Application Notes for Configuring the Esna Officelinx iLink Pro 9.1 with Avaya Aura® Agile Communication Environment VE 6.2.1 FP2, Avaya Aura® Messaging 6.2 and Avaya Aura® Communication Manager 6.3 - Issue 1.0

Abstract

These Application Notes describe the procedure for configuring the Esna Officelinx 9.1 SP1, Avaya Agile Communication Environment™ 6.2 FP2, Avaya Aura® Communication Manager 6.3 and Avaya Aura® Messaging 6.2. iLink Pro is an Google application made by Esna that allows a user to operate a physical telephone and view call and telephone display information through a graphical user interface. iLink Pro controls a physical telephone using Third Party Call (v2, v2.4), and Call Notification web service provided by Avaya Agile Communication Environment™ 6.2 FP2.

Information in these Application Notes has been obtained through DevConnect compliance testing and additional technical discussions. Testing was conducted via the DevConnect Program at the Avaya Solution and Interoperability Test Lab.
Table of Contents

1. Introduction ... 4
2. General Test Approach and Test Result ... 4
 2.1. Interoperability Compliance Testing ... 5
 2.2. Test Results .. 6
 2.3. Support .. 7
3. Reference Configuration .. 8
4. Equipment and Software Validated .. 9
5. Configure Avaya Aura® Communication Manager .. 10
 5.1. Configure SIP Trunk .. 10
 5.1.1. Capacity Verification ... 10
 5.1.2. Configure IP Codec Set .. 11
 5.1.3. Configure IP Network Region ... 12
 5.1.4. Configure IP Node Name .. 12
 5.1.5. Configure SIP Signaling .. 13
 5.1.6. Configure Trunk Group .. 14
 5.1.7. Configure Route Pattern ... 15
 5.1.8. Administer Dialplan ... 15
 5.1.9. Configure Hunt Group for Avaya Aura® Messaging 17
 5.1.10. Configure Coverage Path to Avaya Aura® Messaging 18
 5.1.11. Administer a Station for Coverage to Avaya Aura® Messaging 19
 5.1.12. Configure SIP Endpoint .. 20
 5.1.13. Configure Location .. 20
 5.2. Configure ASAI Link .. 21
 5.2.1. Verify License Permission ... 21
 5.2.2. Configuring AE Services and Avaya Agile Communication Environment™ as an AE Service Server ... 21
 5.2.3. Add a CTI link .. 22
6. Configure Avaya Aura® Messaging .. 23
 6.1. Administer Sites .. 24
 6.2. Administer Telephony Integration ... 25
 6.3. Configure Dial Rules ... 26
 6.4. Configure Class of Service .. 27
 6.5. Administer Subscribers ... 28
 6.6. Administer Topology .. 30
 6.7. Administer External Host .. 30
 6.8. Recording Format ... 31
 6.9. Configure Notify Me for Avaya Aura® Messaging mailboxes 32
7. Configure Avaya Aura® Session Manager .. 33

© 2014 Avaya Inc. All Rights Reserved
7.1. Configure SIP Domain ... 34
7.2. Configure Locations ... 35
7.3. Configure SIP Entities ... 36
7.4. Configure Entity Links .. 39
7.5. Configure Routing Policies ... 40
7.6. Configure Dial Patterns ... 42
7.7. Configure SIP Users .. 44

8. Configure Avaya Agile Communication Environment™ 6.2 48
 8.1. Configuring the Communication Manager’s SSL certificate Signing Authority as
 Trusted on Avaya ACE .. 48
 8.2. Add ASAI Service Provider .. 49
 8.3. Add User ... 53
 8.4. Add Role ... 54

9. Configure the Esna Telephony Officelinx ... 56
 9.1. Configure SIP Configuration Tool ... 56
 9.2. Configure UC ACE Wizard ... 59
 9.3. Administer Company Profiles ... 60
 9.4. Configure User Mailbox in Officelinx Admin 61
 9.5. Configure Fax .. 64
 9.6. Install and Configure iLink Pro on Salesforce.com 65
 9.6.1. Install open CTI Integration .. 65
 9.6.2. Call Center Definition .. 67
 9.6.3. Login iLink Pro on Salesforce.com 68

10. Verification Steps ... 69
 10.1. Verify Avaya Aura® Communication Manager 69
 10.2. Verify Avaya Aura® Session Manager 70
 10.2.1. Verify Avaya Aura® Session Manager is Operational 70
 10.2.2. Verify SIP Entity Link Status 70
 10.3. Verify Avaya Agile Communication Environment™ 71
 10.3.1. Verify Avaya Agile Communication Environment™ Server Status 72
 10.4. Verify Avaya Aura® Messaging ... 73
 10.4.1. Verify Avaya Aura® Messaging can Make Calls to Phones 73
 10.5. Verify user can Receive and Retrieve Avaya Aura® Messaging Voice Message using
 Google Mail .. 74
 10.6. Verify user can send a fax through Google email 74
 10.7. Verify user able to make a call using iLink Pro on Salesforce.com ... 75

11. Conclusion .. 76

12. Additional References .. 76
1. Introduction

The Avaya Agile Communication Environment™ (ACE) interacts with the Avaya Aura® service provider to provide web services and enable communications between Avaya ACE client applications and an Avaya Aura® communications solution. Avaya Aura® can provide services to Avaya ACE in a number of different configurations. Each configuration provides certain services that define which Avaya ACE services are available. In this solution, the configuration used is Avaya Aura Adjunct Switch Application Interface (ASAI) service provider for services where Avaya ACE needs to control a Computer Telephony Integration (CTI)-capable terminal on the Avaya Aura® Communication Manager (Communication Manager).

These Application Notes describe the procedure for configuring Esna Officelinx to successfully interoperate with Avaya ACE, Communication Manager. And configure Esna Officelinx to receive voice message on Avaya Aura® Messaging (Messaging) via SMTP.

iLink Pro is installed as a plug in to Salesforce.com (SFDC). This provides users with contact, presence and call management function directly with in SFDC. iLink Pro controls a physical telephone by using Third-Party Call control, specifically the Third Party Call (v2 and v2.4) and Call Notification web service which provided by Avaya ACE.

2. General Test Approach and Test Result

The feature test cases were performed manually and automatic. During configuration of the Officelinx server and UCACE Wizard a list of devices is setup for monitoring. The applications automatically requested monitoring of these devices.

For the manual part of the testing, manually place a call using iLink Pro on SFDC to verify call features such as make call, answer call, transfer or put call on hold. When the call is placed, Officelinx will send the web service request to ACE to control the monitored device which is configured on the Esna UCACE Wizard. In Google mail, verify that the fax feature such as send and receive fax via email, also verify that a copy of the Messaging voice messaging is send to Google mail and it can be opened and played on the web.

The serviceability test cases were performed manually by disconnecting and reconnecting the Ethernet connection to Esna Officelinx.

The verification of tests included human checking of proper states of the iLink Pro plugin at the user desktops and telephones, and reviewing the UCACEServeryyyyymmdd log on Officelinx.

DevConnect Compliance Testing is conducted jointly by Avaya and DevConnect members. The jointly-defined test plan focuses on exercising APIs and/or standards-based interfaces pertinent to the interoperability of the tested products and their functionalities. DevConnect Compliance Testing is not intended to substitute full product performance or feature testing performed by DevConnect members, nor is it to be construed as an endorsement by Avaya of the suitability or completeness of a DevConnect member’s solution.
2.1. Interoperability Compliance Testing

The general test approach was to verify the integration of the Esna Officelinx with Avaya H323 and SIP desk phones. Phone operations such as off-hook, on-hook, dialing, answering, etc., was performed using both the physical phones and iLink Pro. In addition, phone displays and call states on the physical phones and iLink Pro was verified for consistency. The following testing was covered successfully:

1. Click and call on iLink Pro in SFDC and the voice path is established on 2 physical phones.
2. Put a call on hold and retrieve call.
3. Transfer a call.
4. Retrieve the voice message in Google Mail (SMTP replay).
5. Verify Message Waiting Indication (MWI).
7. Send and receive fax through Google email.
2.2. Test Results

Interoperability testing of ACE, Messaging, and Communication Manager with Officelinx 9 SP1 – iLink Pro was completed and passed with observations as list below:

1. Prior to configuration of the Esna Officelinx Cloudlink Edition server, the Officelinx Cloudlink Edition menu provides feature button labels for actions on incoming calls. The “Take Message” feature was tested but the redirected call did not properly integrate with the correct voicemail box. It is recommended that this feature option be disabled by the Esna Officelinx Cloudlink Edition Administrator.

2. When a user receives a message, iLink Pro receives and indicates that there is a new message, and the message waiting indicator (MWI) is turned on. When a user retrieves a message using iLink Pro, MWI is turned off on iLink Pro and the physical phone. But when Messaging maintenance subsequently runs, MWI is turned on again and Messaging indicates there is a new message. This is a known limitation and is due to the fact that Esna Officelinx Cloudlink Edition does not currently use the ACE Messaging API to “synchronize” the information to Messaging. This capability is planned for implementation in a future release of Esna Officelinx Cloudlink Edition.

3. Call extension of parties after a call is transferred does not update. This is a known limitation in the current version of Esna Officelinx Cloudlink Edition. A fix is planned for a future release of Esna Officelinx Cloudlink Edition.

4. Call forward is not supported on ASAI Service Provider. If you make a call to an unavailable iLink Pro user, the call can be forwarded to Messaging, but the caller gets the general greeting, instead of the greeting for the user that was called. To avoid this issue the call can be forced to ring at the called party’s phone by not entering the Messaging hunt group number in the Officelinx configuration.

5. A physical phone A is not monitored by Esna Officelinx, make a call to iLink Pro user B (physical phone B is monitored) then phone A perform consult transfer to iLink Pro user C (physical phone C is monitored). iLink Pro C later tries to put the call on Hold using iLink Pro - Hold option, the call is not put on hold and the user C loses call control UI on iLink Pro. Work around is to put the call on hold using physical phone. This is a known limitation of Esna Officelinx Cloudlink Edition. To avoid this issue all internal phones must be monitored by Officelinx.

6. When Device A (DA) makes a call to iLink Pro user B and iLink Pro user B transfers the call to iLink Pro user C, iLink Pro user C sometimes receives 2 popup messages: “CallDisconnected from DA” and “Incoming call from DA”. After 3 second the extraneous “Call Disconnected” popup message is closed. iLink Pro user C can click answer on the “Incoming call” popup window to connect the call. The two popup windows do not impact the call operation; however having 2 popup windows displayed at the same time can confuse the user. User should ignore the extraneous “Call Disconnected” message when it occurs. A fix is planned for a future release of Esna Officelinx Cloudlink Edition.
7. If the phones of iLink Pro user A, and iLink Pro user B are off-hook (e.g. A and B are on a call), the status of iLink Pro user A and B are displayed to iLink Pro user C as “On the Phone”. If iLink Pro user C makes a call to iLink Pro user A, and iLink Pro user C then disconnects the call (hangs up) before iLink Pro user A answers, the display of iLink Pro user A’s status on iLink Pro user C is changed to indicate that iLink Pro user A is not on the phone, even though the call between iLink Pro user A and iLink Pro user B is still connected. A fix is planned for a future release of Esna Officelinx Cloudlink Edition.

8. iLink Pro user A is on a call with iLink Pro user B. iLink Pro user C attempts to call iLink Pro user A, iLink Pro user A receives an alert message for the incoming call. If iLink Pro user A clicks “Answer”, ACE generates an exception, “Exception 10001 Service Error occurred”, for the second call and the first call remains connected. This is due to the fact that ACE expects the first call to be put on hold before the second call is answered. If iLink Pro user A puts the first call on hold before clicking answer on the second call the problem does not occur. Also, the problem does not occur if iLink Pro user A answers the second call by pressing the answer button on the device, as Avaya Aura Communication Manager will automatically put the first call on hold before answering the second.

9. When a user double clicks on the Answer option, multiple requests for Answer call are sent to ACE which is causing ACE to return an exception.

2.3. Support

Technical support for the Esna Telephony Officelinx solution can be obtained by contacting Esna:
- URL: www.esna.com
- Email: techsupport@esna.com
- Phone: +1(905) 707-1234
3. Reference Configuration

There are three main parts in this setup:

1. Avaya ACE solution: The Adjunct Switch Application Interface (ASAI) service provider is used to provide services where Avaya ACE™ needs to control a Computer Telephony Integration (CTI)-capable terminal on the Avaya Aura® Communication Manager. Then Avaya ACE™ provides these services to iLink Pro such as Click to call, Call transfer, Hold and End Call.

2. SIP base solution to provide fax service: Officelinx act as fax server to provide fax service to Google user in the corporate network. This includes Avaya Aura® Communication Manager, Avaya Aura® Session Manager and Esna Officelinx.

Endpoints include Avaya 9600 Series SIP and H.323 IP Telephones. For security purposes public IP addresses have been masked out or altered in this document.

Figure 1: Test Configuration of Avaya ACE and Avaya Aura® systems provide services to Esna Telephony Officelinx
4. Equipment and Software Validated

The following equipment and software/firmware were used for the sample configuration provided:

<table>
<thead>
<tr>
<th>Equipment/Software</th>
<th>Release/Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avaya Aura® Communication Manager running on an Avaya S8300D Media Server</td>
<td>R016x.03.0.124 Patch 03.0.124.20850</td>
</tr>
<tr>
<td>Avaya G450 Media Gateway</td>
<td>33.13.0 (B)</td>
</tr>
<tr>
<td>Avaya Aura® System Manager running on an Avaya S8800 Server</td>
<td>6.3.0 FP2 SU 6.3.2.4.1399</td>
</tr>
<tr>
<td>Avaya Aura® Session Manager running on an Avaya S8800 Server</td>
<td>6.3 SP4</td>
</tr>
<tr>
<td>Avaya Aura® Messaging running on an Avaya S8800 Server</td>
<td>R016x.02.0.823</td>
</tr>
<tr>
<td>Avaya S8800 Server with VMWare 5.1 running Avaya Agile Communication Environment VE</td>
<td>6.2.1FP2</td>
</tr>
<tr>
<td>Avaya 9611G, 9608 H323 Phone</td>
<td>6.2</td>
</tr>
<tr>
<td>Avaya 9611G, 9608 SIP Phone</td>
<td>6.2</td>
</tr>
<tr>
<td>Avaya 9630 H323 Phone</td>
<td>3.1.05</td>
</tr>
<tr>
<td>Esna Officelinx</td>
<td>9.1 SP1</td>
</tr>
<tr>
<td>iLink Pro</td>
<td>9.1.14.1227</td>
</tr>
<tr>
<td>Salesforce.com (SFDC)</td>
<td>14</td>
</tr>
</tbody>
</table>
5. Configure Avaya Aura® Communication Manager

This section describes the procedure for configuring Communication Manager. A SIP trunk, with Fax pass through enabled is created between Communication Manager and Session Manager. It is assumed the general installation of Communication Manager, Avaya G450 Media Gateway and Session Manager has been previously installed correctly.

In configuring Communication Manager, various components such as IP-network-regions, signaling groups, trunk groups, etc., need to be selected or created for use with the SIP connection to Session Manager. Unless specifically stated otherwise, any unused IP-network-region, signaling group, trunk group, etc. can be used for this purpose.

The Communication Manager configuration was performed using Communication Manager System Access Terminal (SAT) interface. Some screens in this section have been abridged and highlighted for brevity and clarity in presentation.

Please note that in the sample screenshots listed below the “display” command was used instead of the “change” or “add” commands, this is because all necessary changes were already in place when the screenshots were taken.

See references Section 12 for standard installation and configuration information. General knowledge of the configuration tools and interfaces is assumed

5.1. Configure SIP Trunk

The following sections show the necessary steps required to configure Communication Manager to interoperate correctly with Session Manager.

5.1.1. Capacity Verification

Enter the display system-parameters customer-options command. Verify that there are sufficient Maximum Off-PBX Telephones – OPS licenses. If not, contact an authorized Avaya account representative to obtain additional licenses.
On Page 2 of the form, verify that the number of **Maximum Administered SIP Trunks** supported by the system is sufficient for the number of SIP trunks needed. If not, contact an authorized Avaya account representative to obtain additional licenses.

<table>
<thead>
<tr>
<th>IP PORT CAPACITIES</th>
<th>USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Administered H.323 Trunks: 4000</td>
<td>20</td>
</tr>
<tr>
<td>Maximum Concurrently Registered IP Stations: 2400</td>
<td>3</td>
</tr>
<tr>
<td>Maximum Administered Remote Office Trunks: 4000</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Concurrently Registered Remote Office Stations: 2400</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Concurrently Registered IP eCons: 68</td>
<td>0</td>
</tr>
<tr>
<td>Max Concur Registered Unauthenticated H.323 Stations: 100</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Video Capable Stations: 2400</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Video Capable IP Softphones: 10</td>
<td>0</td>
</tr>
</tbody>
</table>

Maximum Administered SIP Trunks: 4000 110

Maximum Administered Ad-hoc Video Conferencing Ports: 4000 0

Maximum Number of DS1 Boards with Echo Cancellation: 80 0

Maximum TN2501 VAL Boards: 10 0

Maximum Media Gateway VAL Sources: 50 0

Maximum TN2602 Boards with 80 VoIP Channels: 128 0

Maximum TN2602 Boards with 320 VoIP Channels: 128 0

Maximum Number of Expanded Meet-me Conference Ports: 8 0

5.1.2. Configure IP Codec Set

This section describes the steps for administering a codec set in Communication Manager. This codec set is used in the IP network region for communications between Communication Manager and Session Manager. Use the `change ip-codec-set <n>` command, where `n` is a number between 1 and 7, inclusive. IP codec sets are used for configuring IP network region to specify which codec sets may be used within and between network regions. Below is example of **G.711 MU** and **G.711A** code used in compliance test.

<table>
<thead>
<tr>
<th>change ip-codec-set 1</th>
<th>Page 1 of 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codec Set: 1</td>
<td></td>
</tr>
<tr>
<td>Audio</td>
<td>Silence</td>
</tr>
<tr>
<td>Codec</td>
<td>Suppression</td>
</tr>
<tr>
<td>1: G.711MU</td>
<td>n</td>
</tr>
<tr>
<td>2: G.711A</td>
<td>n</td>
</tr>
</tbody>
</table>

As Esna Officelinx only supports fax pass-through mode, in ip-codec-set page 2, **FAX** is configured using **pass-through**.
5.1.3. Configure IP Network Region

This section describes the steps for administering an IP network region in Communication Manager. Enter the `change ip-network-region <n>` command, where `n` is a number between 1 and 250 inclusive, and configure the following:

- **Authoritative Domain** – Enter the appropriate name for the Authoritative Domain. During the compliance test, the authoritative domain is set to `bwdev.com`. This should match the SIP Domain value on Session Manager. This name appears in the “From” header of SIP messages originating from this IP region.

- **Codec Set** – Set the configured codec set number. In this example, **Codec Set 1** is used.

```plaintext
change ip-network-region 1
```

<table>
<thead>
<tr>
<th>IP NETWORK REGION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region: 1</td>
</tr>
<tr>
<td>Location:</td>
</tr>
<tr>
<td>Authoritative Domain: bwdev.com</td>
</tr>
</tbody>
</table>

MEDIA PARAMETERS

- Intra-region IP-IP Direct Audio: yes
- Inter-region IP-IP Direct Audio: yes
- Codec Set: 1
- UDP Port Min: 2048
- UDP Port Max: 3329

DIFFSERV/TOS PARAMETERS

- Call Control PHB Value: 46
- Audio PHB Value: 46
- Video PHB Value: 26

802.1P/Q PARAMETERS

- Call Control 802.1p Priority: 6
- Audio 802.1p Priority: 6
- Video 802.1p Priority: 5

AUDIO RESOURCE RESERVATION PARAMETERS

- H.323 Link Bounce Recovery? y
- Idle Traffic Interval (sec): 20
- Keep-Alive Interval (sec): 5
- Keep-Alive Count: 5

5.1.4. Configure IP Node Name

Use the `display node-names ip` command to verify that node names have been previously defined for the IP addresses of the Avaya S8300D Server running Communication Manager (procr 10.33.4.9) and for Session Manager (DevASM 10.10.97.198). These node names will be needed for defining signaling group.

```plaintext
display node-names ip
```

<table>
<thead>
<tr>
<th>IP NODE NAMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>IP Address</td>
</tr>
<tr>
<td>DevASM</td>
</tr>
<tr>
<td>procr</td>
</tr>
<tr>
<td>procr6</td>
</tr>
<tr>
<td>default</td>
</tr>
</tbody>
</table>
5.1.5. Configure SIP Signaling

Enter the `add signaling-group <n>` command, where `n` is an available signaling group and configure the following:

- **Group Type**: Set to `sip`.
- **IMS Enabled**: Verify that the field is set to `n`. Setting this field to `y` will cause Communication Manager to behave as a Feature Server.
- **Transport Method**: Set to `tls`.
- **Near-end Node Name**: Set to `procr`.
- **Far-end Node Name**: Set to the Session Manager name configured in node-names ip, example: `DevASM`.
- **Far-end Network Region**: Set to the configured region, example: `1`.
- **Far-end Domain**: Set to `bvwdev.com`. This should match the SIP Domain value in Session Manager.
- **Direct IP-IP Audio Connections**: Set to `y`, since the shuffling is enabled during the compliance test.
- **Initial IP-IP Direct Media**: Set to `y`.

<table>
<thead>
<tr>
<th>add signaling-group 5</th>
<th>SIGNALING GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Number: 5</td>
<td>Group Type: sip</td>
</tr>
<tr>
<td>IMS Enabled? n</td>
<td>Transport Method: tls</td>
</tr>
<tr>
<td>SIP Enabled LSP? n</td>
<td>Q-SIP? n</td>
</tr>
<tr>
<td>IP Video? n</td>
<td>Enforce SIPS URI for SRTP? y</td>
</tr>
<tr>
<td>Peer Detection Enabled? y</td>
<td>Peer Server: SM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Near-end Node Name: procr</th>
<th>Far-end Node Name: DevASM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near-end Listen Port: 5061</td>
<td>Far-end Listen Port: 5061</td>
</tr>
<tr>
<td>Far-end Network Region: 1</td>
<td>Far-end Domain: bvwdev.com</td>
</tr>
</tbody>
</table>

Bypass If IP Threshold Exceeded? n
RFC 3389 Comfort Noise? n
Direct IP-IP Audio Connections? y
IP Audio Hairpinning? n
Initial IP-IP Direct Media? y
Alternate Route Timer(sec): 6
5.1.6. Configure Trunk Group

To configure the associate trunk group for created signaling group, enter the `add trunk-group <n>` command, where `n` is an available trunk group and configure the following:

- **Group Type:** Set the Group Type field to `sip`.
- **Group Name:** Enter a descriptive name.
- **TAC (Trunk Access Code):** Set to any available trunk access code.
- **Service Type:** Set the Service Type field to `tie`.
- **Signaling Group:** Set to the Group Number field value for the configured signaling group, example: 5.
- **Number of Members:** Allowed value is between 0 and 255. Set to a value large enough to accommodate the number of SIP telephone extensions being used, example: 20.
- **Default values were used for all other fields.**

```
add trunk-group 5
```

<table>
<thead>
<tr>
<th>TRUNK GROUP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Number: 92</td>
<td>Group Type: sip</td>
</tr>
<tr>
<td>Group Name: NO IMS SIP trk COR: 1</td>
<td>CDR Reports: y</td>
</tr>
<tr>
<td></td>
<td>TN: 1</td>
</tr>
<tr>
<td></td>
<td>TAC: 115</td>
</tr>
<tr>
<td></td>
<td>Direction: two-way</td>
</tr>
<tr>
<td></td>
<td>Outgoing Display: n</td>
</tr>
<tr>
<td></td>
<td>Night Service:</td>
</tr>
<tr>
<td></td>
<td>Dial Access: n</td>
</tr>
<tr>
<td></td>
<td>Queue Length: 0</td>
</tr>
<tr>
<td></td>
<td>Service Type: tie</td>
</tr>
<tr>
<td></td>
<td>Auth Code: n</td>
</tr>
<tr>
<td></td>
<td>Member Assignment Method: auto</td>
</tr>
<tr>
<td></td>
<td>Signaling Group: 5</td>
</tr>
<tr>
<td></td>
<td>Number of Members: 20</td>
</tr>
</tbody>
</table>

On **Page 3**, set the **Numbering Format** field to `private`. This field specifies the format of the calling party number (CPN) sent to the far-end. Beginning with Communication Manager 6.0, public numbers are automatically preceded with a + sign when passed in the SIP From, Contact and P-Asserted Identity headers.

```
display trunk-group 5
```

<table>
<thead>
<tr>
<th>TRUNK FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACA Assignment: n</td>
</tr>
<tr>
<td>Measured: none</td>
</tr>
<tr>
<td>Maintenance Tests: y</td>
</tr>
<tr>
<td>Numbering Format: private</td>
</tr>
<tr>
<td>UUI Treatment: service-provider</td>
</tr>
<tr>
<td>Replace Restricted Numbers: n</td>
</tr>
<tr>
<td>Replace Unavailable Numbers: n</td>
</tr>
<tr>
<td>Modify Tandem Calling Number: no</td>
</tr>
<tr>
<td>Show ANSWERED BY on Display: y</td>
</tr>
</tbody>
</table>
5.1.7. Configure Route Pattern
For the trunk group, define the route pattern by entering the `change route-pattern <n>` command, where `n` is an unused route pattern number. The route pattern consists of a list of trunk groups that can be used to route a call. The following screen shows route-pattern 5 will utilize trunk group 5 to route calls and Numbering Format is `lev0-pvt`. The default values for the other fields may be used.

<table>
<thead>
<tr>
<th>change route-pattern 5</th>
<th>Page 1 of 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern Number: 5</td>
<td>Pattern Name: IMS SIP trunk</td>
</tr>
<tr>
<td>Grp FRL NPA Pfx Hop Toll No. Inserted</td>
<td>DCS/ IXC</td>
</tr>
<tr>
<td>No Mrk Lmt List Del Digits Dgts</td>
<td>Intw</td>
</tr>
<tr>
<td>1: 5 0 n user</td>
<td></td>
</tr>
<tr>
<td>2: n user</td>
<td></td>
</tr>
<tr>
<td>3: n user</td>
<td></td>
</tr>
<tr>
<td>4: n user</td>
<td></td>
</tr>
<tr>
<td>5: n user</td>
<td></td>
</tr>
<tr>
<td>6: n user</td>
<td></td>
</tr>
<tr>
<td>BCC VALUE TSC CA-TSC ITC BCIE Service/Feature PARM No. Numbering LAR Dgts Format</td>
<td>Subaddress</td>
</tr>
<tr>
<td>0 1 2 M 4 W Request</td>
<td>lev0-pvt none</td>
</tr>
<tr>
<td>1: y y y y y n n rest</td>
<td></td>
</tr>
<tr>
<td>2: y y y y y n n rest</td>
<td>none</td>
</tr>
<tr>
<td>3: y y y y y n n rest</td>
<td>none</td>
</tr>
<tr>
<td>4: y y y y y n n rest</td>
<td>none</td>
</tr>
<tr>
<td>5: y y y y y n n rest</td>
<td>none</td>
</tr>
<tr>
<td>6: y y y y y n n rest</td>
<td>none</td>
</tr>
</tbody>
</table>

5.1.8. Administer Dialplan
Configure dialplan analysis, Uniform Dialing, Private Numbering and AAR to route calls over a SIP trunk to Session Manager and ultimately to Messaging and Esna without the need to dial a Feature Access Code (FAC).

Use the command `change dialplan analysis 1` to create an entry in Dial Plan Analysis Table. Below is the example of dialing plan used during compliance test.

- **399**: Avaya Aura Messaging Pilot extension.
- **521**: Endpoint extension in Communication Manager.
- **782**: Extension to route a call to Esna Officelinx server. This setup is used to route the fax call to Esna Officelinx.

<table>
<thead>
<tr>
<th>display dialplan analysis</th>
<th>Page 1 of 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAL PLAN ANALYSIS TABLE</td>
<td>DIALED TOTAL CALL</td>
</tr>
<tr>
<td>Location: all</td>
<td>Dialed Total Call Dialed Total Call Dialed Total Call</td>
</tr>
<tr>
<td>Percent Full: 3</td>
<td>String Length Type String Length Type String Length Type</td>
</tr>
<tr>
<td>Dialed String Total Call Dialed String Total Call Dialed String Total Call</td>
<td></td>
</tr>
<tr>
<td>1 3 dac</td>
<td>8 1 fac</td>
</tr>
<tr>
<td>399 5 ext 782 5 ext</td>
<td>9 1 fac</td>
</tr>
<tr>
<td>521 5 ext</td>
<td>4 dac</td>
</tr>
</tbody>
</table>
Use the command **change uniform dial-plan 1** to create an entry in the UDP table which covers extensions to pilot number of Messaging. As shown below, any number dialed to **399xx** totaling 5-digits will be routed to the AAR.

<table>
<thead>
<tr>
<th>Matching Pattern</th>
<th>Insert Len Del</th>
<th>Insert Digits</th>
<th>Net Conv</th>
<th>Node</th>
<th>Percent Full: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>399</td>
<td>5</td>
<td>0</td>
<td>aar</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>521</td>
<td>5</td>
<td>0</td>
<td>aar</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>782</td>
<td>5</td>
<td>0</td>
<td>aar</td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>

Use the command **display private-numbering 0** to view an administer the extensions of all calls traversing SIP trunks in the appropriate private numbering table on the Numbering-Private Format screen.

<table>
<thead>
<tr>
<th>Ext Ext</th>
<th>Trk</th>
<th>Private</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 782</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5 54</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5 521</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5 782</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5 3999</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

For the AAR Analysis Table, create the dial strings that will route calls to Avaya Aura Messaging, Telephony Officelinx extensions via the route pattern created in above section. Enter the **change aar analysis <n>** command, where **n** is a starting partial digit (or full digit). The dialed string created in the AAR Digit Analysis table should contain a map to the Messaging pilot number and Officelinx extension. During the configuration of the AAR table, the Call Type field was set to **unku** for **399xx** and to **aar** for **521xx and 782xx**.

<table>
<thead>
<tr>
<th>Dialed String</th>
<th>Min</th>
<th>Max</th>
<th>Total Pattern</th>
<th>Route Call Type</th>
<th>Call Node</th>
<th>ANI</th>
</tr>
</thead>
<tbody>
<tr>
<td>399</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>unku</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>aar</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>782</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>aar</td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>
5.1.9. Configure Hunt Group for Avaya Aura® Messaging

This section describes the steps for administering a hunt group in Communication Manager.

Enter the `add hunt-group <n>` command; where `<n>` is an available hunt group number. The following fields were configured for the compliance test:

- **Group Name**: Enter a descriptive name, example: *Messaging*.
- **Group Extension**: Enter an extension valid in the provisioned dial plan, example *39991*.

```
display hunt-group 2

HUNT GROUP

Group Number: 1   ACD? n
Group Name: Messaging   Queue? n
Group Extension: 39991   Vector? n
Group Type: ucd-mia Coverage Path:
   TN: 1  Night Service Destination:
   COR: 1  MM Early Answer? n
Security Code:  Local Agent Preference? n
ISDN/SIP Caller Display:
```

On **Page 2**, provide the following information:

- **Message Center**: Enter *sip-adjunct*, indicating the type of messaging adjunct used for this hunt group. This value will also be used in the Station form.
- **Voice Mail Number**: Enter the Voice Mail Number, which is the extension of Messaging.
- **Voice Mail Handle**: Enter the Voice Mail Handle which is the extension of Messaging.

```
display hunt-group 2

HUNT GROUP

Message Center: sip-adjunct
Voice Mail Number  Voice Mail Handle  Routing Digits
   (e.g., AAR/ARS Access Code)

39990  39990
```
5.1.10. Configure Coverage Path to Avaya Aura® Messaging

This section describes the steps for administering coverage path in Communication Manager. Enter the **add coverage path <n>** command; where **n** is a valid coverage path number. The **Point1** value of **h2** is used to represent the hunt group number 2. The default values for the other fields may be used.

```
display coverage path 2

COVERAGE PATH
Coverage Path Number: 1
Cvg Enabled for VDN Route-To Party? n        Hunt after Coverage? n
Next Path Number:          Linkage

COVERAGE CRITERIA
Station/Group Status        Inside Call        Outside Call
Active?            n              n
Busy?                y              y
Don't Answer?        y              y
All?                 n              n
DND/SAC/Goto Cover?  y              y
Holiday Coverage?    n              n

COVERAGE POINTS
Terminate to Coverage Pts. with Bridged Appearances? n
Point1: h2        Rng:2    Point2:
Point3:                        Point4:
```

Number of Rings: 2
5.1.11. Administer a Station for Coverage to Avaya Aura® Messaging

Configure any and all phones that have a mailbox on the messaging server for call coverage. Use the command `change station <n>` where `n` is an extension and on Page1 for **Coverage Path 1** use the configured coverage path. In the example below station 52155 was configured to cover to messaging using cover path 2.

<table>
<thead>
<tr>
<th>display station 52155</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension: 52155</td>
</tr>
<tr>
<td>Type: 96</td>
</tr>
<tr>
<td>Port: S00024</td>
</tr>
<tr>
<td>Name: Nam Nam</td>
</tr>
<tr>
<td>Coverage Path 1: 2</td>
</tr>
<tr>
<td>Coverage Path 2:</td>
</tr>
<tr>
<td>Hunt-to Station:</td>
</tr>
</tbody>
</table>

STATION OPTIONS

- **Lock Messages:** n
- **BCC:** 0
- **Security Code:** *
- **TN:** 1
- **Coverage Path 1:** 2
- **Coverage Path 2:**
- **COS:** 1
- **Hunt-to Station:**

STATION OPTIONS

- **Time of Day Lock Table:**
- **Personalized Ringing Pattern:** 1
- **Message Lamp Ext:** 52151
- **Mute Button Enabled:** y
- **Button Modules:** 0
- **Media Complex Ext:**
- **IP SoftPhone:** y
- **IP Video Softphone:** n
- **Short/Prefixed Registration Allowed:** default
- **Customizable Labels:** y

Navigate to page 2 and set the **MWI Served User Type** to **sip-adjunct**.

<table>
<thead>
<tr>
<th>change station 52151</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATION</td>
</tr>
<tr>
<td>FEATURE OPTIONS</td>
</tr>
<tr>
<td>LWC Reception: spe</td>
</tr>
<tr>
<td>Auto Select Any Idle Appearance: n</td>
</tr>
<tr>
<td>Auto Answer: none</td>
</tr>
<tr>
<td>Coverage Msg Retrieval: y</td>
</tr>
<tr>
<td>Data Restriction: n</td>
</tr>
<tr>
<td>Idle Appearance Preference: n</td>
</tr>
<tr>
<td>Bridged Idle Line Preference: n</td>
</tr>
<tr>
<td>Restrict Last Appearance: y</td>
</tr>
<tr>
<td>Active Station Ringing: single</td>
</tr>
<tr>
<td>H.320 Conversion: n</td>
</tr>
<tr>
<td>Per Station CPN - Send Calling Number:</td>
</tr>
<tr>
<td>Service Link Mode: as-needed</td>
</tr>
<tr>
<td>EC500 State: enabled</td>
</tr>
<tr>
<td>Audible Message Waiting: n</td>
</tr>
<tr>
<td>Display Client Redirection: n</td>
</tr>
<tr>
<td>Select Last Used Appearance: n</td>
</tr>
<tr>
<td>Coverage After Forwarding: s</td>
</tr>
<tr>
<td>Multimedia Early Answer: n</td>
</tr>
<tr>
<td>Remote Softphone Emergency Calls: as-on-local</td>
</tr>
<tr>
<td>Direct IP-IP Audio Connections: y</td>
</tr>
<tr>
<td>Emergency Location Ext: 52151</td>
</tr>
<tr>
<td>Always Use: n</td>
</tr>
<tr>
<td>IP Audio Hairpinning: n</td>
</tr>
</tbody>
</table>
5.1.12. Configure SIP Endpoint

SIP endpoints and off-pbx-telephone stations will be automatically created in Communication manager when users (SIP endpoints) are created in Session Manager. Go to Section 7.7 for steps on how to create SIP users on Session Manager. On the station form in Communication Manager, on the page 6 is a Third Party Call Control setting. Set value for Type of 3PCC Enabled: Avaya. This setup makes sure that ACE Notification service can send out the notification for SIP Phone.

<table>
<thead>
<tr>
<th>STATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIP FEATURE OPTIONS</td>
</tr>
<tr>
<td>Type of 3PCC Enabled: Avaya</td>
</tr>
<tr>
<td>SIP Trunk: aar</td>
</tr>
</tbody>
</table>

5.1.13. Configure Location

This section shows the steps to configure Outbound Proxy in the locations form. Use the command change locations to set the value for Proxy Rte to the route pattern that will go to Session Manager. During compliance test, route 5 is used.

<table>
<thead>
<tr>
<th>LOCATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARS Prefix 1 Required For 10-Digit NANP Calls? y</td>
</tr>
<tr>
<td>Loc Name</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>1: Main</td>
</tr>
</tbody>
</table>
5.2. Configure ASAI Link

This section provides the procedures for configuring an ASAI link between Communication Manager and ACE. The procedures include the following areas:

- Verify License Permission.
- Configuring AE Services and ACE as an AE Services server.
- Configuring a CTI link.

5.2.1. Verify License Permission

To verify that the Communication Manager license has proper permissions for the features illustrated in these Application Notes, use the command `display system-parameters customer-options` to verify that the **Computer Telephony Adjunct Links** customer option is set to *y* on Page 3.

```
display system-parameters customer-options

OPTIONAL FEATURES
Access Security Gateway (ASG)? n          Authorization Codes? y
Analog Trunk Incoming Call ID? y           CAS Branch? n
A/D Grp/Sys List Dialing Start at 01? y   CAS Main? n
Answer Supervision by Call Classifier? y   Change COR by FAC? n
ARS? y    Computer Telephony Adjunct Links? y
ARS/AAR Partitioning? y                  Cvg Of Calls Redirected Off-net? y
ARS/AAR Dialing without FAC? n           DCS (Basic)? y
ASAI Link Core Capabilities? n            DCS Call Coverage? y
ASAI Link Plus Capabilities? n            DCS with Rerouting? y
Async. Transfer Mode (ATM) PNC? n         Digital Loss Plan Modification? y
Async. Transfer Mode (ATM) Trunking? n    DS1 MSP? y
ATM WAN Spare Processor? n                DS1 Echo Cancellation? y
ATMS? y                                 ATM Vectors? y
Attendant Vectoring? y

(NOTE: You must logoff & login to effect the permission changes.)
```

5.2.2. Configuring AE Services and Avaya Agile Communication Environment™ as an AE Service Server

Enabling AE Services refers to administering the transport link between Communication Manager and AE Services. In this procedure, you must enter a Local Port number. These values must match the Port value you will enter when creating ASAI service provider on ACE. Enter the `change ip-services` command. Complete Page 1 of the IP SERVICES form as follows:

- **Service Type:** Enter AESVCS.
- **Enabled:** Enter *y*.
- **Local Node:** Enter `procr`.
- **Local Port:** Accept the default (8765).

```
change ip-services

<table>
<thead>
<tr>
<th>Service</th>
<th>Enabled</th>
<th>Local Node</th>
<th>Local Port</th>
<th>Remote Node</th>
<th>Remote Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>AESVCS</td>
<td>y</td>
<td>procr</td>
<td>8765</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Page 3 of 11
Complete Page 3 of the **ip-services** form as follows:

- In the **AE Services Server** field, type the name of the ACE Server, for example: DevACE.
- Enter **Password**, see note below.
- Set the **Enabled** field to **y**.

<table>
<thead>
<tr>
<th>Server ID</th>
<th>AE Services</th>
<th>Password</th>
<th>Enabled</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>DevACE</td>
<td>DevConnect123</td>
<td>y</td>
<td>in use</td>
</tr>
</tbody>
</table>

Note: In this procedure, the ACE server name and password must be entered. These values must match the ACE Server Name and Password values you will enter when adding the ASAI service provider on ACE.

5.2.3. Add a CTI link

In this procedure, you must enter a CTI Link number. This value must match the CTI Link No value you will enter when adding the ASAI service provider on ACE.

Add a CTI link using the `add cti-link n` command; where `n` is an available CTI link number. Complete the **CTI LINK** form as follows:

- Enter an available extension number in the **Extension** field.
- Enter **ADJ-IP** in the **Type** field.
- Enter a description for this link, example: **DevACE** in the **Name** field. Default values may be used in the remaining fields.
6. Configure Avaya Aura® Messaging

Messaging was configured for SIP communication with Session Manager. The procedures include the following areas:

- Administer Sites
- Administer Telephony Integration
- Configure Dial Rules
- Configure Class of Service
- Administer Subscribers
- Administer Topology
- Administer External Host
- Recording Format
- Configure Notify Me for Avaya Aura® Messaging mailboxes.

See references Section 12 for standard installation and configuration information. General knowledge of the configuration tools and interfaces is assumed.
6.1. Administer Sites

A Messaging access number and a Messaging Auto Attendant number needs to be defined. Log into the Messaging System Management Interface (SMI) and navigate to **Administration → Messaging** (not shown). In the left panel, under **Messaging System (Storage)** select **Sites**, click **Add New** (not shown). In the right panel fill in the following:

Under **Main Properties** enter the following:

- **Name**: Enter site name, example: **DevCM3**.
- **Internal Messaging access number**: Enter a Messaging Pilot number, during compliance test **39990** is used. Leave other fields as default value.

Below is detail of **Sites DevCM3** configured on Messaging.
Scroll down to the **Site Internal Dial Plan** section.

Under **Site Internal Dial Plan** enter the following:

- **Short Extension Length**: Enter the number of digits in extensions
- **Short Mailbox Length**: Enter the number of digits in mailbox numbers

![Site Internal Dial Plan](image)

Default values may be used in the remaining fields. Click **Save** (not shown) to save changes.

6.2. Administer Telephony Integration

A SIP trunk needs to be configured from Messaging to Session Manager. Log into the Messaging System Management Interface (SMI) and navigate to **Administration → Messaging** (not shown). In the left panel, under **Telephony Settings (Application)** select **Telephony Integration**. In the right panel fill in the following:

Under **Basic Configuration** enter the following:

- **Switch Integration Type**: Select SIP.
- **IP Address Version**: Accept default value IPv4.

Under **SIP Specific Configuration**:

- **Transport Method**: Select TCP.
- **Connection 1**: Enter the Session Manager signaling IP address and TCP port number.
- **Messaging Address**: Enter the Messaging IP address and TCP port number.
- **SIP Domain**: Enter the Messaging and Session Manager domain names.

Click **Save** to save changes.
6.3. Configure Dial Rules

Navigate to Administration Messaging→Server Settings (Application) → Dial Rules to configure the dial rules. Set the Dial plan handling style field to Site definition based as shown below.

Next select the Edit Dial-Out Rules button (shown above) to verify the appropriate parameters for outbound dialing from Messaging were set. These dial rules help Messaging send the correct number and combination of digits when originating a call to Communication Manager, whether the call is destined for another extension or ultimately expected to be routed to the PSTN.
6.4. Configure Class of Service

Configure Messaging Waiting for all subscribers. Navigate to Administration → Messaging menu and select Class of Service under Messaging System (Storage) (not shown). Select “Standard” from the Class of Service drop-down menu. Under General section, enter the following value and use default values for remaining fields:

- **Dial-out privilege**: Select Local.
- **Set Message Waiting Indicator (MWI) on user’s desk phone** is checked.

Click Save (not shown) to save changes. The following screen shows the settings defined for the “Standard” Class of Service in the sample configuration.

Class of Service

<table>
<thead>
<tr>
<th>Class of Service:</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add New</td>
<td>Delete</td>
</tr>
</tbody>
</table>

General

<table>
<thead>
<tr>
<th>Name:</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID:</td>
<td>0</td>
</tr>
<tr>
<td>Required seat license:</td>
<td>Mainstream (VALUE_MSG_SEAT_MAINSTREAM)</td>
</tr>
<tr>
<td>Telephone User Interface:</td>
<td>Ana</td>
</tr>
<tr>
<td>User can send to system distribution lists (ELAs)</td>
<td>✔</td>
</tr>
<tr>
<td>Fax support:</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dial-out privilege:</th>
<th>Local</th>
</tr>
</thead>
</table>

User can use Reach Me	✔
Allow voice recognition for addressing (user can select recipients by saying their name)	✔
MAP/PCP3 access:	Full (for Avaya Message Store users)
Set Message Waiting Indicator (MWI) on user’s desk phone	✔
Enable password aging	

| User can send system broadcast messages |

![Class of Service settings](image)
6.5. Administer Subscribers

In the left panel, under **Messaging System (Storage)** select **User Management** (not shown). In the right panel fill in the following:

Under **User Properties**:

- **First Name**: Enter first name.
- **Last Name**: Enter last name.
- **Display Name**: Enter display name.
- **ASCII name**: Enter the ASCII name.
- **Site**: Select site defined in **Section 6.1** from the drop-down box.
- **Mailbox Number**: Enter desired mailbox number.
- **Internal identifier**: Enter the name for internal use.
- **Numeric address**: Enter the mailbox number.
- **Extension**: Enter desired extension number.

![User Management > Properties for Sau Ko](image)

In the diagram, the following fields are highlighted:

- **First name**: Sau
- **Last name**: Ko
- **Display name**: Sau Ko
- **ASCII name**: Ko, Sau
- **Site**: DevCM3
- **Mailbox number**: 52160
- **Internal identifier**: 52160@DevAM
- **Numeric address**: Sau.Ko
- **Extension**: 52160

Also, there is a checkbox for **Include in Auto Attendant directory**.
Scroll down on the page to Class of Service.
- **Class of Service**: Select a Class of Service
- **MWI Enabled**: Select **Yes** to enable the MWI light on phones
- **New Password/Confirm Password**: Enter desired extension password
- **Next logon password change**: Select the **Checkbox**

Click **Save** to save changes.
6.6. Administer Topology

Select **Topology** under **Messaging System (Storage)**. Verify the site **DevCM3** is **Active**.

![Topology Diagram]

6.7. Administer External Host

Messaging uses an external SMTP relay host to forward text notifications and outbound voice Messages, enable this function by configuring the mail gateway on the External Hosts Web page. Select **Server\Settings (Storage) → External Hosts**, click Add (not shown). In Add a New External Host page enter the following:

- **IP Address**: Enter IP address of the External SMTP Server, in this compliance test it is the IP address of Esna server.
- **Host Name**: Enter host Name of the External SMTP Server, in this case it is the Esna host name.

Below is detail of Esna Server configured in this compliance test:

![Change an Existing External Host Diagram]
6.8. Recording Format

This setup is needed as Esna is only able to recognize the record in GSM format only. In the left window, under Advanced (applications), select Miscellaneous. In the main window ensure that Recording format is set to GSM.
6.9. Configure Notify Me for Avaya Aura® Messaging mailboxes

If there is a voice message left for Communication Manager Extension, this setting will allow Messaging to send a voice message as an email to appropriate iLink Pro user on Officelinx. Select Administration → Messaging. In the left panel, under Messaging System (Storage) select User Management. In the right panel enter mailbox number (e.g. 52160) and click Edit (not shown). Scroll right down to User Preferences at the bottom of the screen and select link Open User Preference for Mailbox User name (not shown).

In the User Preferences detail screen, select Notify Me. In the Notify Me detail page, enable checkbox Email me a notification for each voice message to iLink Pro user’s email address configured on Officelinx; example during compliance test the following email is used 52160@Esna host name with the option Include the recording. Click Save. Below is an example set up for extension 52160.

![Recipe Example](image-url)
7. Configure Avaya Aura® Session Manager

This section provides the procedures for configuring Session Manager as provisioned in the reference configuration. Session Manager is comprised of two functional components, the Session Manager server and the System Manager server. All SIP call provisioning for Session Manager is performed through the System Manager Web interface and is then downloaded to or synchronized with Session Manager.

The following sections assume that Session Manager and System Manager have been installed and that network connectivity exists between the two platforms.

In this section, the following topics are discussed:

- Configure SIP Domain
- Configure Locations
- Configure SIP Entities
- Configure Entity Links
- Configure Routing Policies
- Configure Dial Patterns
- Configure SIP Users

It may not be necessary to create all the items above since some of these items would have already been defined as part of the initial Session Manager installation. This includes items such as certain SIP domains, locations, SIP entities and Session Manager itself. However, each item should be reviewed to verify the configuration.
7.1. Configure SIP Domain

Launch a web browser, enter “https://<IP address of System Manager>/SMGR” in the URL, and log in with the appropriate credentials.

Create a SIP domain for each domain for which Session Manager will need to be aware in order to route calls. For the compliance test, this includes the enterprise domain: bvwdv.com. To add a domain, navigate to Routing ➔ Domains, and click on the New button (not shown) to create a new SIP Domain. Enter the following values and use default values for the remaining fields:

- **Name:** Enter the Authoritative Domain Name, *bvwdv.com* as configured in Section 5.1.5.
- **Type:** Select SIP.

Click **Commit** to save. The following screen shows the Domains page used during the compliance test.
7.2. Configure Locations

Locations are used to identify logical and/or physical locations where SIP Entities reside, for purposes of bandwidth management or location-based routing. Navigate to Routing \(\rightarrow\) Locations, and click on the New button (not shown) to create a new SIP endpoint location.

In the General section, enter the following values and use default values for remaining fields.
- **Name**: Enter a descriptive Location name.
- **Note**: Enter a description if desired.

![Location Details](image)

In Location Pattern section, click Add and enter the following values:
- **IP address Pattern**: Enter the IP Pattern to identify the location.
- **Notes**: Enter a description in the Notes field if desired.

The following screen shows the Locations page used during the compliance test. Click on the Commit button.

![Location Pattern](image)
7.3. Configure SIP Entities

A SIP Entity must be added for Session Manager and for each network component that has a SIP trunk provisioned to Session Manager. During the compliance test, the following SIP Entities were configured:

- Session Manager.
- Communication Manager.
- Messaging.
- Esna Officelinx.

Navigate to **Routing → SIP Entities**, and click on the **New** button (not shown) to create a new SIP entity. Enter the following values and use default values for remaining fields.

- **Name**: Enter a descriptive name in the **Name** field.
- **FQDN or IP Address**: Enter IP address of SIP Entity that used for SIP signaling. Enter IP address of Communication Manager, Session Manager, Messaging and Esna Officelinx.
- **Type**: Select a type that best matches the SIP Entity. For Communication Manager, select CM. For Session Manager, select Session Manager. For Messaging, select Modular Messaging.
- **Note**: Enter a description if desired.
- **Location**: Select the appropriate location.

Accept the other default values or modify them if needed.

Click on the **Commit** button to save configuration for each SIP Entity. The following screens show the SIP Entities page used during the compliance test.

Session Manager SIP Entity:

![SIP Entity Details](image-url)
Communication Manager SIP Entity:

SIP Entity Details

General

- Name: DEVCM3
- FQDN or IP Address: 10.33.4.9
- Type: CM
- Notes: Phuong CM

Additional details:
- Adaptation:
- Location: belleville
- Time Zone: America/New_York
- Override Port & Transport WAB DNS SRV:
- SIF Timer B/F (in seconds): 41
- Credential name:
- Call Detail Recording: none

Loop Detection

Loop Detection Mode: off

SIP Link Monitoring

SIP Link Monitoring: Use Session Manager Configuration
Avaya Aura® Messaging SIP Entity:

![Avaya Aura® Messaging SIP Entity](image)

Esna Officelinx SIP Entity:

![Esna Officelinx SIP Entity](image)
7.4. Configure Entity Links

Entity Links define the connections between the SIP Entities and Session Manager. In the compliance test 2 entities links are defined: one to Communication Manager (Avaya G450 with S8300D Server) and one to Messaging. To add an entity link, navigate to Routing → Entity Links, and click on the New button (not shown) to create a new entity link. Enter the following information:

- **Name**: Enter a descriptive name.
- **SIP Entity 1**: Select first SIP entity from drop down menu, Session Manager’s SIP entity is selected.
- **Protocol**: Select the protocol to be used from the drop down menu.
- **Port**: By default the value will be set to **5060** for TCP.
- **SIP Entity 2**: Select appropriated entity.
- **Port**: By default the value will be set to **5060** for TCP.
- **Connection Policy**: Select Trusted option.

Click on the **Commit** button to save each Entity Link definition. The following screen shows an Entity Links page (between Session Manager and Messaging) used during the compliance test.

Entity Link page (between Session Manager - Communication Manager):
DevSM_DevCM3_62_5061_TLS.
Entity Link page (between Session Manager – Esna Officelinx): **DevSM_Esna_5060_TCP**.

7.5. Configure Routing Policies

Routing policies describe the conditions under which calls will be routed to the SIP Entities. Two routing policies must be added, one for Communication Manager and one for Messaging. To add a routing policy, navigate to **Routing → Routing Policies** in the left-hand navigation pane and click on the **New** button in the right pane (not shown). The following screen is displayed. Enter the following in the **General** section. Use default values for all remaining fields:

- **Name**: Enter a descriptive name.
- **Notes**: Add a brief description (optional).

In the **SIP Entity as Destination** section, click **Select**. The **SIP Entity List** page opens (not shown). Select the appropriate SIP entity to which this routing policy applies and click **Select**. The selected SIP entity displays on the **Routing Policy Details** page as shown below. Use default values for the remaining fields. Click **Commit** to save. The following screens shows the routing policy for Communication Manager.
Routing policy used for Messaging: **Route-To-DevAAM.**

Routing policy used for Esna Officelinx: **Route_to_Esna.**
7.6. Configure Dial Patterns

Dial Patterns define digit strings to be matched for inbound and outbound calls. In addition, the domain in the request URI is also examined. In the compliance test, the following dial patterns are defined from Session Manager:

- **5215x** – SIP endpoints in Avaya S8300D Server.
- **39990** – Messaging Pilot Number.
- **782xx** – Esna Officelinx pilot number.

To add a Dial Pattern, select **Routing ➔ Dial Patterns**, and click on the **New** button (not shown) on the right. During the compliance test, 5 digit dial plan was utilized. Provide the following information:

In the **General** section, enter the following values. Use default values for all remaining fields:

- **Pattern**: Enter a dial string that will be matched against the Request-URI of the call.
- **Min**: Enter a minimum length used in the match criteria.
- **Max**: Enter a maximum length used in the match criteria.
- **SIP Domain**: Enter the destination domain used in the match criteria.
- **Notes**: Add a brief description (optional).

In the **Originating Locations and Routing Policies** section, click **Add**. From the **Originating Locations and Routing Policy List** that appears (not shown), select the appropriate originating location for use in the match criteria. Lastly, select the routing policy from the list that will be used to route calls that match the specified criteria. Click **Select**. Default values can be used for the remaining fields. Click the **Commit** button to save the new definition. The following screen shows the dial pattern used for DevCM3 during the compliance test.
Dial Pattern for Messaging: **399**.

Dial Pattern for Esna Officelinx: **782**.
7.7. Configure SIP Users

This section describes the steps required to create SIP users for the Avaya SIP IP Deskphones. To add new SIP users, Navigate to **Users ➔ Manage Users**. Click **New** (not shown) and enter the following information:

Identity tab:
- **Last Name:** Enter last name of user.
- **First Name:** Enter first name of user.
- **Login Name:** Enter extension and domain name used in the system.
- **Authentication Type:** Default is **Basic**. Use this default value.
- **Password:** Enter password, it is used to log into System Manager. Repeat the same for **Confirm Password**.
In the Communication Profile tab, under Communication Profile section enter the **Communication Profile Password**, enter numeric password which is used to log into the device.

Verify there is a default entry identified as the **Primary** profile for the new SIP user. If an entry does not exist, select **New** (not shown) and enter values for the following required:

- **Name**: Enter **Primary**.
- **Default**: Enter **☑**
In Communication Address sub-section, select **New** to define a **Communication Address** for the new SIP user, and provide the following information.

- **Type**: Select **Avaya SIP** from drop-down menu.
- **Fully Qualified Address**: Enter same extension number and domain used for Login Name, created previously.

Click the **Add** button to save the Communication Address for the new SIP user.

In Session Manager Profile sub-section, enter the following:

- **Primary Session Manager**: Select the Session Managers of interest.
- **Origination Application Sequence**: Select Application Sequence for Communication Manager.
- **Termination Application Sequence**: Select Application Sequence for Communication Manager.
- **Home Location**: Select Location created above.
In **Endpoint Profile** sub-section, enter the following information:

- **System**: Communication Manager of interest.
- **Profile Type**: Verify **Endpoint** is selected.
- **Extension**: Enter same extension number used in this section.
- **Template**: Select appropriate template for SIP phone. And leave other fields as default.

![Endpoint Profile section](image)

Click **Commit** (not shown) to save the definition of the new user. The following screen shows the created users during the compliance test.

![User Management](image)
8. Configure Avaya Agile Communication Environment™ 6.2
This section describes the steps on how to setup ASAI Service provider, create account and role for Esna Officelinx on ACE.

8.1. Configuring the Communication Manager’s SSL certificate Signing Authority as Trusted on Avaya ACE
In order for ACE and Communication Manager to establish SSL connectivity, the signing authority of Communication Manager's Server certificate must be configured as trusted on ACE. Refer Section 12 for the list of relevant documents.

When ACE is initially installed, some signing authorities are automatically configured as trusted on ACE. For example, by default, ACE trusts any certificate signed by SIP Product Certificate Authority or Avaya Product Root CA. In Communication Manager SAT, type the command `tlscertmanage -l` to verify the current certificate on Communication Manager.

If Communication Manager is configured with a server certificate signed by such an authority, then no further configuration is needed on ACE. Skip this section and move to Section 8.2. If Communication Manager is not configured with a server certificate that is signed by such an authority, then further configuration may be needed on ACE. Please see “Configuring the Communication Manager’s SSL certificate signing authority as trusted on ACE” in Reference Section 12.
8.2. Add ASAI Service Provider

This section creates ASAI Service Provider which provides web services Third Party Call Control v2 and v2.4, such as make call, Single Step Transfer or hang up call.

Open a web browser and enter the following URL to view the ACE administrative console:
https://<hostname>:9449/oamp/

On the menu bar, choose Configuration → Service Providers. In the Service Providers window, click Add (not shown) and enter the following information:
- **Type**: Select Avaya Aura from the drop-down list.
- **Name**: Enter a name for the Avaya Aura service provider.
- **Disable**: Select the Disable check box to add the service provider in a disabled state.

Click Continue.
In the Service Providers window enter the following information for Signaling:

- **Signaling**: Select ASAI from the drop-down list.
- **Transport**: when ASAI is selected, Transport is set to TLS.
- **FQDN/IP Address**: enter the IP address of the Communication Manager server. Using the fully qualified domain name (FQDN) is not supported for the ASAI service provider.
- **Port**: when ASAI is selected, the Port is set to 8765. If you want to set the Port value to a non-default value, enter the number in the Port field.
- **Priority**: is Read-only field and set to 0.

In Address section, enter ACE server and CTI information created on Communication Manager in **Section 5.2**:

- **ACE Server Name**: enter ACE Server name. In compliance test name is DevACE.
- **Password**: enter password that created in **Section 5.2**.
- **CTI Link No**: enter CTI number created in **Section 5.2**.

Click **Next** to add Rules for ASAI service provider. Below is example of ASAI Service Provider created and used in compliance test.
Enter information for **Calling Party Translation Rule - Simple Configuration** rule as show below:

- **URI Scheme**: Select `tel` from the drop-down menu.
- **Range from**: Enter a dialling plan for Communication Manager; example: **52000**.
- **Range to**: Enter a dialling plan for Communication Manager; example: **52888**.
- **Activate Rule**: checked.

Click **Add** to add the new rule. Click **Next** to add rule for Called Party.
Enter information for **Called Party Translation Rule - Simple Configuration** rule as show below:

- **URI Scheme**: Select `tel` from the drop-down menu.
- **Range from**: Enter a dialling plan for Communication Manager; example: **52000**.
- **Range to**: Enter a dialling plan for Communication Manager; example: **52888**.
- **Activate Rule**: checked.

Click **Add** to add the new rule. Then click **Submit** to Submit new **Service Provider**.

Verify the status of the new created service providers is “**In Service**”, as per the screen shot below.
8.3. Add User

The web service client belongs to a role on ACE with a role type of user or higher, and with the appropriate access control rules configured for the Third Party Call Control (v2) service. See next section for steps on how to create new role for user.

Select Security → User Management → Create User (not shown).
- **User ID**: Enter user name that is used to login ACE web service of the web client (application) (e.g. **ESNA_Admin**), this account is used by ESNA UCACEWizard application described in Section 9.2.
- **Account State**: Select Enable from the drop-down menu.
- **User Password**: Enter the password for user (e.g. **DevConnect@123**).
- **Confirm User Password**: Re-enter above password to confirm.

Select **Submit** to create user. Below is example of the ACE user used during compliance test.
8.4. Add Role
This section describes the steps on how to create Roles for users created in the above section. Select Security → Role Management → Create Role (not shown). Enter the following for a new Role:

- **Name:** Enter any name for the new Role.
- **Role Member:** Select user in the left panel and move it into the Role member.

This is the screen shot of role that was used during Compliance Test.
Click on **License Membership** tab, assign **API Integration Suite** license to **Member Licenses**. Turn **ON** the following services: **CallNotification Service** and **ThirdPartyCallService**. Click **Submit** (not shown) to save changes.
9. Configure the Esna Telephony Officelixn

Esna installs, configures, and customizes the Telephony Officelixn application for their customers. Thus, this section only describes the interface configuration, so that the Telephony Officelixn can talk to Session Manager, ACE and Messaging. See OL_CLIENT_APPS_GUIDE and OL_FEATURE_DESCRIPTION_GUIDE provide on the Esna website, see Section 12 for the detailed link.

9.1. Configure SIP Configuration Tool

To configure Esna Telephony Officelixn, navigate to Start ➔ All program ➔ Telephony Officelixn Enterprise Edition ➔ SIP Configuration Tool (not shown). Select Avaya under PBX in the left pane. Enter the following information:

- IP Address: Enter the IP address of the Session Manager, example: 10.10.97.198.
- Realm: Enter a valid domain that is configured for the system, example: bvwdev.com.
- UDP Port: Enter 5060.
- TCP Port: Enter 5060.
Click the **Advanced** tab in the right pane, and check the following check boxes:

- Enable Internal Bridging.
- Use TCP.
- Accept Refer.
- Accept Forward Calls.
Click the **MWI** tab, and check the Force MWI check box. Click on the **OK** button.
Navigate to **PBX → General Settings** and enter **Buffer Size (kb) = 4096**. This configuration allows Officelinx to handle SIP messages sent from Session Manager.

9.2. Configure UC ACE Wizard

Double click on UC ACE Wizard shortcut to launch the setup window for Avaya ACE Wizard. Enter information as below:

- **User Name**: Enter the user created on ACE in Section 8.3.
- **Password**: Enter the password for the ACE user created in Section 8.3.
- **IP Address**: Enter the ACE IP address.
- **Domain**: Enter the domain name used in the system, during compliance test bvwdev.com used.
Click on **Nodes** (shown in previous screen shot) to open the next window, where the user manually enters the device extension to get its notification. Click on the **Next button** (not shown).

Select the list of device on the left side and add it to the right window to start to monitor it. Or the user can remove the device from the monitor list by highlighting the device and click remove. Click **Finish** after complete to save changes.

9.3. Administer Company Profiles

In Officelinx, right click on **Default** node, select **Properties**. In the **Company** window, enter the **Domain Name/IP Address** in FQDN format. This domain name is used in **Section 6.9** to configure **Notify Me on Messaging**. Click **Save** to save all changes if needed.
9.4. Configure User Mailbox in Officelinx Admin

Expand the Officelinx → Esna Interop → Default → Mailbox Structure (not shown). In the right panel right click on the window, select new to add new mailbox (not shown).

This section describes a sample configuration of mailbox 52167 for device 9608 H323 and this mailbox is linked to dev02@ESN Host name.

In General tab enter the following:

- **Mailbox Number**: Enter the extension of physical device.
- **Feature Group**: Select 1: Default Users; this is a super group which is setup to ensure that there are no conflicts between Officelinx and Gmail for more information please see document from Esna in Section 12.
- **Last Name**: enter any name, example: ThreeOne.
- **First Name**: enter any name, example: SixSeven.

![Mailbox Configuration](image)

52167: SixSeven ThreeOne

- **Mailbox Number**: 52167
- **Last Name**: ThreeOne
- **First Name**: SixSeven
- **Feature Group**: 1: Default Users
- **Organizational Unit**: Avaya DevConnect
- **Gender**: Female
- **Password**:

![Password](image)
In **Advanced** tab enter the following:

- **Domain Account Name:** Enter Gmail account which connects to this mailbox dev02.
- **Desktop Capabilities:** Select **Unified Communications**.
In **Synchronization Options** tab enter the following:

- **Use Feature Group setting for IMAP**: make sure this option is checked.
- **User Name**: Enter google email account, example dev02@googleaccount.com.
- **Storage Mode**: Select IMAP.
- **Voice Format**: Select MPEG-1 Audio layer 3 (MP3).
- **E-mail**: Enter the google email account.

Click Save icon to save the configuration.
9.5. Configure Fax

Esna installs, configures, and customizes the Telephony Officelinx Fax Server for their customers. Please refer to Esna Feature Description Guide, Chapters 18 and 19: Faxing and soft faxing. See Reference Section 12 for detail. Thus, this section only describes the interface configuration used during compliance test, so that the user can send a fax-email from a fax machine to iLink Pro user’s Google mailbox. As there are more than one method of setting up fax, and ultimately it will depend on the nature of the enterprise fax requirements for setup and it is out of scope for this application note.

Expand the Officelinx → Esna Interop → Default → Voice Menu. Double click on Menu Number 1 – Test Fax Default. Make sure Default to Company option is checked, and Default is Send to Fax Start Tone (Mailbox=52167…) as shown in below figure:

Note: This configuration was used because when the user sends a fax to Officelinx, there is no fax tone sent from the Officelinx Server and the fax on Communication Manager is waiting and as a result the fax gets no answer, hence the “Default to Company” option with Default “Send to Fax start Tone” on Officelinx is checked in order for Officelinx to send fax tone to the fax machine.
9.6. Install and Configure iLink Pro on Salesforce.com
This section describes the steps needed to install and operate iLink Pro on Salesforce.

9.6.1. Install open CTI Integration
iLink Pro can be installed as a plugin to the Salesforce CRM program. This provides users with contact, presence, and call management functions directly within Salesforce. It is assumed that all the proper and necessary configurations have been setup by the Esna technician. Login to Salesforce using an account with site administrator credentials. Click on the Setup button.

Navigate to App Setup→Customize→Call Center→ Call Centers and click Continue.
In the All Call Centers window, click Import.

Click Choose File, and select the Call Center Definition file created in Section 9.6.2. With that file selected, click Import (not shown). Returning to the All Call Centers window, choose the newly created Call Center and click Edit.

Click Manage Call Center Users to add clients to the new call center.
Click **Add More Users**. Add all of the required users to the list. Once all of the users have been added, click **Add to Call Center** (not shown).

Integration is now complete. Once it becomes available, clients will need to go to the Chrome web store (https://chrome.google.com/webstore) to download iLink Pro. Once that has been installed, you will have UC functionality available within Salesforce.

9.6.2. Call Center Definition

The following text will be imported into Salesforce to setup the integration in Section 9.6.1. Use any text editor (e.g. Notepad) to create the file and save it in the TXT format. Type the following into the appropriate file:

```xml
<callCenter> <section sortOrder="0" name="reqGeneralInfo" label="General Information">
  <item sortOrder="0" name="reqInternalName" label="InternalName">iLinkCTI9</item> <item sortOrder="1" name="reqDisplayName" label="Display Name">iLink Call Center Adapter</item> <item sortOrder="2" name="reqAdapterUrl" label="CTI Adapter URL">https://manage1.esna.com/sfcti/cti.bridge.html</item> <item sortOrder="3" name="reqUseApi" label="Use CTI API">true</item> <item sortOrder="4" name="reqSoftphoneHeight" label="Softphone Height">300</item> <item sortOrder="5" name="reqSoftphoneWidth" label="Softphone Width">500</item> </section> <section sortOrder="1" name="reqDialingOptions" label="Dialing Options">
  <item sortOrder="0" name="reqOutsidePrefix" label="Outside Prefix"></item> <item sortOrder="1" name="reqLongDistPrefix" label="Long Distance Prefix"></item> <item sortOrder="2" name="reqInternationalPrefix" label="International Prefix"></item> </section> </callCenter>
```
9.6.3. Login iLink Pro on Salesforce.com

When launching iLink Pro from within Salesforce, the login screen provides a third option. The client can now select **Use Salesforce credentials** in addition to the Google and UC credentials.

Google credentials are still preferred, but the Salesforce login is provided for sites where this is not an option.

Enter your Salesforce **User Name** and **Password** in the spaces provided. Click **Log in to Salesforce** to launch the plugin.
Below is the screenshot of a user **dev02**, created in Section **9.4**, successfully logging into iLink Pro on Salesforce.

![User dev02 logging into iLink Pro on Salesforce](image)

10. Verification Steps

This section provides the tests that can be performed to verify proper configuration of Communication Manager, Session Manager, ACE, Messaging and Esna Officelinx and iLink Pro solution.

10.1. Verify Avaya Aura® Communication Manager

The following steps may be used to verify the configuration:

- From the Communication Manager SAT, use the `status signaling-group xxx` command to verify that the SIP signaling group is **in-service** (not shown).
- From the Communication Manager SAT, use the `status trunk-group xxx` command to verify that the SIP trunk group is **in-service** (not shown).
- Verify with the `list trace tac xxx` command that calls are using the correct trunk, coverage (not shown).
- Verify the status of the administered CTI links by using the `status aesvcs cti-link` command. Verify that the **Service State** is **established**.

<table>
<thead>
<tr>
<th>status aesvcs cti-link</th>
<th>AE SERVICES CTI LINK STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI Link</td>
<td>Version</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>no</td>
</tr>
</tbody>
</table>
10.2. Verify Avaya Aura® Session Manager

This section describes the steps need to verify that Session Manager is operational.

10.2.1. Verify Avaya Aura® Session Manager is Operational

Log into the System Manager and navigate to Elements → Session Manager → Dashboard (not shown) to verify the overall system status for Session Manager. Specifically, verify the status of the following fields as shown below:

- **Tests Pass:**
- **Security Module:**
- **Service State:**

10.2.2. Verify SIP Entity Link Status

Navigate to Elements → Session Manager → System Status → SIP Entity Monitoring (not shown) to view more detailed status information for one of the SIP Entity Links.

Select the SIP Entity for DevACEsrv from the All Monitored SIP Entities table (not shown) to open the SIP Entity, Entity Link Connection Status page.

In the All Entity Links to SIP Entity: DevACEsrv table, verify the Conn. Status for the link is “Up” as shown below.

Repeat the same step to verify the status of Messaging and Communication Manager are “Up”.

PM; Reviewed: SPOC 5/2/2014 Solution & Interoperability Test Lab Application Notes © 2014 Avaya Inc. All Rights Reserved ESNA91GACMSFDC
10.3. Verify Avaya Agile Communication Environment™

Perform a call using ACE_EXHIBITOR or SOAP UI software. Below is an example of using ACE Exhibitor making a call from **52151** to **52156**.
10.3.1. Verify Avaya Agile Communication Environment™ Server Status

To verify the status of the ACE server, select **Configuration → Server** to verify status of server.

Active Server Information

<table>
<thead>
<tr>
<th>Host name</th>
<th>DevACE.DevACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed IP Address</td>
<td>13</td>
</tr>
<tr>
<td>Service IP Address</td>
<td>13</td>
</tr>
<tr>
<td>Operating System Time</td>
<td>2013-02-20 03:50:05.545 +0000</td>
</tr>
<tr>
<td>Operating System Uptime</td>
<td>10 days, 10 hours, 34 minutes, 55 seconds, 365 milliseconds</td>
</tr>
<tr>
<td>Operating System Version</td>
<td>Red Hat Enterprise Linux Server release 6.0 (Santiago)</td>
</tr>
<tr>
<td>Application Server Status</td>
<td>RUNNING</td>
</tr>
<tr>
<td>Application Server Uptime</td>
<td>10 days, 10 hours, 27 minutes, 55 seconds, 166 milliseconds</td>
</tr>
<tr>
<td>Application Server Version</td>
<td>0.0.0.3 [ND 0.0.0.3 cf931212.03]</td>
</tr>
</tbody>
</table>

ACE Core Information

<table>
<thead>
<tr>
<th>Application Status</th>
<th>RUNNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Uptime</td>
<td>10 days, 10 hours, 28 minutes, 55 seconds, 678 milliseconds</td>
</tr>
<tr>
<td>Application Version</td>
<td>0.2.0</td>
</tr>
<tr>
<td>Application HostType</td>
<td>STANDALONE</td>
</tr>
<tr>
<td>Associated Information</td>
<td>UNAVAILABLE</td>
</tr>
</tbody>
</table>
10.4. Verify Avaya Aura® Messaging

The following section will describe the steps required to verify the connection of messaging.

10.4.1. Verify Avaya Aura® Messaging can Make Calls to Phones

Test calls can be made from Messaging to phones that are configured with mailboxes. To perform this test, use the SMI and select Administration → Messaging. In the left panel, under Diagnostics select Diagnostics (Application). In the right panel enter the following:

- Select the test(s) to run: Select Call-out from the drop down menu.
- Telephone number: Enter the number to call.

Click on Run Tests to start the test. The phone will ring and when answered a test message is played. The Results section of the page will update indicating that the call was ok as shown below.
10.5. **Verify user can Receive and Retrieve Avaya Aura® Messaging Voice Message using Google Mail**

Make a call from an iLink Pro to another device. Verify that the call covers to Messaging upon no answer. Leave a voice message. Verify that the MWI light of the called phone turns on. Log on to the Esna Google mail account of the called user and verify that user got the message from Messaging and is able to listen to the voice message. Verify that the MWI light turns off. (Notes: On this version of Officelinx 9, when messages are read, Officelinx should attempt to extinguish the MWI via SIP if possible. This will not reflect actual message status on Messaging). Example below show user has incoming voice message in the mailbox.

![Email inbox with a voice message](image)

10.6. **Verify user can send a fax through Google email**

In Google mail, click **Compose** to start a new message. In the **To** field, enter the full fax address, example during the compliance test, fax=52174@EsnaHostname is used. Enter subject and fax content, click **Send**.

![Email draft with fax content](image)
Verify that the user will received an email from **Postmaster** to ask the user to activate the fax request.

Click on the provided link in the Postmaster’s email to confirm (not shown). Verify that the fax machine is able to receive and print out the fax content.

10.7. Verify user able to make a call using iLink Pro on Salesforce.com

Use appropriate credential to login SFDC (not shown). During compliance test account dev02 as configured in Section **9.4** is used. Below is detail of SFDC logged in as dev02 with its Officelinx mailbox name is **SixSeven ThreeOne**.
To make a call, click on the phone icon beside selected user (shown below).

Verify that the devices of calling and called user are ringing. Called user answer the phone. Verify that two-way voice path is established.

11. Conclusion
Interoperability testing of Avaya Aura® Agile Communication Environment 6.2.2, Avaya Aura® Messaging 6.2, and Avaya Aura® Communication Manager 6.3 with Officelixx 9 SP1 – iLink Pro was completed and passed with observations are noted in Section 2.2.

12. Additional References
The following Avaya product documentation can be found at http://support.avaya.com
2. Administering Avaya Aura® Session Manager, June 2013, Release 6.3
4. Avaya Agile Communication Environment™ Service Provider Administration Release 6.2 NN10850-005, 10.01 November 2012
5. For information regarding security on Communication Manager, see Avaya Aura Communication Manager Security Design (03-601973).
6. For an alternate procedure to configure a signing authority as trusted on Avaya ACE, see "Trusting a CA or self-signed certificate" in Avaya Agile Communication Environment™ User and Security Administration (NN10850–010).

The following document was provided by Esna:
©2014 Avaya Inc. All Rights Reserved.
Avaya and the Avaya Logo are trademarks of Avaya Inc. All trademarks identified by ® and ™ are registered trademarks or trademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective owners. The information provided in these Application Notes is subject to change without notice. The configurations, technical data, and recommendations provided in these Application Notes are believed to be accurate and dependable, but are presented without express or implied warranty. Users are responsible for their application of any products specified in these Application Notes.

Please e-mail any questions or comments pertaining to these Application Notes along with the full title name and filename, located in the lower right corner, directly to the Avaya DevConnect Program at devconnect@avaya.com.