hostDirPath hostfile name]</td>
</tr>
<tr>
<td>currOMFilePut</td>
<td>omFilePut [host user passwd hostDirPath hostfile name]</td>
</tr>
<tr>
<td>prevOMFilePut</td>
<td>prevOMFilePut [host user passwd hostDirPath hostfile name]</td>
</tr>
<tr>
<td>hostFilePut</td>
<td>hostFilePut [ftype listener host user passwd hostDirPath hostfile name loca lDirPath localfile name]</td>
</tr>
</tbody>
</table>

All commands are case-sensitive. The parameters after the command must each be enclosed in quotation marks, and between parameters must be a comma with no spaces.
Host name refers to any of the following:

- the IP address of the FTP host
- the Voice Gateway Media Card itself (use loopback address 127.0.0.1)
- another Voice Gateway Media Card

---

**Reset the Operational Measurements file**

Reset the Operational Measurements (OM) file if incorrect statistics are collected.

At the IPL> or oam> prompt, type: `resetOM`.

The resetOM command resets all operational measurement parameters that are collected since the last log dump. The statistics start from zero.
Chapter 14: IP Line administration using Element Manager

Contents

This section contains the following topics:

- Introduction on page 289
- Element Manager administration procedures on page 315
- Backup and restore data on page 347
- Update IP Telephony node properties on page 349
- Update other node properties on page 359
- Telnet to a Voice Gateway Media Card using Virtual Terminal on page 361
- Check the Voice Gateway Channels on page 362
- Setting the IP Phone Installer Password on page 363

Introduction

This chapter explains how to administer IP Line and the Voice Gateway Media Card on Avaya Communication Server 1000 (Avaya CS 1000) systems using by Element Manager.

Element Manager administration procedures

This section describes the administration procedures that can be performed by using Element Manager.
**Turn off browser caching**

Internet Explorer caching interferes with the Element Manager application, in that users cannot see real-time changes as they occur. For this reason, Avaya recommends that you turn off Internet Explorer caching before you use Element Manager.

Perform the steps in [Configuring the browser](#) on page 213 to turn off caching in the Internet Explorer browser.

---

**IP Line Operational Measurement report scheduling and generation**

Operational Measurement (OM) reports provide important statistical and traffic information and feedback to the system administrator to better engineer the system. The information stored in the OM file applies only to the calls routed over the IP network by way of IP Line. OM reports give a quantitative view of system performance, such as jitter.

A single Voice Gateway Media Card Operational Measurements file can be viewed from Element Manager. This OM report is a view of the LTPS and Voice Gateway channel activity on the card. Use this procedure to view the card information for each Voice Gateway Media Card in the node.

The Voice Gateway Media Card OM file contains the following information:

- the number of incoming and outgoing calls
- the number of call attempts
- the number of calls completed
- the total holding time for voice calls

To view a Voice Gateway Media Card OM file from Element Manager, perform the steps in [Retrieving the current OM file from the Voice Gateway Media Card using Element Manager](#) on page 316.

**Retrieving the current OM file from the Voice Gateway Media Card using Element Manager**

1. In the Element Manager navigator, select **IP Network, Maintenance and Reports**.

   The Node Maintenance and Reports window appears.

2. Expand the node containing the Voice Gateway Media Card by clicking the plus sign (+) to the left of the Node ID.

   See [Figure 82: Node Maintenance and Reports window](#) on page 317.
3. Click **OM RPT** associated with the Voice Gateway Media Card.

   The View OM File window appears. See Figure 83: View OM File window on page 317.

4. To view a OM file, select the file to view and then click **View OM File**.

   The OM report data appears at the bottom of the window.

---

**Collection period**

The file contains collection period information for each hour of the day that the card ran.
The collection periods start with the hour from midnight to 1:00 a.m. As each hour passes, a collection period is added to the OM file; therefore, a maximum of 24 collection periods are available each day.

Output

The OM report output tracks the statistics for each IP Phone type.

Data is first written for the IP Phones followed by the data for the gateway channels.

Output example

An example of a single-hour OM report is as follows:

collection_time : 11/7/2006 2:00
2004Reg_Att: 0
2004Reg_Fail: 0
2004Unreg_Att: 0
2004Aud_Setup: 0
2004Jitter_Avg: 0.0
2004Jitter_Max: 0
2004Latency_Avg: 0.0
2004Latency_Max: 0
2004Pkt_Lost: 0.00
2004Listen_RFactor: 0.0
2004Voice_Time: 0 mins 0 secs
2002Reg_Att: 0
2002Reg_Fail: 0
2002Unreg_Att: 0
2002Aud_Setup: 0
2002Jitter_Avg: 0.0
2002Jitter_Max: 0
2002Latency_Avg: 0.0
2002Latency_Max: 0
2002Pkt_Lost: 0.00
2002Listen_RFactor: 0.0
2002Voice_Time: 0 mins 0 secs
2001Reg_Att: 0
2001Reg_Fail: 0
2001Unreg_Att: 0
2001Aud_Setup: 0
2001Jitter_Avg: 0.0
2001Jitter_Max: 0
2001Latency_Avg: 0.0
2001Latency_Max: 0
2001Pkt_Lost: 0.00
2001Listen_RFactor: 0.0
2001Voice_Time: 0 mins 0 secs
1150Reg_Att: 0
1150Unreg_Att: 0
1150Aud_Setup: 0
1150Jitter_Avg: 0.0
1150Jitter_Max: 0
1150Latency_Avg: 0.0
1150Latency_Max: 0
1150Pkt_Lost: 0.00
1150Listen_RFactor: 0.0
1150Voice_Time: 0 mins 0 secs
1130Reg_Att: 0
1130Reg_Fail: 0
1130Unreg_ATT: 0
1130Jitter_Avg: 0.0
1130Jitter_Max: 0
1130Latency_Avg: 0.0
1130Latency_Max: 0
1130Pkt_Lost: 0.00
1130Listen_RFactor: 0.0
1130Voice_Time: 0 mins 0 secs
2004P2Reg_Att: 0
2004P2Reg_Fail: 0
2004P2Unreg_Att: 0
2004P2Jitter_Avg: 0.0
2004P2Jitter_Max: 0
2004P2Latency_Avg: 0.0
2004P2Latency_Max: 0
2004P2Pkt_Lost: 0.00
2004P2Listen_RFactor: 0.0
2004P2Voice_Time: 0 mins 0 secs
2002P2Reg_Att: 0
2002P2Reg_Fail: 0
2002P2Unreg_Att: 0
2002P2Jitter_Avg: 0.0
2002P2Jitter_Max: 0
2002P2Latency_Avg: 0.0
2002P2Latency_Max: 0
2002P2Pkt_Lost: 0.00
2002P2Listen_RFactor: 0.0
2002P2Voice_Time: 0 mins 0 secs
2033Reg_Att: 0
2033Reg_Fail: 0
2033Unreg_Att: 0
2033Jitter_Avg: 0.0
2033Jitter_Max: 0
2033Latency_Avg: 0.0
2033Latency_Max: 0
2033Pkt_Lost: 0.00
2033Listen_RFactor: 0.0
2033Voice_Time: 0 mins 0 secs
2050Reg_Att: 0
2050Reg_Fail: 0
2050Unreg_Att: 0
2050Jitter_Avg: 0.0
2050Jitter_Max: 0
2050Latency_Avg: 0.0
2050Latency_Max: 0
2050Pkt_Lost: 0.00
2050Voice_Time: 0 mins 0 secs
2210Reg_Att: 0
2210Reg_Fail: 0
2210Unreg_Att: 0
2210Jitter_Avg: 0.0
Jitter_Avg: 0.0
Jitter_Max: 0
Pkt_Lost: 0.00
Listen_RFactor: 0.0
Voice_Time: 0 mins 0 secs
Chan Aud_Setup: 0
Chan Jitter_Avg: 0.0
Chan Jitter_Max: 0
Chan Pkt_Lost: 0.00
Chan Voice_Time: 0 mins 0 secs
H323 Vtrk In Vo Call Attempt: 0
H323 Vtrk In Vo Call Comp: 0
H323 Vtrk Out Vo Call Attempt: 0
H323 Vtrk Out Vo Call Comp: 0
H323 Vtrk Total Voice Time: 0 mins 0 secs
H323 Vtrk In Fax Call Attempt: 0
H323 Vtrk In Fax Call Comp: 0
H323 Vtrk Out Fax Call Attempt: 0
H323 Vtrk Out Fax Call Comp: 0
H323 Vtrk Total Voice Time: 0 mins 0 secs
SIP Vtrk In Vo Call Attempt: 0
SIP Vtrk In Vo Call Comp: 0
SIP Vtrk Out Vo Call Attempt: 0
SIP Vtrk Out Vo Call Comp: 0
SIP Vtrk Total Voice Time: 0 mins 0 secs
SIP Vtrk In Fax Call Attempt: 0
SIP Vtrk In Fax Call Comp: 0
SIP Vtrk Out Fax Call Attempt: 0
SIP Vtrk Out Fax Call Comp: 0
SIP Vtrk Total Voice Time: 0 mins 0 secs
H323 Vtrk QoS FallBack: 0
H323 Vtrk APM FallBack: 0
SIP Vtrk Rel Comp FallBack: 0
SIP Vtrk TLS Authentication Failure: 0
SIP Vtrk TLS Incoming Attempt: 0
SIP Vtrk TLS Incoming Comp: 0
SIP Vtrk TLS Outgoing Attempt: 0
SIP Vtrk TLS Outgoing Comp: 0
Out Total H323 Ovl Call Count: 0
Out Success H323 Ovl Call Count: 0
In Total H323 Ovl Call Count: 0
In Success H323 Ovl Call Count: 0
Total ARQ Generated: 0
Total ARJ Rcvd: 0
Total ACF Rcvd: 0
H323 Nrs Gatekeeper Req: 0
H323 Nrs Gatekeeper Conf: 0
H323 Nrs Gatekeeper Rej: 0
H323 Nrs Registration Req: 144
H323 Nrs Registration Conf: 144
H323 Nrs Registration Rej: 0
H323 Nrs Unregistration Req Recd: 0
H323 Nrs Unregistration Conf Sent: 0
H323 Nrs Unregistration Rej Sent: 0
H323 Nrs Admission Req: 0
H323 Nrs Admission Conf: 0
H323 Nrs Admission Rej: 0
Each collection period provides the following information:

- The date and time for the collection hour.
- Voice Gateway channel information accumulated during the hour. The Voice Gateway data is prefixed by Chan.
- Notes indicating whether the equipment restarted during the hour.
- Virtual Trunk statistics display only for a Signaling Server that ran the VTRK H.323 Signaling Server in the last hour.

The OM file relates to the omreport.xxx file on the Voice Gateway Media Card, where xxx indicates the numbers of days since December 31.
View Traffic reports

You can view system traffic and customer traffic reports in Element Manager.

System reports

To view system traffic reports in the Element Manager navigator, click **Tools, Logs and Reports, Operational Measurements, System Traffic**.

**Networks report (TFS001)**

Click Network in the table to view the Networks report.

![System 0 Networks Report](image)

Figure 84: Networks report

**Service loops report (TFS002)**

Click Service loops in the table to view the page title, report description, and the parameters measured in the Service Loops report.
Table 76: TFS002

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Service Loops Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>System xxx Service Loops Report (TFS002) measures service loops and tone detectors.</td>
</tr>
<tr>
<td>Parameters Measured</td>
<td></td>
</tr>
<tr>
<td>1 Service number.</td>
<td>Service number.</td>
</tr>
<tr>
<td>2 Service type.</td>
<td>Service type.</td>
</tr>
<tr>
<td>3 Service FTM.</td>
<td>Service FTM.</td>
</tr>
<tr>
<td>4 Service usage.</td>
<td>Service usage.</td>
</tr>
<tr>
<td>5 Service request peg count.</td>
<td>Service request peg count.</td>
</tr>
</tbody>
</table>

Dial tone delay report (TFS003)

Click Dial tone delay in the table to view the page title, report description, and the parameters measured in the Dial tone delay report.

Table 77: TFS003

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Dial Tone Delay Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Dial Tone Delay Report (TFS003) shows the number of times users waited for dial tone for longer than 1 second.</td>
</tr>
<tr>
<td>Parameters Measured</td>
<td></td>
</tr>
<tr>
<td>1 Number of times a user waited longer than 1 second</td>
<td></td>
</tr>
<tr>
<td>2 Number of times a user waited longer than 10 second</td>
<td></td>
</tr>
<tr>
<td>3 Total time delay</td>
<td></td>
</tr>
</tbody>
</table>

Processor load report

Click Processor load in the table to view the Processor Load report.
Figure 85: Processor load report

Selected terminals Report (TFS005)

Click Selected terminals in the table to view the page title, report description, and the parameters measured in the Selected terminals report.

Table 78: TFS005

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Selected Terminals Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Selected Terminals Report (TFS005) measures the output for individual terminals and terminal loops.</td>
</tr>
<tr>
<td>Parameters Measured</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Loop number</td>
</tr>
<tr>
<td>2</td>
<td>Line usage</td>
</tr>
<tr>
<td>3</td>
<td>Line peg count</td>
</tr>
</tbody>
</table>

Junctort group report (TFS007)
Click Junctor group report in the table to view the page title, report description, and the parameters measured in the Junctor group report.

Table 79: TFS007

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Junctor Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Junctor Report (TFS007) displays measurements related to paths that connect network groups involving an intergroup junctor</td>
</tr>
<tr>
<td>Parameters Measured</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Junctor group</td>
</tr>
<tr>
<td>2</td>
<td>Failure to match</td>
</tr>
<tr>
<td>3</td>
<td>Total usage</td>
</tr>
<tr>
<td>4</td>
<td>Peg count</td>
</tr>
</tbody>
</table>

Command status links and application module report (TFS008)

Click Command status links and application module links in the table to view the page title, report description, and the parameters measured in the Command status links and application module links group report.

Table 80: TFS008

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Command Status Link and Application Module Link measurements Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Command Status Link (CSL) and Application Module Link (AML) measurements Report (TFS008) captures traffic data related to Command Status Links and Application Module Links.</td>
</tr>
<tr>
<td>Parameters Measured</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Input queue overflow</td>
</tr>
<tr>
<td>2</td>
<td>Output queue overflow</td>
</tr>
<tr>
<td>3</td>
<td>System resource not available</td>
</tr>
<tr>
<td>4</td>
<td>Input queue size for system messages</td>
</tr>
<tr>
<td>5</td>
<td>Input queue size for call processing messages</td>
</tr>
<tr>
<td>5</td>
<td>Input queue size for administration messages</td>
</tr>
<tr>
<td>Command Status Link</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Port number</td>
</tr>
<tr>
<td>2</td>
<td>Value Added Server ID</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>3</td>
<td>CSL output failures</td>
</tr>
<tr>
<td>4</td>
<td>Number of link stops</td>
</tr>
<tr>
<td>5</td>
<td>Link down time</td>
</tr>
<tr>
<td>6</td>
<td>Average output queue size</td>
</tr>
<tr>
<td>7</td>
<td>Number of ICHAR TTY buffer overflows</td>
</tr>
<tr>
<td>8</td>
<td>Packets with missing End of Block flag</td>
</tr>
<tr>
<td>9</td>
<td>Packets with premature End of Block flag</td>
</tr>
<tr>
<td>10</td>
<td>Packets with invalid priority</td>
</tr>
<tr>
<td>11</td>
<td>Packets with invalid length</td>
</tr>
</tbody>
</table>

**Outgoing/Incoming message types**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Channel assignment request</td>
</tr>
<tr>
<td>2</td>
<td>Call connection</td>
</tr>
<tr>
<td>3</td>
<td>Present call</td>
</tr>
<tr>
<td>4</td>
<td>Call answered</td>
</tr>
<tr>
<td>5</td>
<td>Call disconnect</td>
</tr>
<tr>
<td>6</td>
<td>DN update</td>
</tr>
<tr>
<td>7</td>
<td>Dialed digits</td>
</tr>
<tr>
<td>8</td>
<td>Telset message</td>
</tr>
<tr>
<td>9</td>
<td>Telset status message</td>
</tr>
<tr>
<td>10</td>
<td>Message waiting indication change</td>
</tr>
<tr>
<td>11</td>
<td>Update terminal status</td>
</tr>
<tr>
<td>12</td>
<td>TN maintenance mode</td>
</tr>
<tr>
<td>13</td>
<td>Confirmation</td>
</tr>
<tr>
<td>14</td>
<td>Administration data block</td>
</tr>
<tr>
<td>15</td>
<td>Software audit</td>
</tr>
<tr>
<td>16</td>
<td>Change terminal status</td>
</tr>
<tr>
<td>17</td>
<td>Device state information</td>
</tr>
<tr>
<td>18</td>
<td>Network layer data</td>
</tr>
<tr>
<td>19</td>
<td>Terminal status</td>
</tr>
<tr>
<td>20</td>
<td>Requests acquired</td>
</tr>
<tr>
<td>22</td>
<td>Responses acquired</td>
</tr>
<tr>
<td></td>
<td>Message Type</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>23</td>
<td>Statistics messages</td>
</tr>
<tr>
<td>24</td>
<td>Incoming call indication messages</td>
</tr>
<tr>
<td>25</td>
<td>Call detail recording state requests</td>
</tr>
<tr>
<td>26</td>
<td>Call detail recording state responses</td>
</tr>
<tr>
<td>27</td>
<td>De-acquire request</td>
</tr>
<tr>
<td>28</td>
<td>De-acquire response</td>
</tr>
<tr>
<td>29</td>
<td>ATB on/off for acquire route</td>
</tr>
<tr>
<td>30</td>
<td>Error indications sent</td>
</tr>
<tr>
<td>31</td>
<td>Error indications received</td>
</tr>
<tr>
<td>32</td>
<td>Incoming calls accepted</td>
</tr>
<tr>
<td>33</td>
<td>System initialization indication messages</td>
</tr>
<tr>
<td>34</td>
<td>Acquired devices removed</td>
</tr>
<tr>
<td>35</td>
<td>Queue requests</td>
</tr>
<tr>
<td>36</td>
<td>Queue request response messages</td>
</tr>
<tr>
<td>37</td>
<td>Query request</td>
</tr>
<tr>
<td>38</td>
<td>Query request responses</td>
</tr>
<tr>
<td>39</td>
<td>Startup or shutdown indications</td>
</tr>
<tr>
<td>40</td>
<td>Startup or shutdown indication response messages</td>
</tr>
<tr>
<td>41</td>
<td>Statistics requests</td>
</tr>
<tr>
<td>42</td>
<td>Statistics response messages</td>
</tr>
<tr>
<td>43</td>
<td>Treatment completed messages</td>
</tr>
<tr>
<td>44</td>
<td>Treatment requests</td>
</tr>
<tr>
<td>45</td>
<td>Return to queue</td>
</tr>
<tr>
<td>46</td>
<td>Treatment response messages</td>
</tr>
<tr>
<td>47</td>
<td>Filter Bitmap request</td>
</tr>
<tr>
<td>48</td>
<td>Filter Bitmap response</td>
</tr>
<tr>
<td>49</td>
<td>Monitor make set busy</td>
</tr>
<tr>
<td>50</td>
<td>Make set in service</td>
</tr>
<tr>
<td>51</td>
<td>Message waiting indication change</td>
</tr>
<tr>
<td>52</td>
<td>Not ready</td>
</tr>
<tr>
<td>53</td>
<td>Off-hook</td>
</tr>
<tr>
<td>54</td>
<td>Operator revert</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>55</td>
<td>Override</td>
</tr>
<tr>
<td>56</td>
<td>Present call</td>
</tr>
<tr>
<td>57</td>
<td>Query</td>
</tr>
<tr>
<td>58</td>
<td>Ready</td>
</tr>
<tr>
<td>59</td>
<td>Call disconnect request</td>
</tr>
<tr>
<td>60</td>
<td>Request terminal status change</td>
</tr>
<tr>
<td>61</td>
<td>Set feature message</td>
</tr>
<tr>
<td>62</td>
<td>Set feature notification</td>
</tr>
<tr>
<td>63</td>
<td>Set feature</td>
</tr>
<tr>
<td>64</td>
<td>Timestamp</td>
</tr>
<tr>
<td>65</td>
<td>Unsolicited status message</td>
</tr>
<tr>
<td>66</td>
<td>Update terminal status</td>
</tr>
</tbody>
</table>

**Message Priority**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Priority 1 messages</td>
</tr>
<tr>
<td>2</td>
<td>Priority 2 messages</td>
</tr>
<tr>
<td>3</td>
<td>Priority 3 messages</td>
</tr>
<tr>
<td>4</td>
<td>Priority 4 messages</td>
</tr>
</tbody>
</table>

**Traffic**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Average incoming usage</td>
</tr>
<tr>
<td>2</td>
<td>Peak incoming usage</td>
</tr>
<tr>
<td>3</td>
<td>Average outgoing usage</td>
</tr>
<tr>
<td>4</td>
<td>Peak outgoing usage</td>
</tr>
<tr>
<td>5</td>
<td>Time since last query</td>
</tr>
</tbody>
</table>

**Flow Control**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First flow control</td>
</tr>
<tr>
<td>2</td>
<td>Second flow control</td>
</tr>
<tr>
<td>3</td>
<td>Third flow control</td>
</tr>
<tr>
<td>4</td>
<td>Fourth flow control</td>
</tr>
<tr>
<td>5</td>
<td>Outgoing SSD failure count</td>
</tr>
<tr>
<td>6</td>
<td>AML reset count</td>
</tr>
</tbody>
</table>

**Packets**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Incoming packets</td>
</tr>
</tbody>
</table>
2  Outgoing packets

D-channel report (TFS009)

Click D-channel report in the table to view the page title, report description, and the parameters measured in the D-channel report group.

Table 81: TFS009

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx D-channel Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>D-channel Report (TFS009) captures traffic activity on D-channels.</td>
</tr>
<tr>
<td>Parameters Measured</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td></td>
</tr>
<tr>
<td>1 D-channel number</td>
<td></td>
</tr>
<tr>
<td>2 Incoming messages received</td>
<td></td>
</tr>
<tr>
<td>3 Outgoing messages sent</td>
<td></td>
</tr>
<tr>
<td>4 Input queue size for system messages</td>
<td></td>
</tr>
<tr>
<td>5 Input queue size for call processing messages</td>
<td></td>
</tr>
<tr>
<td>6 Input queue size for administration messages</td>
<td></td>
</tr>
<tr>
<td>7 Incoming call processing messages</td>
<td></td>
</tr>
<tr>
<td>8 Outgoing call processing messages</td>
<td></td>
</tr>
<tr>
<td>9 Incoming management messages</td>
<td></td>
</tr>
<tr>
<td>10 Outgoing management messages</td>
<td></td>
</tr>
<tr>
<td>11 Incoming maintenance messages</td>
<td></td>
</tr>
<tr>
<td>12 Outgoing maintenance messages</td>
<td></td>
</tr>
<tr>
<td>13 Average number of incoming bytes for each message</td>
<td></td>
</tr>
<tr>
<td>14 Average number of outgoing bytes for each message</td>
<td></td>
</tr>
<tr>
<td>15 Total transfer time for incoming messages</td>
<td></td>
</tr>
<tr>
<td>16 Total transfer time for outgoing messages</td>
<td></td>
</tr>
<tr>
<td>17 Requests in output message buffer</td>
<td></td>
</tr>
<tr>
<td>18 Output message buffer idle count</td>
<td></td>
</tr>
<tr>
<td>19 No End of Message mark message count</td>
<td></td>
</tr>
<tr>
<td>20 PRA Layer-3 protocol errors</td>
<td></td>
</tr>
<tr>
<td>21 D-channel down instances</td>
<td></td>
</tr>
<tr>
<td>22 Attempted anti-tromboning operations</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>System xxx D-channel Report</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>23</td>
<td>Successful anti-tromboning operations</td>
</tr>
<tr>
<td>24</td>
<td>First flow control</td>
</tr>
<tr>
<td>25</td>
<td>Second flow control</td>
</tr>
<tr>
<td>26</td>
<td>Third flow control</td>
</tr>
<tr>
<td>27</td>
<td>Fourth flow control</td>
</tr>
</tbody>
</table>

**MSDL data**

1	Average incoming link usage
2	Peak incoming link usage
3	Average outgoing link usage
4	Peak outgoing link usage
5	Number of connected calls
6	Time since MSDL D-channel traffic was cleared

**Optimization data**

1	Optimization requests with the diversion trigger
2	Successful optimizations with the diversion trigger
3	Successful optimizations retaining the old path with the diversion trigger
4	Optimization requests with the congestion trigger
5	Successful optimizations with the congestion trigger
6	Successful optimizations retaining the old path with the congestion trigger
7	Optimization requests with the connected trigger
8	Successful optimizations with the connected trigger
9	Successful optimizations retaining the old path with the connected trigger

**ISDN GF transport report (TFS010)**

Click ISDN GF transport in the table to view the page title, report description, and the parameters measured in the ISDN GF transport report group.
Table 82: TFS0010

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx ISDN Generic Functional Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>ISDN Generic Functional Report (TFS010) counts the number of times supplementary services or the ISDN transport cannot find an idle call register.</td>
</tr>
<tr>
<td>Parameters Measured</td>
<td>1 GF/SS call register overflow peg count</td>
</tr>
</tbody>
</table>

Multi purpose ISDN signaling processor traffic report (TFS011)
Click Multipurpose ISDN signaling processor traffic in the table to view the report.

Multi-purpose ISDN signaling processor DCH management report (TFS012)
Click Multi-purpose ISDN signaling processor DCH management in the table to view the report.

Table 83: TFS012

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Multipurpose ISDN Signaling Processor D-channel Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Multipurpose ISDN Signaling Processor D-channel Report (TFS012) displays the traffic management activity for each DSL based on the exchange of signaling messages between the MISP and the terminals over the D-channels.</td>
</tr>
<tr>
<td>Parameters Measured</td>
<td>MISP information</td>
</tr>
<tr>
<td>1</td>
<td>Loop number</td>
</tr>
<tr>
<td>2</td>
<td>1 to 10 bytes</td>
</tr>
<tr>
<td>3</td>
<td>11 to 20 bytes</td>
</tr>
<tr>
<td>4</td>
<td>More than 20 bytes</td>
</tr>
<tr>
<td>BRSC information</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D-channel</td>
</tr>
<tr>
<td>2</td>
<td>1 to 10 bytes</td>
</tr>
<tr>
<td>3</td>
<td>11 to 20 bytes</td>
</tr>
<tr>
<td>4</td>
<td>More than 20 bytes</td>
</tr>
</tbody>
</table>

Multi-purpose ISDN signaling processor messages report (TFS013)
Click Multipurpose ISDN signaling processor messages in the table to view the report.
Table 84: TFS013

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Multipurpose ISDN Signaling Processor messages Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Multipurpose ISDN Signaling Processor messages Report (TFS013) shows the total number of call processing, maintenance, and management messages sent through each MISP in the system grouped by message size.</td>
</tr>
<tr>
<td>Parameters Measured</td>
<td></td>
</tr>
<tr>
<td>MISP information</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MISP loop number</td>
</tr>
<tr>
<td>2</td>
<td>MISP link initializations</td>
</tr>
<tr>
<td>3</td>
<td>Terminal link initializations</td>
</tr>
<tr>
<td>4</td>
<td>MISP management messages</td>
</tr>
<tr>
<td>5</td>
<td>Terminal management messages</td>
</tr>
<tr>
<td>6</td>
<td>Incomplete calls Link errors</td>
</tr>
<tr>
<td>BRSC information</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D-channel</td>
</tr>
<tr>
<td>2</td>
<td>BRSC link initializations</td>
</tr>
<tr>
<td>3</td>
<td>Terminal link initializations</td>
</tr>
<tr>
<td>4</td>
<td>BRSC management messages</td>
</tr>
<tr>
<td>5</td>
<td>Terminal management messages</td>
</tr>
<tr>
<td>6</td>
<td>Incomplete calls Link errors</td>
</tr>
</tbody>
</table>

ISDN BRI trunk DSL system report (TFS014)

Click ISDN BRI trunk DSL system in the table to view the report.

Table 85: TFS014

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx ISDN BRI Trunk DSL Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>ISDN BRI Trunk DSL Report (TFS014) shows the total number of maintenance, administrative and protocol messages sent through each Digital Subscriber Loop in the system.</td>
</tr>
<tr>
<td>Parameters Measured</td>
<td></td>
</tr>
<tr>
<td>MISP information</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MISP ID</td>
</tr>
<tr>
<td>2</td>
<td>Outgoing maintenance messages</td>
</tr>
</tbody>
</table>
### System xxx ISDN BRI Trunk DSL Report

<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Incoming maintenance messages</td>
</tr>
<tr>
<td>4</td>
<td>Outgoing administration messages</td>
</tr>
<tr>
<td>5</td>
<td>Incoming administration messages</td>
</tr>
<tr>
<td>6</td>
<td>Outgoing protocol messages</td>
</tr>
<tr>
<td>7</td>
<td>Layer 3 protocol messages</td>
</tr>
<tr>
<td>8</td>
<td>Layer 2 protocol messages</td>
</tr>
<tr>
<td>9</td>
<td>Layer 1 protocol messages</td>
</tr>
<tr>
<td>10</td>
<td>Connected calls</td>
</tr>
</tbody>
</table>

**Meridian packet handler report (TFS015)**

Click Meridian packet handler in the table to view the page title, report description, and the parameters measured in the Meridian packet handler report group.

**Table 86: TFS015**

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Meridian Packet Handler Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Meridian Packet Handler Report (TFS015) provides specific information about incoming and outgoing calls and data packets. This report is particularly useful for analyzing the flow of data over network links.</td>
</tr>
<tr>
<td>Parameters Measured</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MPH number</td>
</tr>
<tr>
<td>2</td>
<td>Link interface type</td>
</tr>
<tr>
<td>3</td>
<td>Link time slot number</td>
</tr>
<tr>
<td>4</td>
<td>Layer 2 link initializations</td>
</tr>
<tr>
<td>5</td>
<td>Attempted incoming calls</td>
</tr>
<tr>
<td>6</td>
<td>Completed incoming calls</td>
</tr>
<tr>
<td>7</td>
<td>Attempted outgoing calls</td>
</tr>
<tr>
<td>8</td>
<td>Duration of a data call</td>
</tr>
<tr>
<td>9</td>
<td>Incoming data packets</td>
</tr>
<tr>
<td>10</td>
<td>Outgoing data packets</td>
</tr>
</tbody>
</table>

**QoS IP statistics (TFS016)**

Click QoS IP statistics in the table to view the report.
Customer traffic reports

To view customer traffic reports in the Element Manager navigator, click **Tools, Logs and Reports, Operational Measurements, Customer Traffic**.

**Network report (TFC001)**

Click Networks in the table to view the page title, report description, and the parameters measured in the Networks report group.

**Table 87: TFC001**

<table>
<thead>
<tr>
<th>Description</th>
<th>System xxx Customer yy Networks Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Networks Report (TFC001) describes traffic details for each customer call.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters Measured</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Traffic Data</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Failure to match</td>
</tr>
<tr>
<td>2</td>
<td>Usage</td>
</tr>
<tr>
<td>Title</td>
<td>System xxx Customer yy Networks Report</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>3</td>
<td>Peg count</td>
</tr>
<tr>
<td>1</td>
<td>Failure to match</td>
</tr>
<tr>
<td>2</td>
<td>Usage</td>
</tr>
<tr>
<td>3</td>
<td>Peg count</td>
</tr>
</tbody>
</table>

**Outgoing Traffic Data**

1	Failure to match
2	Usage
3	Peg count

**Intracustomer Traffic Data**

1	Failure to match
2	Usage
3	Peg count

**Tandem Traffic Data**

1	Failure to match
2	Usage
3	Peg count

**Miscellaneous**

1	Permanent signal
2	Abandon
3	Partial dial

**Trunks report (TFC002)**

Click Trunks in the table to view the page title, report description, and the parameters measured in the Trunks report group.

**Table 88: TFC002**

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Customer yy Trunks Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Trunks Report (TFC002) displays trunk usage. The report prints when the All Trunks Busy (ATB) condition occurs during the reporting period.</td>
</tr>
</tbody>
</table>

**Parameters Measured**

<p>| 1         | Route number                           |
| 2         | Trunk type                             |</p>
<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Customer yy Trunks Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Equipped trunks</td>
</tr>
<tr>
<td>4</td>
<td>Working trunks</td>
</tr>
<tr>
<td>5</td>
<td>Incoming usage</td>
</tr>
<tr>
<td>6</td>
<td>Incoming peg count</td>
</tr>
<tr>
<td>7</td>
<td>Outgoing usage</td>
</tr>
<tr>
<td>8</td>
<td>Outgoing peg count</td>
</tr>
<tr>
<td>9</td>
<td>Outgoing overflow</td>
</tr>
<tr>
<td>10</td>
<td>All Trunks Busy</td>
</tr>
<tr>
<td>11</td>
<td>Toll peg count</td>
</tr>
<tr>
<td>12</td>
<td>All Trunks Busy for nonpriority users</td>
</tr>
</tbody>
</table>

**Console queue report (TFC003)**

Click Console queue in the table to view the page title, report description, and the parameters measured in the Console queue report group.

**Table 89: TFC003**

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Customer yy Console Queue Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Console Queue Report (TFC003) examines the treatment of calls in customer queues.</td>
</tr>
<tr>
<td>Parameters Measured</td>
<td></td>
</tr>
<tr>
<td>Attendant Response</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Average speed of answer</td>
</tr>
<tr>
<td>2</td>
<td>Average attendant response</td>
</tr>
<tr>
<td>3</td>
<td>Calls delayed peg count</td>
</tr>
<tr>
<td>4</td>
<td>Average time in queue</td>
</tr>
<tr>
<td>Abandoned Calls</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Abandoned calls peg count</td>
</tr>
<tr>
<td>2</td>
<td>Average wait time</td>
</tr>
</tbody>
</table>

**Individual console measurement report (TFC004)**

Click Individual console measurement in the table to view the page title, report description, and the parameters measured in the Console queue report group.

**Feature key usage report (TFC005)**

Click Feature key usage in the table to view the page title, report description, and the parameters measured in the Feature key usage report group.
Table 90: TFC005

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Feature Key Usage Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Feature Key Usage Report (TFC005) looks at patterns of customer usage.</td>
</tr>
<tr>
<td>Parameters Measured</td>
<td></td>
</tr>
<tr>
<td>1 Feature number</td>
<td>Feature number</td>
</tr>
<tr>
<td>2 Peg count</td>
<td>Peg count</td>
</tr>
</tbody>
</table>

Radio paging report (TFC006)

Click Radio paging in the table to view the page title, report description, and the parameters measured in the Radio paging report group.

Table 91: TFC006

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Customer yy Radio Paging Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Radio Paging Report (TFC006) shows the number of calls processed by Radio Paging.</td>
</tr>
<tr>
<td>Parameters Measured:</td>
<td></td>
</tr>
<tr>
<td>1 RPA system number</td>
<td>RPA system number</td>
</tr>
<tr>
<td>2 Request peg count</td>
<td>Request peg count</td>
</tr>
<tr>
<td>3 Blocked requests peg count</td>
<td>Blocked requests peg count</td>
</tr>
<tr>
<td>4 Requests abandoned by caller</td>
<td>Requests abandoned by caller</td>
</tr>
<tr>
<td>Radio Paging</td>
<td></td>
</tr>
<tr>
<td>1 Preselection peg count</td>
<td>Preselection peg count</td>
</tr>
<tr>
<td>2 Post selection peg count</td>
<td>Post selection peg count</td>
</tr>
<tr>
<td>3 Automatic mode peg count</td>
<td>Automatic mode peg count</td>
</tr>
<tr>
<td>4 Manual mode peg count</td>
<td>Manual mode peg count</td>
</tr>
<tr>
<td>5 Diversion peg count</td>
<td>Diversion peg count</td>
</tr>
<tr>
<td>Paging Modes</td>
<td></td>
</tr>
<tr>
<td>1 Mode 1 peg count</td>
<td>Mode 1 peg count</td>
</tr>
<tr>
<td>2 Mode 2 peg count</td>
<td>Mode 2 peg count</td>
</tr>
<tr>
<td>3 Mode 3 peg count</td>
<td>Mode 3 peg count</td>
</tr>
<tr>
<td>4 Mode 4 peg count</td>
<td>Mode 4 peg count</td>
</tr>
<tr>
<td>5 Mode 5 peg count</td>
<td>Mode 5 peg count</td>
</tr>
<tr>
<td>Average time</td>
<td></td>
</tr>
</tbody>
</table>
### Call Park report (TFC007)

Click Call Park in the table to view the page title, report description, and the parameters measured in the Call Park report group.

**Table 92: TFC007**

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Customer yy Call Park Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Call Park Report (TFC007) shows the call parking data across a System park and Station park DN.</td>
</tr>
<tr>
<td>Parameters Measured:</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>System park peg count</td>
</tr>
<tr>
<td>2</td>
<td>System Park overflow peg count</td>
</tr>
<tr>
<td>3</td>
<td>Station Park peg count</td>
</tr>
<tr>
<td>4</td>
<td>Parked call access peg count</td>
</tr>
<tr>
<td>5</td>
<td>Parked call recall peg count</td>
</tr>
<tr>
<td>6</td>
<td>Average park wait time</td>
</tr>
</tbody>
</table>

### Messaging and auxiliary processor links report (TFC008)

Click Messaging and auxiliary processor links in the table to view the page title, report description, and the parameters measured in the Messaging and auxiliary processor links report group.

**Table 93: TFC008**

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Customer yy Messaging and Auxiliary Processor Links Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Messaging and Auxiliary Processor Links Report (TFC008) provides data on Messaging and Auxiliary Processor links.</td>
</tr>
<tr>
<td>Parameters Measured:</td>
<td></td>
</tr>
<tr>
<td>Auxiliary Processor Link</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>APL number</td>
</tr>
<tr>
<td>2</td>
<td>Output queue overflow</td>
</tr>
<tr>
<td>3</td>
<td>Input queue overflow</td>
</tr>
<tr>
<td>Title</td>
<td>System xxx Customer yy Messaging and Auxiliary Processor Links Report</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------------------------------------------</td>
</tr>
<tr>
<td>4</td>
<td>Average output queue size</td>
</tr>
<tr>
<td>5</td>
<td>Average input queue size</td>
</tr>
<tr>
<td>6</td>
<td>Down time</td>
</tr>
<tr>
<td>7</td>
<td>Unavailable input message call register</td>
</tr>
<tr>
<td>8</td>
<td>Four second time out count</td>
</tr>
<tr>
<td>9</td>
<td>Negative acknowledgments</td>
</tr>
<tr>
<td>10</td>
<td>Input characters not synchronized</td>
</tr>
<tr>
<td>OMSG</td>
<td>Packets</td>
</tr>
<tr>
<td>IMSG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Message Attendant Queue</td>
</tr>
<tr>
<td>1</td>
<td>Output packet messages</td>
</tr>
<tr>
<td>2</td>
<td>Automatic Call Distribution DN</td>
</tr>
<tr>
<td>3</td>
<td>Value Added Server ID</td>
</tr>
<tr>
<td>4</td>
<td>Auxiliary Processor Link number</td>
</tr>
<tr>
<td>5</td>
<td>Calls in message attendant queue</td>
</tr>
<tr>
<td>6</td>
<td>Direct calls to message attendant</td>
</tr>
<tr>
<td>7</td>
<td>Indirect calls</td>
</tr>
<tr>
<td>8</td>
<td>Time overflow calls</td>
</tr>
<tr>
<td>9</td>
<td>Abandoned calls</td>
</tr>
<tr>
<td>10</td>
<td>Average waiting time for abandoned calls</td>
</tr>
<tr>
<td>11</td>
<td>Average delay</td>
</tr>
<tr>
<td>12</td>
<td>Direct call processing time</td>
</tr>
<tr>
<td></td>
<td>Post call processing time</td>
</tr>
<tr>
<td>Telephone Status</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Automatic Call Distribution DN</td>
</tr>
<tr>
<td>2</td>
<td>Value Added Server ID</td>
</tr>
<tr>
<td>3</td>
<td>Auxiliary Processor Link number</td>
</tr>
<tr>
<td>4</td>
<td>Total calls</td>
</tr>
<tr>
<td>5</td>
<td>Special prefix access calls</td>
</tr>
</tbody>
</table>
**Network attendant service report (TFC009)**

Click Network attendant service in the table to view the page title, report description, and the parameters measured in the Network attendant service report group.

**Table 94: TFC009**

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Customer yy Network Attendant Service Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Network Attendant Service Report (TFC009) shows the attempts to route to NAS.</td>
</tr>
<tr>
<td>Parameters Measured:</td>
<td></td>
</tr>
<tr>
<td>Alternate Routes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Attempts to route to NAS across route 1</td>
</tr>
<tr>
<td>2</td>
<td>Attempts to route to NAS across route 2</td>
</tr>
<tr>
<td>3</td>
<td>Attempts to route to NAS across route 3</td>
</tr>
<tr>
<td>4</td>
<td>Attempts to route to NAS across route 4</td>
</tr>
<tr>
<td>Drop Backs</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Drop back busies over route 1</td>
</tr>
<tr>
<td>2</td>
<td>Drop back busies over route 2</td>
</tr>
<tr>
<td>3</td>
<td>Drop back busies over route 3</td>
</tr>
</tbody>
</table>
**DSP peg count report (TFC012)**
Click Call blocking due to lack of DSP resource in the table to view the page title, report description, and the parameters measured in the DSP peg count report group.

**Table 95: TFC0012**

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Customer yy DSP Peg Count Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>DSP Peg Count Report (TFC012) shows the number of times calls were blocked on an IP Media Gateway (IPMG) due to insufficient Digital Signal Processor (DSP) resources or a lack of bandwidth.</td>
</tr>
<tr>
<td>Parameters Measured:</td>
<td></td>
</tr>
<tr>
<td>Alternate Routes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>IPMG loop number</td>
</tr>
<tr>
<td>2</td>
<td>Attempts to allocate DSP resources</td>
</tr>
<tr>
<td>3</td>
<td>Lack of DSP resources</td>
</tr>
<tr>
<td>4</td>
<td>Lack of bandwidth</td>
</tr>
</tbody>
</table>

**ISPC link establishment report (TFC105)**
Click ISPC link establishment in the table to view the page title, report description, and the parameters measured in the ISPC link establishment report group.

**Table 96: TFC105**

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Customer yy ISPC Link Establishment Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>ISPC Link Establishment Report (TFC105) provides a peg count of the number of ISPC links established by an Australian Central office for each Phantom loop for each defined trunk.</td>
</tr>
<tr>
<td>Parameters Measured:</td>
<td></td>
</tr>
<tr>
<td>Alternate Routes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Loop Number</td>
</tr>
<tr>
<td>2</td>
<td>Peg Count</td>
</tr>
</tbody>
</table>

**Broadcasting routes report (TFC111)**
Click Use of broadcasting routes set in the table to view the page title, report description, and the parameters measured in the Broadcasting routes report group.
**Table 97: TFC111**

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Customer yy Broadcasting Routes Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Broadcasting Routes Report (TFC111) provides traffic data broadcasting route usage.</td>
</tr>
<tr>
<td>Parameters Measured:</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Route Number</td>
</tr>
<tr>
<td>2</td>
<td>Trunk Type</td>
</tr>
<tr>
<td>3</td>
<td>Successful connections</td>
</tr>
<tr>
<td>4</td>
<td>Average call duration</td>
</tr>
<tr>
<td>5</td>
<td>Average waiting duration</td>
</tr>
<tr>
<td>6</td>
<td>Maximum waiting time</td>
</tr>
<tr>
<td>7</td>
<td>Waiting time threshold peg count</td>
</tr>
<tr>
<td>8</td>
<td>Waiting parties threshold peg count</td>
</tr>
<tr>
<td>9</td>
<td>Lowest usage trunk connections</td>
</tr>
<tr>
<td>10</td>
<td>Next to lowest usage trunk connections</td>
</tr>
<tr>
<td>11</td>
<td>Next to next lowest usage trunk connections</td>
</tr>
</tbody>
</table>

**Route list measurement report (TFN001)**

Click Route list measurement in the table to view the page title, report description, and the parameters measured in the Route list measurement report group.

**Table 98: TFN001**

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Customer yy Route List Measurement Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Route List Measurement Report (TFN001) shows how often a route list was accessed, which list entries were used, and whether the call was successfully performed a selection or connection.</td>
</tr>
<tr>
<td>Parameters Measured:</td>
<td></td>
</tr>
<tr>
<td>Route List</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Route list number</td>
</tr>
<tr>
<td>2</td>
<td>Number of requests</td>
</tr>
<tr>
<td>3</td>
<td>Requests served without delay</td>
</tr>
<tr>
<td>4</td>
<td>Expensive route acceptances</td>
</tr>
<tr>
<td>5</td>
<td>Requests blocked</td>
</tr>
<tr>
<td>6</td>
<td>VNS trunks reuse count</td>
</tr>
</tbody>
</table>
### Route List Measurement Report

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Customer yy Route List Measurement Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>VNS trunks total idle time</td>
</tr>
</tbody>
</table>

#### Route List Entry

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Route list number</td>
</tr>
<tr>
<td>2</td>
<td>Number of calls</td>
</tr>
</tbody>
</table>

#### Off-hook Queuing

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of calls</td>
</tr>
<tr>
<td>2</td>
<td>Time elapsed in queue</td>
</tr>
<tr>
<td>3</td>
<td>Abandoned calls</td>
</tr>
</tbody>
</table>

#### Call Back Queuing

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of calls</td>
</tr>
<tr>
<td>2</td>
<td>Time elapsed in queue</td>
</tr>
<tr>
<td>3</td>
<td>Calls offered</td>
</tr>
<tr>
<td>4</td>
<td>User cancellations</td>
</tr>
</tbody>
</table>

#### Remote Virtual Queuing

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of calls</td>
</tr>
<tr>
<td>2</td>
<td>Time elapsed in queue</td>
</tr>
<tr>
<td>3</td>
<td>Calls offered</td>
</tr>
<tr>
<td>4</td>
<td>User cancellations</td>
</tr>
</tbody>
</table>

### Network Class of Service Report (TFN002)

Click Network Class of Service measurement in the table to view the page title, report description, and the parameters measured in the Network Class of Service report group.

#### Table 99: TFN002

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Customer yy Network Class of Service Report</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description</strong></td>
<td>Network Class of Service Report (TFN002) shows the grade of service in terms of blocking and queuing delay.</td>
</tr>
<tr>
<td><strong>Parameters Measured:</strong></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>NCOS group number</td>
</tr>
<tr>
<td>2</td>
<td>Calls attempted</td>
</tr>
<tr>
<td>3</td>
<td>Expensive route acceptances</td>
</tr>
<tr>
<td>4</td>
<td>Requests served without delay</td>
</tr>
<tr>
<td>5</td>
<td>Requests blocked</td>
</tr>
</tbody>
</table>
## Title System xxx Customer yy Network Class of Service Report

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Customer yy Network Class of Service Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Calls refusing expensive routes</td>
<td></td>
</tr>
</tbody>
</table>

### Off-hook Queuing

<table>
<thead>
<tr>
<th>Number of calls</th>
<th>Time elapsed in queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of calls</td>
<td>Time elapsed in queue</td>
</tr>
</tbody>
</table>

### Call Back Queuing

<table>
<thead>
<tr>
<th>Number of calls</th>
<th>Time elapsed in queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of calls</td>
<td>Time elapsed in queue</td>
</tr>
</tbody>
</table>

### Remote Virtual Queuing

<table>
<thead>
<tr>
<th>Number of calls</th>
<th>Time elapsed in queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of calls</td>
<td>Time elapsed in queue</td>
</tr>
</tbody>
</table>

## Incoming trunk group report (TFN003)

Click Incoming trunk group measurements in the table to view the page title, report description, and the parameters measured in the Incoming trunk group report group.

### Table 100: TFN003

<table>
<thead>
<tr>
<th>Title</th>
<th>System xxx Customer yy Incoming Trunk Group Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Incoming Trunk Group Report (TFN003) shows incremental traffic that network queuing features impose on incoming trunk groups.</td>
</tr>
</tbody>
</table>

### Parameters Measured:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

### Call Back Queuing

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

### Remote Virtual Queuing

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Backup and restore data

All data is stored on the Call Server. Element Manager accesses the data for the elements being maintained. Element Manager does not store data.

You need to back up no Element Manager data. All data is retrieved from the Call Server and elements.

The c:/u/db/node directory is populated on the Call Server when you save node configuration data. The BOOTP.TAB and CONFIG.INI files are saved in this directory as c:/u/db/node/nodexxxx.btp and c:/u/db/node/nodexxxx.cfg; xxxx is the node ID:

- nodexxxx.btp is the BOOTP.TAB file
- nodexxxx.cfg is the CONFIG.INI.

If you remove a node, the associated files are also removed. For every node you create, a nodeyyyy.btp and nodeyyyy.cfg file are created in the C:/u/db/node directory.

**Warning:**

To prevent Element Manager corruption, do not manually edit or delete the node files.

Backup

The Backup feature starts the Equipment Data Dump (EDD) on the Call Server to back up all Call Server data. Within Element Manager, the Call Server Backup feature starts a data dump and writes the Call Server data to the primary and internal backup drives.

The backup includes all Call Server data and the BOOTP.TAB and CONFIG.INI files for each node configured in the system. These files are stored on the Call Server for the IP Telephony nodes configured in the system.

You can also back up the Call Server by entering the **EDD CLI command using LD 43.**

During a backup, the BOOTP.TAB and CONFIG.INI files of all registered nodes are copied so you can restore them if the system fails.
Perform the steps in Backing up the Call Server data on page 348 to back up the Call Server.

**Backing up the Call Server data**

1. In the Element Manager navigator, select **Tools, Backup and Restore, Call Server Backup and Restore**. See Figure 87: Call Server Backup and Restore window on page 348.

![Figure 87: Call Server Backup and Restore window](image)

2. Click **Backup**.

The Call Server Backup window appears. See Figure 88: Call Server Backup window on page 348.

![Figure 88: Call Server Backup window](image)

3. Select **Backup** from the **Action** list.
4. Click **Submit** or click **Cancel** to cancel the backup.
   
   The window displays the message "Backup in progress. Please wait..."
5. Click **OK** in the EDD complete dialog box.
The Backup function then displays information in a tabular form indicating the actions that occurred.

## Restore the backed up files

The Call Server Restore function restores the backup files from the internal backup device to the primary device. The Restore function performs the same task as the RIB CLI command in LD 43.

To restore the Call Server data, perform the steps in [Restoring the Call Server data](#) on page 349.

### Restoring the Call Server data

1. In the Element Manager navigator, select **Tools, Backup and Restore, Call Server**.
   
The Call Server Backup and Restore window appears.

2. Click **Restore**.
   
The Call Server Restore window appears. See [Figure 89: Call Server Restore window](#) on page 349.

3. Select **Restore from Backup Data (RES)** from the **Action** list.

4. Click **Submit**.
   
   If the Restore is successful, the message "Restore was done successfully" appears.

## Update IP Telephony node properties

To update the node properties, perform the steps in [Updating the IP Telephony node properties](#) on page 350.
Updating the IP Telephony node properties

1. In the Element Manager navigator, select **IP Networks, Nodes: Servers, Media Cards**.

   The IP Telephony Nodes window appears.

2. Select the link for a Node ID.

   The Node Details window appears. See **Figure 90: Node Details window** on page 350.

3. Update the parameters in the appropriate sections as required. For more information, see **Adding a card and configuring Voice Gateway Media Card properties** on page 271.

4. Click **Save**.

Add a Voice Gateway Media Card to the node

To add a Voice Gateway Media Card to the node, perform the steps in **Adding a Voice Gateway Media Card to the node** on page 351.
Adding a Voice Gateway Media Card to the node

1. Choose a card slot for the new card. Note the TN.
2. Configure IPTN in LD 14 at the Call Server.
3. Install the I/O cables for connection to the ELAN and TLAN network interfaces on the selected card slot.
4. In the Element Manager navigator, select **IP Network, Nodes: Servers, Media Cards**.

   The IP Telephony Nodes window appears.
5. Click the link for the Node ID where the card will be added.

   The Node Details window appears.
6. Select **Media Card** from the **Select to add** menu.
7. Click **Add**.

   The New Media Card Details window appears. See Figure 91: New Media Card Details window on page 351.

---

**Figure 91: New Media Card Details window**
8. In the Identification and Status section of the window, enter the following information.

   a. **HostName**: This is the host name.
   
   b. **Card TN**: Enter the card slot number from 1 to 50.
   
   c. **Server Type**: Select the server type.

   **Note:**

   DSP IPv6 address field is enabled only if you select the server type as MC32S card, and if IPv4 and IPv6 option is selected for TLAN address type of the corresponding node in Node Details page. If only IPv4 is selected for TLAN address type of the node, DSP IPv6 address field is displayed but the field is disabled during MC32S card configuration.

   d. **MAC Address**: This is the motherboard Ethernet address.

9. In the Network section of the window, enter the TLAN and ELAN network information.

   a. **Telephony LAN (TLAN) IP address**: This is the TLAN network interface IP address for the card.

   Avaya Communication Server 1000 supports dual stack capability and hence the TLAN network IP address information includes both the IPv4 and IPv6 addresses. Global unicast IPv6 addressing is the only
supported IPv6 address type. If the IP phone supports dual stack, then the user can prefer IPv4 or the IPv6 mode to communicate with the remote user. The user needs to enter the respective IP address in the **DSP IP address** and **DSP IPv6 address** fields. The DSP IPv6 address field is enabled only if the user selects the server type as MC32S card.

b. **Embedded LAN (ELAN) IP address:** This is the ELAN network interface IP address for the card. Element Manager and the system use this IP address to communicate with the card.

10. To add additional cards to the node, click **Add** again and enter the new card information. Repeat this step for each card that you add to the node.

11. Click **Save** after you add and configure a card.

12. Click **Save** on the Node Details window to save the data to the Call Server.

13. Click **OK** to confirm.

   If you click **Cancel** all configured information is discarded.

14. Click **Transfer/Status** associated with the node where the new card was added.

15. Click **OK** to confirm the transfer.

   The Transfer Progress window appears and displays each of the Voice Gateway Media Cards in the node.

   The Voice Gateway Media Card retrieves the CONFIG.INI and BOOTP.TAB files from the Call Server. A check mark is added to each field as the card receives the CONFIG.INI and BOOTP.TAB files.

16. When the transfer is complete, click **OK** in the Progress Check Complete dialog box.

   • If the transfer is successful for a card, the Status column displays Complete.
   • If the transfer is unsuccessful, the Status column displays Fail.

17. Insert the new card.

   The card starts and obtains the IP configuration from the node leader. This process takes several minutes.

   The Maintenance faceplate shows an alarm of T:21 or S009.

   • T:21 appears if the card is new and there is no CONFIG.INI file.
   • S009 appears if the card was used before and has a CONFIG.INI file that contains an IP address for the Call Server that is no longer correct.

18. In the Element Manager navigator, select **IP Network, Maintenance and Reports**.

   The Node Maintenance and Reports window appears.

19. Expand the node containing the Voice Gateway Media Card by clicking the plus sign (+) to the left of the Node ID.
20. Click **GEN CMD** associated with the Voice Gateway Media Card. See Figure 92: Voice Gateway Media Card and GEN CMD button on page 354.

Figure 92: Voice Gateway Media Card and GEN CMD button

The General Commands window appears.

21. From the Group list, select **Misc**.

22. In the Element Manager navigator, select IP Network, Nodes: Servers, Media Cards.

The IP Telephony Nodes window appears.

23. Click **Transfer/Status** to download the node information to the card.

24. In the Element Manager navigator, select **IP Network, Maintenance and Reports**.

The Node Maintenance and Reports window appears.

25. Expand the node containing the new card by clicking the plus sign (+) to the left of the Node ID.

26. Click **Status** for each Voice Gateway Media Card that was added.

The card status is Enabled or Disabled. If the status message "Web3003: Destination IP address cannot be reached; initial RPC failure" appears, then verify the network connection and the proper configuration of network equipment.

---

**Change the IP addresses of an IP Telephony node in Element Manager**

Before you change any IP address understand **Codecs** on page 191, and consult with the system administrator.

To change the IP address of an IP Telephony node, perform the steps in **Changing the IP addresses of an IP Telephony node in Element Manager** on page 355.
Changing the IP addresses of an IP Telephony node in Element Manager

1. In the Element Manager navigator, select **IP Network, Nodes: Servers, Media Cards**.
   The IP Telephony Nodes window appears.
2. Select the link for the Node ID.
   The Node Details window appears.

![Node Details window]

**Figure 93: Node Details window**

**Note:**
The node IPv4 address mentioned in the above figure is just for reference and is not valid.

3. Change the IP addresses as required.
   a. **Node ID:** The Node ID appears but you cannot change it.
   b. **Telephony LAN (TLAN) Node IP address:** Enter the Voice LAN (TLAN) Node IPv4 address in dotted decimal format. The Voice LAN Node IP address is on the TLAN subnet. The Node IPv6 address is the IP address used by the IP Phones to communicate with the TLAN subnet.

   If the Node IPv6 address changes, this affects the configuration of the Connect Server IP address in the DHCP Server for the IP Phones.
c. **Embedded LAN (ELAN) gateway IP address**: Enter the Embedded LAN (ELAN) gateway IP address in dotted decimal format. This is the IP address of the router interface on the ELAN subnet, if present. If the subnet does not have an Embedded LAN gateway, enter 0.0.0.0.

   • When an Embedded LAN gateway is added to the ELAN subnet, it must restrict access so that only authorized traffic is permitted on the ELAN subnet.
   • The router must disable the BootP relay agent for the ELAN network interface.
   • The router must block all broadcast and multicast traffic from the ELAN subnet and enable only proper access (only authorized traffic and users coming through the ELAN gateway).

d. **Embedded LAN (ELAN) subnet mask**: Enter the Embedded LAN subnet mask address in dotted decimal format. When you change these subnet masks, consider the possible conflict between the ELAN and TLAN network interface IP addresses. Consult with the network administrator before you change subnets.

   When you change the Embedded LAN (ELAN) network interface IP address, coordinate it with the IP address on the Call Server (Active ELNK) network interface. Changes must also be coordinated with the following:

   • Embedded LAN gateway and other IP devices on the ELAN subnet
   • other devices on the ELAN subnet and customer enterprise network subnet that need to communicate with IP Line
   • devices that receive SNMP traps

4. In the Element Manager navigator, click System, Alarms, SNMP.

   a. In the Trap Source section, enter the following applicable parameters:

      • Navigation Site Name
      • Navigation System Name

   b. In the MIB-2 System Group Parameters section, enter the following applicable parameters:

      • System Contact
      • System Location
      • System Name

   c. In the Community section, enter the following parameters for system management community strings for access to the Management Information Base (MIB) and trap generation, and to administrator community strings for access to the MIB views:

      • System Management Read
      • System Management Write
• Trap Community
• Administrator Group

The SNMP community strings control access to the IP Telephony node. Element Manager uses the community strings to control transmitting and retrieving configuration data files for database synchronization.

d. In the Trap Destinations section, enter the IP address of the trap destinations. SNMP traps are sent to the entered IP address. A maximum of eight IP addresses can be configured.

e. Click **Save**.

The parameters are automatically synchronized with the Call Server, Signaling Server, and Media Gateway Controller.

**Important:**
Perform an Equipment Data Dump (EDD) to permanently save the configured information.

After the parameters are synchronized, the associated host route entries are added to the routing table automatically. If a trap destination is removed, the corresponding routing table entry is removed as a result.

5. In the Element Manager navigator, select **IP Network, Nodes: Servers, Media Cards**.

The IP Telephony Nodes window appears.

6. Select the link for the Node ID where the IP address is being changed.

The Edit window appears.

7. Enter the following **Embedded LAN (ELAN) configuration** settings:

a. **Call Server IP address**: This is the IP address of the Call Server on the ELAN subnet. Enter the Call Server ELAN network interface IP address (Active ELNK).

   The Call Server ELAN network interface IP address must correspond to the Active ELNK IP address configured in LD 117. It must be on the same subnet as the ELAN IP address for the IP Line node.

b. **Signaling port**: The default value is 15000. The range is 1024 to 65535.

c. **Broadcast port**: The default value is 15001. The range is 1024 to 65535.

8. If entries must be made to the card routing table, click the **LAN** link on the Node Details window.

The LAN window appears as shown in the following figure.
Figure 94: Node ID: xxx -LAN
9. Enter the **IP address** and **Subnet mask** for any host that is not on the ELAN subnet but requires access to the Voice Gateway Media Card across the ELAN subnet. Click **Add**.

A Telnet session for maintenance from a remote PC is an example of when this would be needed. The address of the remote PC would be added in the Route list.

The default route on the card causes packets for unknown subnets to be sent out the TLAN network interface. Packets from an external host arrive on the ELAN network interface. Responses are sent on the TLAN network interface. This process can cause one-way communication if the TLAN subnet is not routed to the ELAN subnet. It is necessary to add an entry in the Route list to correct the routing so that response packets are sent on the ELAN subnet. Each entry creates a route entry in the card route table that directs packets out the ELAN network interface.

**Caution:**

Use caution when you assign card routing table entries. Do not include the IP address of an IP Phone. Otherwise, voice traffic to these IP Phones is incorrectly routed through the ELAN subnet and ELAN gateway. To avoid including the wrong IP address, Avaya recommends that Host IDs be defined for the card routing table entries.

To add routes, click **Add** again and enter the route information. Repeat this step for each new route.

10. Click **Save**, and then click **OK**.

11. In the Node Configuration window, click **Save** associated with the node that had the IP address changes.

---

**Update other node properties**

You can update the following node properties on the Node Details window.

- DSP Profile section: see [Configuring DSP Profile data](#) on page 264
- QoS section: see [Configuring QoS](#) on page 268

---

**Import or Export an IP Node Configuration File**

Using Element Manager, import or export an XML file that contains the parameters for IP Telephony node data.

Using the Import feature, import a standard XML file from a local workstation. The file contains node properties data. Configuration parameters must be entered in the file in a standard template model. The template follows the same model as the config.ini file format. You can
import, edit, and save the file to the Call Server. To import a file, perform the steps in Importing an IP Node Configuration File on page 360

**Importing an IP Node Configuration File**

1. In Element Manager, select **System, IP Network, Nodes: Server, Media Cards**. The IP Telephony Nodes window appears.
2. Click **Import**.

3. To use an existing XML file that contains the configuration data for the IP Telephony node, click **Browse**. Search for the file on the local workstation, and click **Open** to add the file to the box.
4. To review and edit the configuration data, click **Preview**.

   If the data in the imported file is invalid, an error message appears. The import fails.

   If the data in the imported file is valid, the Node Details window appears.
5. Change the configuration data for the IP Node if required.
6. Click **Save** to save the changes to the Call Server.

   If the configuration data is invalid an error message. The data is not updated to the Call Server.
Telnet to a Voice Gateway Media Card using Virtual Terminal

To access the CLI on a Voice Gateway Media Card using Virtual Terminal from Element Manager, perform the steps in Accessing a Voice Gateway Media Card using Telnet on page 361.

**Accessing a Voice Gateway Media Card using Telnet**

1. In the Element Manager navigator, select **IP Network, Maintenance and Reports**.
   
The Node Maintenance and Reports window appears.
2. Expand the node containing the Voice Gateway Media Card.
3. Click **Virtual Terminal** associated with the Voice Gateway Media Card.

   See Figure 95: Virtual Terminal on page 361.

![Figure 95: Virtual Terminal](image)

The Virtual Terminal window appears and automatically connects to the Voice Gateway Media Card by using the TLAN or ELAN network interface IP address. See Figure 96: Virtual Terminal window on page 362.
4. Enter a user name and password to access the IPL> or oam> CLI.
   The IPL > or oam > prompt appears if the logon is successful.
5. Type a question mark (?) or Help (for the MC 32S card) at the prompt to display a list of available IPL > or oam> CLI commands.
   See IP Line CLI commands on page 439 for a list of commands.

Check the Voice Gateway Channels

To check the Voice Gateway Channels on a Voice Gateway Media Card, perform the steps in Checking the Voice Gateway Channels on page 362.

Checking the Voice Gateway Channels

1. In the navigation tree, select IP Network, Maintenance and Reports.
   The Node Maintenance and Reports window appears.
2. Expand the node to show all its elements by clicking the plus sign (+) to the left of the Node ID.
3. Click GEN CMD associated with the Voice Gateway Media Card.
   The General Commands window appears.
4. From the **Group** list, select **Vgw**.
5. From the **Command** list, select **vgwShowAll**.
6. Click **RUN**.
   The output of the **vgwShowAll** command appears in the text area at the bottom of the window.
7. To view the VGW Channel configuration, from the **Command** list, select **Print VGW Channels** and click **RUN**.

---

### Setting the IP Phone Installer Password

Element Manager includes the CLI commands to configure the administrative and temporary IP Phone Installer Password. For more information about the IP Phone Installer Password, see [IP phone Installer Password](#) on page 298.

To configure the IP Phone Installer Password in Element Manager, perform the steps in **Setting the administrative and temporary IP Phone Installer Passwords** on page 363.

**Setting the administrative and temporary IP Phone Installer Passwords**

1. Select **IP Network, Maintenance and Reports**.
   The Node Maintenance and Reports window appears.
2. Expand the node to show all elements.
3. Click **GEN CMD** associated with the Voice Gateway Media Card.
   The General Commands windows appears.
4. From the **Group** list, select **NodePwd**.
5. From the **Command** list, select **nodePwdShow** and click **RUN**.
   The output from the **nodePwdShow** command appears in the text area at the bottom of the window. If in the default state, the IP Phone Installer Password was never assigned. The **nodePwdShow** output displays the following:

<table>
<thead>
<tr>
<th>NodeID</th>
<th>PwdEna</th>
<th>Pwd</th>
<th>TmpPwd</th>
<th>Uses</th>
<th>Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0d 0h 0m 0s</td>
</tr>
</tbody>
</table>

- **NodeID** – the IP Phone Installer Password configuration applies to all Voice Gateway Media Cards on the same TLAN subnet that belong to this Node ID.
- **PwdEna** – by default the cards should be in disabled state (PwdEna=No). The PwdEna setting specifies the enabled (Yes) or disabled (No) state of the IP Phone Installer Password.
IP Line administration using Element Manager

• **Pwd** – this is the administrator IP Phone Installer Password. In the default state, the administrator password is null.

• **TmpPwd** – this is the temporary IP Phone Installer Password. In the default state, the temporary password is null.

• **Uses** – the Uses parameter applies to the temporary IP Phone Installer Password. In the default state, this setting is null. If the card is not in the default state, the Uses parameter is a numeric value from 0 – 1000. This number specifies the remaining number of uses for the temporary password. If zero is entered for the Uses parameter when setting the temporary password, the Time parameter is mandatory. When the Time parameter is in effect, the password expiration is based on time instead of the number of uses.

• **Timeout** – the Timeout heading corresponds to the Timeout parameter of the temporary IP Phone Installer Password. In the default state the Timeout is null. If the card is not in the default state, this setting specifies the duration in hours in which the temporary password is valid. The range is 0 – 240 hours (which is a maximum of 10 days). The number specified under Timeout indicates the remaining time to expire of the temporary password. The Timeout parameter is optional if the Uses parameter is non-zero. The Timeout parameter is mandatory if Uses is set to zero.

If both the Uses and Timeout parameters are entered, the password expires based on whichever happens first: the number of Uses becomes zero or the Timeout expires. If both the Uses and Timeout parameters are entered and are zero, it is the same as not setting the temporary password.

6. From the **Group** list, select **NodePwd**.

7. From the Command list, select **nodePwdSet** and click **RUN**.

The window refreshes and displays the blank **Node Password** field.

8. Enter the administrator IP Phone Installer Password in the **Node Password** field and click **RUN**.

This enables and configures the administrator password. The password parameter can be null or 6 to 14 digits in length. The valid characters are 0 to 9, asterisk (*), and number sign (#). This command can be entered at any time. The new password entered overwrites the previous password.

The text area returns the message "Please run nodePwdShow to verify the result."

9. From the Command list, select **nodePwdShow** and click **RUN**.

The text area data output is similar to the following:

<table>
<thead>
<tr>
<th>NodeID</th>
<th>PwdEna</th>
<th>Pwd</th>
<th>TmpPwd</th>
<th>Uses</th>
<th>Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Yes</td>
<td>1234567</td>
<td></td>
<td>0d 0h 0m 0s</td>
<td></td>
</tr>
</tbody>
</table>

**Warning:**

If you click **RUN** in the Node Password field and no password is entered in the box, then the password is enabled but is null. In the above output, the PwdEna field displays Yes and the Pwd field is blank.
10. To configure a temporary password, from the Command list, select `nodeTempPwdSet`.

The window refreshes and blank fields are displayed for the following: Node Password, Uses, and Timeout.

11. Enter the temporary Node Password, the number of uses, and the Timeout, and click **RUN**.

The text area returns the message "Please run nodePwdShow to verify the result."

12. From the **Command** list, select `nodePwdShow` from the list box and click **RUN**.

The text area data output is similar to the following:

<table>
<thead>
<tr>
<th>NodeID</th>
<th>PwdEna</th>
<th>Pwd</th>
<th>TmpPwd</th>
<th>Uses</th>
<th>Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Yes</td>
<td>1234567</td>
<td>9876543</td>
<td>2</td>
<td>0d 0h 0m 0s</td>
</tr>
</tbody>
</table>

13. To clear the temporary IP Phone Installer password, select the `nodeTempPwdClear` command from the Command list and click **RUN**.

14. Confirm that the temporary password is cleared.

From the **Command** list, select `nodePwdShow` and click **RUN**.

The text area data output is similar to the following:

<table>
<thead>
<tr>
<th>NodeID</th>
<th>PwdEna</th>
<th>Pwd</th>
<th>TmpPwd</th>
<th>Uses</th>
<th>Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Yes</td>
<td>1234567</td>
<td></td>
<td></td>
<td>0d 0h 0m 0s</td>
</tr>
</tbody>
</table>
IP Line administration using Element Manager
Chapter 15: Numbering Groups

A numbering group represents common numbering planning attributes which are shared by a group of subscriber telephony accounts. Each telephony account can belong to only one numbering group. If a telephony account does not belong to a specified numbering group, it is classified as a member of the default numbering group category. A member of the default numbering group category only uses a private numbering plan (private CDP and UDP dialing).

Numbering group attributes

Numbering group attributes are summarized in Table 101: Numbering group attributes on page 367.

Table 101: Numbering group attributes

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Rules and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Mandatory; Unique; Sortable in web UI; Maximum number of characters: 32 Allow: any character except comma</td>
</tr>
<tr>
<td>Element ID</td>
<td>Mandatory; Alphanumeric; Sortable in web UI; It is CS 1000 system serial number in LD143 (.ksho rec), printable in LD22 (reg tid) as well.</td>
</tr>
<tr>
<td>Target</td>
<td>Mandatory; Numeric (Range 0 – 99); Sortable in web UI It is CS 1000 customer number</td>
</tr>
<tr>
<td>Private Network ID (PNI)</td>
<td>Mandatory; Numeric; Maximum digit length: 5; Minimum digit value: 0; Maximum digit value: 16383 Sortable in web UI; It is CS 1000 system PNI number in LD15.</td>
</tr>
<tr>
<td>L0 Domain Name</td>
<td>Mandatory; Alphanumeric; Allowing dot Maximum # of characters: 30 Sortable in web UI; It is recommended to use the L0 domain name configured in the Network Routing Server</td>
</tr>
<tr>
<td>DN Range From</td>
<td>Mandatory; Numeric (Maximum 7 digits);</td>
</tr>
<tr>
<td>DN Range To</td>
<td>Mandatory; Numeric (Maximum 7 digits); It has to be &gt;= DN Range From; The number</td>
</tr>
<tr>
<td>Attribute Name</td>
<td>Rules and Comments</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>of digits has to be the same for ‘DN Range From’ and ‘DN Range To’</td>
</tr>
<tr>
<td>Country Code</td>
<td>Optional; Numeric (Maximum 4 digits) Sortable in web UI If Country Code is not provisioned, subscriber telephony account E.164 international CLID/URI will not be generated.</td>
</tr>
<tr>
<td>Area Code / City Code</td>
<td>Optional; Numeric (Maximum 7 digits); Sortable in web UI If Area Code / City Code is not provisioned, subscriber telephony account E.164 international and national CLID/URIs will not be generated.</td>
</tr>
<tr>
<td>Exchange Code</td>
<td>Optional; Numeric (Maximum 7 digits) Sortable in web UI If Exchange Code is not provisioned, subscriber telephony account E.164 international, national and local CLID/URIs will not be generated.</td>
</tr>
<tr>
<td>AC1 (ESN Access Code)</td>
<td>Optional; Numeric (Maximum 7 digits); Sortable in web UI</td>
</tr>
<tr>
<td>AC2 (External Access Code)</td>
<td>Optional; Numeric (Maximum 7 digits); Sortable in web UI</td>
</tr>
</tbody>
</table>

**Numbering group validation rules**

The numbering group validation rules are

- Maximum number of entries is 3000 numbering groups.
- No overlapping DN range within the same Element ID and Target combination is allowed.
- No overlapping DN range with same CountryCode + AreaCode + ExchangeCode is allowed.
- Can not use different AC1 values for the same target under an element.
- Can not use different AC2 values for the same target under an element.
There are five types of Calling Line Identification (CLID) Uniform Resource Identifiers (URI):

1. Private telephony L0 (CDP Steering Code)
2. Private telephony L1 (UDP location code)
3. Public E.164 Local (subscriber)
4. Public E.164 National
5. Public E.164 International

Data for up to five CLID/URIs are generated from each subscriber telephony account.

The rules for generating subscriber telephony account CLID/URIs are summarized in Table 102: Rules for generating subscriber telephony account CLID/URIs on page 369.

### Table 102: Rules for generating subscriber telephony account CLID/URIs

<table>
<thead>
<tr>
<th>Type</th>
<th>Rule for generating the CLID/URI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private telephony L0 (CDP steering code)</td>
<td>The DN of the subscriber telephony account</td>
</tr>
<tr>
<td>Private telephony L1 (UDP location code)</td>
<td>Home location code + DN</td>
</tr>
<tr>
<td>Public E.164 Local (subscriber)</td>
<td>Exchange code + DN</td>
</tr>
<tr>
<td>Public E.164 National</td>
<td>Area code + Exchange code + DN</td>
</tr>
<tr>
<td>Public E.164 International</td>
<td>‘+’ + Country code + Area code + Exchange code + DN</td>
</tr>
</tbody>
</table>

For an example of a subscriber telephony account, see Table 103: Example of a subscriber telephony account on page 369.

### Table 103: Example of a subscriber telephony account

<table>
<thead>
<tr>
<th>Subscriber Telephony Account Attribute</th>
<th>North America Type Value</th>
<th>Non-North America Type Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN</td>
<td>2222</td>
<td>3488</td>
</tr>
<tr>
<td>ESN</td>
<td>343-2222</td>
<td>633-3488</td>
</tr>
</tbody>
</table>

For an example of numbering group information, see Table 104: Example of numbering group information on page 370.
Table 104: Example of numbering group information

<table>
<thead>
<tr>
<th>Numbering Group Attribute</th>
<th>North America Type Value</th>
<th>Non-North America Type Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country code</td>
<td>1</td>
<td>86</td>
</tr>
<tr>
<td>Area code/City code</td>
<td>613</td>
<td>10</td>
</tr>
<tr>
<td>Exchange code (E.164 prefix)</td>
<td>967</td>
<td>8288</td>
</tr>
</tbody>
</table>

For an example of each type of generated CLID/URI, see Table 105: Example of generated CLID/URIs on page 370.

Table 105: Example of generated CLID/URIs

<table>
<thead>
<tr>
<th>CLID/URI Type</th>
<th>Subscriber Telephony Account CLID/URI (North America Type)</th>
<th>Subscriber Telephony Account CLID/URI (Non-North America Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private telephony L0 (CDP Steering code)</td>
<td>2222</td>
<td>3488</td>
</tr>
<tr>
<td>Private telephony L1 (UDP location code)</td>
<td>343-2222</td>
<td>633-3488</td>
</tr>
<tr>
<td>Public E.164 Local (subscriber)</td>
<td>967-2222</td>
<td>8288-3488</td>
</tr>
<tr>
<td>Public E.164 National</td>
<td>613-967-2222</td>
<td>10-8288-3488</td>
</tr>
<tr>
<td>Public E.164 International</td>
<td>+1-613-967-2222</td>
<td>+86-10-8288-3488</td>
</tr>
</tbody>
</table>

CLID/URI Generator

The CLID/URI Generator is a background process that runs periodically to generate telephone numbers for a TELEPHONY account in Subscriber Manager. The CLID generation provides telephone number information for public e164 local (External), national (National) and international (International) dialing. For an account that is published into the Subscriber details, these generated numbers are entered in the External, National and International fields of the subscriber. However, these values are not removed from the subscriber when the user publishes a different account which has no contact details, or when the current account no longer has the generated numbers. This data can be synchronized with the customer LDAP directory.

Note:
Only one account can be published into the subscriber data. Thus, if an employee has two telephones with different numbers for each telephone, only one of those telephones will be represented in the subscriber data.
Updates to these telephone number fields through the Subscriber Details page do not update accounts. The only way to update accounts is through the Avaya Communication Server 1000 (Avaya CS 1000) Element Manager account details page or through Flow Through Provisioning.

For more information about Subscriber Manager, see *Subscriber Manager Fundamentals* (NN43001-120).

---

**Manage numbering groups**

The procedures in this section describe the functions available in UCM Common Services to manage numbering groups within your network. The Unicode Name Directory uses the numbering group functionality.

To access Numbering Groups a user must be mapped to the role All elements by type: Numbering Groups. Refer to *Unified Communications Management* (NN43001-116), for detailed information on assigning roles and permissions for access to Numbering Groups from the UCM Common Services.

Numbering Groups installs with a sample numberingGroups.csv file so that users can export the sample and use it as a template. Numbering Groups supports CSV files saved using OpenOffice.org 2.4.0 (or greater). Other CSV editors can be used. However, they have not been tested with Numbering Groups.

To modify numbering groups the user first exports the numbering groups file. The exported file is opened in a CSV editor and updated. The updated file is imported back into Numbering Groups using the import numbering groups functionality.

Validation is performed while importing the numbering groups. If a validation error occurs during the import process:

- proper validation error message is displayed
- importing numbering group file is discarded
- no data change occurs

Elements and targets are stored as name only. Hence, name changes in the element table of UCM Common Services requires the user to export the CSV file, update the data and then import the new file. The list of elements shown in the locations table is not validated against the UCM Common Services elements table until an account is added for a particular location and then only the particular location is validated.

---

**Export numbering groups into a CSV file**

Use the steps in the following procedure to export one or more numbering groups into a CSV file.
Exporting numbering groups into a CSV file

1. From the UCM Common Services navigator, click **Network > CS 1000 Services > Numbering Groups**.
   
   The Numbering Groups page opens.

2. Click **Export**.
   
   The File Download dialog box opens.

3. Click **Save**.
   
   The Save As dialog box opens.

4. Specify a path and filename for the CSV file and click **Save**.
   
   The Download complete dialog box opens.

5. Click **Close**.

Import numbering groups from a CSV file

Use the steps in the following procedure to import one or more numbering groups from a CSV file.

Importing numbering groups from a CSV file

1. From the UCM Common Services navigator, click **Network > CS 1000 Services > Numbering Groups**.
   
   The Numbering Groups page opens.

2. Click **Import**.
   
   The Import Numbering Groups page opens.

3. Click **Browse**.
   
   The Choose file dialog box opens.

4. Specify a path and filename for the CSV file and click **Open**.
   
   The Import Numbering Groups page refreshes, and fills the path to the CSV file in the File name box.

5. Click **Import**.
   
   The Numbering Groups page opens.
Restore numbering groups

Use the steps in the following procedure to restore previous numbering groups.

**Restoring numbering groups**

1. From the UCM Common Services navigator, click **Network > CS 1000 Services > Numbering Groups**.
   The Numbering Groups page opens.
2. Click **Restore**.
   A popup box is displayed. The popup box warns the user that: Current numbering groups will be discarded. Previous numbering groups will be restored.
3. Click **OK**.

Invoke telephony account CLID/URI generation

Subscriber telephony account CLID/URI generation is based on a fixed schedule. Every 120 minutes (2 hours), the management application runs a scheduled CLID/URI generation job. Rather than waiting for the next fixed schedule to generate telephony account CLID/URIs, a user can invoke telephony account CLID/URI generation. CLID/URI generation may be time intensive, depending on the number of configured subscriber telephony accounts. The user can work on other administrative operations after invoking CLID/URI generation.

Use the steps in the following procedure to invoke telephony account CLID/URI generation.

**Invoking telephony account CLID/URI generation**

1. From the UCM Common Services navigator, click **Network > CS 1000 Services > Numbering Groups**.
   The Numbering Groups page opens.
2. Click **Generate Now**.
   The **Numbering Groups** page displays the Generation Status. The Generation Status has three states:
   a. Never generated – CLID/URI generation has never been triggered.
   b. Complete – the last CLID/URI generation operation has completed.
   c. Running – the current CLID/URI generation operation is running.
View numbering groups report

To obtain CLID/URI generation status, use the steps in the following procedure to view the last numbering groups generation report.

Viewing numbering groups report

1. From the UCM Common Services navigator, click Network > CS 1000 Services > Numbering Groups.
   
   The Numbering Groups page opens.

2. Click Report.
   
   The Numbering Groups Report page opens.
Chapter 16: Corporate Directory

The Avaya Communication Server 1000 (Avaya CS 1000) Corporate Directory allows Avaya 3900 Series Digital Deskphones and IP Phone sets to display and access a corporate-wide telephone directory. UCM Common Services provides a Corporate Directory application, that generates the corporate directory file and uploads it to Avaya CS 1000 systems.

Subscriber Manager and Corporate Directory are installed on the primary UCM server. The Subscriber Manager application manages the subscriber and accounts data for Corporate Directory.

Note:
In System Manager (SMGR) 6.2, Subscriber Manager is replaced with User Profile Manager (UPM). During upgrades from System Manager 6.1 to 6.2, user accounts must be exported from Subscriber Manager and imported to User Profile Manager. For information about migrating user accounts to UPM, see Administering Avaya Aura System Manager.

Forming Dialing Prefixes

The numbers in the Corporate Directory should not be context or user sensitive because any user can dial from the directory and the results need to be consistent for all users. Therefore, the numbers must be plain internal or ESN numbers. These are numbers that do not need to be manipulated by pre-translation, zone based dialing, zone based prefixes (ZFDP), or other number manipulation features. The ESN numbers can be subject to post-translation, such as local termination or digit manipulation.

Dialing Prefixes are a combination of codes that are prefixed with a DN to construct a ready-to-dial number. Dialing prefixes can be created from the following codes:

- AC1
- Home Location Code (HLOC)
- AC2
- International Code
- National Code
- Area/City Code
- Exchange Code

For internal dialing, dialing prefixes will be formed using the AC1 and HLOC. For external dialing, dialing prefixes will be formed using the AC2, International Code, National Code, Area/City Code and Exchange Code. If any of the codes are unavailable, dialing prefixes are formed either without the code or by substituting zero, whichever is appropriate.

AC1 and AC2 Access Codes for a particular CS 1000 customer are configured using the Numbering Group application. The Home Location Code is available in the telephony account.
created using Subscriber Manager. The International Code, National Code, Area Code and Exchange Code are available only if CLID/URIs are generated for all telephony accounts.

*Table 106: Data sources for codes used to form Dialing Prefixes* on page 376 summarizes the data sources used by the Corporate Directory application to create dialing prefixes.

**Table 106: Data sources for codes used to form Dialing Prefixes**

<table>
<thead>
<tr>
<th>ESN (Internal)</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location Code (HLOC)</td>
<td>Numbering Group</td>
</tr>
</tbody>
</table>

Avaya recommends that the Access Codes be configured for each customer and that CLID/URIs are generated for all telephony accounts, so that appropriate dialing prefixes are formed. Note that the Access Codes must be configured and the CLID/URIs must be generated before any Corporate Directory operations are performed. For more information on configuring Access Codes and generating CLID/URIs, see *Invoke telephony account CLID/URI generation* on page 373.

The intermediate CSV report may contain DNs prefixed with HLOC or CLID. Based on the type of prefixes available in DNs and the type of Access Code(s) configured for the CS 1000 customer to which the report is to be uploaded, dialing prefixes are formed by applying the rules summarized in *Table 107: Rules governing creation of Dialing Prefixes for a DN* on page 376.

However, if the home customer (the customer on which the phone is configured) and the target customer (the customer to which the report is being uploaded) are the same, then, no prefixes are required. In this case, the DN will have no dialing prefixes.

**Table 107: Rules governing creation of Dialing Prefixes for a DN**

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Access Code AC1</th>
<th>Access Code AC2</th>
<th>DN Format</th>
<th>Output (Prefix + DN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
<td>No</td>
<td>No CLID, No HLOC</td>
<td>DN</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>No</td>
<td>Valid HLOC</td>
<td>HLOC + DN</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>No</td>
<td>Valid CLID</td>
<td>CLID + DN</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>No</td>
<td>No CLID, No HLOC</td>
<td>DN</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>Valid HLOC</td>
<td>ESN Access Code + HLOC + DN</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
<td>No</td>
<td>Valid CLID</td>
<td>CLID + DN</td>
</tr>
<tr>
<td>7</td>
<td>No</td>
<td>Yes</td>
<td>No CLID, No HLOC</td>
<td>DN</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Yes</td>
<td>Valid HLOC</td>
<td>HLOC + DN</td>
</tr>
</tbody>
</table>
Corporate Directory prerequisites

- The element containing target customers must be in the UCM security domain.
- Centralized Authentication must be enabled.

**Note:**
Corporate Directory is not supported for HS Element Manager.

Manage Corporate Directory reports

The procedures in this section describe the features available in UCM Common Services to manage Corporate Directory reports within your network.

**Note that**

- If a user attempts to launch the Corporate Directory when no valid telephony accounts are present, the message "No valid telephony accounts are available." is displayed on the page.
- To launch the Corporate Directory a user must be mapped to the role All elements by type: Numbering Groups.
- If a user attempts to launch the Corporate Directory when not mapped to the role All elements by type: Numbering Groups, the message "Role(s) assigned to user does not have permission enabled for allowing access to Corporate Directory. Please contact Network Administrator." is displayed on the page

Refer to *Unified Communications Management (NN43001-116)*, for detailed information on assigning roles and permissions for access to the Corporate Directory application from the UCM Common Services.
Generate Corporate Directory report

Use the steps in the following procedure to generate the Corporate Directory report.

Generating Corporate Directory report

1. From the UCM Common Services navigator, click **Network > CS 1000 Services > Corporate Directory**.

   The Corporate Directory page opens.

2. In the Properties section, select the check box beside the **Elements** to include in the report.

3. Check **Exclude unpublished Telephony Accounts** (Optional)

4. Select the format of the **Name** field.
   
   • **Use First and Last Name**. First and Last Name correspond to the Subscriber First name and Last name.
   
   • **Use Preferred Name**. First Name is mapped with the corresponding Subscriber Preferred Name and the Last Name field is mapped with the corresponding Subscriber Last Name. If the Subscriber Preferred Name field is empty, then the First Name is mapped with the corresponding Subscriber First name and the Last Name field is mapped with corresponding Subscriber Last Name.
   
   • **Use CPND Name**. First Name and Last Name for the Corporate Directory report are mapped to the corresponding CPND First name and Last name of the telephony account.

   **Note:**
   Corporate Directory does not support comma (,) characters in any fields used for report generation (first name, last name, department, and so on). If a field contains comma characters, they are replaced by spaces in the report.

5. Click **Generate**.

   The Report Generation Results page opens.

After generating the Corporate Directory report, the selected customers and other report generation parameters are saved in the UCM Common Services server. When a user subsequently launches the Corporate Directory application, the saved report definition is used to find the source customers selected for the last report generation. Those customers, if valid, will be automatically selected for the report generation. Similarly, other report generation parameters, such as excluding unpublished accounts and name format, are also enabled with the values used for the last report generation. Thus, a user can reuse the report definition created in the previous report generation.
Upload Corporate Directory report

After a Corporate Directory report has been generated, it can be uploaded to target elements.

**Uploading Corporate Directory report**

1. From the UCM Common Services navigator, click **Network > CS 1000 Services > Corporate Directory**.
   
   The Corporate Directory page opens.

2. Click **Upload**.

   The Upload page opens.

3. Select the check box beside one or more **Target Element** to which the Corporate Directory report is to be uploaded.

4. Click on **Target Element** for which source elements need to be configured.

   The Source Selection page opens.

5. Select the check box beside one or more **Source Element** from which data is to be taken.

6. Click **Save**.

   The Upload page opens.

7. Click **Upload**.

   The Upload Results page opens.

Export Corporate Directory report

The last generated Corporate Directory report can be exported to a client machine and edited offline prior to uploading it to a target element. The changes introduced in the exported CSV file will not be reflected in the data store. However, the changes will be propagated to the target elements.

**Exporting Corporate Directory report**

1. From the UCM Common Services navigator, click **Network > CS 1000 Services > Corporate Directory**.

   The Corporate Directory page opens.

2. Click **Export**.

   The File Download dialog box opens.
Corporate Directory

**Note:**

The Export button is disabled if Corporate Directory reports have not been generated.

3. Click **Save**.
   
The Save As dialog box opens.

4. Specify a path and filename for the CSV file and click **Save**.
   
The Download complete dialog box opens.

5. Click **Close**.

---

**Import Corporate Directory report**

Use the steps in the following procedure to import a Corporate Directory report from a client machine.

**Importing Corporate Directory report**

1. From the UCM Common Services navigator, click **Network > CS 1000 Services > Corporate Directory**.
   
The Corporate Directory page opens.

2. Click **Import**.
   
The Import page opens.

**Note:**

The Import button is disabled if Corporate Directory reports have not been generated.

3. Click **Browse**.
   
The Choose file dialog box opens.

4. Specify a path and filename for the CSV file and click **Open**.
   
The Import page refreshes, and fills the path to the CSV file in the File name box.

5. Click **Import**.
   
The Corporate Directory page opens.

**Note:**

The file will be imported only if the following criteria are satisfied:

- The file has a .csv or .CSV extension.
- The file is not empty.
The file contains all mandatory columns exactly in the following order. The column names are case sensitive. FIRST_NAME, LAST_NAME, PRIMEDN, CUSTOMER, DEPARTMENT and SYSTEMID

---

**Restore Corporate Directory report**

The restore functionality can be used to overwrite the data in the last imported or generated Corporate Directory report with the data in the backup file created prior to importing the report. After restoring the backup data, the backup file is deleted and the Restore button is disabled.

**Restoring Corporate Directory report**

1. From the UCM Common Services navigator, click **Network > CS 1000 Services > Corporate Directory**.
   The Corporate Directory page opens.
2. Click **Restore**.
   The Corporate Directory page refreshes.

   **Note:**
   The **Restore** button is disabled if a Corporate Directory report has not been imported.

---

**View history of Corporate Directory report**

Use the steps in the following procedure to view the history of the last generated or uploaded Corporate Directory report.

**Viewing history of Corporate Directory report**

1. From the UCM Common Services navigator, click **Network > CS 1000 Services > Corporate Directory**.
   The Corporate Directory page opens.

   **Note:**
   If a report has not been generated, the message “Never Generated” is displayed next to **Last Generated:** in the History section of the page. Similarly, if a report has not been uploaded, the message “Never Uploaded” is displayed next to **Last**
**Uploaded**: If a report has been generated or uploaded the timestamp of the last generate or upload operation is displayed.

2. Perform one of the following actions:

   • To view history of the last generated report click on the **Last Generated**: time stamp link.

     The Last Generated Report Details page opens.

   • To view history of the last uploaded report click on the **Last Uploaded**: time stamp link.

     The Last Uploaded Report Details page opens.

---

### Blocking concurrent user operations in Corporate Directory

If a concurrent operation is not allowed, it is blocked for a second user. For all operations that have a status page, such as report generation, the second user is shown the status page of the first user and a message is displayed. For all other operations, a message is displayed on a pop up box. In the following table it is assumed that the username of the first user is admin. If the username of the first user is not admin, similar error messages will be displayed.

**Table 108: Output as seen by a second user when concurrent operations are performed**

<table>
<thead>
<tr>
<th>Second User</th>
<th>First User</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate or Import</td>
<td>First User</td>
</tr>
<tr>
<td>Generate</td>
<td>Generate is already in progress by admin user...” Status of generation operation by the first user is also displayed.</td>
</tr>
<tr>
<td>Restore or Import</td>
<td>Restore/Import is already in progress by admin user...” Status of import operation by the first user is also displayed.</td>
</tr>
<tr>
<td>Export</td>
<td>Export is already in progress by admin user...” Status of export operation by the first user is also displayed.</td>
</tr>
<tr>
<td>Upload</td>
<td>Upload is already in progress by admin user...” Status of upload operation by the first user is also displayed.</td>
</tr>
<tr>
<td>Operation</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Generate or Import.</td>
<td>Second user is not allowed to continue the Export operation. Gives an error message “Report Generation is already in progress by admin user...”</td>
</tr>
<tr>
<td>Upload</td>
<td>Second user is not allowed to continue the Restore operation. Gives an error message “Report Generation is already in progress by admin user...”</td>
</tr>
</tbody>
</table>
Chapter 17: IP Media Services

IP Media Services is installed with the Signaling Server application and enabled using Element Manager. To configure the individual IP Media Services applications, package 422 must be unrestricted and configuration options must adhere to licensing limitations.

Note:
IP Media Services is only supported for CS 1000E systems. It is not supported on CS 1000M systems.

Contents

This chapter contains the following topics:

- Introduction on page 385
- System architecture on page 386
- Network Media Services on page 389

Introduction

In traditional TDM-based systems, TDM hardware cards (MIRAN and MGC) provide media services such as conference mixing and media playback. Delivering these services to IP endpoints requires many digital signaling processors (DSPs) to translate information between the TDM backplane and IP voice packets.

IP Media Services introduces IP versions of these services to the Avaya Communication Server 1000E (Avaya CS 1000E) by using the Media Application Server (MAS) as the IP media service delivery platform.

The MAS supplies media services by using both secure and nonsecure Real-time Transport Protocol (sRTP and RTP) channels controlled by the Call Server and Signalling Server, which map the MAS resources to existing virtual TNs. The MAS is an IP-based media server and therefore does not require DSPs to deliver IP media services to IP endpoints.

Note:
The IP address for the IP Media Services controller must be in IPv4 format. If the MAS is dual-stack, with both IPv4 and IPv6 formats, the signaling path between the IP Media
Services applications and the MAS is IPv4. Media paths between the MAS and IPv6-capable clients can be IPv6.

The Media Services software applications are included in the Signaling Server image and installed as part of Signaling Server applications. IP Media Services includes the following features and applications:

• IP Ad Hoc Conference
• IP Music Broadcast
• IP Recorded Announcements
• IP Tone Generation
• IP Attendant Console (3260)

Note:
IP Media Services is supported only for Avaya CS 1000E systems.

For information about IP Media Services features and applications, see Features and Services Fundamentals—Book 4, NN43001-106.

For information about deploying Signaling Server and associated applications, see Linux Platform Base and Applications Installation and Commissioning, NN43001-315.

For information about MAS, see Media Application Server Platform Fundamentals, NN44471-101 and Avaya Media Application Server 7.0 Commissioning, NN44471-301.

Note:
IP Media Services is a specific implementation of Media Services 7.0. IP Media Services for CS 1000E does not support MAS High Availability 1+1 (Primary and Backup Servers). IP Media Services uses a standard N+1 model (Primary, Secondary and Standard servers). Please keep this in mind when designing and deploying IP Media Services for the CS 1000E.

System architecture

This section contains information on the following topics:

• Call Server on page 387
• Signaling Server on page 388
• Media Application Servers on page 389
The main system components of IP Media Services are shown in the following diagram.

**Figure 97: IP Media Services system components**

---

**Note:**
The Network Redirect Server (NRS) supports IP Media Services.

---

**Call Server**

On the Call Server, the existing media service delivery standards are maintained. However, new IP-based media resource types emulate traditional TDM media resources and operate as virtual TNs, using software to replace former hardware functions. The virtual TN-based resources are IP Ad Hoc Conference and IP Tone loops, as well as IP Music and IP RAN routes and trunks.

In systems where both TDM and IP-based resources are active, the Call Server selects the appropriate resource based on the service target. Music and RAN services are selected based on the route type defined in the Customer and Route Data Blocks and Conference service is determined by the caller who presses the conference key. Whenever possible, the Call Server selects the same media resource type as the service target.
Resource selection in mixed deployments

In systems with both IP and TDM endpoints, the Communication Server 1000E supports configuration of both TDM and IP media resources. In such deployments, the Call Server selects the media resource type according to the following criteria:

- **Conference**—The preferred media resource type is the same as the phone that initiates the conference. If no matching resource is available, the Call Server selects the other conference resource type as an alternative.

- **Tones**—IP tone loops are selected for IP endpoints only. This includes IP Phones, IP Conference, IP Announcement, virtual trunks (SIP and H.323), and all devices connected using virtual trunks (such as SIP DECT and SIPL, and so on). If an IP Tone loop is not available, then a TDS loop is selected. However, if the preferred service is TDS and no TDS loops are available, an IP Tone loop is not used.

- **Music and RAN**—Music and RAN are chosen according to existing music and RAN route selection algorithms. Each music or RAN route on the system can consist of either TDM or IP trunks.

Signaling Server

As with other virtual TN services, application software on the Signaling Server replaces the functions formerly provided by TDM hardware. IP Media Services introduces new Media Service Controller (MSC) applications to the Signaling Server that are the signaling bridge between the Call Server and the MAS servers. These applications receive the traditional TDM-based signaling from the Call Server using the existing Signaling Server PBX Link and direct the MAS signaling using SIP.

The Media Services Controller can be configured as a standalone Signaling Server application or as coresident with other Signaling Server applications, as determined by the capacity requirements for IP Media Services. For Communication Server 1000E capacity and engineering guidelines, see Communication Server 1000E Planning and Engineering, NN43041-320.

IP Media Service Controller application is a collection of SIP clients. When the Call Server requests a media resource, the corresponding MSC application creates a new SIP client, which then makes a SIP request to the MAS. After the SIP session is established, the MAS negotiates a media path with the target endpoint in response to speech path control messages received from the Call Server. Each IP Media service has its own unique MSC that is active.

IP Media Services supports both secure and non secure RTP and TLS signaling for the media path.
Resource registration

IP Media Services applications use a resource registration process similar to that of the SIP Gateway. Each IP Media Service resource configured on the Call Server is assigned to an IP Telephony Node. At startup, the IP Media Services applications notify the Call Server that they are active using the Signaling Server's existing server online notification mechanism.

In response to this notification, the Call Server notifies the IP Media Services application of the resources that are available for it to manage. The IP Media Services application then creates the appropriate resources and registers them with the Call Server.

Media Application Servers

The Media Application Servers (MAS) deliver RTP-based media services to the IP endpoints based on instructions received from the Call Server and Signaling Server. The MAS servers are directed by SIP signaling from the IP Media Services controllers to deliver RTP service streams to IP endpoints and to subsequently tear down the streams upon completion of service delivery. IP Media Services supports both secure and non secure SIP signaling paths.

The relationship of MAS servers to Communication Server 1000E resources is flexible; one MAS can provide services to many Call Servers or several MAS servers can provide service to one Call Server, depending on the number of subscribers supported by the Call Servers.

For information about MAS, see Media Application Server Platform Fundamentals, NN44471-101 and Avaya Media Application Server 7.0 Commissioning, NN44471-301.

Note:

IP Media Services is a specific implementation of Media Services 7.0. IP Media Services for CS 1000E does not support MAS High Availability 1+1 (Primary and Backup Servers). IP Media Services uses a standard N+1 model (Primary, Secondary and Standard servers). Please keep this in mind when designing and deploying IP Media Services for the CS 1000E.

Network Media Services

The IP Media Services model is flexible and allows you to implement many network deployment models. It has the capability of supporting a simple dedicated model, such as a single MAS associated with a single CS 1000E at the same location, to more complex models, such as multiple MASs servicing networks connecting several sites or bandwidth zones.
To facilitate the sharing of MAS servers between sites or zones, you can use Network Routing Service or Aura® Session Manager as a proxy server to route media requests to the appropriate MAS server. When the CS 1000E requires an IP media resource, it queries the proxy server to locate a MAS server to fulfill the request.

If a site needs more than one server due to capacity, Geographic Redundancy (survivability) or other redundancy requirements, you can combine those servers into a single cluster.

**Note:**

A cluster functions as a N+1 model. In this model, N servers are active and engineered to satisfy the required capacity, with one spare server. Thus, the failure of any one of the N servers does not impact customer capacity.

The following are examples where you can use a cluster:

- If you require 400 sessions and have one branch location in addition to the main site, you can use a single server at the main site and a single server at the branch. This provides the required capacity, Geographic Redundancy and redundancy.
- If you require 1,000 sessions and have a single site only, you can use a cluster at the main site.
- If you require 1,200 sessions, and have one branch location, you can use a cluster at the main site and a single server at the branch.

**Note:**

Splitting a MAS cluster across a WAN environment is not supported.

To facilitate the sharing of MAS servers between sites or zones, you can use Network Routing Service or Aura® Session Manager as a proxy server to route media requests to the appropriate MAS server. When the CS 1000E requires an IP media resource, it queries the proxy server to locate a MAS server to fulfill the request.

---

**Service routing**

The service routing model allows flexibility in how MAS services are delivered by providing the following benefits:

- Several Communication Server 1000E systems can share MAS servers.
- Alternate MAS servers are selected in the event of network outage or resource exhaustion.
- MAS servers are selected based on bandwidth zone criteria.

The MAS servers are not statically bound to the Call Server media resources in the Call Server configuration. For example, when you configure an IP loop or route on the Call Server, no requirement exists for MAS to fulfill requests for that loop or route.

MAS querying occurs by using Media Service Routing Numbers (MSRN). You configure these routing numbers on the Call Server and the proxy server. On the Call Server, MSRNs are
assigned to customer-zone-service combinations. On the proxy server, the MSRNs are assigned as routing entries against the MAS servers.

Depending on the level of routing control desired, you can assign MSRNs on the Call Server with the following three levels:

**Customer level:**
This is a mandatory configuration item. The customer-level MSRN is used to locate MAS servers for all zones that do not have a zone-specific MSRN assigned. When you only configure the customer MSRN, all media service requests for all zones follow the same MAS selection policy.

**Bandwidth zone level:**
This is an optional configuration item. This level provides control over which MAS is selected based on the bandwidth zone of the endpoint, which facilitates the delivery of services based on geographic location. Zone-level MSRNs also ensure that various zones have differing alternate MAS selections.

**Service level:**
This is an optional configuration item. If a bandwidth zone has an MSRN assigned to it, then additional MSRNs can be assigned against specific media services within that zone. This ensures the separation of services to various MAS servers or the application of alternate MAS routing selections for different services.

Each MSRN represents a service delivery request in the form of a database record containing values for customer, zone, and service. When an IP Media Services Controller application on the Signaling Server attempts to locate a MAS to provide service, it selects the MSRN used to query the NRS database according to the following criteria:

1. service-specific MSRN within the target bandwidth zone, if configured
2. MSRN of the target bandwidth zone, if configured
3. customer MSRN

If you use NRS as the proxy server, you configure each MAS as a dynamically registering endpoint and configure the IP Media Services Controller as a static endpoint. You configure MSRNs as routing entries against the MAS endpoints. This mapping, along with the associated routing entry costs, determines the primary and alternate MAS used to fulfill requests associated with the MSRN customer-zone-service record.

If you use Avaya Aura® Session Manager as the proxy server, you configure each MAS and IP Media Services Controller as a SIP entity. You configure MSRNs as routing policy entries against the MAS SIP entities. This mapping determines the MAS used to fulfill requests associated with the MSRN customer-zone-service record.

You only require one static endpoint on the proxy server for IP Ad Hoc Conference, IP Music, IP Tone, and IP RAN applications. These applications use the TLAN IP of the Signaling Server. You do not need to configure a static endpoint for IP Attendant except in cases when there is no SIP Gateway configured. The IP Attendant application uses the Node IP of the Signaling Server.
Note:
Avaya Aura® Session Manager does not support SIP registration.

Whenever an IP Media Services Controller application on the Signaling Server requires service from a MAS, the Call Server selects the appropriate MSRN and passes it to the IP Media Services Controller.

The MSC uses the MSRN to query the proxy server database, which responds with a cost-sorted list of eligible MAS servers. Starting with the lowest cost MAS, the MSC locates a MAS server to fulfill the request.

**Example of MRSN configuration when using NRS as the proxy server**

After you configure the MSRN on the Call Server, use Network Routing Service Manager (NRSM) to add the service domain and Level 1 and Level 2 domains. Configure the IP Media Service controller as a static endpoint, as shown in the following figure.

Note:
The MSC IP address must be in IPv4 format.

![Figure 98: MSC as a static endpoint in NRSM](image)

Configure the MAS as a dynamic endpoint in NRSM by selecting Dynamic SIP endpoint from the SIP Support list menu. The following figure shows the MAS configured as a dynamic endpoint in NRSM.
After you configure the MSC and MAS endpoints, add a routing entry for the MAS endpoint. The following figure shows the routing entry page in NRSM.

You can then continue to configure IP Media Services using the Element Manager Media Services Configuration Details page.

For information about configuring IP Media Services using Element Manager, see Configure IP Media Services using Element Manager on page 408.

For information about configuring MSRN using Element Manager, see Configure Media Services Routing Number using Element Manager on page 405.

For information about configuring NRSM, see Network Routing Service Fundamentals, NN43001-130.
Avaya Aura® Session Manager

To enable media services routing for systems with Aura® Session Manager, you must configure the MAS as a SIP Entity using Avaya System Manager. The Aura® Session Manager database can then be queried using a MSRN (Media Services Routing Number) to locate a specific server. You must configure media server routing numbers for both the Call Server and the Aura® Session Manager as the Dial Pattern for a MAS SIP entity must partially match at each server.

If a MSRN is not configured on the Call Server, Aura® Session Manager (or a SIP Proxy Server) does not require any media server configuration and uses the local media server defined in Element Manager for all media services.

**Note:**

For IP Attendant, the third party IP Attendant client must initially register with the IP Attendant MSC application on the CS 1000 Signaling Server. Then you can route it to a Media Server using Session Manager, NRS, or Local Media Server configuration.

---

**Bandwidth management**

To facilitate proper bandwidth usage tracking, each MAS endpoint (or MAS SIP entity, if you are using Aura® Session Manager) is assigned a VPNI and bandwidth zone number that enables the Call Server to track bandwidth usage between the MAS servers and other IP endpoints.

IP Media Services use a late-binding model to select a MAS server for service requests. In this model, the MAS selection does not occur until the Call Server determines the bandwidth zone of the MAS by establishing the speech paths.

Because of the late-binding nature of the MAS selection model, IP media sessions are not subject to bandwidth management call admission control. Bandwidth used by IP media sessions is accurately reported but IP media sessions are not blocked due to insufficient bandwidth. In this event, the Call Server raises a QOS0038 Insufficient Bandwidth alarm but the session remains established.

You can specify the zone and VPNI configuration for the MAS SIP Entity when configuring the Location details in Avaya System Manager. This information is sent by Aura® Session Manager to the IP Media Services controller and is later used by the Call Server for bandwidth management. When viewing the SIP Entity details of the MAS in Avaya System Manager, the Location field matches the zone and VPNI details entered in the Name field on the Location Details page in Avaya System Manager. For more information, see Configuring bandwidth management for a MAS SIP entity on page 418.

For more information about bandwidth management, see Converging the Data Network with VoIP Fundamentals, NN43001-260.
System resiliency

Avaya Aura® Session Manager allows up to two levels of Session Manager routing: Primary and Secondary ASMs.

Note:
If you are configuring Avaya Aura® Session Manager as the proxy server for the SIP Gateway in Element Manager, do not select the Support registration option. The SIP Proxy Server does not support registration.

The following sections describe the methods used by IP Media Services to provide system resiliency.

Geographic redundancy

Multiple media servers can act as alternates if the primary media server fails. If you configure NRS as the proxy server, IP Media Services uses up to three levels of NRS routing. For small customer deployments or survivable branches without an NRS, the local media server provides all media services.

Note:
The local media server configuration supports a single MAS server only.

For systems using Aura® Session Manager as the proxy server, you can specify a Primary and Secondary Aura® Session Manager for two levels of alternate routing.

In High Scalability systems, the Survivable SIP Media Gateway (SSMG) consists of a Survivable Call Server (SCS) and SIP Media Gateway (SMG) that provide IP resources in the event of WAN outage. During a WAN outage, IP Phones register locally to the SCS.

To provide call progress tone (ring back tone only), tone service is requested from the SMG using the same method that the IP Media Services applications use to request tone service from the MAS, provided that the SCS is running the IP Media Services application, the SMG IP address is configured as the local media server for IP Media Services, and the local media server role is configured as SIP Media Gateway. When the SMG receives the tone request, the SIP Gateway application translates the request to an ACD DN call. The Call Server places the call into an ACD queue and provides in-band ring back tone to the call originator.

Note:
MAS clusters are not supported across a WAN environment.
Alternate NRS support

If you configure the NRS as a proxy server, the MSC applications support the querying of up to three NRS servers and one local media server. The three-level hierarchy (primary, secondary, tertiary) for NRS selection allows for system resiliency and geographic redundancy if the network or NRS fails.

The local media server configuration allows for single site or zone deployments for which an NRS is not required. In a branch survivability scenario, a MAS may be present in the branch but it cannot reach an NRS to locate it.

The following diagram shows an example of alternate NRS routing.

![Alternate NRS routing diagram]

Figure 101: Alternate NRS routing

High Availability

Note:
The information in this section is in regards to IP Media Services Controller applications on the Signaling Server.

The High Availability model for the IP Media Services Controller applications is consistent with the model generally used for Signaling Server. The IP Media Services Controller applications...
are deployed on the IP telephony node in a 1+n Active/Standby model. On the current node master, IP Media Services Controller applications are active and registered to the Call Server. On the standby nodes, IP Media Services Controller applications are on standby and are not registered to the Call Server.

If the node master loses its mastership, an internal election process selects a new master. Media services running on the new node master become active and register to the Call Server. Media services on the previous master enter standby mode and are no longer registered to the Call Server.

**Note:**

During the election process to select a new master node, media services are temporarily unavailable.

In conjunction with system resiliency and Geographic Redundancy, the High Availability model helps to ensure that there is no single point of failure for IP Media Services.

For more information about the election process, see Node election rules on page 250.

---

### Security

The following sections describe security features of IP Media Services.

### SIP security

Transport Layer Security (TLS) provides a SIP TLS signaling link between the IP Media Services controllers and MAS that protects the integrity of SIP signaling and provides client-server authentication. A handshaking procedure establishes secure connections between TLS clients and MAS.

No additional certificate configuration is required for IP Media Services. Mutual trust must be established between two SIP TLS endpoints that use certificates signed by different public CAs. To accomplish this trust, the TLS client must add the server signing CA certificate to the list of trusted CA certificates and the server must add the TLS client certificates, by using the Unified Communications Management (UCM) management console.

For more information about certificate management, see Security Management Fundamentals, NN43001-604.
Media Security

IP Media Services applications provide Media Security capabilities for media exchanges between Communication Server 1000 devices and MAS. Media Security allows endpoints using Secure Real-Time Transport Protocol (SRTP) to exchange secure media. Except for the IP Attendant application, which does not support it, SRTP is enabled by default for IP Media Services applications and cannot be disabled.

Important:

If there are endpoints in the network that do not support SRTP, configure SIP Media Security as Best Effort to avoid speech path issues that can occur if the MAS is configured with Media Security Enforced. If the MAS is configured with Media Security Enforced, endpoints that do not support SRTP will not receive speech paths when added to an IP Ad Hoc Conference.

For more information about SRTP, see Security Management Fundamentals, NN43001-604.

For information about MAS media security, see Media Application Server Administration and Security, NN44471-600.

For information about signaling security for NRS, see Network Routing Service Fundamentals, NN43001-130.

License requirements for IP Media Services

The following licenses are available for IP Media Services:

- IP Media Services Session license (System license)
  - This license is required for all IP Media Services and includes provisions for IP RAN, IP Music, IP Ad Hoc Conference, and IP Tone services.

  Note:
  
  You require one IP Media Services Session for each individual caller receiving any form of Media Services treatment (i.e. there is no broadcasting over an IP Media Services Session).

- IP RAN sessions license (System license)
- IP MUSIC sessions license (System license)
- IP Attendant User license (User license)

  Note:
  
  Each IP Attendant TN occupies three IP Media Session licenses.
Review the sections on IP RAN and IP Music for more details about the licensing implication of each, and their correlation with IP Media Services Session licenses.

Feature package 422 is required for IP Media Services and must be enabled on the keycode.

In addition, the following license is required for IP Media Services, on the Media Server:

- RFC 4240 Services Sessions license

**Note:**
You require one RFC 4240 Services Session for each IP Media Services Session.

IP Media Services uses a floating license model to manage MAS licensing. In a floating license model, authorized users receive licenses from a licensing server. The licensing server provides a limited number of licenses that are shared by multiple users and applications on a system or network. When the license expires or is no longer required by a user or application, the licensing server reclaims the license for distribution to other authorized users or applications.

There are two options for deploying the MAS floating licensing model:

- MAS deployed as a standalone server
- MAS cluster deployment

In a MAS standalone server or servers deployment, an individual license is generated and applied for each MAS server. You must configure each MAS server independently with a routing entry on NRS or Session Manager, as applicable.

In a MAS cluster deployment, one license is generated and applied for the cluster. You must configure the Primary and Secondary servers with routing entries on NRS or Session Manager, as applicable.

For a MAS cluster deployment:

- IP Media Services does not support MAS clusters across a WAN
- IP Media Services does not support High Availability 1+1 (Primary and Backup Servers) on the MAS. N+1 (Primary, Secondary and Standard Servers) is the supported MAS cluster deployment for IP Media Services.

Replication of content (for Music or Announcements) is supported in both standalone or cluster deployments.

For information on deploying MAS licenses, see [Configure the license for a dedicated MAS](#) on page 400 and [Configure the license for a MAS cluster](#) on page 400

In addition, the MAS Enablement license is required on each MAS server, including servers provided for redundancy.

**Migrating Communication Server 1000 Release 7.0 licenses to MAS 7.0**

For IP Media Services installed as part of Communication Server Release 7.0 systems, the KRS Authorization Code tool delivers the licensing.
Configure the license for a dedicated MAS

You can configure the license during the pre-deployment of MAS or after MAS has already been deployed. Choose the procedure as applicable to your installation.

**Configuring the pre-deployment license for a dedicated MAS**

Use this procedure to configure the pre-deployment licensing on a standalone MAS server.

1. Configure a Communication Server 1000 Linux base server as a Primary security server.
2. Configure a Communication Server 1000 Linux base COTS2 server as a Member security server.
3. Upload the MAS installation media to the Primary security server.
4. Request a platform license key from the authorized person.

   **Note:**
   You must know the MAC address of the MAS server.

5. Log on to the Primary security server using the admin account.
6. Click **Deployment > Deployment View**.
7. From the **View** menu, select **Network services**.
8. Select **MAS** and click **Add**.
9. Enter a name for the service.
10. Choose the Member server for MAS service.
11. Upload the license server key file and click **Validate**.
12. From the **View** menu, select **Servers**.
13. Click **Commit**.
14. Choose the Member server.
15. From the **Deployment actions** menu, click **Deploy**.

   For more information about deploying MAS, see *Linux Base Fundamentals*, NN43001–315.

**Configuring the post-deployment license for a dedicated MAS**

Post-deployment licensing is configured on the MAS using the MAS Element Manager. For information on configuring the post-deployment licensing, refer to the MAS documentation.

---

**Configure the license for a MAS cluster**

MAS cluster servers have three supported roles for IP Media Services on CS 1000E: Primary, Secondary and Standard server.
Note:
High Availability 1+1 (Primary and Backup server) is not supported for IP Media Services on CS 1000E.

For more information about MAS, refer to Media Application Server Platform Fundamentals, NN44471-101 and Avaya Media Application Server 7.0 Commissioning, NN44471-301.

Configuring the pre-deployment license for a Primary MAS

Use this procedure to configure the pre-deployment licensing for a Primary MAS server that is part of a cluster.

1. Configure a COTS2 server with Communication Server 1000 Linux base server as a Member security server and register it to the security domain.
2. Request a platform license key from the authorized person.
   - **Note:** You must know the MAC address of the MAS server.
3. Install MAS on the Member server using the license server key specified during the MAS pre-installation stage.
4. Configure the Member server as the Primary server in the MAS cluster.

For information on MAS clusters, see Media Application Server Platform Fundamentals, NN44471–101.

Configuring the post-deployment license for a Primary MAS

If you did not specify the license during the pre-deployment stage of the Primary (in the MAS cluster) MAS, you can apply it post-deployment using the MAS Element Manager.

1. Using the MAS Element Manager, navigate to Licensing > General.
2. Select Use license server.
3. Copy the license text into the corresponding window.
4. Click Validate.
5. Click Save/Confirm.
6. Restart the server.

Configuring the license for a Secondary MAS

Use this procedure to configure the licensing for a Secondary MAS.

1. Configure a COTS2 server with Communication Server 1000 Linux base server as a Member security server and register it to the security domain.
2. Install MAS on the Member server without the license server key specified during the MAS pre-installation stage.
3. Configure the Member server as a Secondary server in the MAS cluster, also specifying the Primary server of the cluster.
Configuring the license for a Standard MAS

Use this procedure to configure the licensing for a Standard MAS.

1. Configure a COTS2 server with Communication Server 1000 Linux base server as a Member security server and register it to the security domain.

2. Install MAS on the Member server without the license server key specified during the MAS pre-installation stage.

3. Configure the Member server as a Standard server in the MAS cluster, also specifying the Primary server of the cluster.


IP Media Services feature restrictions and limitations

The following restrictions and limitations apply to IP Media Services:

- IP Media Services on CS 1000E does not support MAS clusters across a WAN
- IP Media Services on CS 1000E does not support High Availability 1+1 (Primary and Backup server)
- You can only deploy IP Media Services on CS 1000E as a Member UCM server; you cannot deploy it as a Primary or Backup UCM server.
- IP Music may not be provided to an Avaya Aura Communication Manager user if Direct Audio connections are enabled.

As a workaround, Avaya recommends you configure Direct IP-IP Audio Connections to N in signaling-group form for all SIP trunks towards CS 1000 on Communication Manager.

Note:

When Direct IP-IP Audio Connections is configured to N for all SIP trunks towards CS 1000, any IP to IP calls from Communication Manager to CS 1000 use TDM resources.

For more information about Direct Audio connections, see Administering Avaya Aura Communication Manager, 03-300509.

- When Session Timer is enabled on the 1100 and 1200 Series IP Deskphones, the phone may stop playing IP Music when the Session Timer expires. Avaya recommends you disable the Session Timer on 1100 and 1200 Series IP Deskphones when using IP Media Services.

For more information about disabling the Session Timer, see the entry for Session Timer Service in SIP Software for Avaya 1100 Series IP Deskphones - Administration,
**IP Media Services feature restrictions and limitations**

NN43170-600, and *SIP Software for Avaya 1200 Series IP Deskphones - Administration, NN43170-601*.

- IP Media Services feature does not support media renegotiation. For example, when IP Music is playing it is impossible to transfer the call. Specifically, the following scenarios are not supported:
  - If User A listens to IP Music or IP RAN and performs a transfer to another User B, User B does not hear IP Music or IP RAN.
  - If User A talks to User B and User B transfers the call to an ACD, the ACD plays IP Music or IP RAN to User B in a consultation call. When User B presses the Transfer Complete button, User A does not hear this IP Music or IP RAN.

This limitation applies to IP Music, IP RAN and IP Tone.
Chapter 18: IP Media Services configuration

IP Media Services is installed with the Signaling Server application and enabled using Element Manager. To configure the individual IP Media Services applications, package 422 must be unrestricted and configuration options must adhere to licensing limitations.

Contents

This section contains information about the following topics:

- Configure Media Services Routing Number using Element Manager on page 405
- Configure IP Media Services using Element Manager on page 408
- Configure IP Media Services using Avaya Aura® System Manager on page 414
- Configuring the MAS SIP Domain, Trusted Nodes and Routes for IP Media Services on page 420
- Configure the MAS media source using Element Manager on page 423
- Configure Zone and VPNI information using Network Routing Service Manager on page 425
- Configure support for MAS clusters on page 426
- Configure survivable IP Tones on page 428
- Configure Music on Hold based on phone type on page 428

Configure Media Services Routing Number using Element Manager

You can configure the Media Services Routing Number (MSRN) at the service level or customer level using Element Manager.

- Configuring the Media Services Routing Number at the service level using Element Manager on page 406
- Configuring the Media Services Routing Number at the customer level using Element Manager on page 407
Configuring the Media Services Routing Number at the service level using Element Manager

1. In the Element Manager navigation tree, click **System, IP Network**, and then click **Zones**.

   The Bandwidth Zones page appears.

2. Select the zone to edit and click **Edit**.

   The Edit Bandwidth Zone page appears.

3. Click the **Media Services Zone Properties** link.

   The Media Services Zone Properties (Zone) page appears.

4. Click **Add**.

   The Add Media Services Zone Properties page appears.
5. From the Customer number list menu, select the customer number.
6. In the Media Services routing DN text box, type the media services routing DN.
7. (Optional) Enter the DNs for the IP Media Services applications.
8. Click Save.

The Media Services Zone Properties page appears and displays the configured DN values.

**Figure 103: Add Media Services Zone Properties page**

Required values are marked with an asterix (*).

**Configuring the Media Services Routing Number at the customer level using Element Manager**

1. In the Element Manager navigation tree, click Customers.
2. Click the Media Services Properties link.

   The Feature Packages page appears.

3. Expand the IP Media Services fields by clicking the plus (+) sign.
4. Enter the Media services routing number.
5. From the **Numbering plan identifier (NPI)** list menu, choose the Numbering plan identifier.
6. From the **Type of number (TON)** list menu, choose the Type of number.
7. Click **Save**.

### Configure IP Media Services using Element Manager

Use the procedures in this section to configure IP Media Services using Element Manager.

This section contains the following procedures:

- [Enable IP Media Services using Element Manager](#) on page 408
- [Configure a proxy server using Element Manager](#) on page 409
- [Configure a local media server using Element Manager](#) on page 410
- [Configure the SIP URI Map using Element Manager](#) on page 411
- [Configure the Port Settings using Element Manager](#) on page 412
- [Configure IP Attendant Gateway using Element Manager](#) on page 413

### Enable IP Media Services using Element Manager

Use this procedure to enable the IP Media Services applications using Element Manager.
Enabling IP Media Services using Element Manager

1. In the Element Manager navigation tree, click System, IP Network, and then click Nodes, Servers, Media Cards.

   The IP Telephony Nodes Web page appears.

2. Click Add.

   The New IP Telephony Node page appears.

3. Enter the information for the node.

   For information on configuring an IP Telephony Node, see Configuration of IP Telephony nodes using Element Manager on page 251.

4. In the Applications section, select the IP Media Services check box.

5. Click Next.

   The IP Media Services Configuration Details Web page appears.

   ![Figure 105: IP Media Services Configuration Details Web page]

6. In the Services section, select the check boxes for the IP Media Services you want to enable.

7. Click Save.

   You can continue to configure the rest of the IP Media services settings by following the procedures in this section.

Configure a proxy server using Element Manager

You can use NRS or Aura® Session Manager as a proxy server with IP Media Services. Use this procedure to configure the proxy server details using Element Manager.
Configuring a proxy server using Element Manager

1. In the Element Manager navigation tree, click **System, IP Network**, and then click **Nodes, Servers, Media Cards**.

   The **IP Telephony Nodes** Web page appears.

2. Click the link for the Node ID to be changed.

3. Select **Node Details > IP Media Services Configuration**.

   The **IP Media Services Configuration Details** Web page appears.

   ![Proxy server section of the IP Media Services Configuration Details Web page](image)

4. Click the **MS Settings** link.

5. In the **Proxy or Redirect Server** section, enter the NRS or Aura® Session Manager IP addresses, as well as any applicable port and protocol details.

   OR

   You can choose to import the configuration settings from the SIP gateway session by selecting the **Import SIP gateway settings** check box.

6. Click **Save**.

---

Configure a local media server using Element Manager

Use this procedure to configure a local media server using Element Manager. You can use this configuration when there is no NRS or Session Manager available or for local survivability if the NRS or Session Manager cannot be reached. You can use the local media server configuration to point to one MAS server only.
Configuring a local media server using Element Manager

1. In the Element Manager navigation tree, click **System, IP Network**, and then click **Nodes, Servers, Media Cards**.

   The IP Telephony Nodes Web page appears.

2. Click the link for the Node ID to be changed.

3. Select **Node Details > IP Media Services Configuration**.

   The IP Media Services Configuration Details Web page appears.

4. Click the **MS Settings** link.

5. In the **Local Media Server** section, enter the FQDN/IP address of the local media server, as well as any applicable Port or Transport protocol details.

   ![Figure 107: Local Media Server section of the IP Media Services Configuration Web page](image)

   6. Click **Save**.

Configure the SIP URI Map using Element Manager

Use this procedure to configure the SIP URI Map for IP Media Services using Element Manager.

**Configuring the SIP URI Map using Element Manager**

1. In the Element Manager navigation tree, click **System, IP Network**, and then click **Nodes, Servers, Media Cards**.

   The IP Telephony Nodes Web page appears.

2. Click the link for the Node ID to be changed.

4. Click the SIP URI Map link.

5. Enter the Public E.164 domain names and Private domain names, as applicable.

6. Click Save.

---

**Configure the Port Settings using Element Manager**

Use this procedure to configure the Port Settings for IP Media Services using Element Manager.

**Configuring the Port Settings using Element Manager**

1. In the Element Manager navigation tree, click System, IP Network, and then click Nodes, Servers, Media Cards.
   The IP Telephony Nodes Web page appears.

2. Click the link for the Node ID to be changed.

3. Select Node Details > IP Media Services Configuration.
   The IP Media Services Configuration Web page appears.

4. Click the Port Settings link.
5. Enter the port settings for each application.
6. Click **Save**.

---

**Configure IP Attendant Gateway using Element Manager**

Use this procedure to configure IP Attendant Gateway using Element Manager.

**Configuring IP Attendant Gateway using Element Manager**

1. In the Element Manager navigation tree, click **System, IP Network**, and then click **Nodes, Servers, Media Cards**.
   
The IP Telephony Nodes Web page appears.
2. Click the link for the Node ID to be changed.
3. Select **Node Details > IP Media Services Configuration**.
   
The IP Media Services Configuration Web page appears.
4. Click the **Port Settings** link.
5. Scroll down to the **IP Attendant** section.
6. In the **IP Attendant** section, enter the ports for the TCM TCP, SIP UDP, SIP TCP, and SIP TLS.
The recommended port values are as follows:

- TCM TCP = 3500 (this port value must match the port value configured for the IP Attendant client)
- SIP UDP = 5090
- SIP TCP = 5090 (this port value must match the port value configured for the IP Attendant client)
- SIP TLS = 5091

**Note:**
Only TCP is supported. UDP is not supported. TLS is not supported for the IP Attendant.

7. Click **Save**.

---

**Configure IP Media Services using Avaya Aura® System Manager**

Use the procedures in this section to configure IP Media Services (i.e., Media Services Controller) on the Signaling Server using Avaya Aura® System Manager. Only one IP Media Services SIP entity is required on the Avaya Aura® Session Manager for all IP Media Services Controller applications on one CS 1000 node.
Configuring IP Media Services as a SIP entity

Before you can configure IP Media Services as a SIP entity, you must configure an Adaptation module and link the entity to Avaya Session Manager. Otherwise, the SIP Invite is not routed properly to the MAS. Use this procedure to configure a SIP entity for IP Media Services.

1. In the Avaya System Manager navigation tree, navigate to Elements > Routing > Adaptations and click New.

   The Adaptation Details page appears.

2. In the Adaptation name text box, type CS1000Adapter.

3. From the Module name list menu, select the CS1000Adapter module name and click Commit.

4. In the Avaya System Manager navigation tree, click SIP Entities.

   The SIP entity list appears.

5. Click New.

   The SIP Entity Details page appears.

   ![Figure 111: SIP Entity Details page](image)

6. In the Name field, enter the name for the SIP entity.

7. In the FQDN or IP Address field, enter the FQDN or IP address of the TLAN interface of the IP Media Services Controller application on the Signaling Server.

8. From the Adaptation list, select CS1000 Adapter.
9. From the **Type** list, select **Other**.
10. From the **SIP Link Monitoring** list menu, select **Link Monitoring Disabled**.
11. Click **Commit**.

---

**Configuring the SIP entity link for IP Media Services**

1. In the Avaya System Manager navigation tree, click **Routing > Entity Links**.

   The Entity Links page appears.

   ![Entity Links Page](image_url)

2. Under the **Name** column, enter a name for the Entity Link.
3. Under the **SIP Element 1** column, select the Avaya System Manager SIP entity from the list.
4. Under the **Protocol** column, select the appropriate protocol.
5. Under the **Port** column, enter the port number.
6. Under the **SIP Element 2** column, select the IP Media Services SIP entity from the list.
7. Click **Commit**.

---

**Configuring MAS as a SIP entity**

Use this procedure to configure a MAS SIP entity in Avaya System Manager and link it to Aura® Session Manager.

1. In the Avaya System Manager navigation tree, click **Elements > SIP Entities**.

   The list of SIP entities appears.

2. Click **New**.

   The SIP Entity Details page appears.
3. In the **Name** field, enter a name for the MAS SIP Entity.
   
   Example: mas233.

4. In the **FQDN or IP Address** field, enter the MAS FQDN or IP address.

5. From the **Type** list, select Other.

6. From the **Location** list, select the location containing the VPNI and Zone information configured for the Aura® Session Manager SIP entity.

7. Click **Commit**.

---

**Configuring the SIP entity link for MAS**

1. In the Avaya System Manager navigation tree, click **Routing > Entity Links**. The Entity Links page appears.

2. Under the **Name** column, enter a name for the Entity Link.
3. Under the **SIP Element 1** column, select the Avaya System Manager SIP entity from the list.

4. Under the **Protocol** column, select the appropriate protocol.

5. Under the **Port** column, enter the port number.

6. Under the **SIP Element 2** column, select the MAS SIP entity from the list.

7. Click **Commit**.

---

**Configuring bandwidth management for a MAS SIP entity**

1. In the Avaya System Manager navigation tree, click **Elements > Locations**. The Location Details page appears.

   ![Diagram](image)

   **Figure 113: Location Details page**

2. In the **Name** field, enter the values for zone and VPNI using the following format:

   x-vpni=<value>; x-zone=<value>

   **Note:**

   The zone and VPNI configuration entered during the configuration of the MAS SIP entity is sent by Aura® Session Manager to the IP Media Services controller. This information is later used by the Call Server for bandwidth management. When viewing the SIP Entity details of the MAS in Avaya System Manager, the **Location** field matches the **Name** you enter during this step.

3. Click **Commit**.

---

**Configuring the Routing Policy and Dial Pattern for MAS**

In Aura® Session Manager, you must configure a Routing Policy to assign the appropriate Routing Destination and Time of Day. You must also configure a Dial Pattern so that the MSRN
can assign the appropriate Policy to the Dial Pattern. You must define the Dial Pattern on both the MAS and Call Server so that the Aura® Session Manager can assign a MAS to the Call Server for providing IP Media Services.

Use this procedure to configure the Policy and Dial Pattern for MAS.

1. In the Avaya System Manager navigation tree, click **Elements > Routing > Routing Policies**.

   The Routing Policy Details page appears.

   ![Figure 114: Routing Policy Details page](image)

2. In the **Name** field, enter the name for the Routing Policy.

3. Click the **Select** button under **Select SIP entity as destination** and select a MAS SIP entity.

4. Click **Commit**.

5. In the Avaya System Manager navigation tree, click **Dial Patterns**.

   The Dial Pattern Details page appears.
6. Enter the Dial Pattern details. Mandatory fields are marked with an asterix (*). In the above example, dial pattern 4000 corresponds to a Media Service Routing Number (MSRN) as configured on the Call Server side.

7. Click the Add button under Originating Locations and Routing policies to select the originator location names and routing policy names for the configured Dial Pattern.

8. Click Commit.

---

**Configuring the MAS SIP Domain, Trusted Nodes and Routes for IP Media Services**

You must add Aura® Session Manager as a SIP Trusted Node on the MAS using the MAS Element Manager. This is required because Aura® Session Manager is proxy server for all SIP signaling that the MAS receives. If you are using a local MAS, you must also add the IP Media Services Controller on the Signaling Server as a SIP Trusted Node. This is required for resiliency in the event Aura® Session Manager is not responding.

**Warning:**

To avoid the alarm “All configured SIP routes are down”, do the following:

1. In the MAS Element Manager navigation tree, click System Configuration > Signaling Protocols > SIP > General Settings.
The General Settings page appears.

2. In the Routing section, uncheck **Enforce SIP Route Configuration**, which is checked by default.

3. Click **Save**.

Depending on whether or not the proxy server is NRS or Aura® Session Manager, certain conditions might apply. Use the procedure that applies to your configuration.

**Configuring for Aura® Session Manager**

Use this procedure if your system uses Aura® Session Manager as the proxy server.

1. In the MAS Element Manager navigation tree, click **System Configuration**, **Signaling Protocols**, **SIP**, and then click **Domains and Accounts**.
   
The Domains and Accounts page appears.

2. Click **Add**.

   The Add SIP Domain page appears.

   ![Add SIP Domain page](image)

3. Enter the domain name and click **Save**.

4. Using the MAS Element Manager, navigate to **System Configuration > Signaling Protocols > SIP > Nodes and Routes**.
   
The SIP Nodes and Routes page appears.

5. In the **Trusted Nodes** section, click **Add**.
   
The Add SIP Trusted Node page appears.

6. Enter the IP address of the Signaling Server where IP Media Services is installed and click **Save**.

   **Note:**

   All IP Media Services applications except IP Attendant use the TLAN IP address of the Signaling Server. IP Attendant uses the node IP of the Signaling Server.

   The Nodes and Routes page appears.

7. In the **Trusted Nodes** section, click **Add**.
The Add SIP Trusted Node page appears.

8. Enter the IP address of the SIP Proxy Server (SPS) and click **Save**.

   The Nodes and Routes page appears.

9. Navigate to **System Configuration > Signaling Protocols > SIP > Domains and Accounts**.

   The Domains and Accounts page appears.

10. Click **Add**.

    The Add SIP Account page appears.

11. Click **Save**.

**Configuring for NRS**

Use this procedure if your system uses NRS as the proxy server.

1. In the MAS Element Manager navigation tree, click **System Configuration, Signaling Protocols, SIP**, and then click **Domains and Accounts**.

   The Domains and Accounts page appears.

2. Click **Add**.

   The Add SIP Domain page appears.

   ![Add SIP Domain page](image)

3. Enter the domain name and click **Save**.

4. Using the MAS Element Manager, navigate to **System Configuration > Signaling Protocols > SIP > Nodes and Routes**.

   The SIP Nodes and Routes page appears.

5. In the **Trusted Nodes** section, click **Add**.

   The Add SIP Trusted Node page appears.

6. Enter the IP address of the Signaling Server where IP Media Services is installed and click **Save**.
Note:
All IP Media Services applications except IP Attendant use the TLAN IP address of the Signaling Server. IP Attendant uses the node IP of the Signaling Server.

The Nodes and Routes page appears.
7. In the Trusted Nodes section, click Add.
The Add SIP Trusted Node page appears.
8. Enter the IP address of the SIP Proxy Server (SPS) and click Save.
The Nodes and Routes page appears.
The Domains and Accounts page appears.
10. Click Add.
The Add SIP Account page appears.
11. Enter the new account information, ensuring that the following conditions are met:
   • The account name must match the name used for the MAS endpoint on NRS.
   • The password must match the password used for the endpoint authentication in NRSM.
12. Click Save.

Configure the MAS media source using Element Manager

Use this procedure to configure the media source using Element Manager on the MAS.

Ensure that the media file conforms to the following properties:

• Audio Format: Pulse-Code Modulation (PCM)
• Sample Rate: 8.00 kHz
• Audio Sample Size: 16 bit
• Channels: 1 mono

Example
CS1000/sip.domain.com/csbvw02/00/mus012.wav
Configuring the MAS media source using Element Manager

1. In the MAS Element Manager navigation tree, click **Home**, **Tools**, **Media Management**, and then click **Provision Media**.
2. Select an item in the Content Namespace Name list and click **Browse**.
   The Provision Media (CS 1000) page appears.

![Provision Media (CS 1000) page](image)

From this page you can add content groups, add media, and delete media.

Media content for IP Media Services is managed using the following hierarchy:

CS1000 / sip.domain.com / CallServerHostName / CustomerNumber / RouteNumber, where:

- **CallServerHostName** = for VxWorks systems, this value is the LD 117 hostname. For Linux systems, this value is the hostname configured on the system layer during installation of the operating system.
- **Customer number** = 2 digits, including leading 0s (zeros).
- **Route number** = 3 digits, including leading 0s (zeros).

The media file name indicates the route number and route type. For example, media files for RAN routes are prefixed by ran and media files for Music routes are prefixed by mus.

3. Click the **More Actions** list for additional options.

**Note:**
A MAS can act as a master media source for other MAS servers in the network without requiring the servers to belong to a cluster. By configuring the Active Cluster Primary Node...
Address for each MAS to point to the master MAS (the primary server in the network with the master copy of the content), content stores can be synchronized between the servers using the cluster replication process. This provides a local media source in the event the master MAS is unreachable. The other MAS servers will automatically audit and resynchronize their content stores with the master MAS once connectivity is restored.

For more information about MAS, see Media Application Server Platform Fundamentals, NN44471-101 or Avaya Media Application Server 7.0 Commissioning, NN44471-301.

Configure Zone and VPNI information using Network Routing Service Manager

The MAS is defined as a dynamic SIP gateway endpoint on the NRS. The NRS can detect if a MAS is out of service by using its registration details. You can configure Zone and VPNI details using the Network Routing Service Manager (NRSM) SIP endpoint page. The Zone and VPNI details are added to the SIP 3XX message sent back to the Call Server.

Use this procedure to configure the Zone and VPNI details for IP Media Services bandwidth management.

Configuring IP Media Services Zone and VPNI details using Network Routing Service Manager

1. In the Network Routing Service Manager navigation tree, click **Numbering Plans, Endpoints, Gateway Endpoint**.

   The Edit Gateway Endpoint Web page appears.
Configure support for MAS clusters

Configuring NRS to support MAS clusters

If you configured NRS as the SIP Proxy Server, you must add each MAS server within a MAS cluster as a Gateway Endpoint using Network Routing Server Manager. You only need to configure the primary and secondary MAS servers as routing entries for the Media Service Routing Number.

The following figure shows two MAS cluster servers as Gateway Endpoints:
Figure 120: MAS cluster servers as Gateway Endpoints

The following figure shows the primary MAS server within the cluster with a routing entry for the MSRN:

Figure 121: Primary MAS server with MSRN routing entry

**Configuring Aura® Session Manager to support MAS clusters**

If you configured Aura® Session Manager as a SIP Proxy Server, you must use Aura® System Manager to add each MAS within the cluster as a SIP Entity and link it to Aura® Session Manager. You only need to configure a Routing Policy and Dial Pattern for the Media Services Routing Number for the Primary and Secondary MAS.
**Configure survivable IP Tones**

In High Scalability systems, the SIP Survivable Media Gateway (SSMG) consists of a Survivable Call Server (SCS) and SIP Media Gateway (SMG) that provide IP resources in the event of WAN outage. During a WAN outage, IP Phones register locally to the SCS.

To provide call progress tone (ring back tone only), tone service is requested from the SMG using the same method that the IP Media Services applications use to request tone service from the MAS, provided that the SCS is running the IP Media Services application and the SMG IP address is configured as the local media server for IP Media Services.

When the SMG receives the tone request, the SIP Gateway application translates the request to an ACD DN call. The Call Server places the call into an ACD queue and provides in-band ring back tone to the call originator.

To configure survivable IP Tones for High Scalability systems, perform the following steps.

**Note:**

These steps assume that you have enabled IP Media Services Package 422, configured the Media Services Routing Number, and that IP Media Services is running on the SCS.

- On the SCS, ensure the Node IP of the SIP Media Gateway matches the IP of the local media server
- On the SIP Media Gateway, use LD 23 to configure a default ACD DN for when the CDN CNTL value is configured as “No”
- On the SIP Media Gateway, configure the CDN to match the NRS routing DN on the IP Media Services SCS

**Note:**

Regardless of the tone requested, only the survivable IP tones are provided when the Local Media Server entry is in use.

**Configure Music on Hold based on phone type**

In previous releases, it was possible to offer different music to callers on hold only when the call was internal or external. IP Media Services extends this functionality by providing the option to configure different music for callers placed on hold based on the type of phone involved in the call.

When configuring a phone, use the Music Route number (MRT) prompt in LD 11 to configure standard or IP-based music Route Data Blocks. You can apply the same MRT number to
multiple phones. You can configure the IP Music route at both the customer and route levels.

Use the Class of Service prompts SBMA (Set-Based Music Allowed) and SBMD (Set-Based Music Denied) to allow or deny the feature.

**Table 109: LD 11 - Assign Music Route number to a phone**

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ</td>
<td>aaa</td>
<td>NEW or CHG</td>
</tr>
<tr>
<td>TYPE</td>
<td>bbb</td>
<td>Terminal type. It can be any BCS or PBX phone.</td>
</tr>
<tr>
<td>CUST</td>
<td>xx</td>
<td>Customer ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRT</td>
<td>n</td>
<td>Music Route number. Route type is MUS or IMUS. By default, MRT value is empty.</td>
</tr>
</tbody>
</table>

**Table 110: LD 11 - Enable Music on Hold for a phone**

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ</td>
<td>aaa</td>
<td>NEW or CHG</td>
</tr>
<tr>
<td>TYPE</td>
<td>bbb</td>
<td>Terminal type. It can be any BCS or PBX phone.</td>
</tr>
<tr>
<td>CUST</td>
<td>xx</td>
<td>Customer ID</td>
</tr>
<tr>
<td>CAC_MFC</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>CLS</td>
<td>(SBMD)/SBMA</td>
<td>Set Based Music Denied/Allowed</td>
</tr>
</tbody>
</table>
IP Media Services configuration
Chapter 19:  Maintenance

Contents

This chapter contains the following topics:

- Introduction on page 431
- IP Line and IP Phone maintenance and diagnostics on page 431
- IP Line CLI commands on page 439
- IP Media Services CLI commands on page 441
- Lamp Audit function on page 443
- Troubleshoot an IP Phone installation on page 443
- Maintenance telephone on page 443
- Faceplate maintenance display codes on page 444
- System error messages on page 447
- Voice Gateway Media Card self-tests on page 451
- Replace the Media Card CompactFlash on page 451

Introduction

This chapter describes maintenance functions for the Voice Gateway Media Card, IP Line and IP Phones.

Check the Avaya Web site for information about the most recent software, firmware, and application releases.

IP Line and IP Phone maintenance and diagnostics

This section describes the commands in LD 32 and LD 117.
The following ECNT commands are available in LD 117 and LD 32:

- ECNT CARD
- ECNT NODE
- ECNT SS
- ECNT ZONE

The following ECNT commands are available in LD 117:

- ECNT FW
- ECNT MODL
- ECNT PEC

For more information about the ECNT commands, see Counting IP Phones on page 146 and LD 117 on page 434.

Table 111: LD 32 Maintenance commands for the Voice Gateway Media Card

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISC l s c</td>
<td>Disables the specified card, l = loop, s = shelf, c = card.</td>
</tr>
<tr>
<td>DISI l s c</td>
<td>Disables the specified card when idle, l = loop, s = shelf, c = card.</td>
</tr>
<tr>
<td></td>
<td>Use the DISI command to disable the Voice Gateway Media Card instead of the DISC command. The NPR0011 message indicates the disabled state of the Voice Gateway Media Card.</td>
</tr>
<tr>
<td>DISU l s c u</td>
<td>Disables the specified unit; l = loop, s = shelf, c = card, u = unit</td>
</tr>
<tr>
<td>ECNT CARD L S C</td>
<td>Counts and prints the number of IP Phones registered for the specified card.</td>
</tr>
<tr>
<td>&lt;customer&gt;</td>
<td>If the &lt;customer&gt; parameter is specified, the count is specific to that customer. A card must be specified to enter a customer; otherwise, the count is across all customers.</td>
</tr>
<tr>
<td></td>
<td>If no parameters are entered, the count is printed for all zones. A partial TN can be entered for the card (L or L S) which then prints the count according to that parameter. A customer cannot be specified in this case.</td>
</tr>
</tbody>
</table>

Example:
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNT CARD</td>
<td>Number of Registered Ethersets: 5 Number of Unregistered Ethersets: 27</td>
</tr>
<tr>
<td>ECNT ZONE</td>
<td>Counts and prints the number of IP Phones registered for the specified zone.</td>
</tr>
<tr>
<td>zoneNum</td>
<td>• If &lt;customer&gt; parameter is specified, the count is specific to that customer. A zone must be specified to enter a customer; otherwise, the count is across all customers.</td>
</tr>
<tr>
<td>&lt;customer&gt;</td>
<td>• If no parameters are entered, the count is printed for all zones.</td>
</tr>
<tr>
<td></td>
<td>• If an IP Phone is logged on to Virtual Office and the parameter entered for Current Zone (CUR_ZONE) is different from the parameter entered for Configured Zone (CFG_ZONE), registered and unregistered Ethersets are counted for both zones.</td>
</tr>
<tr>
<td>Example:</td>
<td>ECNT ZONE 0 0 &lt;&lt; Zone 0 Customer 0 &gt;&gt; Number of Registered Ethersets: 4 Number of Unregistered Ethersets: 17</td>
</tr>
<tr>
<td>ECNT NODE</td>
<td>Counts and prints the number of IP Phones registered for the specified node.</td>
</tr>
<tr>
<td>nodeNum</td>
<td>If the nodeNum parameter is not entered, the count is printed for all nodes.</td>
</tr>
<tr>
<td>Example:</td>
<td>ECNT NODE 8765 &lt;&lt; Zone 8765 &gt;&gt; Number of Registered Ethersets: 3</td>
</tr>
<tr>
<td>ECNT SS</td>
<td>Counts and prints the number of IP Phones registered for the specified Signaling Server.</td>
</tr>
<tr>
<td>&lt;hostName&gt;</td>
<td>If hostName parameter is not entered, the count is printed for all Signaling Servers.</td>
</tr>
<tr>
<td>Example:</td>
<td>ECNT SS &lt;&lt; Signaling Server: BVWAlphaFox IP 10.10.10.242&gt;&gt; Number of Register Ethersets: 1000</td>
</tr>
<tr>
<td></td>
<td>If the hostName variable contains an underscore (_), then an NPR001 error message is returned, as an underscore is considered to be an invalid character.</td>
</tr>
<tr>
<td>ENLC l s c</td>
<td>Enable the specified card; l = loop, s = shelf, c = card</td>
</tr>
<tr>
<td>ENLU l s c</td>
<td>Enable the specified unit; l = loop, s = shelf, c = card</td>
</tr>
<tr>
<td>u</td>
<td></td>
</tr>
<tr>
<td>IDC l s c</td>
<td>Print the Card ID information for the specified card, l = loop, s = shelf, c = card</td>
</tr>
<tr>
<td></td>
<td>This command displays the PEC (Product Engineering Code) and serial number for the card. The IP Line PEC is NTZC80AA.</td>
</tr>
<tr>
<td>STAT l s c</td>
<td>Print the CS 1000 software status of the specified card, l = loop, s = shelf, c = card</td>
</tr>
<tr>
<td>STAT l s c</td>
<td>Print the CS 1000 software status of the specified unit, l = loop, s = shelf, c = card</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 112: LD 117 Count registered IP Phones on page 434 summarizes the system maintenance commands available in LD 117.

The following ECNT commands are also maintained in LD 32:

- ECNT CARD <Loop> <Shelf> <Card> <CustomerNumber>
- ECNT NODE <NodeNumber>
- ECNT SS <HostName>
- ECNT ZONE <ZoneNumber> <CustomerNumber>

For more information about the ECNT commands, see Counting IP Phones on page 146.

### Table 112: LD 117 Count registered IP Phones

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNT ZONE zoneNum &lt;customer&gt;</td>
<td>Counts and prints the number of IP Phones registered for the specified zone.</td>
</tr>
<tr>
<td></td>
<td>• If &lt;customer&gt; parameter is specified, the count is specific to that customer. A zone must be specified to enter a customer; otherwise, the count is across all customers.</td>
</tr>
<tr>
<td></td>
<td>• If no parameters are entered, the count is printed for all zones.</td>
</tr>
<tr>
<td></td>
<td>Example: ECNT ZONE 0 0 &lt;&lt; Zone 0 Customer 0 &gt;&gt; Number of Registered Ethersets: 4 Number of Unregistered Ethersets: 17</td>
</tr>
<tr>
<td>ECNT NODE nodeNum</td>
<td>Counts and prints the number of IP Phones registered for the specified node.</td>
</tr>
<tr>
<td></td>
<td>If the nodeNum parameter is not entered, the count is printed for all nodes.</td>
</tr>
<tr>
<td></td>
<td>Example: ECNT NODE 8765 &lt;&lt; Zone 8765 &gt;&gt; Number of Registered Ethersets: 3</td>
</tr>
<tr>
<td>ECNT SS &lt;hostName&gt;</td>
<td>Counts and prints the number of IP Phones registered for the specified Signaling Server.</td>
</tr>
<tr>
<td></td>
<td>If hostName parameter is not entered, the count is printed for all Signaling Servers.</td>
</tr>
<tr>
<td></td>
<td>Example: ECNT SS &lt;&lt; Signaling Server: BVWAlphaFox IP 10.10.10.242&gt;&gt; Number of Register Ethersets: 1000</td>
</tr>
</tbody>
</table>
### Command Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the hostName variable contains an underscore (_), then an NPR001 error message appears, as an underscore is an invalid character.</td>
<td></td>
</tr>
</tbody>
</table>
| ECNT FW <XX> <A> <BB> <FF> | Prints the number of IP Phones with specified firmware ID and running specified firmware version.  
<XX>: firmware ID  
<A>: major version designator  
<BB>: minor version designator  
<FF>: filter to apply on firmware version; can be one of the following:  
=: equal to  
~: not equal to  
<: less than  
>: greater than  
Only the XX parameter is mandatory.  
ECNT FW <XX> <A> <BB> defaults to ECNT FW <XX> <A> <BB> =  
ECNT FW <XX> <A> counts all registered IP Phones with firmware ID equal to <XX> and major version designator equal to <A>.  
ECNT FW <XX> counts all registered IP Phones with firmware ID equal to <XX>.  
ECNT FW is equivalent to ECNT FW ALL; that is, the list containing firmware IDs and the quantity of IP Phones with this firmware ID is printed. |
| ECNT MODL <MMMM> | Prints the number of IP Phones of specified model.  
<MMMM> – specifies model name.  
If this parameter is omitted, then a list of the model names and associated mnemonics is printed. |
| ECNT PEC <PEC> | Prints the number of IP Phones with specified PEC, where:  
<PEC> – Product Engineering Code  
ECNT PEC is equivalent to ECNT PEC ALL; that is, the list containing the PECs and the quantity of IP Phones with this PEC is printed. |

---

### TN

For Avaya IP Phones, consider two kinds of TN:

- **physical TN**: represents a physical unit of the Voice Gateway Media Card
- **virtual TN**: configured on a virtual superloop and represents an IP Phone
Physical TN

Physical TN, that are seen as trunk units, are managed using existing LD32 commands.

Virtual TN

Because virtual TN are configured on a virtual superloop, virtual TN maintenance has no meaning; that is, what is already provided by the Avaya Communication Server 1000 (Avaya CS 1000) for phantom loops.

In LD 32, any command affecting a phantom loop leads to an NTP665 message because the loop does not physically exist. LD 32 supports STAT, DISU, ENLU, and IDU commands on an IP Phone Virtual TN. All other commands generate the NPR047 message.

Maintenance commands for the IP Phone

Table 113: LD 32 maintenance commands for IP Phones on page 436 contains the maintenance commands in LD 32 for the IP Phone. For more information about commands, see Software Input Output Reference — Maintenance, NN43001-711.

Table 113: LD 32 maintenance commands for IP Phones

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| STAT lscu   | Displays the IP Phone state. UNEQ, IDLE, BUSY, and DSBL have the usual meaning. 
               IDLE and DSBL state are precise by the following information:      |
|             | • UNREGISTERED identifies an IP Phone configured in the system but not yet registered. |
|             | • REGISTERED identifies a registered IP Phone.                             |
| DISU lscu   | Change the IP Phone state to DSBL. UNREGISTERED or REGISTERED state is not modified. |
| ENLU lscu   | Change the IP Phone state to IDLE. UNREGISTERED or REGISTERED state is not modified. |
| IDU lscu    | Displays selected IP Phone information. Displays the TN number, MAC address, device code, NT code, color code, release code, software code, serial number, IP Phone IP address, and LTPS IP address. |
### STAT VTRK <cust#> <route#> <start_mb#> <number of members>

Displays the status of the virtual trunks for a customer route starting from a specified starting member for the number of members specified.

---

**IDU command**

Because the system must request the information from the IP Phone, the IDU is effectively a PING command that you can use to test the end-to-end IP connectivity of the IP Phone.

See **Figure 122: IDU command output** on page 438 for an example of IDU command output.
Figure 122: IDU command output

Any information about attached IP Phone KEMs, or the Avaya 1100 Series Expansion Module also appears.

In the example in Figure 122: IDU command output on page 438, the first IP Phone is not behind a NAT device; the second IP Phone is behind a NAT device. The ISET IP ADR field displays the IP Phone signaling IP address as seen by the LTPS. If the IP Phone is behind a NAT device, the ISET IP ADR field displays the public address (the address seen by the LTPS) followed by the private IP address (the address configured at the IP Phone) in parentheses.

This format applies only for IP Phone Virtual TNs.

If the IP Phone is not registered with the Call Server, an NPR0048 message is generated. If the IP Phone is registered but idle, the system prints the IP Phone IP address and generates an NPR0053 message. If the IP Phone is registered, but the Call Server is not responding, an NPR0503 message is generated.
IP Line CLI commands

IP Line CLI commands supplement Overlay commands and introduce features specific to the Signaling Server platform.

For more information about commands, see Software Input Output Reference — Maintenance, NN43001-711.

Note:
VxWorks-based deplist CLI commands are not supported.

Note:
Use the appinstall command only if you are directed by Avaya support.

Use SSH to access the CLI. These IP Line CLI commands are entered at the command prompt. Instructions to connect to the maintenance port of the Signaling Server are described in Communication Server 1000M and Meridian 1 Small System Installation and Commissioning, NN43011-310.

Protocol trace tool commands for the Network Connection Service

Important:
A system warm start causes all tracing to cease. Traces must be reentered after the system restarts.

Table 114: Protocol trace tool CLI commands for the NCS on page 439 includes the protocol trace tool commands for the Network Connection Service (NCS). You must be assigned to the OAM role to run these commands.

For more information, see Software Input Output Reference — Maintenance, NN43001-711.

Table 114: Protocol trace tool CLI commands for the NCS

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
<th>Signaling Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>tpsARTrace IP &lt;IP Address&gt; ID &lt;user ID&gt; ALL</td>
<td>Traces the tpsAR protocol, which is used to determine where an IP Phone registers.</td>
<td>X</td>
</tr>
<tr>
<td>CLI Command</td>
<td>Description</td>
<td>Signaling Server</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>tpsARTraceOff</td>
<td>Removes the specified endpoint from the list of endpoints to be traced.</td>
<td>X</td>
</tr>
<tr>
<td>IP &lt;IP Address&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID &lt;user ID&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tpsAROutput</td>
<td>Sets the output for all tpsAR protocol traces.</td>
<td>X</td>
</tr>
<tr>
<td>&lt;Output_Destination&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;File Pathname&quot;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tpsARTraceSettings</td>
<td>Displays the trace tool settings, which endpoints are traced, and where the trace output is directed.</td>
<td>X</td>
</tr>
<tr>
<td>tpsARTraceHelp</td>
<td>Displays a list of all CLIs used for tracing tpsAR protocol messages, including usage and parameters.</td>
<td>X</td>
</tr>
</tbody>
</table>

- **IP Address**: a string containing the IP Phone IP address
- **user UID**: the ID of the IP Phone to trace (the DN used to log on) or the H323_Alias of where the IP Phone tries to register
- **ALL**: all IP Phones are to be monitored

**Output_Destination** specifies where all the trace messages for the tpsARTraceSet are to be directed.

- **TTY**
- **RPTLOG**
- **File**
- **TTY + File**

If the command runs from the Voice Gateway Media Card or the Linux shell prompt:

The values are as follows:
- 1 = TTY
- 2 = RPTLOG
- 3 = File
- 4 = TTY + File

If the command runs from the OAM prompt or Linux prompt on the Signaling Server:

The values are the actual word, not a number:
- TTY
- RPTLOG
- FILE
- TTY+FILE

**File Pathname** is a string enclosed in quotation marks. It specifies the file to write to if you select option 3 or 4.
Syslog commands

IP Media Service applications use the existing logging facility available on the Signaling Server. Linux Base syslog commands can be used to view or configure the syslog configuration for each type of media service, as shown in the following table.

Table 115: Syslog commands for IP Media Services

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>syslogShow</td>
<td>Displays the IP Media Services syslog configuration.</td>
</tr>
<tr>
<td>syslogFacilitySet</td>
<td>Configures the IP Media Services applications syslog facility.</td>
</tr>
<tr>
<td>&lt;process&gt;&lt;facility&gt;</td>
<td></td>
</tr>
<tr>
<td>syslogLevelSet</td>
<td>Configures the IP Media Services applications syslog level, where:</td>
</tr>
<tr>
<td>&lt;process&gt;&lt;task&gt;&lt;level&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&lt;process&gt; =</td>
</tr>
<tr>
<td></td>
<td>• mscConf = IP Ad Hoc Conference</td>
</tr>
<tr>
<td></td>
<td>• mscMusc = IP Music</td>
</tr>
<tr>
<td></td>
<td>• mscAnnc = IP Recorded Announcements</td>
</tr>
<tr>
<td></td>
<td>• mscAttn = IP Attendant Console</td>
</tr>
<tr>
<td></td>
<td>• mscTone = IP Tone</td>
</tr>
<tr>
<td></td>
<td>&lt;task&gt; =</td>
</tr>
<tr>
<td></td>
<td>• tMSC = IP Media Services tasks</td>
</tr>
<tr>
<td></td>
<td>&lt;level&gt; =</td>
</tr>
<tr>
<td></td>
<td>• INFO (Default)</td>
</tr>
<tr>
<td></td>
<td>• NONE</td>
</tr>
<tr>
<td></td>
<td>• EMERG</td>
</tr>
<tr>
<td></td>
<td>• ALERT</td>
</tr>
<tr>
<td></td>
<td>• CRIT</td>
</tr>
<tr>
<td></td>
<td>• ERROR</td>
</tr>
<tr>
<td></td>
<td>• WARNING</td>
</tr>
</tbody>
</table>
Example

To enable the debugging log:

```bash
==> syslogLevelSet mscConf tMSC DEBUG
```

All log messages are saved in the common Signaling Server log file `/var/log/cs1000/ss_common.log`.

For more information about syslog commands, see *Linux Platform Base and Applications Installation and Commissioning, NN43001-315*.

For information about syslog facility and level details, see *Software Input Output Reference — Administration, NN43001-611* and *Software Input Output Reference — Maintenance, NN43001-711*.

### Maintenance commands

You can use LD 117 to display the status of IP Media Services applications.

#### Table 116: LD 117 - Display status of IP Media Services applications

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT SERV APP IPCONF</td>
<td>Print the status of servers that have IP Ad Hoc Conference listed as an application.</td>
</tr>
<tr>
<td>STAT IP TYPE 3260</td>
<td>Print IP Attendant Console 3260 status</td>
</tr>
<tr>
<td>PRT IPDN &lt;IP_address&gt;</td>
<td>Print IP Attendant Console 3260 information for the specified IP address</td>
</tr>
<tr>
<td>STAT SERV APP IPATTN</td>
<td>Print the status of servers hosting the IP Attendant Console 3260</td>
</tr>
<tr>
<td>STAT SERV APP IPMUS</td>
<td>Print the status of servers that have IP Music listed as an application.</td>
</tr>
<tr>
<td>STAT SERV APP IPANN</td>
<td>Print the status of servers that have IP Announcement listed as an application.</td>
</tr>
<tr>
<td>STAT SERV APP IPTONE</td>
<td>Print the status of servers that have IP Tone listed as an application.</td>
</tr>
</tbody>
</table>
Lamp Audit function

The Lamp Audit function provides a continuous source of heartbeat messages to ensure the IP Phone is powered and the IP connection is alive. Because a reliable UDP connection exists from the core through to the IP Phones, any failure of the IP Phone or the IP connection is detected.

Network Signaling Diagnostics

Network Signaling Diagnostics can be run as part of the midnight routines defined in LD 30. For more information, see Software Input Output Reference — Maintenance, NN43001-711.

Troubleshoot an IP Phone installation

If an IP Phone cannot be installed because the prompt for the node ID or TN does not appear, perform the steps in Troubleshooting an IP Phone installation on page 443.

Troubleshooting an IP Phone installation

1. Log on to a Signaling Server in the node.
2. Type the `nodePwdShow` command at the prompt.
3. Use the `nodePwdSet "password"` command to configure the administrative password and to enable IP Phone installation. Ensure the password parameter is included.

Maintenance telephone

An IP Phone functions as a maintenance telephone when the CoS is defined as MTA (Maintenance Telephone Allowed) in the Multiline Telephone Administration program (LD 11). A maintenance telephone enables commands to be sent to the system; however, you can enter only a subset of commands from a system terminal. To access the system using the maintenance telephone, a Special Service Prefix (SPRE) code (defined in the Customer Data Block) is entered and followed by 91. To enter commands, press the keys that correspond to
the letters and numbers of the command (for example, to enter LD 43 return, press 53#42##).

The following overlays (LDs) are accessible from an IP Phone operating as a maintenance telephone: 30, 32, 33, 34, 36, 37, 38, 41, 43, 45, 46 and 60.

The previous maintenance overlay operations are supported on IP Phones except for the Tone and Digit Switch (TDS) commands of LD 34 and TONE command of LD 46.

---

**Faceplate maintenance display codes**

The Voice Gateway Media Card maintenance display provides the diagnostic status of the card during powerup, the operational state when in service, and error information about the functional state of the card.

- **Table 117: Media Card 32-port card faceplate maintenance display codes** on page 444 lists the normal and fault display codes for the Media Card 32-port line card.

- **Table 119: Media Card 32 card diagnostic information** on page 445 and **Table 120: Messages displayed on the LED during Media Card 32S card normal operation** on page 446 lists the messages on the faceplate for the Media Card 32S card.

**Table 117: Media Card 32-port card faceplate maintenance display codes**

<table>
<thead>
<tr>
<th>Normal code</th>
<th>Fault code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>T:00</td>
<td>F:00</td>
<td>Initialization</td>
</tr>
<tr>
<td>T:01</td>
<td>F:01</td>
<td>Testing Internal RAM</td>
</tr>
<tr>
<td>T:02</td>
<td>F:02</td>
<td>Testing ALU</td>
</tr>
<tr>
<td>T:03</td>
<td>F:03</td>
<td>Testing address modes</td>
</tr>
<tr>
<td>T:04</td>
<td>F:04</td>
<td>Testing watchdog</td>
</tr>
<tr>
<td>T:05</td>
<td>F:05</td>
<td>Testing 8051 coprocessor</td>
</tr>
<tr>
<td>T:06</td>
<td>F:06</td>
<td>Testing timers</td>
</tr>
<tr>
<td>T:07</td>
<td>F:07</td>
<td>Testing external RAM</td>
</tr>
<tr>
<td>T:08</td>
<td>F:08</td>
<td>Testing dongle</td>
</tr>
<tr>
<td>T:09</td>
<td>F:09</td>
<td>Programming timeswitch FPGA</td>
</tr>
<tr>
<td>T:10</td>
<td>F:10</td>
<td>Programming ISPDI FPGA</td>
</tr>
<tr>
<td>T:11</td>
<td>F:11</td>
<td>Testing host dual port RAM</td>
</tr>
<tr>
<td>T:12</td>
<td>F:12</td>
<td>Testing DS-30 dual port RAM</td>
</tr>
<tr>
<td>T:13</td>
<td>F:13</td>
<td>Testing SEEPROM</td>
</tr>
<tr>
<td>Normal code</td>
<td>Fault code</td>
<td>Message</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>T:14</td>
<td>F:14</td>
<td>Booting Host processor, waiting for response with self-test information</td>
</tr>
<tr>
<td>T:15</td>
<td>F:15</td>
<td>Not used</td>
</tr>
<tr>
<td>T:16</td>
<td>F:16</td>
<td>Not used</td>
</tr>
<tr>
<td>T:17</td>
<td>F:17</td>
<td>Not used</td>
</tr>
<tr>
<td>T:18</td>
<td>F:18</td>
<td>Not used</td>
</tr>
<tr>
<td>T:19</td>
<td>F:19</td>
<td>Not used</td>
</tr>
<tr>
<td>T:20</td>
<td>F:20</td>
<td>Waiting for application startup message from Host processor</td>
</tr>
<tr>
<td>T:21</td>
<td>F:21</td>
<td>CardLAN enabled, waiting for request configuration message</td>
</tr>
<tr>
<td>T:22</td>
<td>F:22</td>
<td>CardLAN operational, A07 enabled, display now under host control</td>
</tr>
</tbody>
</table>

Table 118: List of error codes for the Media Card 32-port card

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H:00</td>
<td>Host Processor not booting</td>
</tr>
<tr>
<td>H:01</td>
<td>SDRAM test failure</td>
</tr>
<tr>
<td>H:02</td>
<td>SRAM test failure</td>
</tr>
<tr>
<td>H:04</td>
<td>PC Card device failure</td>
</tr>
<tr>
<td>H:08</td>
<td>Network interface failure</td>
</tr>
<tr>
<td>H:20</td>
<td>DSP interface failure</td>
</tr>
<tr>
<td>H:40</td>
<td>NVRAM or EEPROM interface failure</td>
</tr>
<tr>
<td>H:80</td>
<td>PCM connector failure</td>
</tr>
</tbody>
</table>

Table 119: Media Card 32 card diagnostic information

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOT</td>
<td>Appears when the display becomes active.</td>
</tr>
<tr>
<td>POST</td>
<td>Power On Self Test (POST) Displays while the Media Card 32S card performs hardware system tests during system powerup.</td>
</tr>
<tr>
<td>PASS</td>
<td>Appears when POST passes.</td>
</tr>
<tr>
<td>EXXX</td>
<td>Appears if a serious system error is detected. Error code where XXX is a numeric value.</td>
</tr>
</tbody>
</table>
During powerup, the card performs multiple self-tests, including an internal RAM test, an ALU test, address mode test, a boot ROM test, a timer test, and an external RAM test. If a test test fails, the card enters a maintenance loop, and no further processing is possible. A failure message appears to indicate which test failed.

If the other tests fail (up to and including the EEPROM test), a message appears for three seconds. If more than one test fails, the message indicates the first failure. If you select verbose mode (by the test input pin on the backplane), the 3-second failure message does not appear.

If a test fails on the Media Card, F:XX appears on the hexadecimal display for 3 seconds after the T:13 message (Testing SEEPROM). For example, if the 8051 coprocessor test fails, F:05 appears on the Media Card faceplate. If more that one test fails, the message indicates the first failure.

If the IXP encounters failures during initialization, an H:XX error code appears. Table 118: List of error codes for the Media Card 32-port card on page 445 shows the list of error codes.

When the Media Card 32S card starts, diagnostic information, such as boot status, appears on the faceplate.

In normal operation, the messages appear in the following order:

- BOOT
- POST
- PASS
- LOAD

If a self-test error occurs, an error code appears.

**Table 120: Messages displayed on the LED during Media Card 32S card normal operation**

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exxx</td>
<td>E indicates an error code when a serious system error is detected, and xxx is a numeric value.</td>
</tr>
<tr>
<td>Sxxx</td>
<td>S indicates a system link error code, and xxx is a numeric value.</td>
</tr>
</tbody>
</table>
System error messages

When an error or specific event occurs, SNMP agent on the Voice Gateway Media Card sends an alarm trap to any SNMP manager that is configured in the SNMP Manager list in the ITG Card properties. System error message are also written to an error log file.

View the log file in any text browser after you upload it to an FTP host using the LogFilePut command.

ITG and ITS messages incorporate the severity category of the message in the first digit of the four-digit number. Message numbers beginning with 0 do not follow this format.

- 1 = Critical
- 2 = Major
- 3 = Minor
- 4 = Warning
- 5 = Cleared (Info)
- 6 = Indeterminate (Info)

Error messages with a severity category of Critical are displayed on the Voice Gateway Media Card maintenance faceplate display in the form: Gxxx or Sxxx; xxx is the last three digits of the ITG or ITS message. The Signaling Server has no display. Alarms appear in the Signaling Server report log or by way of SNMP on an Alarm browser.

Table 121: Critical ITG Error messages on page 447 lists the critical ITG messages and Table 122: Critical ITS Error messages on page 450 lists the critical ITS messages.

A Voice Gateway Media Card can send all listed alarms. Any alarm that can be sent by the Signaling Server has an X in the Signaling Server column.

For a complete list of other error messages, see Software Input Output Reference—System Messages, NN43001-712.

Table 121: Critical ITG Error messages

<table>
<thead>
<tr>
<th>Maintenance display</th>
<th>Corresponding critical error message</th>
<th>Signaling Server</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G000</td>
<td>ITG1000</td>
<td>X</td>
<td>Card (re)started.</td>
</tr>
<tr>
<td>G001</td>
<td>ITG1001</td>
<td>X</td>
<td>Task spawn failure &lt;name&gt;.</td>
</tr>
<tr>
<td>G002</td>
<td>ITG1002</td>
<td>X</td>
<td>Memory allocation failure.</td>
</tr>
<tr>
<td>G003</td>
<td>ITG1003</td>
<td>X</td>
<td>File IO error &lt;operation&gt; &lt;object&gt; &lt;errno&gt; &lt;errtext&gt;.</td>
</tr>
<tr>
<td>G004</td>
<td>ITG1004</td>
<td>X</td>
<td>Network IO error &lt;operation&gt; &lt;object&gt; &lt;errno&gt; &lt;errtext&gt;.</td>
</tr>
<tr>
<td>G005</td>
<td>ITG1005</td>
<td>X</td>
<td>Message queue error &lt;operation&gt; &lt;object&gt; &lt;errno&gt; &lt;errtext&gt;.</td>
</tr>
<tr>
<td>Maintenance display</td>
<td>Corresponding critical error message</td>
<td>Signaling Server</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>G006</td>
<td>ITG1006</td>
<td>X</td>
<td>Unexpected state encountered &lt;file&gt; &lt;line&gt; &lt;state&gt;.</td>
</tr>
<tr>
<td>G007</td>
<td>ITG1007</td>
<td>X</td>
<td>Unexpected message type &lt;file&gt; &lt;line&gt; &lt;msg&gt;.</td>
</tr>
<tr>
<td>G008</td>
<td>ITG1008</td>
<td>X</td>
<td>Null pointer encountered &lt;file&gt; &lt;line&gt; Name of pointer.</td>
</tr>
<tr>
<td>G009</td>
<td>ITG1009</td>
<td>X</td>
<td>Invalid block &lt;file&gt; &lt;line&gt; Type of block.</td>
</tr>
<tr>
<td>G010</td>
<td>ITG1010</td>
<td>X</td>
<td>Unable to locate data block &lt;file&gt; &lt;line&gt; Type of block.</td>
</tr>
<tr>
<td>G011</td>
<td>ITG1011</td>
<td>X</td>
<td>File transfer error: &lt;operation&gt; &lt;file&gt; &lt;host&gt;</td>
</tr>
<tr>
<td>G012</td>
<td>ITG1012</td>
<td>X</td>
<td>Module initialization failure: &lt;moduleName&gt;</td>
</tr>
<tr>
<td>G013</td>
<td>ITG1013</td>
<td>—</td>
<td>Ethernet receiver buffer unavailable, packet discarded.</td>
</tr>
<tr>
<td>G014</td>
<td>ITG1014</td>
<td>X</td>
<td>Ethernet carrier: &lt;ifName&gt; &lt;state&gt;</td>
</tr>
<tr>
<td>G015</td>
<td>ITG1015</td>
<td>—</td>
<td>Ethernet device failure: &lt;ifName&gt;</td>
</tr>
<tr>
<td>G017</td>
<td>ITG1017</td>
<td>X</td>
<td>Invalid or unknown SSD message: &lt;ssdType&gt; &lt;TN&gt; &lt;msg&gt;</td>
</tr>
<tr>
<td>G018</td>
<td>ITG1018</td>
<td>—</td>
<td>Invalid or unknown X12 SSD message &lt;TN&gt; &lt;msg&gt;</td>
</tr>
<tr>
<td>G019</td>
<td>ITG1019</td>
<td>—</td>
<td>DSP channel open failure &lt;channel&gt;.</td>
</tr>
<tr>
<td>G020</td>
<td>ITG1020</td>
<td>X</td>
<td>Configuration error &lt;param&gt; &lt;value&gt; &lt;reason&gt;.</td>
</tr>
<tr>
<td>G021</td>
<td>ITG1021</td>
<td>—</td>
<td>DSP successfully reset &lt;dsp&gt;.</td>
</tr>
<tr>
<td>G022</td>
<td>ITG1022</td>
<td>—</td>
<td>DSP channel not responding, channel disabled &lt;channel&gt;.</td>
</tr>
<tr>
<td>G023</td>
<td>ITG1023</td>
<td>—</td>
<td>DSP device failure: &lt;dsp&gt; &lt;errnum&gt; &lt;errtext&gt;</td>
</tr>
<tr>
<td>G024</td>
<td>ITG1024</td>
<td>—</td>
<td>DSP failure &lt;dsp&gt; &lt;errno&gt; &lt;errtext&gt;</td>
</tr>
<tr>
<td>G025</td>
<td>ITG1025</td>
<td>—</td>
<td>DSP download: &lt;dsp&gt; &lt;reason&gt;</td>
</tr>
<tr>
<td>Maintenance display</td>
<td>Corresponding critical error message</td>
<td>Signaling Server</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>G026</td>
<td>ITG1026</td>
<td>—</td>
<td>DSP download retry succeeded &lt;dsp&gt;</td>
</tr>
<tr>
<td>G027</td>
<td>ITG1027</td>
<td>—</td>
<td>DSP memory test: &lt;dsp&gt; &lt;reason&gt;</td>
</tr>
<tr>
<td>G028</td>
<td>ITG1028</td>
<td>X</td>
<td>Voice packet loss: &lt;channel&gt; &lt;packetLoss&gt; &lt;direction&gt; &lt;dstAddr&gt;</td>
</tr>
<tr>
<td>G029</td>
<td>ITG1029</td>
<td>—</td>
<td>Error in DSP task &lt;file&gt; &lt;line&gt; &lt;errno&gt; &lt;erretxt&gt;.</td>
</tr>
<tr>
<td>G030</td>
<td>ITG1030</td>
<td>—</td>
<td>Allocation failure in DSP memory pool.</td>
</tr>
<tr>
<td>G031</td>
<td>ITG1031</td>
<td>X</td>
<td>Invalid codec number: &lt;Codec&gt;</td>
</tr>
<tr>
<td>G032</td>
<td>ITG1032</td>
<td>—</td>
<td>Attempt to open a DSP that is already open: &lt;channel&gt;</td>
</tr>
<tr>
<td>G033</td>
<td>ITG1033</td>
<td>—</td>
<td>Failed to send data to DSP channel: &lt;channel&gt;</td>
</tr>
<tr>
<td>G034</td>
<td>ITG1034</td>
<td>—</td>
<td>DSP channel unexpectedly closed: &lt;channel&gt;</td>
</tr>
<tr>
<td>G035</td>
<td>ITG1035</td>
<td>—</td>
<td>Encountered and unexpected open DSP channel, closed it: &lt;channel&gt;</td>
</tr>
<tr>
<td>G036</td>
<td>ITG1036</td>
<td>—</td>
<td>Call server communication link: &lt;call Server IP&gt; &lt;up/down&gt;</td>
</tr>
<tr>
<td>G037</td>
<td>ITG1037</td>
<td>—</td>
<td>Wrong image downloaded. Binary was created for &lt;cardType&gt; card.</td>
</tr>
<tr>
<td>G038</td>
<td>ITG1038</td>
<td>—</td>
<td>IPL logon protection (logon available or locked)</td>
</tr>
<tr>
<td>G039</td>
<td>ITG1039</td>
<td>—</td>
<td>Bad DSP channel &lt;channel id&gt;</td>
</tr>
<tr>
<td>G040</td>
<td>ITG1040</td>
<td>—</td>
<td>Last reset reason for card: &lt;reasonString&gt; where the reason String can be: Reboot command issued (by software or through CLI); Watchdog Timer Expired; Manual reset; Internal XA problem; or unknown</td>
</tr>
<tr>
<td>G041</td>
<td>ITG1041</td>
<td>X</td>
<td>perceivedSeverity = alarmSeverityWarning</td>
</tr>
</tbody>
</table>
Table 122: Critical ITS Error messages

<table>
<thead>
<tr>
<th>Maintenance Display</th>
<th>Corresponding Critical Error Message</th>
<th>Signaling Server</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S000</td>
<td>ITS1000</td>
<td>X</td>
<td>VTI function call time-out.</td>
</tr>
<tr>
<td>S001</td>
<td>ITS1001</td>
<td>X</td>
<td>User terminal registration failed. &lt;ip&gt; &lt;hwid&gt; &lt;errno&gt; &lt;errtext&gt;.</td>
</tr>
<tr>
<td>S002</td>
<td>ITS1002</td>
<td>X</td>
<td>Connect service activation error &lt;reason&gt;.</td>
</tr>
<tr>
<td>S003</td>
<td>ITS1003</td>
<td>X</td>
<td>Duplicate master &lt;node&gt; &lt;ip1&gt; &lt;ip2&gt;.</td>
</tr>
<tr>
<td>S004</td>
<td>ITS1004</td>
<td>X</td>
<td>Invalid node ID &lt;ip&gt; &lt;hwid&gt;.</td>
</tr>
<tr>
<td>S005</td>
<td>ITS1005</td>
<td>X</td>
<td>Corrupt node ID/TN field &lt;ip&gt; &lt;hwid&gt;.</td>
</tr>
<tr>
<td>S006</td>
<td>ITS1006</td>
<td>X</td>
<td>Received corrupt UNIStim message &lt;message dump&gt;.</td>
</tr>
<tr>
<td>S007</td>
<td>ITS1007</td>
<td>X</td>
<td>Received unknown UNIStim message &lt;message dump&gt;.</td>
</tr>
<tr>
<td>S008</td>
<td>ITS1008</td>
<td>X</td>
<td>Terminal connection status: &lt;ip&gt; &lt;status&gt;.</td>
</tr>
<tr>
<td>S009</td>
<td>ITS1009</td>
<td>X</td>
<td>Call Server communication link:&lt;state&gt;.</td>
</tr>
<tr>
<td>S010</td>
<td>ITS1010</td>
<td>X</td>
<td>Terminal doesn't support codec: &lt;ip&gt;&lt;Codec&gt;.</td>
</tr>
<tr>
<td>S011</td>
<td>ITS1011</td>
<td>X</td>
<td>&lt;IP Address&gt;: Last reset reason for IP Phone: &lt;reasonID&gt; (&lt;reasonString&gt;)</td>
</tr>
<tr>
<td>S012</td>
<td>ITS1012</td>
<td>X</td>
<td>User entered the wrong IP Phone Installer Password three times during Branch User Config. The IP Phone is locked out from User Configuration for one hour.</td>
</tr>
</tbody>
</table>
### Maintenance Display

<table>
<thead>
<tr>
<th>Maintenance Display</th>
<th>Corresponding Critical Error Message</th>
<th>Signaling Server</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>Action: Wait for the IP Phone to unlock in 1 hour, or use the IPL CLI command clearLockout to unlock the IP Phone.</td>
</tr>
<tr>
<td>S013</td>
<td>ITS1013</td>
<td>X</td>
<td>User entered the wrong Craftsperson Node Level TN Entry Password three times. The IP Phone is locked out. Action: To remove the lock, use LD 32 to disable, and then enable the IP Phone.</td>
</tr>
</tbody>
</table>

---

**Voice Gateway Media Card self-tests**

During powerup, the Voice Gateway Media Card performs diagnostic tests to ensure correct operation. The faceplate RS-232 port on the Voice Gateway Media Card can be used to monitor the progress of these tests. When the processor responds correctly, the controller switches the serial port to provide Card LAN communication and connects the processor with the external RS-232 port.

---

**Replace the Media Card CompactFlash**

The Media Card must have the CompactFlash card installed in order to be used as a Voice Gateway Media Card. If the CompactFlash card is removed from the Media Card, another CompactFlash card must be installed before you use the Media Card.

If you must remove the CompactFlash card, perform the steps in [Removing the CompactFlash](#) on page 451. To reinstall a CompactFlash card, see [Installing the CompactFlash card on the Media Card](#) on page 230.

**Removing the CompactFlash**

1. Lift the metal clip that holds the CompactFlash card in the socket on the Voice Gateway Media Card.
2. Slide the card from the socket and carefully remove the CompactFlash card.
3. Return the CompactFlash card to an antistatic package.
Chapter 20: Voice Gateway Media Card maintenance using Element Manager

Contents

This chapter contains the following topics:

• Introduction on page 453
• Replace a Voice Gateway Media Card on page 453
• Add another Voice Gateway Media Card on page 454
• Access CLI commands from Element Manager on page 455

Introduction

This chapter provides information about the maintenance functions for the Voice Gateway Media Card that you perform in Element Manager.

Replace a Voice Gateway Media Card

Replace the Voice Gateway Media Card when the card is removed or when the following conditions occur:

• The Voice Gateway Media Card displays a code of the form F:xx on the faceplate LED following a restart. This code indicates an unrecoverable hardware failure. The card cannot register with the system. The exception is the F:10 code, which indicates that the Security Device is missing from the card.

• The Management (ELAN) network interface or the Voice (TLAN) network interface on the Voice Gateway Media Card failed. This is indicated by failing to show a link pulse on the voice IP interface status LED or on the switch. The maintenance port can also
continuously print "Inlsa0 Carrier Failure" messages after determining that the hub or switch port and ELAN cable are valid.

• A voice channel on the Voice Gateway Media Card has a consistent voice quality fault, such as persistent noise or lack of voice path, even after resetting the card and retransmitting the card properties.

---

### Verify Voice Gateway Media Card loadware

Perform the following steps to verify and upgrade the card loadware.

1. Verify the version of the loadware currently installed on the Voice Gateway Media Card. See [Determine Voice Gateway Media Card software version](#) on page 277.

2. Obtain the latest files from the Avaya Web site. See [Software delivery](#) on page 26.

3. Upload the loadware files using the File Upload system utility in Element Manager. See [Uploading loadware and firmware files](#) on page 278.

4. Upgrade the Voice Gateway Media Card software. See [Upgrading the card loadware](#) on page 279.

5. Restart the Voice Gateway Media Card. See [Restarting the Voice Gateway Media Card](#) on page 280.

---

### Add another Voice Gateway Media Card

Perform the steps in [Add another Voice Gateway Media Card to the system](#) on page 454 to add another Voice Gateway Media Card to the system.

**Add another Voice Gateway Media Card to the system**

1. Install and cable the Voice Gateway Media Card, as described in [Install the hardware components](#) on page 229.

2. In the Element Manager navigator, select **IP Network, Nodes: Servers, Media Cards**.

   The IP Telephony Nodes window appears.

3. Select the link for a Node ID.

   The Node Details window appears.

4. Select **Media Card** from the **Select to add** menu and then click **Add**.

   The New Media Card window appears.

5. Enter the card information.
a. **Hostname**: This is the host name.

b. **Card TN**: Enter the card slot number from 1 to 50.

c. **MAC Address**: The MAC address is the Motherboard Ethernet address labeled on the faceplate of the Voice Gateway Media Card.

d. **Embedded LAN (ELAN) IP address**: This is the ELAN network interface IP address for the card. Element Manager and the system use this address to communicate with the card.

e. **Telephony LAN (TLAN) IP address**: This is the TLAN network interface IP address for the card.

f. **Telephony LAN (TLAN) DSP IP address**

   **Note**: The DSP daughterboard is a device that is fixed on the main board of the MC32S card. The device requires a TLAN IP address.

6. Click **Save**. The Node Details window appears.

7. Click **Save** on the Node Details window.

8. On the IP Telephony Nodes window, click the **Status** link associated with the node containing the Voice Gateway Media Card.

9. After the transfer is complete, restart the new card.

   Restart the card to obtain the BOOTP parameters from the Leader and to establish ELAN and TLAN subnet connectivity.

10. Perform the steps in [Upgrading the card loadware](#) on page 279 to download the most recent software to the Voice Gateway Media Card.

11. Perform the steps in [Restarting the Voice Gateway Media Card](#) on page 280 to restart the card and run the new software.

12. Perform the steps in [Upgrading the IP Phone firmware](#) on page 282 to update the card firmware.

---

**Access CLI commands from Element Manager**

To access CLI commands in Element Manager, perform the steps in Access CLI commands from Element Manager.

Avaya Communication Server 1000 (Avaya CS 1000) supports the following command groups for the Media Card 32S:

- General
- System
Voice Gateway Media Card maintenance using Element Manager

- Voice Gateway
- Special
- Security

**Accessing CLI commands for the Media Card 32S**

1. In the Element Manager navigator, select **IP Network, Maintenance and Reports**.
   The Node Maintenance and Reports window appears.
2. Expand the node containing the Voice Gateway Media Card by clicking the plus sign (+) to the left of the Node ID.
3. Click **GEN CMD** associated with the MC32S card.
   The General Commands window appears.
   The line shown on the top of the General Commands window, under **General Commands**, displays the IP address of the MC 32S card.
4. Select one of the following CLI command groups from the **Group** list box:
   - General
   - System
   - Voice Gateway
   - Special
   - Security
5. Select the CLI command from the **Command** list, and click **RUN**.
   The output of the command appears in the text area at the bottom of the General Commands window.
   For information about the CLI commands, see *Software Input Output Reference — Maintenance, NN43001-711.*
Appendix A: NAT router requirements for NAT Traversal feature

Contents

This section contains the following topics:

• Description on page 457
• Requirements on page 458
• Natcheck output on page 461

Description

This appendix describes the requirements of a Network Address Translation (NAT) router to enable it to support the NAT Traversal feature.

For a NAT device to work correctly between an IP Phone and the Avaya Communication Server 1000 (Avaya CS 1000) system, the following requirements must be met:

• Use a cone NAT.
• Configure a long time-out period for the Private-to-Public mapping.
• If multiple IP Phones are behind the same NAT router, support hairpinning.
• Keep alive the Private-to-Public mapping created by a NAT router by packets in only one direction (standard in most NAT routers).
• The IP Phone run the correct minimum firmware version (not a NAT device requirement, but still important).

You can confirm most of the issues encountered by using either an IP Phone behind the NAT device or a PC running the third-party natcheck tool.

Important:

Avaya is not affiliated in any manner with the natcheck tool, and, therefore is not liable or responsible for problems that you might encounter.
The natcheck tool can be downloaded at no cost from //midcom-p2p.sourceforge.net/. The natcheck tool runs in Windows on a PC connected to the internet through a NAT router.

Requirements

Cone NAT

The NAT Traversal feature cannot work unless the NAT device has a cone NAT implemented.

Confirm using natcheck

Run the natcheck program. Look for the following message:

| UDP consistent translation:   | YES (GOOD for peer-to-peer) |

If Yes appears, then the NAT router uses a cone NAT.

Confirm using IP Phone

The NAT router uses a cone NAT if no error message appears when the IP Phone registers to the system. The NAT device does not use a cone NAT if the IP Phone behind it displays the following error message:

<table>
<thead>
<tr>
<th>NAT Error! ITG3053</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please try upgrading firmware on the NAT device or replacing it with a different NAT device that has a cone NAT implemented.</td>
</tr>
</tbody>
</table>

Time-out configuration

Confirm using natcheck

Time-out configuration cannot be performed using natcheck.
Confirm using IP Phone

If the IP Phone connection times out and the IP Phone restarts, use LD 117 to lower the NAT Keep Alive Timer value on the Call Server. The restarts can indicate that the NAT device address or port mapping is cleared because no message traffic arrives from the IP Phone. By lowering the NAT Keep Alive Timer value in the Call Server, keepalive messages are sent more frequently to keep the mapping alive.

```plaintext
>ld 117
>ch nkt 20
```

If lowering the NAT Keep Alive Timer value to the minimum value of 20 seconds does not stop the time-outs, try replacing the NAT device.

Hairpinning

Hairpinning occurs when an IP Phone behind a NAT router can send packets to the Public IP address and Port of another IP Phone connected to the same NAT router. Determine if hairpinning is supported on the NAT router.

Confirm using natcheck

Run the natcheck program. Look for the message:

```
UDP loopback translation: YES (GOOD for peer-to-peer)
```

If this messages prints, then a two-way speech path should be available between two IP Phones behind the NAT device. See Figure 123: Speech path on page 459.

![Figure 123: Speech path](image)
Confirm using IP Phone

Connect two IP Phones to the same NAT device and call from one phone to the other. Confirm that a two-way speech path is achieved during the call.

Unidirectional packet flow

Confirm using natcheck

The natcheck tool cannot be used to determine if the private-to-public mapping created by the NAT device is being kept alive by a unidirectional packet flow.

Confirm using IP Phone

If an IP Phone behind a NAT device has a two-way speech path immediately after registration, and continues to have a two-way speech path 2 to 30 minutes later, then the NAT device address or port mapping is kept alive by the packets. If a one-way speech path occurs after this time period, ensure that the IP Phone has the latest firmware version. If the IP Phone has the most recent firmware, then the problem lies with the NAT device. Try replacing the NAT device with a different model.

If the one-way speech path problem is fixed after restarting the IP Phone, it is likely that the NAT device does not meet the requirement of unidirectional packet flow. As well, ensure that the firmware on the IP Phone has the most recent firmware version (previous firmware versions can be a possible source of problems for the one-way speech path).

Firmware versions

The IP Phone must have the correct minimum firmware version.

Confirm using natcheck

The natcheck tool cannot be used to determine the IP Phone firmware version.
Confirm using IP Phone

On the IP Phone, go to the Services, Telephone Options, Set Info menu and scroll down to the FW Version menu item. The minimum firmware versions (based on the vintage of the IP Phone) that support the NAT Traversal feature are as follows:

- IP Phone 2002 and IP Phone 2004: xxxxB64
- Phase II IP Phone 2002 and IP Phone 2004: xxxxD41
- Avaya 2050 IP Softphone: xxxx375

Previous firmware versions do not correctly support the NAT Traversal feature.

Natcheck output

A NAT router using CONE NAT produces output similar to the following.

D:\natcheck>natcheck -v
server 1: pdos.lcs.mit.edu at 18.26.4.9:9856
server 2: tears.lcs.mit.edu at 18.26.4.77:9856
server 3: sure.lcs.mit.edu at 18.26.4.29:9856
Local TCP port: 1400
Local UDP port: 1401
Request 1 of 20...
Connection to server 2 complete
Server 1 reports my UDP address as 69.156.96.28:57283
Server 2 reports my UDP address as 69.156.96.28:57283
Server 3 reports my UDP address as 69.156.96.28:57283
Connection to server 1 complete
Server 1 reports my TCP address as 69.156.96.28:57281
Connection from 18.26.4.29:9856
Server 3 reports my TCP address as 69.156.96.28:57281
Request 2 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 3 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 4 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 5 of 20...
Loopback packet from 69.156.96.28 port 57285
Server 2 reports my TCP address as 69.156.96.28:57281
Initiated TCP server 3 connection
Initiated TCP loopback connection
Connection from 69.156.96.28:57289
Loopback received
Request 6 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 7 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 8 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 9 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 10 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 11 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 12 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 13 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 14 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 15 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 16 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 17 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 18 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 19 of 20...
Loopback packet from 69.156.96.28 port 57285
Request 20 of 20...
Loopback packet from 69.156.96.28 port 57285
TCP RESULTS:
TCP consistent translation:      YES (GOOD for peer-to-peer)
TCP simultaneous open:       YES (GOOD for peer-to-peer)
TCP loopback translation:       YES (GOOD for peer-to-peer)
TCP unsolicited connections filtered: NO (BAD for security)
UDP RESULTS:
UDP consistent translation:       YES (GOOD for peer-to-peer)
UDP loopback translation:       YES (GOOD for peer-to-peer)
UDP unsolicited messages filtered: NO (BAD for security)

For the NAT router to support the NAT Traversal feature, natcheck must display the following:

UDP consistent translation:       YES (GOOD for peer-to-peer)

Yes indicates that Cone NAT is used. No indicates that Symmetric NAT is present. Symmetric NAT is not supported.

Near the beginning of the output, the PUBLIC port seen by various servers appears. In this case, all three servers receive the packets from the same PUBLIC port of 57283. Figure 124: Private-to-Public port mapping on page 463 shows this Private-to-Public port mapping.
Figure 124: Private-to-Public port mapping

Because all three servers see the same PUBLIC port, the NAT router uses Cone NAT.
NAT router requirements for NAT Traversal feature
Appendix B: I/O, maintenance, and extender cable description

Contents

This section contains the following topics:

- Introduction on page 465
- NTMF94EA I/O cable on page 465
- Connector pin assignments on page 466
- NTAG81CA maintenance cable description on page 469
- NTAG81BA maintenance extender cable on page 469
- Replace the NT8D81BA cable on page 470

Introduction

This appendix describes the NTMF94EA, NTAG81CA, and NTAG81BA cables and explains how to replace the NT8D81BA backplane ribbon cable, if required.

NTMF94EA I/O cable

The NTMF94EA cable provides the ELAN and TLAN network interfaces from the Voice Gateway Media Card to the customer network equipment. This cable has one DB9 serial port that provides serial connection between the card and the customer PC or TTY. See Figure 125: NTMF94EA ELAN, TLAN and RS-232 serial maintenance I/O cable on page 466.

You must use the mounting screw to secure the top of the NTMF94EA cable 25-pair Amphenol connector to the system. The screw ties the LAN cable shield to the Avaya Communication Server 1000 (Avaya CS 1000) frame ground for EMC compliance.

The NTMF94EA cable provides a factory-installed, shielded, RJ-45-to-RJ-45 coupler at the end of both the ELAN and the TLAN network interfaces. An unshielded coupler prevents
ground loops (if required). See Prevent ground loops on connection to external customer LAN equipment on page 468 to determine if you use the unshielded coupler. Both ends of the RJ-45 ports of the cables are labeled to distinguish the TLAN network interface and the ELAN network interface. The ports provide the connection point to the customer ELAN and TLAN equipment. Use shielded CAT5 cable to connect to the customer equipment.

To improve EMC performance, use standard cable ties to bundle all LAN cables as they route from the system.

**Important:**
To avoid damage to CAT5 cable, do not overtighten cable ties.

---

**Figure 125: NTMF94EA ELAN, TLAN and RS-232 serial maintenance I/O cable**

---

**Connector pin assignments**

Table 123: Voice Gateway Media Card I/O Panel Pinout on page 466 shows the I/O connector pin designations for the Voice Gateway Media Card.

**Table 123: Voice Gateway Media Card I/O Panel Pinout**

<table>
<thead>
<tr>
<th>Pin</th>
<th>Normal Assignment</th>
<th>ITG Assignment</th>
<th>Pin</th>
<th>Normal Assignment</th>
<th>ITG Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>R1</td>
<td>Not Used</td>
<td>26</td>
<td>T0</td>
<td>Not Used</td>
</tr>
<tr>
<td>3</td>
<td>R2</td>
<td>Not Used</td>
<td>27</td>
<td>T1</td>
<td>Not Used</td>
</tr>
<tr>
<td>4</td>
<td>R3</td>
<td>Not Used</td>
<td>28</td>
<td>T2</td>
<td>Not Used</td>
</tr>
<tr>
<td>5</td>
<td>R4</td>
<td>Not Used</td>
<td>29</td>
<td>T3</td>
<td>Not Used</td>
</tr>
<tr>
<td>Pin</td>
<td>Normal Assignment</td>
<td>ITG Assignment</td>
<td>Pin</td>
<td>Normal Assignment</td>
<td>ITG Assignment</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>----------------</td>
<td>-----</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>6</td>
<td>R5</td>
<td>AGND</td>
<td>30</td>
<td>T4</td>
<td>AGND</td>
</tr>
<tr>
<td>7</td>
<td>R6</td>
<td>Not Used</td>
<td>31</td>
<td>T5</td>
<td>Not Used</td>
</tr>
<tr>
<td>8</td>
<td>R7</td>
<td>Not Used</td>
<td>32</td>
<td>T6</td>
<td>Not Used</td>
</tr>
<tr>
<td>9</td>
<td>R8</td>
<td>Not Used</td>
<td>33</td>
<td>T7</td>
<td>Not Used</td>
</tr>
<tr>
<td>10</td>
<td>R9</td>
<td>AGND</td>
<td>34</td>
<td>T8</td>
<td>AGND</td>
</tr>
<tr>
<td>11</td>
<td>R10</td>
<td>PGT0</td>
<td>35</td>
<td>T9</td>
<td>PGT1</td>
</tr>
<tr>
<td>12</td>
<td>R11</td>
<td>PGT2</td>
<td>36</td>
<td>T10</td>
<td>PGT3</td>
</tr>
<tr>
<td>13</td>
<td>R12</td>
<td>PGT4</td>
<td>37</td>
<td>T11</td>
<td>PGT5</td>
</tr>
<tr>
<td>14</td>
<td>R13</td>
<td>PGT6</td>
<td>38</td>
<td>T12</td>
<td>PGT7</td>
</tr>
<tr>
<td>15</td>
<td>R14</td>
<td>PGT8</td>
<td>39</td>
<td>T13</td>
<td>PGT9</td>
</tr>
<tr>
<td>16</td>
<td>R15</td>
<td>PGT10</td>
<td>40</td>
<td>T14</td>
<td>PGT11</td>
</tr>
<tr>
<td>17</td>
<td>R16</td>
<td>SGNDA</td>
<td>41</td>
<td>T15</td>
<td>BDCDA-</td>
</tr>
<tr>
<td>18</td>
<td>R17</td>
<td>BSINA-</td>
<td>42</td>
<td>T16</td>
<td>BSOUTA-</td>
</tr>
<tr>
<td>19</td>
<td>R18</td>
<td>BDTRA-</td>
<td>43</td>
<td>T17</td>
<td>SGND</td>
</tr>
<tr>
<td>20</td>
<td>R19</td>
<td>BDSRA-</td>
<td>44</td>
<td>T18</td>
<td>BRTSA-</td>
</tr>
<tr>
<td>21</td>
<td>R20</td>
<td>BCTSA-</td>
<td>45</td>
<td>T19</td>
<td>BSINB-</td>
</tr>
<tr>
<td>22</td>
<td>R21</td>
<td>BSOUTB-</td>
<td>46</td>
<td>T20</td>
<td>BDCDB-</td>
</tr>
<tr>
<td>23</td>
<td>R22</td>
<td>BDTRB-</td>
<td>47</td>
<td>T21</td>
<td>BDSRB-</td>
</tr>
<tr>
<td>24</td>
<td>R23</td>
<td>DI+</td>
<td>48</td>
<td>T22</td>
<td>DI-</td>
</tr>
<tr>
<td>25</td>
<td>no connect</td>
<td>DO+</td>
<td>49</td>
<td>T23</td>
<td>DO-</td>
</tr>
<tr>
<td>2</td>
<td>R1</td>
<td>no connect</td>
<td>50</td>
<td>no connect</td>
<td>no connect</td>
</tr>
</tbody>
</table>

Table 124: NTMF94EA cable pin description

<table>
<thead>
<tr>
<th>I/O Panel: P1</th>
<th>Signal Name</th>
<th>P2, P3, P4</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1-21</td>
<td>BSOUTB-</td>
<td>P2-2</td>
<td>Red</td>
</tr>
<tr>
<td>P1-22</td>
<td>BDTRB-</td>
<td>P2-4</td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td>SGRND</td>
<td>P2-5</td>
<td>Brown</td>
</tr>
<tr>
<td>P1-45</td>
<td>BSINB-</td>
<td>P2-3</td>
<td>Blue</td>
</tr>
<tr>
<td>P1-46</td>
<td>BDCDB-</td>
<td>P2-1</td>
<td>Orange</td>
</tr>
<tr>
<td>P1-47</td>
<td>BDSRB-</td>
<td>P2-6</td>
<td>Yellow</td>
</tr>
<tr>
<td>P1-25</td>
<td>SHLD GRND</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
**Prevent ground loops on connection to external customer LAN equipment**

The shielded RJ-45 coupler is the connection point for the customer shielded CAT5 LAN cable to the hub, switch, or router supporting the TLAN and ELAN subnets. Use shielded CAT5 RJ-45 cable to connect to the customer TLAN/ELAN equipment. Perform the steps in *Preventing ground loops* on page 468 to prevent ground loops when you connect to external customer LAN equipment.

Follow the steps in *Preventing ground loops* on page 468 to prevent ground loops.

**Preventing ground loops**

1. Connect the customer-provided shielded CAT5 LAN cable to the external LAN equipment. Ensure that the external LAN equipment is powered up.
2. Use an ohmmeter to measure resistance to ground between the free end of the shielded RJ-45 cable and the building ground.

   The ohmmeter must measure Open to ground before you plug it into the shielded RJ-45 coupler on the end of the NTMF94EA.

   If the ohmmeter does not measure Open, install the unshielded RJ-45 coupler (provided) on the end of the NTMF94EA to prevent ground loops to external LAN equipment.

**Warning:**

The serial maintenance ports on the faceplate connector and the DB-9 female connector of the NTMF9DA cable assembly are identical. Do not connect a serial
device to both access points simultaneously. This results in incorrect and unpredictable operation of the Voice Gateway Media Card.

---

**NTAG81CA maintenance cable description**

The NTAG81CA maintenance cable is connected between the nine-pin D-type RS-232 input on a standard PC and the MAINT connector on the NT8R17AB faceplate or through the I/O cable serial port. See Figure 126: NTAG81CA Maintenance cable on page 469.

![NTAG81CA Maintenance cable](image)

**Figure 126: NTAG81CA Maintenance cable**

Table 125: NTAG81CA maintenance cable pin description on page 469 describes the NTAG91CA cable pin description.

**Table 125: NTAG81CA maintenance cable pin description**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DTRB-</td>
<td>1</td>
<td>6</td>
<td>DSR-</td>
</tr>
<tr>
<td>SOUTB-</td>
<td>2</td>
<td>2</td>
<td>SIN-</td>
</tr>
<tr>
<td>SINB-</td>
<td>3</td>
<td>3</td>
<td>SOUT-</td>
</tr>
<tr>
<td>GND</td>
<td>4</td>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>SINA-</td>
<td>5</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>CTSA-</td>
<td>6</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>SOUTA-</td>
<td>7</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>DTRA-</td>
<td>8</td>
<td>nc</td>
<td>nc</td>
</tr>
</tbody>
</table>

**NTAG81BA maintenance extender cable**

The NTAG81BA maintenance extender (3 m) cable connects the NTAG81CA cable to a PC or terminal. It has a nine-pin D-type connector at both ends; one male and one female. See Table 126: NTAG81BA Maintenance cable pin description on page 470. The cable can also
extend the serial port presented by the NTMF94EA I/O panel cable. The extender cable is shown in Figure 127: NTAG81BA Maintenance Extender cable on page 470.

Table 126: NTAG81BA Maintenance cable pin description

<table>
<thead>
<tr>
<th>Nine-pin D-Sub (Male)</th>
<th>Nine-pin D-Sub (Female)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Figure 127: NTAG81BA Maintenance Extender cable

Replace the NT8D81BA cable

This procedure explains how to replace the NT8D81BA cable with the NT8D81AA cable.

Cables are designated by the letter of the I/O panel cutout, such as A, B, and C, where the 50-pin cable connector is attached. Each cable has three 20-pin connectors (16 positions are used), designated 1, 2, and 3, that attach to the backplane. Using the designations described, the backplane ends of the first cable are referred to as A-1, A-2, and A-3. The locations of the cable connectors on the backplane are designated by the slot number (L0 through L9 for NT8D11, L0 through L15 for NT8D37) and the shroud row (1, 2, and 3). Using these designations, the slot positions in the first slot are referred to as L0-1, L0-2, and L0-3.

In NT8D37BA and NT8D37EC (and later) IPE Modules, all 16 IPE card slots support 24-pair cable connections. Table 127: NT8D37 cable connections on page 471 shows the cable connections from the backplane to the inside of the I/O panel.
Table 127: NT8D37 cable connections

<table>
<thead>
<tr>
<th>Backplane slots – shroud rows</th>
<th>I/O panel/cable designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0–1, 2, 3 L1–1, 2, 3 L2–1, 2, 3</td>
<td>A B C D E F G H K L M N R S T U</td>
</tr>
<tr>
<td>L4–1, 2, 3 L5–1, 2, 3 L6–1, 2, 3 L7–1, 2, 3</td>
<td></td>
</tr>
<tr>
<td>L8–1, 2, 3 L9–1, 2, 3 L10–1, 2, 3 L11–1, 2, 3 L12–1, 2, 3 L13–1, 2, 3 L14–1, 2, 3 L15–1, 2, 3</td>
<td></td>
</tr>
</tbody>
</table>

Figure 128: Backplane slot designations on page 471 shows the designations for the backplane end of the cables, the backplane slot designations for the cable connections, and the associated network segments for the backplane slots.

Tools list

The following tools are required to perform this procedure.

- Ty-wrap cutter
- Ty-wraps
- Needle nose pliers
- Slotted screwdriver
Remove the NT8D81BA cable

Perform the steps in Removing an NT8D81BA cable on page 472 to remove the NT8D81BA cable.

Removing an NT8D81BA cable

1. Identify the I/O panel and backplane designation that corresponds to the left slot of the pair of card slots, viewed from the front, in which the ITG ISL Trunk card is installed.
2. Disconnect the filter from the I/O panel using a screwdriver and needle nose pliers. Retain the fasteners.
3. Power down the IPE shelf.
4. Remove the IPE module I/O safety panel.
5. To remove the ribbon cables from the IPE backplane, apply gentle pressure on the tab on the right side of the shroud while you pull the connector from the shroud.
6. Remove connector 1 first, then remove connectors 2 and 3.
7. Discard the NT8D81BA cable.

Install the NT8D81AA cable

Perform the steps in Installing an NT8D81AA cable on page 472 to install the NT8D81AA cable.

Installing an NT8D81AA cable

1. Install the NT8D81AA ribbon cable connectors in the IPE module backplane shroud. Be sure you install the connector so the label faces right with the arrow pointing up and the connector fully engaged into the shroud:
   a. Install connector 1, (labeled UP1^) into backplane shroud 1.
   b. Install connector 2, (labeled UP2^) into backplane shroud 2.
   c. Install connector 3, (labeled UP3^) into backplane shroud 3.
2. Dress the ribbon cables back individually inside the rear of IPE module and restore the original arrangement. Start with the cables to be underneath.
3. Restore power to the IPE module.
4. Replace the I/O safety panel.
Appendix C: Product integrity

Contents
This section contains the following topics:

- Introduction on page 473
- Reliability on page 473
- Environmental specifications on page 474

Introduction

This chapter presents information about the Voice Gateway Media Card reliability, environmental specifications, and electrical regulatory standards.

For more information about servers, see Linux Platform Base and Applications Installation and Commissioning, NN43001-315.

Reliability

Reliability is measured by the Mean Time Between Failures (MTBF).

Mean Time Between Failures (MTBF)

The Mean Time Between Failure (MTBF) is 46 years for Voice Gateway Media Cards. Failures for every 106 hours of operation are 2.483, based on 40 degrees Celcius (140 degrees Fahrenheit).
Voice Gateway Media Card power consumption

Table 128: Voice Gateway Media Card power consumption on page 474 shows the worst case current drawn by the Voice Gateway Media Cards from each Backplane voltage supply.

Table 128: Voice Gateway Media Card power consumption

<table>
<thead>
<tr>
<th>Card Type</th>
<th>Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media Card</td>
<td>+15 volt = 6 watts =&gt; 0.2 amps</td>
</tr>
<tr>
<td></td>
<td>+5 volt = 7.25 watts =&gt; 1.45 amps</td>
</tr>
</tbody>
</table>

Environmental specifications

Table 129: Environmental specifications (maximum) on page 474 shows the environmental specifications of the Voice Gateway Media Card. The Voice Gateway Media Card provides external interface protection to –52 V DC, but does not provide lightning or hazardous voltage protection.

Table 129: Environmental specifications (maximum)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating</td>
<td>0° to +45°C (+32 to +113°F), ambient</td>
</tr>
<tr>
<td>Operating</td>
<td>humidity 5 to 95% RH (non condensing)</td>
</tr>
<tr>
<td>Storage</td>
<td>–20° to +60°C (–4° to +140°F)</td>
</tr>
</tbody>
</table>

Measurements of performance regarding temperature and shock were made under test conditions. Table 130: Environmental specifications (recommended) on page 474 shows recommended temperature and humidity ranges for the Voice Gateway Media Card based on results from this test.

Table 130: Environmental specifications (recommended)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended</td>
<td>15°C</td>
<td>30°C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>20%</td>
<td>55% (non condensing)</td>
</tr>
<tr>
<td>Absolute</td>
<td>10°C</td>
<td>45°C</td>
</tr>
<tr>
<td>Specification</td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>20%</td>
<td>80% (non condensing)</td>
</tr>
<tr>
<td>Short Term (less than 72 hr)</td>
<td>–40°C</td>
<td>70°C</td>
</tr>
<tr>
<td>Rate of change</td>
<td></td>
<td>Less than 1°C for every 3 minutes</td>
</tr>
<tr>
<td><strong>Storage</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended</td>
<td>–20°C</td>
<td>60°C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>5%</td>
<td>95% (non condensing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–40°C to 70°C, non condensing</td>
</tr>
<tr>
<td><strong>Temperature Shock</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 3 minutes</td>
<td>–40°C</td>
<td>25°C</td>
</tr>
<tr>
<td>In 3 minutes</td>
<td>70°C</td>
<td>25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–40°C to 70°C, non condensing</td>
</tr>
</tbody>
</table>
Product integrity
Appendix D: Subnet Mask Conversion from CIDR to Dotted Decimal Format

Introduction

Subnet masks are expressed in Classless InterDomain Routing (CIDR) format, appended to the IP address, such as 10.1.1.1/20. You must convert the subnet mask from CIDR format to dotted decimal format to configure IP addresses.

The CIDR format expresses the subnet mask as the number of bits counting from the most significant bit of the first IP address field. A complete IP address consists of 32 bits. Therefore, a typical CIDR format subnet mask is in the range /9 to /30. Each decimal number field in the dotted decimal format has a value from 0 to 255, where decimal 255 represents binary 1111 1111.

Perform the steps in Converting a subnet mask from CIDR format to dotted decimal format on page 477 to convert a subnet mask from CIDR format to dotted decimal format.

Converting a subnet mask from CIDR format to dotted decimal format

1. Divide the CIDR format value by 8. The quotient (the number of times that 8 divides into the CIDR format value) equals the number of dotted decimal fields containing 255.

   In the example 10.1.1.1/20, the subnet mask is expressed as /20. A value of 20 divided by 8 equals a quotient of 2, with a remainder of 4. Therefore, the first two fields of the subnet mask in dotted decimal format are 255.255.

2. If a remainder exists, see Table 131: CIDR format remainders on page 478 to obtain the dotted decimal value for the field following the last field containing 255. In the example of /20 above, the remainder is 4. In Table 131: CIDR format remainders on page 478, a remainder of 4 equals a binary value of 1111 0000 and the dotted decimal value of the next and last field is 240. Therefore the first three fields of the subnet mask are 255.255.240.

3. If remaining fields exist in the dotted decimal format, they have a value of 0. Therefore, the complete subnet mask in dotted decimal format is 255.255.240.0.
Table 131: CIDR format remainders

<table>
<thead>
<tr>
<th>Remainder of CIDR format value divided by eight</th>
<th>Binary value</th>
<th>Dotted decimal value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000 0000</td>
<td>128</td>
</tr>
<tr>
<td>2</td>
<td>1100 0000</td>
<td>192</td>
</tr>
<tr>
<td>3</td>
<td>1110 0000</td>
<td>224</td>
</tr>
<tr>
<td>4</td>
<td>1111 0000</td>
<td>240</td>
</tr>
<tr>
<td>5</td>
<td>1111 1000</td>
<td>248</td>
</tr>
<tr>
<td>6</td>
<td>1111 1100</td>
<td>252</td>
</tr>
<tr>
<td>7</td>
<td>1111 1110</td>
<td>254</td>
</tr>
</tbody>
</table>
Index

**Numerics**

802.1Q Support ................................................................. 160
911 .............................................................................. 292

A

add additional cards to the node ........................................... 271, 350
Automatic IP Phone TN conversion ..................................... 63
Avaya 6120 WLAN Handset ............................................... 46
Avaya 6140 WLAN Handset ............................................... 46

B

Back up an IP Phone Application Server database ........... 219
backplanes ........................................................................ 470
connectors ........................................................................ 470
I/O panel connections ...................................................... 470
backup ............................................................................. 347
bandwidth used ..................................................................... 146
Basic IP User License .......................................................... 46
blocked calls ....................................................................... 146
BOOTP parameters ......................................................... 454
Branch Office ...................................................................... 160

C

call attempts and completions ............................................. 146
Call Statistics ...................................................................... 146
Card TN ............................................................................ 271, 350
CHG ES1 .......................................................................... 124
CHG ES2 .......................................................................... 124
CHG NKT .......................................................................... 124
CLI commands, informational ........................................... 455
Codec ............................................................................... 162
community string ................................................................ 263
CompactFlash ..................................................................... 230
Configuring a virtual Superloop in Element Manager ........ 240
connector pin assignments ................................................. 466
        NT8D02 Digital Line Card .................................................. 466
connectors .......................................................................... 470
Corporate Directory ......................................................... 131, 290
CRPA/CRPD ...................................................................... 290

D

Data Path Capture tool ....................................................... 161

Digital Signaling Processor (DSP) ............................................ 86
Digital Signaling Processor daughterboards ..................... 31
DN Generator .................................................................... 370
DSP daughterboards ....................................................... 31

E

e911 .................................................................................... 292
Echo Server ........................................................................ 124
echoServerShow ............................................................... 128
echoServerShow 99 ............................................................. 128
EDD ................................................................................... 297
Element Manager ............................................................. 146
Emergency Services Access ............................................. 292
Emulation Mode ............................................................... 63
environmental specs .......................................................... 474
existing Voice Gateway Media Card properties .................... 271

F

F ......................................................................................... 453
10 code ............................................................................. 453
xx ..................................................................................... 453
FIBN .................................................................................. 239
FIBN, Package 365 ............................................................ 239
Firmware ........................................................................... 161
        IP Phone ..................................................................... 161

G

GEN CMD button .................................................................. 455
Group maximums ................................................................ 239

H

hardware ............................................................................ 228
Hardware Watchdog Timer ................................................... 162
Hold ................................................................................... 122
Hostname ............................................................................ 271, 350

I

I/O panels .......................................................................... 470
backplane connections ...................................................... 470
informational CLI commands available from Element Manager .................................................. 455
<table>
<thead>
<tr>
<th>Traffic printouts</th>
<th>146</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicode support</td>
<td>55</td>
</tr>
<tr>
<td>unrecoverable hardware failure</td>
<td>453</td>
</tr>
<tr>
<td>Upgrade Signaling Server software</td>
<td>219</td>
</tr>
<tr>
<td>Virtual Office</td>
<td>156</td>
</tr>
<tr>
<td>virtual superloop</td>
<td>46, 239</td>
</tr>
<tr>
<td>virtual Superloop in Element Manager</td>
<td>240</td>
</tr>
<tr>
<td>Virtual Superloops</td>
<td>239</td>
</tr>
<tr>
<td>virtual superloops for IP Phones</td>
<td>239</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>123</td>
</tr>
<tr>
<td>VLANs</td>
<td>123</td>
</tr>
<tr>
<td>Voice Gateway Media Card</td>
<td>41</td>
</tr>
<tr>
<td>VTNs</td>
<td>46</td>
</tr>
<tr>
<td>WLAN Handset 2210</td>
<td>46, 52</td>
</tr>
<tr>
<td>WLAN Handset 2210/2211/2212</td>
<td>157</td>
</tr>
<tr>
<td>WLAN Handset 2211</td>
<td>46, 52</td>
</tr>
<tr>
<td>WLAN Handset 2212</td>
<td>46, 52</td>
</tr>
<tr>
<td>WLAN Handset 6120</td>
<td>46, 52</td>
</tr>
<tr>
<td>WLAN Handset 6140</td>
<td>52</td>
</tr>
</tbody>
</table>