

1

Proactive Outreach Manager Agent API

 Release 3.0.4

 Issue 1.0

 December 2016

2

AVAYA SOFTWARE DEVELOPMENT KIT LICENSE

AGREEMENT

REVISED: March 24, 2016

READ THIS CAREFULLY BEFORE ELECTRONICALLY

ACCESSING OR USING THIS PROPRIETARY PRODUCT!

THIS IS A LEGAL AGREEMENT (“AGREEMENT”)

BETWEEN YOU, INDIVIDUALLY, AND/OR THE LEGAL

ENTITY FOR WHOM YOU ARE OPENING, INSTALLING,

DOWNLOADING, COPYING OR OTHERWISE USING THE

SDK (COLLECTIVELY, AS REFERENCED HEREIN, “YOU”,

“YOUR”, OR “LICENSEE”) AND AVAYA INC. OR ANY

AVAYA AFFILIATE (COLLECTIVELY, “AVAYA”). IF YOU

ARE ACCEPTING THE TERMS AND CONDITIONS OF

THIS AGREEMENT ON BEHALF OF A LEGAL ENTITY,

YOU REPRESENT AND WARRANT THAT YOU HAVE

FULL LEGAL AUTHORITY TO ACCEPT ON BEHALF OF

AND BIND SUCH LEGAL ENTITY TO THIS AGREEMENT.

BY OPENING THE MEDIA CONTAINER, BY INSTALLING,

DOWNLOADING, COPYING OR OTHERWISE USING THE

AVAYA SOFTWARE DEVELOPMENT KIT (“SDK”) OR

AUTHORIZING OTHERS TO DO SO, YOU SIGNIFY THAT

YOU ACCEPT AND AGREE TO BE BOUND BY THE

TERMS OF THIS AGREEMENT. IF YOU DO NOT HAVE

SUCH AUTHORITY OR DO NOT WISH TO BE BOUND BY

THE TERMS OF THIS AGREEMENT, SELECT THE

"DECLINE" BUTTON AT THE END OF THE TERMS OF

THIS AGREEMENT OR THE EQUIVALENT OPTION.

1.0 DEFINITIONS.

1.1 “Affiliates” means any entity that is directly or indirectly

controlling, controlled by, or under common control with

Avaya Inc. For purposes of this definition, “control” means

the power to direct the management and policies of such

party, directly or indirectly, whether through ownership of

voting securities, by contract or otherwise; and the terms

“controlling” and “controlled” have meanings correlative to

the foregoing.

1.2 “Avaya Software Development Kit” or “SDK” means

Avaya technology, which may include Software, Client

Libraries, Specification Documents, Software libraries,

application programming interfaces (“API”), Software tools,

Sample Application Code and Documentation.

1.3 “Client Libraries” mean any enabler code specifically

designated as such and included in a SDK. Client Libraries

may also be referred to as “DLLs”, and represent elements

of the SDK required at runtime to communicate with Avaya

products or other SDK elements.

1.4 “Change In Control” shall be deemed to have occurred if

any person, entity or group comes to own or control, directly

or indirectly, beneficially or of record, voting securities (or

any other form of controlling interest) which represent more

than fifty percent (50%) of the total voting power of or to

Licensee.

1.5 “Derivative Work(s)” means any translation (including

translation into other computer languages), port, compiling of

Source Code into object code, combination with a pre-

existing work, modification, correction, addition, extension,

upgrade, improvement, compilation, abridgment or other

form in which an existing work may be recast, transformed or

adapted or which would otherwise constitute a derivative

work under the United States Copyright Act. Permitted

Modifications will be considered Derivative Works.

1.6 “Documentation” includes programmer guides, CDs,

manuals, materials, and information appropriate or

necessary for use in connection with the SDK.

Documentation may be provided in machine-readable,

electronic or hard copy form.

1.7 “Intellectual Property” means any and all: (i) rights

associated with works of authorship throughout the world,

including copyrights, neighboring rights, moral rights, and

mask works, (ii) trademark and trade name rights and similar

rights, (iii) trade secret rights, (iv) patents, algorithms,

designs and other industrial property rights, (v) all other

intellectual and industrial property rights (of every kind and

nature throughout the world and however designated)

whether arising by operation of law, contract, license, or

otherwise, and (vi) all registrations, initial applications,

renewals, extensions, continuations, divisions or reissues

thereof now or hereafter in force (including any rights in any

of the foregoing).

1.8 “Open Source Software" or "OSS" is as defined by the
Open Source Initiative (“OSI”) and is software licensed under
an OSI approved license as set forth at
http://www.opensource.org/docs/osd (or such successor site
as designated by OSI).

1.9 “Permitted Modification(s)” means Licensee’s

modifications of the Sample Application Code as needed to

create applications, interfaces, workflows or processes for

use with Avaya products.

1.10 “Specification Document” means any notes or similar

instructions in hard copy or machine readable form, including

any technical, interface and/or interoperability specifications

that define the requirements and conditions for connection to

http://www.opensource.org/docs/osd

3

and/or interoperability with Avaya products, systems and

solutions.

1.11 “Source Code” means human readable or high-level

statement version of software written in the source language

used by programmers and includes one or more programs.

Source Code programs may include one or more files, such

as user interface markup language (.mxml), action script

(.as), precompiled Flash code (.swc), java script (.js),

hypertext markup language (.html), active server pages

(.asp), C# or C# .Net source code (.cs), java source code

(.java), java server pages (.jsp), java archives (.jar), graphic

interchange format (.gif), cascading style sheet (.css), audio

files (.wav) and extensible markup language (.xml) files.

1.12 “Sample Application Code” means Software provided

for the purposes of demonstrating functionality of an Avaya

product through the Avaya Software Development Kit.

1.13 “Software” means data or information constituting one

or more computer or apparatus programs, including Source

Code or in machine-readable, compiled object code form.

2.0 LICENSE GRANT.

2.1 SDK License.

A. Provided Licensee pays to Avaya the applicable license

fee (if any), Avaya hereby grants Licensee a limited, non-

exclusive, non-transferable license (without the right to

sublicense, except as set forth in 2.1B(iii)) under the

Intellectual Property of Avaya and, if applicable, its licensors

and suppliers to (i) use the SDK solely for the purpose of

Licensee's internal development efforts to develop

applications, interfaces, value-added services and/or

solutions, workflows or processes to work in conjunction with

Avaya products; (ii) to package Client Libraries for

redistribution with Licensee’s complementary applications

that have been developed using this SDK, subject to the

terms and conditions set forth herein; (iii) use Specification

Documents solely to enable Licensee’s products, services

and application solutions to exchange messages and signals

with Avaya products, systems and solutions to which the

Specification Document(s) apply; (iv) modify and create

Derivative Works of the Sample Application Code,

Specification Documents and Documentation solely for

internal development of applications, interfaces, workflows or

processes for use with Avaya products, integration of such

applications, interfaces, workflows and processes with

Avaya products and interoperability testing of the foregoing

with Avaya products; and (v) compile or otherwise prepare

for distribution the Sample Application Code with Permitted

Modifications, into an object code or other machine-readable

program format for distribution and distribute the same

subject to the conditions set forth in Section 2.1B.

B. The foregoing license to use Sample Application Code is

contingent upon the following: (i) Licensee must ensure that

the modifications made to the Sample Application Code as

permitted in clause (iv) of Section 2.1A are compatible

and/or interoperable with Avaya products and/or integrated

therewith, (ii) Licensee may distribute the Sample

Application Code with Permitted Modifications, provided that

such distribution is subject to an end user license agreement

that is consistent with the terms of this Agreement and, if

applicable, any other agreement with Avaya (e.g., the Avaya

DevConnect Program Agreement), and is equally as

protective as Licensee’s standard software license terms,

but in no event shall the standard of care be less than a

reasonable degree of care, and (iii) Licensee ensures that

each end user who receives Client Libraries or Sample

Application Code with Permitted Modifications has all

necessary licenses for all underlying Avaya products

associated with such Client Libraries or Sample Application

Code.

C. Except as expressly authorized by this Agreement, and

unless otherwise permitted by the applicable law, Licensee

acknowledges and agrees that the foregoing license does

not include any right to distribute, license, translate, publish,

or display the SDK, Specification Documents or

Documentation or any copy or part thereof. Licensee

represents and warrants that it will not use, modify, or

distribute the redistributable Client Libraries in any manner

that causes any portion of the redistributable Client Libraries

that is not already subject to an OSS license to become

subject to the terms of any OSS license.

D. Licensee acknowledges and agrees that it is licensed to

use the SDK only in connection with Avaya products (and if

applicable, in connection with services provided by or on

behalf of Avaya).

E. With respect to Software that contains elements provided

by third party suppliers, Licensee may install and use the

Software in accordance with the terms and conditions of the

applicable license agreements, such as “shrinkwrap” or

“click-through” licenses, accompanying or applicable to the

Software.

F. Avaya shall have the right, at its cost and expense, to

inspect and/or audit (i) by remote polling or other reasonable

electronic means at any time and (ii) in person during normal

business hours and with reasonable notice Licensee’s

4

books, records, and accounts, to determine Licensee’s

compliance with this Agreement. In the event such

inspection or audit uncovers non-compliance with this

Agreement, then without prejudice to Avaya’s termination

rights hereunder, Licensee shall promptly pay Avaya any

applicable license fees. Licensee agrees to keep a current

record of the location of the SDK.

2.2 No Standalone Product. Nothing in this Agreement

authorizes or grants Licensee any rights to distribute or

otherwise make available to a third party the SDK, in whole

or in part, or any Derivative Work in source or object code

format on a standalone basis other than the modifications

permitted in Section 2.1B of this Agreement.

2.3 Proprietary Notices. Licensee shall not remove any

copyright, trade mark or other proprietary notices

incorporated in the copies of the SDK, Sample Application

Code and redistributable files in Licensee’s possession or

control or any modifications thereto. Redistributions in binary

form or other suitable program format for distribution, to the

extent expressly permitted, must also reproduce Avaya’s

copyright, trademarks or other proprietary notices as

incorporated in the SDK in any associated Documentation or

“splash screens” that display Licensee copyright notices.

2.4 Third-Party Components. You acknowledge certain

software programs or portions thereof included in the SDK

may contain software distributed under third party

agreements (“Third Party Components”), which may contain

terms that expand or limit rights to use certain portions of the

SDK (“Third Party Terms”). Information identifying the

copyright holders of the Third Party Components and the

Third Party Terms that apply is available in the attached

Schedule 1 (if any), SDK, Documentation, or on Avaya’s web

site at: http://support.avaya.com/Copyright (or such

successor site as designated by Avaya). The open source

software license terms provided as Third Party Terms are

consistent with the license rights granted in this Agreement,

and may contain additional rights benefiting You, such as

modification and distribution of the open source software.

The Third Party Terms shall take precedence over this

Agreement, solely with respect to the applicable Third Party

Components, to the extent that this Agreement imposes

greater restrictions on You than the applicable Third Party

Terms. Licensee is solely responsible for procuring any

necessary licenses for Third Party Components, including

payment of licensing royalties or other amounts to third

parties, for the use thereof.

2.5 Copies of SDK. Licensee may copy the SDK only as

necessary to exercise its rights hereunder.

2.6 No Reverse Engineering. Licensee shall have no rights

to any Source Code for any of the software in the SDK,

except for the explicit rights to use the Source Code as

provided to Licensee hereunder. Licensee agrees that it

shall not cause or permit the disassembly, decompilation or

reverse engineering of the Software. Notwithstanding the

foregoing, if the SDK is rightfully located in a member state

of the European Union and Licensee needs information

about the Software in the SDK in order to achieve

interoperability of an independently created software

program with the Software in the SDK, Licensee will first

request such information from Avaya. Avaya may charge

Licensee a reasonable fee for the provision of such

information. If Avaya refuses to make such information

available, then Licensee may take steps, such as reverse

assembly or reverse compilation, to the extent necessary

solely in order to achieve interoperability of the Software in

the SDK with an independently created software program.

To the extent that the Licensee is expressly permitted by

applicable mandatory law to undertake any of the activities

listed in this section, Licensee will not exercise those rights

until Licensee has given Avaya twenty (20) days written

notice of its intent to exercise any such rights.

2.7 Responsibility for Development Tools. Licensee

acknowledges that effective utilization of the SDK may

require the use of a development tool, compiler and other

software and technology of third parties, which may be

incorporated in the SDK pursuant to Section 2.4. Licensee is

solely responsible for procuring such third party software and

technology and the necessary licenses, including payment of

licensing royalties or other amounts to third parties, for the

use thereof.

2.8 U.S. Government End Users. The SDK shall be

classified as "commercial computer software" and the

Documentation is classified as "commercial computer

software documentation" or "commercial items," pursuant to

FAR 12.212 or DFAR 227.7202, as applicable. Any use,

modification, reproduction, release, performance, display or

disclosure of the SDK or Documentation by the Government

of the United States shall be governed solely by the terms of

the Agreement and shall be prohibited except to the extent

expressly permitted by the terms of the Agreement.

2.9 Limitation of Rights. No right is granted to Licensee to

sublicense its rights hereunder. All rights not expressly

granted are reserved by Avaya or its licensors or suppliers

http://support.avaya.com/Copyright

5

and, except as expressly set forth herein, no license is

granted by Avaya or its licensors or suppliers under this

Agreement directly, by implication, estoppel or otherwise,

under any Intellectual Property right of Avaya or its licensors

or suppliers. Nothing herein shall be deemed to authorize

Licensee to use Avaya's trademarks or trade names in

Licensee's advertising, marketing, promotional, sales or

related materials.

2.10 Independent Development.

2.10.1 Licensee understands and agrees that Avaya,

Affiliates, or Avaya’s licensees or suppliers may acquire,

license, develop for itself or have others develop for it, and

market and/or distribute applications, interfaces, value-

added services and/or solutions, workflows or processes

similar to that which Licensee may develop. Nothing in this

Agreement shall restrict or limit the rights of Avaya, Affiliates,

or Avaya’s licensees or suppliers to commence or continue

with the development or distribution of such applications,

interfaces, value-added services and/or solutions, workflows

or processes.

2.10.2 Nonassertion by Licensee. Licensee agrees not to

assert any Intellectual Property related to the SDK or

applications, interfaces, value-added services and/or

solutions, workflows or processes developed using the SDK

against Avaya, Affiliates, Avaya’s licensors or suppliers,

distributors, customers, or other licensees of the SDK.

2.11 Feedback and Support. Licensee agrees to provide

any information, comments, problem reports, enhancement

requests and suggestions regarding the performance of the

SDK (collectively, “Feedback”) via any public or private

support mechanism, forum or process otherwise indicated by

Avaya. Avaya monitors applicable mechanisms, forums, or

processes but is under no obligation to implement any of

Feedback, or be required to respond to any questions asked

via the applicable mechanism, forum, or process. Licensee

hereby assigns to Avaya all right, title, and interest in and to

Feedback provided to Avaya.

2.12 Fees and Taxes. To the extent that fees are associated

with the license of the SDK, Licensee agrees to pay to

Avaya or pay directly to the applicable government or taxing

authority, if requested by Avaya, all taxes and charges,

including without limitation, penalties and interest, which may

be imposed by any federal, state or local governmental or

taxing authority arising hereunder excluding, however, all

taxes computed upon Avaya’s net income. If You move any

Software, including the SDK, and as a result of such move, a

jurisdiction imposes a duty, tax, levy or fee (including

withholding taxes, fees, customs or other duties for the

import and export of any such Software), then You are solely

liable for, and agree to pay, any such duty, taxes, levy or

other fees.

2.13 No Endorsement. Neither the name Avaya, Affiliates

nor the names of contributors may be used to endorse or

promote products derived from the Avaya SDK without

specific prior written permission from Avaya.

2.14 High Risk Activities. The Avaya SDK is not fault-

tolerant, and is not designed, manufactured or intended for

use or resale as on-line control equipment or in hazardous

environments requiring failsafe performance, such as in the

operation of nuclear facilities, aircraft navigation or aircraft

communications systems, mass transit, air traffic control,

medical or direct life support machines, dedicated

emergency call handling systems or weapons systems, in

which the failure of the Avaya SDK could lead directly to

death, personal injury, or severe physical or environmental

damage ("high risk activities"). If Licensee uses the Avaya

SDK for high risk activities, Licensee does so at Licensee’s

own risk and Licensee assumes all responsibility and liability

for such use to the maximum extent such limitation or

exclusion is permitted by applicable law. Licensee agrees

that Avaya and its suppliers will not be liable for any claims

or damages arising from or related to use of the Avaya SDK

for high risk activities to the maximum extent such limitation

or exclusion is permitted by law.

2.15 No Virus. Licensee warrants that (i) the applications,

interfaces, value-added services and/or solutions, workflows

or processes Licensee develops using this SDK will not

contain any computer program file that includes time code

limitations, disabling devices, or any other mechanism which

will prevent the Avaya product from being functional at all

times (collectively “Time Bombs”); and (ii) the applications,

interfaces, value-added services and/or solutions, workflows

or processes Licensee develops using this SDK will be free

of computer viruses, black boxes, malware, trapdoors, and

other mechanisms to allow remote/hidden attacks or access

through unauthorized computerized command and control,

and will not contain any other computer software routines

designed to spy, monitor traffic (network sniffers,

keyloggers), damage or erase such applications, interfaces,

value-added services and/or solutions, workflows or

processes developed using this SDK or data, or any

computer files or systems of Avaya, Affiliates, and/or end

users (collectively “Virus”). In addition to any other remedies

permitted in the Agreement, if Licensee breaches its

warranties under this Section, Licensee will, at its expense,

6

take remedial action to eliminate any Time Bombs and/or

Viruses and prevent re-occurrence (including implementing

appropriate processes to prevent further occurrences) as

well as provide prompt, reasonable assistance to Avaya to

materially reduce the effects of the Time Bomb and/or Virus.

2.16 Disclaimer. Any software security feature is not a

guaranty against malicious code, deleterious routines, and

other techniques and tools employed by computer “hackers”

and other third parties to create security exposures.

Compromised passwords represent a major security risk.

Avaya encourages You to create strong passwords using

three different character types, change Your password

regularly and refrain from using the same password

regularly. You must treat such information as confidential.

You agree to notify Avaya immediately upon becoming

aware of any unauthorized use or breach of Your user name,

password, account, or subscription. You are responsible for

ensuring that Your networks and systems are adequately

secured against unauthorized intrusion or attack and

regularly back up of Your data and files in accordance with

good computing practices.

3. OWNERSHIP.

3.1 As between Avaya and Licensee, Avaya or its licensors

or suppliers shall own and retain all Intellectual Property

rights, in and to the SDK and any corrections, bug fixes,

enhancements, updates, improvements, or modifications

thereto and Licensee hereby irrevocably transfers, conveys

and assigns to Avaya, its licensors and its suppliers all of its

right, title, and interest therein. Avaya or its licensors or

suppliers shall have the exclusive right to apply for or

register any patents, mask work rights, copyrights, and such

other proprietary protections with respect thereto. Licensee

acknowledges that the license granted under this Agreement

does not provide Licensee with title or ownership to the SDK,

but only a right of limited use under the terms and conditions

of this Agreement.

3.2 Grant Back License to Avaya. Licensee hereby grants to

Avaya an irrevocable, perpetual, non-exclusive,

sublicensable, royalty-free, worldwide license under any and

all of Licensee's Intellectual Property rights related to any

Permitted Modifications, to use, employ, practice, make,

have made, sell, and/or otherwise exploit any and all

Permitted Modifications.

4.0 SUPPORT.

4.1 No Avaya Support. Avaya will not provide any support for

the SDK provided under this Agreement or for any Derivative

Works, including, without limitation, modifications to the

Source Code or applications built by Licensee using the

SDK. Avaya shall have no obligation to provide support for

the use of the SDK, or Licensee's derivative application,

services or solutions which may or may not include

redistributable Client Libraries or Sample Application Code,

to any third party to whom Licensee delivers such derivative

applications, services or solutions. Avaya further will not

provide fixes, patches or repairs for any defects that might

exist in the SDK or the Sample Application Code provided

under this Agreement. In the event that Licensee desires

support services for the SDK, and, provided that Avaya

offers such support services (in its sole discretion), Licensee

will be required to enter into an Avaya DevConnect Program

Agreement or other support agreement with Avaya.

4.2 Licensee Obligations. Licensee acknowledges and

agrees that it is solely responsible for developing and

supporting any applications, interfaces, value-added

services and/or solutions, workflows or processes developed

under this Agreement, including but not limited to (i)

developing, testing and deploying such applications,

interfaces, value-added services and/or solutions, workflows

or processes; (ii) configuring such applications, interfaces,

value-added services and/or solutions, workflows or

processes to interface and communicate properly with Avaya

products; and (iii) updating and maintaining such

applications, interfaces, value-added services and/or

solutions, workflows or processes as necessary for

continued use with the same or different versions of end

user and/or third party licensor products, and Avaya

products.

5.0 CONFIDENTIALITY.

5.1 Protection of Confidential Information. Licensee

acknowledges and agrees that the SDK and any other

Avaya technical information obtained by it under this

Agreement (collectively, “Confidential Information”) is

confidential information of Avaya. Licensee shall take all

reasonable measures to maintain the confidentiality of the

Confidential Information. Licensee further agrees at all times

to protect and preserve the SDK in strict confidence in

perpetuity, and shall not use such Confidential Information

other than as expressly authorized by Avaya under this

Agreement, nor shall Licensee disclose any Confidential

Information to third parties without Avaya's written consent.

7

Licensee further agrees to immediately return to Avaya all

Confidential Information (including copies thereof) in

Licensee's possession, custody, or control upon termination

of this Agreement at any time and for any reason. The

obligations of confidentiality shall not apply to information

which (a) has entered the public domain except where such

entry is the result of Licensee's breach of this Agreement; (b)

prior to disclosure hereunder was already rightfully in

Licensee's possession; (c) subsequent to disclosure

hereunder is obtained by Licensee on a non-confidential

basis from a third party who has the right to disclose such

information to the Licensee; (d) is required to be disclosed

pursuant to a court order, so long as Avaya is given

adequate notice and the ability to challenge such required

disclosure.

5.2 Press Releases. Any press release or publication

regarding this Agreement is subject to prior written approval

of Avaya.

6.0 NO WARRANTY.

The SDK and Documentation are provided “AS-IS” without

any warranty whatsoever. AVAYA SPECIFICALLY AND

EXPRESSLY DISCLAIMS ANY WARRANTIES OR

CONDITIONS, STATUTORY OR OTHERWISE,

INCLUDING THE IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, NONINFRINGEMENT AND SATISFACTORY

QUALITY. AVAYA DOES NOT WARRANT THAT THE SDK

AND DOCUMENTATION ARE SUITABLE FOR

LICENSEE'S USE, THAT THE SDK OR DOCUMENTATION

ARE WITHOUT DEFECT OR ERROR, THAT OPERATION

WILL BE UNINTERRUPTED, OR THAT DEFECTS WILL BE

CORRECTED. FURTHER, AVAYA MAKES NO

WARRANTY REGARDING THE RESULTS OF THE USE

OF THE SDK AND DOCUMENTATION. NEITHER AVAYA

NOR ITS SUPPLIERS MAKE ANY WARRANTY, EXPRESS

OR IMPLIED, THAT THE SDK OR DOCUMENTATION IS

SECURE, SECURITY THREATS AND VULNERABILITIES

WILL BE DETECTED OR SOFTWARE WILL RENDER AN

END USER’S OR LICENSEE’S NETWORK OR

PARTICULAR NETWORK ELEMENTS SAFE FROM

INTRUSIONS AND OTHER SECURITY BREACHES.

7.0 CONSEQUENTIAL DAMAGES WAIVER.

EXCEPT FOR PERSONAL INJURY CLAIMS AND WILLFUL

MISCONDUCT, AVAYA SHALL NOT BE LIABLE FOR ANY

INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL

DAMAGES IN CONNECTION WITH, ARISING OUT OF OR

RELATING TO THIS AGREEMENT OR USE OF THE SDK,

OR FOR THE LOSS OR CORRUPTION OF DATA,

INFORMATION OF ANY KIND, BUSINESS, PROFITS, OR

OTHER COMMERCIAL LOSS, HOWEVER CAUSED, AND

WHETHER OR NOT AVAYA HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

8.0 LIMITATION OF LIABILITY.

EXCEPT FOR PERSONAL INJURY CLAIMS AND WILLFUL

MISCONDUCT, IN NO EVENT SHALL AVAYA'S TOTAL

LIABILITY TO LICENSEE IN CONNECTION WITH,

ARISING OUT OF OR RELATING TO THIS AGREEMENT

EXCEED FIVE HUNDRED DOLLARS ($500). THE

PARTIES AGREE THAT THE LIMITATIONS SPECIFIED IN

THIS SECTION WILL APPLY EVEN IF ANY LIMITED

REMEDY PROVIDED IN THIS AGREEMENT IS FOUND TO

HAVE FAILED OF ITS ESSENTIAL PURPOSE.

9.0 INDEMNIFICATION.

Licensee shall indemnify and hold harmless Avaya, Affiliates

and their respective officers, directors, agents, suppliers,

customers and employees from and against all claims,

damages, losses, liabilities, costs, expenses, and fees

(including fees of attorneys and other professionals) arising

from or relating to Licensee’s use of the SDK, alone or in

combination with other software, such as operating systems

and codecs, and the, direct or indirect, use, distribution or

sale of any software, Derivative Works or other products

(including but not limited to applications, interfaces, and

application programming interfaces) developed utilizing the

SDK, including, but not limited to, products liability claims

and claims of infringement of third party Intellectual Property

rights.

10.0 TERM AND TERMINATION.

10.1 This Agreement will continue through December 31
st
 of

the current calendar year. The Agreement will automatically

renew for one (1) year terms, unless terminated as specified

in Section 10.2 or 10.3 below.

10.2 Either party shall have the right to terminate the

Agreement, upon thirty (30) days written notice to the other

party.

10.3 Notwithstanding language to the contrary, Avaya may

terminate this Agreement immediately, upon written notice to

Licensee for breach of Section 2 (License Grant), Section 5

(Confidentiality) or Section 12 (Compliance with Laws).

Avaya may also terminate this Agreement immediately by

giving written notice if a Change In Control should occur or if

Licensee becomes insolvent, or voluntary or involuntary

8

proceedings by or against Licensee are instituted in

bankruptcy or under any insolvency law, or a receiver or

custodian is appointed for Licensee, or proceedings are

instituted by or against Licensee for corporate reorganization

or the dissolution of Licensee, which proceedings, if

involuntary, have not been dismissed within thirty (30) days

after the date of filing, or Licensee makes an assignment for

the benefit of its creditors, or substantially all of the assets of

Licensee are seized or attached and not released within

sixty (60) days thereafter, or if Licensee has ceased or

threatened to cease to do business in the regular course.

10.4 Upon termination of this Agreement, Licensee will

immediately cease using the SDK, and Licensee agrees to

destroy all adaptations or copies of the SDK and

Documentation, or return them to Avaya upon termination of

this License.

10.5 The rights and obligations of the parties contained in

Sections 2.3, 2.6, 2.7, 2.10, 2.11, 3, and 5 through 18 shall

survive any expiration or termination of this Agreement.

11.0 ASSIGNMENT.

Avaya may assign all or any part of its rights and obligations

hereunder. Licensee may not assign this Agreement or any

interest or rights granted hereunder to any third party without

the prior written consent of Avaya. The term "assign"

includes, but is not limited to, any transaction in which there

is a Change In Control or reorganization of Licensee

pursuant to a merger, sale of assets or stock. This

Agreement shall terminate immediately upon occurrence of

any prohibited assignment.

12.0 COMPLIANCE WITH LAWS.

Licensee shall comply with all applicable laws and

regulations, including without limitation those applicable to

data privacy, intellectual property, trade secret, fraud, music

performance rights and the export or re-export of technology

and will not export or re-export the SDK or any other

technical information provided under this Agreement in any

form in violation of the export control laws of the United

States of America and of any other applicable country. For

more information on such export laws and regulations,

Licensee may refer to the resources provided in the websites

maintained by the U.S. Commerce Department, the U.S.

State Department and the U.S. Office of Foreign Assets

Control.

13.0 WAIVER.

The failure to assert any rights under this Agreement,

including, but not limited to, the right to terminate in the

event of breach or default, will not be deemed to constitute a

waiver of the right to enforce each and every provision of this

Agreement in accordance with their terms.

14.0 SEVERABILITY.

If any provision of this Agreement is determined to be

unenforceable or invalid, this Agreement will not be rendered

unenforceable or invalid as a whole, and the provision will be

changed and interpreted so as to best accomplish the

objectives of the original provision within the limits of

applicable law.

15.0 GOVERNING LAW AND DISPUTE RESOLUTION.

This Agreement and any dispute, claim or controversy

arising out of or relating to this Agreement ("Dispute"),

including without limitation those relating to the formation,

interpretation, breach or termination of this Agreement, or

any issue regarding whether a Dispute is subject to

arbitration under this Agreement, will be governed by New

York State laws, excluding conflict of law principles, and the

United Nations Convention on Contracts for the International

Sale of Goods.

Any Dispute shall be resolved in accordance with the

following provisions. The disputing party shall give the other

party written notice of the Dispute. The parties will attempt in

good faith to resolve each Dispute within thirty (30) days, or

such other longer period as the parties may mutually agree,

following the delivery of such notice, by negotiations

between designated representatives of the parties who have

dispute resolution authority. If a Dispute that arose anywhere

other than in the United States or is based upon an alleged

breach committed anywhere other than in the United States

cannot be settled under these procedures and within these

timeframes, it will be conclusively determined upon request

of either party by a final and binding arbitration proceeding to

be held in accordance with the Rules of Arbitration of the

International Chamber of Commerce by a single arbitrator

appointed by the parties or (failing agreement) by an

arbitrator appointed by the President of the International

Chamber of Commerce (from time to time), except that if the

aggregate claims, cross claims and counterclaims by any

one party against any or all other parties exceed One Million

US Dollars at the time all claims, including cross claims and

counterclaims are filed, the proceeding will be held in

accordance with the Rules of Arbitration of the International

9

Chamber of Commerce by a panel of three arbitrator(s)

appointed in accordance with the Rules of Arbitration of the

International Chamber of Commerce. The arbitration will be

conducted in the English language, at a location agreed by

the parties or (failing agreement) ordered by the arbitrator(s).

The arbitrator(s) will have authority only to award

compensatory damages within the scope of the limitations of

this Agreement and will not award punitive or exemplary

damages. The arbitrator(s) will not have the authority to limit,

expand or otherwise modify the terms of this Agreement.

The ruling by the arbitrator(s) will be final and binding on the

parties and may be entered in any court having jurisdiction

over the parties or any of their assets. The parties will evenly

split the cost of the arbitrator(s)' fees, but each party will bear

its own attorneys' fees and other costs associated with the

arbitration. The parties, their representatives, other

participants and the arbitrator(s) will hold the existence,

content and results of the arbitration in strict confidence to

the fullest extent permitted by law. Any disclosure of the

existence, content and results of the arbitration shall be as

limited and narrowed as required to comply with the

applicable law. By way of illustration, if the applicable law

mandates the disclosure of the monetary amount of an

arbitration award only, the underlying opinion or rationale for

that award may not be disclosed.

If a Dispute by one party against the other that arose in the

United States or is based upon an alleged breach committed

in the United States cannot be settled under the procedures

and within the timeframe set forth above, then either party

may bring an action or proceeding solely in either the

Supreme Court of the State of New York, New York County,

or the United States District Court for the Southern District of

New York. Except as otherwise stated above with regard to

arbitration of Disputes that arise anywhere other than in the

United States or are based upon an alleged breach

committed anywhere other than in the United States, each

party to this Agreement consents to the exclusive jurisdiction

of those courts, including their appellate courts, for the

purpose of all actions and proceedings.

The parties agree that the arbitration provision in this section

may be enforced by injunction or other equitable order, and

no bond or security of any kind will be required with respect

to any such injunction or order. Nothing in this section will be

construed to preclude either party from seeking provisional

remedies, including but not limited to temporary restraining

orders and preliminary injunctions from any court of

competent jurisdiction in order to protect its rights, including

its rights pending arbitration, at any time. In addition and

notwithstanding the foregoing, Avaya shall be entitled to take

any necessary legal action at any time, including without

limitation seeking immediate injunctive relief from a court of

competent jurisdiction, in order to protect Avaya's intellectual

property and its confidential or proprietary information

(including but not limited to trade secrets).

16.0 IMPORT/EXPORT CONTROL.

Licensee is advised that the SDK is of U.S. origin and

subject to the U.S. Export Administration Regulations

(“EAR”). The SDK also may be subject to applicable local

country import/export laws and regulations. Diversion

contrary to U.S. and/or applicable local country law and/or

regulation is prohibited. Licensee agrees not to directly or

indirectly export, re-export, import, download, or transmit the

SDK to any country, end user or for any use that is contrary

to applicable U.S. and/or local country regulation or statute

(including but not limited to those countries embargoed by

the U.S. government). Licensee represents that any

governmental agency has not issued sanctions against

Licensee or otherwise suspended, revoked or denied

Licensee's import/export privileges. Licensee agrees not to

use or transfer the SDK for any use relating to nuclear,

chemical or biological weapons, or missile technology,

unless authorized by the U.S. and/or any applicable local

government by regulation or specific written license.

Additionally, Licensee is advised that the SDK may contain

encryption algorithm or source code that may not be

exported to government or military end users without a

license issued by the U.S. Bureau of Industry and Security

and any other country’s governmental agencies, where

applicable.

17.0 AGREEMENT IN ENGLISH.

The parties confirm that it is their wish that the Agreement,

as well as all other documents relating hereto, including all

notices, have been and shall be drawn up in the English

language only. Les parties aux présentes confirment leur

volonté que cette convention, de même que tous les

documents, y compris tout avis, qui s'y rattachent, soient

rédigés en langue anglaise.

18.0 ENTIRE AGREEMENT.

This Agreement, its exhibits and other agreements or

documents referenced herein, constitute the full and

complete understanding and agreement between the parties

and supersede all contemporaneous and prior

understandings, agreements and representations relating to

the subject matter hereof. No modifications, alterations or

10

amendments shall be effective unless in writing signed by

both parties to this Agreement.

19. REDISTRIBUTABLE CLIENT FILES.

The list of SDK client files that can be redistributed, if any,
are in the SDK in a file called Redistributable.txt.

20. SCHEDULE 1 TO AVAYA SDK LICENSE

AGREEMENT THIRD PARTY NOTICES

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION,

AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use,

reproduction, and distribution as defined by Sections 1

through 9 of this document.

"Licensor" shall mean the copyright owner or entity

authorized by the copyright owner that is granting the

License.

"Legal Entity" shall mean the union of the acting entity and

all other entities that control, are controlled by, or are under

common control with that entity. For the purposes of this

definition, "control" means (i) the power, direct or indirect, to

cause the direction or management of such entity, whether

by contract or otherwise, or (ii) ownership of fifty percent

(50%) or more of the outstanding shares, or (iii) beneficial

ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity

exercising permissions granted by this License.

"Source" form shall mean the preferred form for making

modifications, including but not limited to software source

code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical

transformation or translation of a Source form, including but

not limited to compiled object code, generated

documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source

or Object form, made available under the License, as

indicated by a copyright notice that is included in or attached

to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source

or Object form, that is based on (or derived from) the Work

and for which the editorial revisions, annotations,

elaborations, or other modifications represent, as a whole,

an original work of authorship. For the purposes of this

License, Derivative Works shall not include works that

remain separable from, or merely link (or bind by name) to

the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or

additions to that Work or Derivative Works thereof, that is

intentionally submitted to Licensor for inclusion in the Work

by the copyright owner or by an individual or Legal Entity

authorized to submit on behalf of the copyright owner. For

the purposes of this definition, "submitted" means any form

of electronic, verbal, or written communication sent to the

Licensor or its representatives, including but not limited to

communication on electronic mailing lists, source code

control systems, and issue tracking systems that are

managed by, or on behalf of, the Licensor for the purpose of

discussing and improving the Work, but excluding

communication that is conspicuously marked or otherwise

designated in writing by the copyright owner as "Not a

Contribution."

"Contributor" shall mean Licensor and any individual or

Legal Entity on behalf of whom a Contribution has been

received by Licensor and subsequently incorporated within

the Work.

2. Grant of Copyright License. Subject to the terms and

conditions of this License, each Contributor hereby grants to

You a perpetual, worldwide, non-exclusive, no-charge,

royalty-free, irrevocable copyright license to reproduce,

prepare Derivative Works of, publicly display, publicly

perform, sublicense, and distribute the Work and such

Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and

conditions of this License, each Contributor hereby grants to

You a perpetual, worldwide, non-exclusive, no-charge,

royalty-free, irrevocable (except as stated in this section)

patent license to make, have made, use, offer to sell, sell,

import, and otherwise transfer the Work, where such license

applies only to those patent claims licensable by such

Contributor that are necessarily infringed by their

Contribution(s) alone or by combination of their

Contribution(s) with the Work to which such Contribution(s)

was submitted. If You institute patent litigation against any

entity (including a cross-claim or counterclaim in a lawsuit)

11

alleging that the Work or a Contribution incorporated within

the Work constitutes direct or contributory patent

infringement, then any patent licenses granted to You under

this License for that Work shall terminate as of the date such

litigation is filed.

4. Redistribution. You may reproduce and distribute copies

of the Work or Derivative Works thereof in any medium, with

or without modifications, and in Source or Object form,

provided that You meet the following conditions:

(a) You must give any other recipients of the Work or

Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent

notices stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative

Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work,

excluding those notices that do not pertain to any part of the

Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its

distribution, then any Derivative Works that You distribute

must include a readable copy of the attribution notices

contained within such NOTICE file, excluding those notices

that do not pertain to any part of the Derivative Works, in at

least one of the following places: within a NOTICE text file

distributed as part of the Derivative Works; within the Source

form or documentation, if provided along with the Derivative

Works; or, within a display generated by the Derivative

Works, if and wherever such third-party notices normally

appear. The contents of the NOTICE file are for

informational purposes only and do not modify the License.

You may add Your own attribution notices within Derivative

Works that You distribute, alongside or as an addendum to

the NOTICE text from the Work, provided that such

additional attribution notices cannot be construed as

modifying the License.

You may add Your own copyright statement to Your

modifications and may provide additional or different license

terms and conditions for use, reproduction, or distribution of

Your modifications, or for any such Derivative Works as a

whole, provided Your use, reproduction, and distribution of

the Work otherwise complies with the conditions stated in

this License.

5. Submission of Contributions. Unless You explicitly state

otherwise, any Contribution intentionally submitted for

inclusion in the Work by You to the Licensor shall be under

the terms and conditions of this License, without any

additional terms or conditions. Notwithstanding the above,

nothing herein shall supersede or modify the terms of any

separate license agreement you may have executed with

Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to

use the trade names, trademarks, service marks, or product

names of the Licensor, except as required for reasonable

and customary use in describing the origin of the Work and

reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law

or agreed to in writing, Licensor provides the Work (and

each Contributor provides its Contributions) on an "AS IS"

BASIS, WITHOUT WARRANTIES OR CONDITIONS OF

ANY KIND, either express or implied, including, without

limitation, any warranties or conditions of TITLE, NON-

INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR

A PARTICULAR PURPOSE. You are solely responsible for

determining the appropriateness of using or redistributing the

Work and assume any risks associated with Your exercise of

permissions under this License.

8. Limitation of Liability. In no event and under no legal

theory, whether in tort (including negligence), contract, or

otherwise, unless required by applicable law (such as

deliberate and grossly negligent acts) or agreed to in writing,

shall any Contributor be liable to You for damages, including

any direct, indirect, special, incidental, or consequential

damages of any character arising as a result of this License

or out of the use or inability to use the Work (including but

not limited to damages for loss of goodwill, work stoppage,

computer failure or malfunction, or any and all other

commercial damages or losses), even if such Contributor

has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While

redistributing the Work or Derivative Works thereof, You may

choose to offer, and charge a fee for, acceptance of support,

warranty, indemnity, or other liability obligations and/or rights

consistent with this License. However, in accepting such

obligations, You may act only on Your own behalf and on

Your sole responsibility, not on behalf of any other

Contributor, and only if You agree to indemnify, defend, and

hold each Contributor harmless for any liability incurred by,

or claims asserted against, such Contributor by reason of

your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

12

To apply the Apache License to your work, attach the

following boilerplate notice, with the fields enclosed by

brackets "[]" replaced with your own identifying information.

(Don't include the brackets!) The text should be enclosed in

the appropriate comment syntax for the file format. We also

recommend that a file or class name and description of

purpose be included on the same "printed page" as the

copyright notice for easier identification within third-party

archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the

"License"); you may not use this file except in compliance

with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,

software distributed under the License is distributed on an

"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS

OF ANY KIND, either express or implied.

See the License for the specific language governing

permissions and limitations under the License.

13

14

Agent Desktop API .. 18

Introduction .. 18

What’s new ... 18

Overview ... 18

Classes and interfaces ... 19

API Components.. 20

Commands, Notifications, and Responses .. 20
List of commands and responses .. 20

List of notifications .. 22

Agent Activities .. 23
Login and Logout ... 23

Agent state .. 24

Nailing ... 25

New call notification ... 26

Customer data ... 27

Agent capabilities .. 27

Call state .. 28

DNC ... 28

Hold and unhold .. 28

Send DTMF .. 29

Consult .. 29

Transfer ... 31

Callbacks .. 31

Conference .. 33

Wrapup ... 35

Agent notes ... 35

Error .. 36

Zones ... 36

POM Agent Factory Methods and Commands .. 36
init ... 36

deinit ... 37

getPOMAgent .. 37

removePOMAgent .. 38

Commands .. 38

15

AGTLogon .. 39

AGTLogoff ... 42

AGTStateChange ... 42

AGTHoldCall .. 44

AGTUnholdCall .. 45

AGTReleaseLine... 46

AGTGetCompCodes .. 47

AGTWrapupContact .. 48

AGTExtendWrapup ... 48

AGTGetConsultTypes .. 49

AGTGetConsultDestsForType .. 50

AGTConsultCall .. 51

AGTCompleteTranser .. 52

AGTCancelConsult ... 53

AGTStartConf .. 54

AGTEndConf .. 55

AGTConfChangeOwnership .. 56

AGTRedial .. 56

AGTSendDTMF .. 57

AGTGetCallbackTypes ... 58

AGTGetCallbackDestsForTypes ... 59

AGTCreateCallback .. 60

AGTGetErrorString .. 62

AGTGetErrorInfo ... 63

AGTPreviewDial... 64

AGTPreviewCancel .. 65

AGTGetCustomerDetails ... 66

AGTSetCustomerDetail ... 67

AGTBlendToInbound ... 68

AGTBlendToOutbound .. 68

AGTNailupAgent .. 69

AGTReadyForNailup .. 69

GetAgentStatusResponse ... 70

AGTLostNailing .. 71

AGTPendingLogout ... 71

16

AGTAddAgentNote .. 72

AGTRefreshAgentNotes .. 73

AGTGetTimeZones .. 73

AGTAvailableForNailup ... 74

AGTAgentDisconnected .. 75

AGTAddToDNC .. 75

AGTIsInDNC ... 76

AGTGetZoneList .. 77

AGTSaveAgentForHA .. 77

AGTSkillsChanged .. 78

AGTGetContactAttributes ... 78

Notifications .. 79

AGTCallNotify .. 80

AGTAutoReleaseLine ... 80

AGTConsultNotify.. 81

AGTConsultCancelled .. 81

AGTTransferNotify .. 82

AGTConferenceNotify ... 82

AGTConferenceEnded ... 83

AGTConferenceOwnershipChanged ... 83

AGTCapabilitiesChanged ... 83

AGTNailupChange ... 84

AGTCallStateChangedNotify ... 84

AGTDialFailed .. 84

AGTConsultDialFailed .. 85

AGTConsultPending .. 85

AGTPendingConsultComplete ... 86

AGTPreviewCallbackPending .. 86

AGTPreviewCallbackCancelled .. 86

AGTAgentLoggedOut .. 87

AGTCustomerDetailsChanged ... 87

AGTEnableCancelConsult .. 88

AGTInvalidCommandName ... 88

GetAgentStatus ... 88

POMAvailable .. 89

17

POMNotAvailable .. 89

AGTBlendedtoOutbound .. 89

AGTBlendedToInbound ... 90

AGTZoneDown .. 90

AGTJobAttached ... 90

Call Flow and Capability Matrix .. 92
Simple Call Flow .. 92

Capability matrix ... 95

Error messages .. 97

Troubleshooting .. 98

POM API error codes ... 98

Sequence Diagrams .. 102
Sequence 1 - Nailing .. 102

Sequence 2 - Consult ... 103

Sequence 3 - Cancel consult by active agent .. 104

Sequence 4 - Cancel consult by passive agent .. 105

Sequence 5 - Transfer by active agent .. 106

Sequence 6 - Conference by active agent ... 107

Sequence 7 - Conference end by conference owner .. 108

Sequence 8 - Conference left by passive agent in a conference .. 109

Sequence 9 - Conference ownership changed by conference owner .. 110

Sequence 10 - State change sequence ... 111

Sequence 11 - Blending ... 112

Sequence 12 - Call drop by agent ... 113

Sequence 13 — Call drop by customer ... 166

Sample Code ... 167
Sample code to use the API libraryThe code is written in VB.net .. 167

18

Agent Desktop API

Introduction

Purpose

This document describes the methods and properties used for agent desktop APIs of

Avaya Proactive Outreach Manager.

Intended Audience

This document is intended for users and development engineers who are involved in

customization for Avaya Proactive Outreach Manager using agent desktop APIs.

Availability

The latest version of this document is available on the Avaya online support Web site:

http://support.avaya.com

What’s new

• In callback call notification preview timer can be set to zero. So if the preview
timer is zero and the call notification is of type callback, desktop need to dial the
default number immediately. See section Callback->Callback Preview Timer

• For the requirement background call classification, the wrapup timer is received
as zero with answering machine completion code (Answer_Machine). See API
section AGTAutoReleaseLine.

• In external conference agent can transfer the call to external party and leave the
conference. See section Conference-> External Conference and updated
Capability Matrix for external conference.

• .Net framework of agent API DLL is upgraded to 4.5.

• Agent API DLL supports TLS1.2.

Overview

An Application Programming Interface (API) defines the way different software

components can integrate with each other. Using POM, you can integrate the agent

functionality by designing a set of procedures or routines and manage the agents using a

desktop.

The API’s are divided into 2 main categories: Commands (requests), Notifications and or

Responses.

• Commands are requests sent by the agent desktop, which is, initiated by the

19

agent. Examples include login, hold, unhold, transfer, and conference.

• Notifications and or Responses are events sent by POM to the agent desktop.

Examples include call notifications, state change notifications, call state

change notifications, agent capabilities or responses to the commands.

The requests sent by the desktop can be asynchronous. Asynchronous events are when

the system cannot or does not respond back immediately with the return values.

Depending on the other activities running on the system, or the number of parameters or

arguments for the command, the system might give back delayed responses. To

accommodate the asynchronous behavior of the POM system, the APIs also demonstrate

asynchronous behavior.

For example, an agent issues a hold request or command using the API AGTHoldCall().

POM sends back a response to the call when the command reaches POM. Meanwhile

POM completes the Hold request and sends the actual response, that is, success or

failure, in an asynchronous manner by invoking the callback function AGTHoldCallRESP.

Note:

POM Agent Manager is a POM component which takes care of all agent activities. It

maintains the agent state machine. It interacts/controls various other components like

the call pacer, nailer, router and blender to achieve state transitions.

The API’s are structured such that the Agent State Machine is closely associated with

POM, so that POM has complete control of the agent state, and the agent desktop acts as

an interface for the agent. This helps to minimize agent state handling within the desktop,

and eliminate the need of two state machines – one for the desktop and the other in POM.

The desktop acts like a stateless interface and POM controls the desktop. POM defines

desktop agent capabilities, such as CanHold, CanTransfer, CanConf, CanConsult.

At any point of time, POM provides these capabilities to the agent desktop via notifications

so that various GUI controls can be enabled disabled accordingly. For example, when the

agent performs a hold operation, POM sets the CanHold capability to false and enables

CanUnhold. Similarly at various points in time the agent moves between Idle, Talking,

Held, Consult, Conference, Wrapup call states.

However, it is advisible to handle the cases where agent can send multiple requests

before getting the capabilities from POM server. POM notifies the desktop whenever the

agent’s call state changes. Similarly POM notifies the agent about the agent state such as

Ready, NotReady, PendingNotReady.

POM also notifies the desktop about its nailing state such as NailedUp, PendingNailup,

PendingNailupDrop, NailingLost, NotNailedUp.

Classes and interfaces

You can use the following classes and interfaces for the integration with the desktop:

• POMAgentFactory: Use to initialize the library.

20

• POMAgent: You must get the POMAgent API from the Software Development Kit

(SDK) and then use it for invoking commands. POMAgent is the agent object.

• POMAgentHandlerInterface: You must implement the interface to set up the

notifications and responses to commands. POM uses the interface as a callback

mechanism for responding to commands and for sending notifications.

 API Components

The desktop APIs are available as a combination of 3 Dynamic Link Libraries (DLL)’s

• POMDesktopAPI.dll: The API’s are available through the POMDesktopAPI.dll.

• Avaya.POM.Agent.ObjectModel.dll: The data structures used for the API’s

are available through the Avaya.POM.Agent.ObjectModel.dll.

• log4net.dll: The log4net.dll acts as a helper DLL for the API’s.

 Commands, Notifications, and Responses

List of commands and responses
Command Usage Response

AGTLogon Used to Login to POM AGTLogonRESP

AGTLogoff Used to Log off from POM AGTLogoffRESP

AGTStateChange Used to change agent state to

Ready/NotReady/PendingNotReady
AGTStateChangeRESP

AGTHoldCall Used to put customer call on hold. AGTHoldCallRESP

AGTUnholdCall Used to unhold customer call. AGTUnholdCallRESP

AGTReleaseLine Agent can use this to disconnect

 customer call.
AGTReleaseLineRESP

AGTGetCompCodes Returns the list of custom codes
 linked with the current campaign.

AGTGetCompCodesRESP

AGTWrapupContact Wraps up the customer call. AGTWrapupContactRESP

AGTExtendWrapup Permits agent to get more time to
 wrapup call.

AGTExtendWrapupRESP

AGTGetConsultTypes Returns the types (Agent/Campaign)
 of consult supported for the current
job.

AGTGetConsultTypesRES

P

AGTGetConsultDestsForType Returns the available destinations
 for the selected type of consult.

AGTGetConsultDestsForTypeRE

SP AGTConsultCall Used to consult another party. AGTConsultCallRESP

AGTCompleteTransfer

 Used to complete the transfer for the
 ongoing consult call.

AGTCompleteTransferRES

P

AGTCancelConsult Used to cancel an ongoing/pending
 consult.

AGTCancelConsultRESP

21

AGTStartConf To start a conference for an ongoing
 consult.

AGTStartConfRESP

AGTEndConf Used by the agent to end the
 conference

AGTEndConfRESP

AGTConfChangeOwnership Used by conference owner to
 transfer ownership to the passive
agent.

AGTConfChangeOwnershi

pRESP

AGTRedial Used by an agent to Redial the
 customer in Wrap-up mode.

AGTRedialRESP

AGTSendDTMF Used by an agent to send DTMF
 over the line.

AGTSendDTMFRESP

AGTGetCallbackTypes Used by an agent to determine the
 types of callbacks supported for the
 current job.

AGTGetCallbackTypesRES

P

AGTGetCallbackDestsForType Used by an agent to get a list of
 available destinations for the
 selected type of callback.

AGTGetCallbackDestsForTypeR
ESP

SP AGTCreateCallback Used by an agent to create a
 callback.

AGTCreateCallbackRESP

AGTGetErrorString Used by desktop to get error code
 details.

AGTGetErrorStringRESP

AGTPreviewDial Used by agent to accept and dial the
 preview contact.

AGTPreviewDialRESP

AGTPreviewCancel Used by agent to cancel the preview
 contact and move to wrapup state.

AGTPreviewCancelRESP

AGTGetCustomerDetails Used by desktop to get details of
 the customer contact.

AGTGetCustomerDetailsR

ESP

AGTSetCustomerDetail Used to set an attribute value of a
 contact.

AGTSetCustomerDetailRE

SP

AGTBlendToInbound Sent by blender to POM

 informing it to move the agent to

Inbound

AGTBlendToInboundRESP

AGTBlendToOutbound Sent by blender to POM

 informing it

to move the agent to Outbound

AGTBlendToOutboundRES

P AGTNailupAgent Sent by desktop after moving

 The agent from Inbound to

outbound.

AGTNailupAgentRESP

AGTReadyForNailup Sent by desktop after processing
 AGTNailupChange –
 PendingNailup notitication.

AGTReadyForNailupRESP

AGTLostNailing Sent by desktop if desktop detects

that the nailing is lost.
AGTLostNailingRESP

AGTPendingLogout Sent by desktop in error
 situations,so that POM can logout
 the agent after the current call is
wrapped up.

AGTPendingLogoutRESP

AGTAddAgentNote Used by desktop to add an agent
 note.

AGTAddAgentNoteRESP

AGTRefreshAgentNotes Used by desktop to refresh agent
 notes and get the new ones.

AGTRefreshAgentNotesRE

SP

22

List of notifications

AGTGetTimezones Used by desktop to determine the
 supported time zones for

 callbacks.

AGTGetTimezonesRESP

AGTAvailableForNailup Sent by desktop after the agent
 goes to Ready state for the first
 time after login.

AGTAvailableForNailupRE

SP

AGTAgentDisconnected Sent by Proxy if it detects that the
 desktop is not reachable.

AGTAgentDisconnectedRE

SP

GetAgentStatusRespons

e

 Desktop must send this in
 response to GetAgentStatus
 notification

GetAgentStatusResponseR

ESP

AGTAddToDNC

 Sent by desktop to add an agent
 to DNC list.

AGTAddToDNCRESP

AGTGetZoneList Command to get current zones on
 POM.

AGTGetZoneListRESP

AGTIsInDNC Sent by desktop to check if a contact
address is in DNC list.

AGTIsInDNCRESP

 AGTSaveAgentForHA Desktop must send this after
 logging in so that POM saves the
 agent state if the desktop comes
 back up after crashing..

AGTSaveAgentForHARES

P

AGTSkillsChanged Sent by AACC via AAAD
 Informing POM that the agents skill
are modified.

AGTSkillsChangedRESP

AGTGetContactAttributes Sent by desktop to determine all
attributes linked with a particular
contact.

AGTGetContactAttributesR

ESP

Notification Usage

AGTStateChangedNotify Sent by POM when the agent state changes
(Ready/NotReady/PendingNotReady)

AGTCallNotify Sent by POM when desktop receives a new contact.

AGTAutoReleaseLine Sent by POM when the customer disconnects the call.

AGTConsultNotify Sent by POM informing an agent that the agent is in consult
now.

AGTConsultCancelled Sent by POM to an agent when the consult gets over.

AGTTransferNotify Sent by POM to the passive agent when the consult gets
transferred to it.

AGTConferenceNotify Sent by POM to the passive agent when the consult gets into a
conference

AGTConferenceEnded Sent by POM to an agent when the other agent ends the
conference.

23

Agent Activities

Login and Logout

AGTConferenceOwnershipChanged Sent by POM to the passive agent when the conference

owner transfers conference ownership to the passive agent.

AGTCapabilitiesChanged Sent by POM when it detects change in desktop capabilities

based on ag nailing states.

AGTNailupChange Sent by POM when it detects change in nailing state of an
agent.

AGTCallStateChangedNotify Sent by POM when it detects change in call state of an agent.

AGTDialFailed Sent by POM when it detects failure while dialing a contact for

either are preview dial.

AGTConsultDialFailed Sent by POM when it detects failure while dialing for a consult.

AGTConsultPending Sent by POM informing a busy agent that a consult is pending.

AGTPendingConsultComplete Sent by POM to the initiator agent when the pending consult
gets into a consult.

POMAvailable Internal notification.

POMNotAvailable Internal notification.

AGTPreviewCallbackPending Sent by POM when a callback is pending for an agent.

AGTAgentLoggedOut Sent by POM when it detects that the agent has logged out.

AGTEnableCancelConsult Sent by POM informing the desktop that it can enable the

cancel consult operation.

AGTPreviewCallbackCancelled Sent by POM informing the agent that the current callback on

the agents has been cancelled.

AGTInvalidCommandName Sent by POM if it receives an unknown command.

AGTCustomerDetailsChanged Sent by POM to a passive party in consult/conference if the

owner changes customer attributes value.

AGTBlendedToInbound Sent by POM informing the agent that it is blended to Inbound.

AGTBlendedToOutbound Sent by POM informing the agent that it is blended to
Outbound.

AGTZoneDown Sent by POM when a zone is marked DOWN for failover.

AGTJobAttached Sent by POM when an agent is attached to a new job.

24

To perform an outbound job, an agent must login to POM. POM provides APIs so that an

agent can login to POM. The agent must provide AgentID/AgentExtension, password,

zone name, timezone, locale with the login request in CCElite mode, and POM server

fetches the skill information and password from Communication Manager using SMS

webservice of AES and caches the skill information in database.

POM also has arrangement for an agent to force login to POM where the desktop crashes.

After force login, the agent session on POM resets and a new session is created for the

agent.

Note: Force login agent will drop the customer call and nailing call of the agent. So if the

agent is in talk with customer, agent should wait for the current call to complete before

force login.

API Command/Response/Notification

AGTLogon Command sent by desktop to POM

AGTLogonRESP Asynchronous callback response to AGTLogon

AGTLogout Command sent by desktop to POM

AGTLogoutRESP Asynchronous callback response to AGTLogout

Agent state

An agent has to move to Ready state after logging-in so that it can receive outbound

calls. After the agent moves to ready state, POM considers this agent for campaign

assignment. An agent can also move to NotReady state while agent is in Ready state.

But, the agent has to be in Idle (not in a call) state for it to move from Ready to NotReady

state.

If the agent tries to move to NotReady state while handling a call, POM moves the agent

to PendingNotReady state. The agent stays in PendingNotReady state until the agent

wraps up the current call and also if it does not have any pending consults/callbacks. After

the agent wrapps up the current call and handling the pending requests (consult/callbacks)

POM moves the agent to NotReady state from PendingNotReady state.

POM notifies the agent about the current state through the AGTStateChangedNotify
notification.

Note:

An agent has to handle a maximum of a current call, up-to 2 pending consult

requests and one pending callback before POM moves it to NotReady state. If an

agent issues a NotReady command when it does not have any pending requests

(pending consults/pending callback), then it moves the agent to NotReady state

when the agent wraps up the current call.

Walk-away agent

The API also has an arrangement to handle walk-away agents. For example, the agent
has moved away from agent’s desk while handling a call. On hearing nobody on the agent
end, the customer hangs up the call. The call is autowrapped up by the agent if the

25

campaign has set a wrapup timer.

POM then gives the next outbound call to this agent. One more time the customer hangs
up the call on hearing silence. One more time the call gets auto wrapped up. To prevent
such situations, the desktop must detect such situations and automatically send
AGTStateChange with the walkedAway flag set to true. POM then moves this agent to
NotReady state and does not consider this agent for call pacing. One of the ways that the
desktop can determine if the agent has walked away is, if no button clicks for two
consecutive calls on the desktop by the agent.

Note:

If acwMaxTime is received as zero with answering machine completion code
(Answer_Machine), desktop needs to wrap up the call immediately without agent
interaction with the completion code answering machine received in
AGTAutoReleaseLine notification. In this case desktop should not mark agent as walk
away agent.

Changing Aux Reason

An agent can also change the aux reason after going to NotReady state. The agent has
to run AGTStateChange with new reason.

Note: POM does not provide any aux reason and the aux reason is not displayed in any
reports.

API Command/Response/Notification

AGTStateChange Command sent by desktop to POM to change state. To

move to either Ready or NotReady state, use the same

command. AGTStateChangeRESP Asynchronous callback response to AGTStateChange

AGTStateChangedNotify POM sends asynchronous notification when the agent

state changes.

Nailing

POM nails the agent if a campaign is running which matches the skillset of agent. When

the agent logs in for the first time, the agent sends AGTAvailableForNailup. POM can nail

the agent only after POM receives the command.

POM sends a sequence of notifications with flags indicating the next nailing action. If

POM wants to nail an agent it first sends AGTNailupChange with flag PendingNailup. On

processing this flag the desktop must send AGTReadyForNailup. After POM receives

AGTReadyForNailup, POM then attempts to send a nailing call to the agent. When the

agent picks up the nailing call, POM again sends AGTNailupChange with flag NailedUp.

POM sends AGTNailupChange with flag NotNailedUp, if the agent nailing call is not

successful.

26

An agent gets unnailed if the job which attaches the agent gets over OR the agent tries to

logout after moving to NotReady state from Ready state. POM sends AGTNailupChange

with PendingNailupDrop flag. After the nailing call disconnects, POM sends

AGTNailupChange with flag NotNailedup.

If the desktop drops the nailup unexpectedly then the desktop must send

AGTLostNailing. Also, if POM detects that the nailing got dropped unexpectedly then

POM sends AGTNailupChange with the flag set to NailingLost.

API Command/Response/Notification

AGTAvailableForNailup Command sent by desktop to POM. POM can decide this agent

for nailing.

AGTAvailableForNailup RESP Asynchronous callback response to AGTAvailableForNailup

AGTNailupChange POM sends asynchronous notification when the nailing

state changes.

AGTReadyForNailup Command sent by desktop to POM on

receiving AGTNailupChange –

PendingNailup.

AGTReadyForNailupRESP Asynchronous callback response to AGTReadyForNailup

AGTLostNailing Command sent by desktop when it detects that the nailing got

lost unexpectedly

AGTLostNailingRESP Asynchronous callback response to AGTLostNailing

New call notification

Predictive/Progressive Campaigns: For Predictive and Progressive campaigns, it dials the

customer first and then connect to the agent. POM sends a notification to the agent when

it connects the customer call to the agent so that the agent has enough information about

the customer. In the new call notification POM sends the agent script URL, campaign

name, skillset and basic information about the customer.

API Command/Response/Notification

AGTCallNotify POM sends asynchronous notification when it connects

the customer call to the agent.

Preview Campaigns: For Preview campaigns, it sends the new call(call data) notification

to the agent first. The campaign dials the customer only if the agent decides to talk to the

customer (AGTPreviewDial command). The agent can cancel the request

(AGTPreviewCancel command) based on the configuration in strategy and in this case,

the agent has to provide a completion code.

POM supports timed and nontimed preview campaigns. For timed preview, POM sends a

time value with AGTCallNotify. This time value is the time POM gives to the agent to

decide on dialing/ cancelling the preview. If the agent does not make a decision within the

time value, then the desktop must send AGTPreviewDial automatically after the timer

expires. For nontimed preview the agent has infinite time to make a decision on accepting

the preview or rejecting it. The configuration for timed and nontimed preview is available

in strategy

27

If the dial trail fails, the POM notifies the desktop by sending a notification AGTDialFailed

with the reason code.

API Command/Response/Notification

AGTCallNotify POM sends asynchronous notification when the customer

call connects to the agent.

AGTPreviewDial Command sent by agent when agent wants to accept the

preview request and the agent dials the customer OR

supposed that the desktop sends on preview timer expiry.

AGTPreviewDialRESP Asynchronous callback response to AGTPreviewDial

AGTPreviewCancel Command sent by agent when agent wants to reject the

preview request.

AGTPreviewCancelRESP Asynchronous callback response to AGTPreviewCancel

AGTDialFailed POM sends asynchronous notification if the customer call

dial attempt fails.

Customer data

Desktop can send AGTGetCustomerDetails to get contact details. POM then sends

back the system attribute values such as Title, First Name, and Last Name along with the

custom attributes. With each attribute, POM also sends the attribute type. The attribute

types POM supports are: READ_ONLY, WRITE, SCREEN_POP, MASKED_WRITE. The

desktop must honor these types. AGTGetCustomerDetails can be sent after only after

AGTCallNotify

Desktop can also change the value of the customers attribute by using

AGTSetCustomerDetail. At a time desktop permits only one attribute. If the attribute is of

READY_ONLY type POM sends back error.

API Command/Response/Notification

AGTGetCustomerDetails Command sent by agent when agent wants to get all

customer details.

AGTGetCustomerDetailsRESP POM sends asynchronous callback response in

response to AGTGetCustomerDetails.

AGTSetCustomerDetail Command sent by agent to change a customer attribute.

AGTSetCustomerDetailRESP POM sends asynchronous callback response in

response to AGTSetCustomerDetail.

Agent capabilities
POM controls the agent capabilities. Capabilities control the various actions that an agent

can perform at any point of time. For more information about the capability matrix, see

Capability Matrix . POM sends AGTCapabilitiesChanged notification when the agent’s

capabilities changes. Example: The capabilities control whether an agent can

hold/consult another agent while talking to the customer. An agent can have

API Command/Response/Notification

28

approximately 17 capabilities. This permits the desktop developer to enable, disable,

hide, or unhide buttons on the desktop based on these values. The desktop does not

have to maintain desktop’s own state machine. POM maintains that internally and the

capabilities are a reflection of the current agent state on POM. The desktop developer

adhere to these capabilities sent from POM.However, it is advisable to handle the cases

where agent can send multiple requests. Desktop should not allow the agent to press the

same command multiple times before the response/capabilities received from POM

server.

Call state

POM notifies the desktop from time to time about the current call state. The desktop uses

this information to notify the agent about the desktop’s current call state according to

POM. Some of the call states are: NoState, Preview, Idle, Dialing, Talking, Held, Wrapup,

Consult, ConferenceOwner, ConferencePassive, Callback.

API Command/Response/Notification

AGTCallStateChangedNotify POM sends asynchronous notification when POM detects

change in call state.

DNC

An agent can add a contact address to the DNC list. Desktop must run AGTAddToDNC to

add a contact address to the DNC list. Agent can check whether the address is in DNC or

not using AGTIsInDNC command.

API Command/Response/Notification

AGTAddToDNC Command sent by desktop to add a contact address to the

contact list.

AGTAddToDNCRESP Asynchronous callback response for AGTAddToDNC.

AGTIsInDNC

Command sent by desktop to check whether the address is in
DNC or not

AGTIsInDNCRESP Asynchronous callback response for AGTIsInDNC

Hold and unhold

An agent can put the customer on hold if required. The customer hears hold music

(depending on the configuration) when the agent puts the customer on hold. After the

customer is on hold, the agent can unhold the customer call.

AGTCapabilitiesChanged POM sends asynchronous notification when it detects change in
agent desktop

29

API Command/Response/Notification

AGTHoldCall Command sent by desktop/agent to put the customer call on
hold.

AGTHoldCallRESP Asynchronous callback response for AGTHoldCall.

AGTUnholdCall Command sent by desktop/agent to remove the customer

from hold state back to talking state.

AGTUnholdCallRESP Asynchronous callback response for AGTUnholdCall.

Send DTMF

An agent can send DTMF while talking to a customer. This feature is useful for

situations wherein the agent is talking to an answering machine OR for

consult/conference the consulted party is an IVR system. The agent can send one digit

at a time.

For detecting Inband DTMF coming to MPP (IVR) you must turn on inband detection

under MPP Servers > VoIP Settings, and set "Inband DTMF Detection Enabled" to

"Yes". For hearing Inband DTMF ensures you have configured your gateway (CM) to

send/receive Inband DTMF.

API Command/Response/Notification

AGTSendDTMF Command sent by desktop/agent to send DTMF.

AGTSendDTMFRESP Asynchronous callback response for AGTSendDTMF

Consult

An agent can consult another party while talking to the customer. POM supports two types

of consults: Agent, External. Consult is the first step required before attempting a transfer

or a conference.The agent has to run AGTGetConsultTypes to get the supported consult

types. After getting the supported types from POM, the agent has to select the type of

consult and desktop needs to send AGTGetConsultDestsForType for a selected type of

Consult. For Agent type of consult POM sends back a list of agents that belong to the

same campaign as the consulting agent. If the agent selects External type of consult then,

POM sends back the address list configured for the campaign. For external type

destination list address list should be configured. Agent can also enter the free form

number in external type of consult.

The agent has to use AGTConsultCall command request to start the consult. The other

consulted agent gets a notification AGTConsultNotify when the two agents start to consult.

POM supports only one consult at a time for an agent.

• Pending Consult: If Agent A tries to consult agent B, while agent B is already busy

talking to a customer, then the Agent A sends the consult request to Agent B as a

pending consult (AGTConsultPending notification) request to Agent B. Agent A can

cancel this pending consult request if required, POM sends a maximum of two

pending consult requests to any agent, if the agent is already in a call with the

customer.

30

• Agents in Consult: Active agent is the consult starting agent, while POM

considers Passive agent as the consulted agent. After both the agents are in

consultation with each other, the customer hears music on hold (if configured on

POM).

• Cancelling/Leaving a consult: After the agents are in consultation with each other,

either of them can cancel the consult. The agents have to use AGTCancelConsult

command request to cancel the consult. If the Active agent cancels the consult then

the passive agent receives AGTConsultCancelled notification. If the Passive agent

cancels the consult then the active agent receives AGTConsultCancelled notification

from POM.

• External Consult: If an agent attempts to consult an external agent and if the dial

attempt fails then POM sends back a notification to this agent

AGTConsultDialFailed with appropriate reason.

• Customer: The agent cannot drop the customer directly while in consult. The agent

has to end the consult before the customer can be dropped from the call. Ending a

consult removes the passive agent from the consult. The customer call still stays

active with the active agent. But the customer can drop the call at any point of time.

If the customer drops the call, POM drops the consult and put the active agent in

wrapup mode, moving the passive agent to Idle state.

API Command/Response/Notification

AGTGetConsultTypes Command sent by desktop to ensure the consult types by POM.

AGTGetConsultTypesRESP Asynchronous callback response for AGTGetConsultTypes

AGTGetConsultDestsForType Command sent by desktop to get a list of agents/external

addresses which can be consulted for a particular type of

transfer or conference.

AGTGetConsultDestsForType
RESP

Asynchronous callback response for
AGTGetConsultDestsForType

AGTConsultCall Command sent by desktop/agent to start a consult.

AGTConsultCallRESP Asynchronous callback response for AGTConsultCall

AGTCancelConsult Command sent by desktop/agent to cancel a consult.

AGTCancelConsultRESP Asynchronous callback response for AGTCancelConsult

AGTConsultNotify POM sends asynchronous notification when a passive agent

gets into a consult with an active agent.

AGTConsultPending POM sends asynchronous notification when a passive

agent is busy handling other calls.

AGTConsultCancelled POM sends asynchronous notification to the other agent when

an agent cancels an ongoing consult.

AGTConsultDialFailed POM sends asynchronous notification when a consult attempt
fails.

POM system plays a beep sound in following ways:

31

• When the agent clicks Consult, both the consult recipient and owner hears beep.

The system does not play a beep to the contact.

• When the consult owner agent clicks Cancel, and the consult is established, both

the consult recipient and owner hears beep. The system does not play a beep to the

contact.

• When the consult recipient agent clicks Cancel, and the consult is established, the

consult recipient, consult owner, and the contact hear the beep.

• When the agent clicks Transfer in the consult window, and the consult is

established, the transfer recipient, transfer initiator, and the contact hear the beep.

• When the agent clicks End Conference, or Leave Conference, both the agents and

the contact hears the beep.

• When the agent clicks Changed Ownership when the conference is going on,

everyone in the conference, the agents and the contact hears the beep.

• When the contact disconnects the call while the conference is going on, both the

agents hears the beep. The system does not play a beep to the contact.

• When the agent and the contact are talking, if the contact disconnects the

call, the agent hears the beep.

Transfer

An agent (A) can transfer the current customer call to another agent (B). But first agent (A)

has to enter in a consult with the other agent (B) before attempting a transfer. If an agent

(A) transfers a call to the other consulted agent (B), POM sends AGTTransferNotify

notification to the other agent (B) and handover the call control to the other agent (B). So,

this means, POM transfers the call from the Active consulting agent (A) to the Passive

consulted agent (B). POM removes the first agent (A) (earlier Active agent) from the call.

So at the end of the transfer the consulted (B) (earlier Passive agent) becomes the owner

of the customer call. The earlier Active agent (A) is free to accept another call from POM.

To perform a transfer an agent has to run AGTCompleteTransfer command. After the

transfer is complete, it moves the customer out of hold state and is now able to talk to the

agent (B).

API Command/Response/Notification

AGTCompleteTransfer Command sent by desktop/agent to start a transfer.

AGTCompleteTransferRESP Asynchronous callback response for AGTCompleteTransfer.

AGTTransferNotify POM sends asynchronous notification to the consulted agent

when it completes the transfer

Callbacks

An agent can schedule a callback, while in a preview or while talking to a customer or

during wrapup. An agent has to first determine the types of callbacks that the campaign

32

supports. As of now POM supports the following types of callbacks: Standard, Agent and

Campaign. The agent has to run AGTGetCallbackTypes command to determine the

supported callback types. After selecting the callback type the agent has to run

AGTGetCallbackDestsForType command to get a list of destinations supported for a

particular type of callback. To create a callback the agent has to run AGTCreateCallback.

The agent can specify a free form number also while creating a callback.

Types of callback: A Standard type of callback means that any agent who has the same

skillset as the callback creator can get the callback when the callback time arrives. An

Agent type of callback means that the preferred agent for the callback (when the timer

expires) is the callback creator, but if this agent is unavailable at that point of time, POM

gives the callback to any agent which has the same skillset as the callback creator. A

Campaign type of callback means to give the callback to any agent which matches the

skillset of the selected campaign.

Callback Time: The time when the POM selects an agent depending on the callback type

created. After the POM selects the agent, POM sends a pending callback notification

AGTPreviewCallbackPending to the agent few seconds before the scheduled callback time

(depending on the POM configuration). The callback notification notifies the agent about a

pending callback requestA callback is a preview call for the agent. The agent can decide to

cancel the callback, or reschedule it or accept it. If the agent accepts the preview, it has to

run AGTPreviewDial command. If the dial fails POM sends back a notification

AGTPreviewDial failed with an appropriate error code. If the agent decides to reject the

pending callback, then the agent has to run AGTPreviewCancel command and then

wrapup the call by providing an appropriate completion code. The agent can reschedule

the callback also by running AGTCreateCallback again.

The callback preview timer can be set to zero on POM global configuration page. If the

preview timer is received as zero in callback call notification (AGTCallNotify for callback),

then desktop need to dial the default number immediately.

Desktop needs to check two conditions for that, timeout value as zero and the contact type

is of type Callback to dial the default number immediately.

Callback expiry: If an agent receives a pending callback request and if by the time the

agent accepts the callback then the callback expires. Then POM cancels the callback and

sends a notification AGTPendingCallbackCancelled to this agent.

API Command/Response/Notification

AGTGetCallbackTypes Command sent by desktop/agent to determine types of

callbacks supported by the current campaign.

AGTGetCallbackTypesRESP Asynchronous callback response for AGTGetCallbackTypes.

33

AGTGetCallbackDestsForType Command sent by desktop/agent to determine

destinations permitted for a selected type of callback.

AGTGetCallbackDestsForType
RESP

Asynchronous callback response

for AGTGetCallbackDestsForType.

AGTCreateCallback Command sent by desktop/agent to create a callback.

AGTCreateCallbackRESP Asynchronous callback response for AGTCreateCallback.

AGTPreviewDial Command sent by desktop/agent to dial the customer

after receiving a pending callback.

AGTPreviewDialRESP Asynchronous callback response for AGTPreviewDial.

AGTPreviewCancel Command sent by desktop/agent to cancel the preview.

AGTPreviewCancelRESP Asynchronous callback response for AGTPreviewCancel.

AGTPreviewCallbackPending POM sends asynchronous notification to the selected agent

who receives the callback.

AGTPreviewCallbackCancelled POM sends asynchronous notification to the selected agent for

the pending callback, when the callback expires.

Note: For POM server, AGTGetCallbackDestsForType may need more processing

based on the Agent list or Campaign list (Agent or Campaign callback type) and data for

this command may be huge in size. So it is recommended that use this command only

when needed or only when agent selects that particular type of callback.. For Agent

Owned Callback (self-agent callback) there is no need to send this command to get

agent list, desktop has all the information to create callback for the current (self) agent.

Earlier for agent type of callback, the list of agents was fetched from Communication

Manager. In the current release of POM, we fetch the list of agents from POM database

cache

Conference

An agent (A) can conference the current customer call to another agent (B). But first

agent (A) has to enter in a consult with the other agent (B) before attempting a

conference. POM supports only 3 party conference (that is one customer and 2 agents).

If an agent (A) conferences a call to the other consulted agent (B), POM sends

AGTConferenceNotify notification to the other agent (B) and add the Passive Agent (B) in

a conference with the customer.

To start a conference agent (A) has to run AGTStartConf command. When the agent

completes the conference, the agent moves the customer from hold state to in-conference

with both agents.

Ending the conference: Both agents can get themselves out of the conference albeit in a

different way. Conference owner is the agent (A) who started the conference, while the

consulted agent (B) is the passive party in the conference. If conference owner agent (A)

wants to drop the conference, it has to run AGTEndConf command. In this case POM

sends drop the passive agent (B) from the conference and send a notification

AGTConferenceEnded to the passive agent (B). If the passive agent (B) wants to leave

34

the conference, then it has to also run AGTEndConf command. In this case POM sends a

notification AGTConferenceEnded to the conference owner.

Customer: The agent cannot drop the customer directly while in conference. The agent

has to end the conference before the customer can be dropped from the call. Ending a

conference removes the passive agent from the conference. The customer call still stays

active with the active agent. But the customer can drop the call at any point of time. If the

customer drops the call, POM drops the conference and put the conference owner agent

in wrapup mode, while it moves the passive agent to Idle state.

Conference Ownership: The conference owner agent (A) can transfer the conference

ownership to the passive agent (B) after the conference is ON. To transfer the conference

ownership from the conference owner agent (A) to passive agent (B), agent (A) has to run

AGTConfChangeOwnership command. The agent transfers the ownership to the passive

agent and then the passive agent receives a notification from POM

AGTConferenceOwnershipChanged. After the agent transfers the ownership, the

conference owner agent (A) now becomes the passive agent in the conference, while the

earlier passive agent (B) now becomes the conference owner.

External Conference: In external conference, the agent can’t change ownership to

external party and thus can’t leave the conference. If it leaves the conference, it will also

drop the call between consulted party and customer. So in order to allow the agent to

leave the external conference, the current release provides the capability to transfer the

call to external party and can leave the conference.

In external conference, POM server will send the transfer capability set to true to enable

the transfer button.

API Command/Response/Notification

AGTStartConf Command sent by desktop/agent to start the conference.

AGTStartConfRESP Asynchronous callback response for AGTStartConf

AGTEndConf Command sent by an agent in a conference to end the
conference.

AGTEndConfRESP Asynchronous callback response for AGTEndConf.

AGTConferenceNotify POM sends asynchronous notification to the passive agent in

the conference while has moved from consult to conference

state.

AGTConferenceEnded POM sends asynchronous notification to the conference owner if

the passive agent leaves the conference. POM can also send

this notification to the passive agent in the conference if the

conference owner ends the conference.

AGTConfChangeOwnership Command sent by conference owner desktop/agent to transfer

the conference ownership to the passive agent in the

conference.

AGTConfChangeOwnershipRE
SP

Asynchronous callback response for AGTConfChangeOwnership.

35

AGTConfOwnershipChanged POM sends asynchronous notification to the passive agent

when the conference owner transfers the conference

ownership to it.

Wrapup

Redial: An agent can redial the customer while in wrapup mode. The agent can perform

this action if the customer call drops or for other situations, by an error. The agent has to

run AGTRedial command to perform a redial to the customer. The agent can select the

number to dial from the available contact phone addresses. Agent can also enter free form

number to redial.

Extending Wrapup: If a wrapup time is configured for the campaign, then when the

configured wrapup time expires the desktop autowrapups the call with the completion code

supplied with the release response/notification. But if required the agent can ask for an

extension in wrapup time. Based on the configuration in the POM campaign, an agent can

have multiple extensions.

Wrapping up: An agent has to send a completion code for wrapping up the call. Desktop

can send AGTGetCompCodes command to determine the list of available completion

codes for the current job.

API Command/Response/Notification

AGTRedial Command sent by desktop/agent to redial the customer.

AGTRedial RESP Asynchronous callback response for AGTRedial.

AGTGetCompCodes Command sent by desktop/agent to determine the

list of completion code.

AGTGetCompCodesRESP Asynchronous callback response for AGTGetCompCodes.

AGTExtendWrapup Command sent by desktop/agent to get an extension

time in wrapup mode.

AGTExtendWrapup RESP Asynchronous callback response for AGTExtendWrapup.

AGTWrapupContact Command sent by desktop/agent to wrapup the call.

AGTWrapupContact RESP Asynchronous callback response for AGTWrapupContact.

Agent notes

An agent can create some notes and save them while talking to the customer. These

notes are useful for consult/conference/transfer. The agent has to run

AGTAddAgentNote to add a note. To get the latest set of notes the agent has to run

AGTRefreshAgentNotes. An agent can also create agent notes while creating a callback.

So, when the agent invokes AGTRefreshAgentNotes, POM sends back all agent notes

with the callback notes.

API Command/Response/Notification

AGTAddAgentNote Command sent by desktop/agent to add a note.

36

AGTAddAgentNote RESP Asynchronous callback response for AGTAddAgentNote.

AGTRefreshAgentNotes Command sent by desktop/agent to get all saved agent notes

for the current call.

AGTRefreshAgentNotesRESP Asynchronous callback response for AGTRefreshAgentNotes.

Error

Asynchronous responses of the commands can return error codes. The desktop must

run AGTGetErrorString(obsolete method) or AGTGetErrorInfo to get the error message.

API Command/Response/Notification

AGTGetErrorString Command sent by desktop/agent for error details.(This is obsolete
method. AGTGetErrorInfo should be used instead.

AGTGetErrorStringRESP Asynchronous callback response for AGTGetErrorString.

AGTGetErrorInfo Command sent by desktop/agent for error details

AGTGetErrorInfoRESP Asynchronous callback response for AGTGetErrorInfo

Zones

POM supports zoning. So an agent has to notify POM which zone the agent belongs to.

Agent needs to provide zone name while login into POM.

The agent manager process on POM can be managing one or more zones. So, the client

can possibly make multiple socket connections to the agent manager, one for each zone.

If different POM servers locate the agent managers then it makes the socket connections

accordingly.

POM Agent Factory Methods and Commands

init

Syntax

Boolean init (PAMSocketInfo[] pamAddresses)

Parameters

pamAddress List of IP address and corresponding port of POM agent managers.

Description

37

The desktop developer must run this to initialize the library. Before using the library, the

desktop developer must make the first API call that is Boolean init (PAMSocketInfo[]

pamAddresses).

Note:

The init method return false in the first attempt if the connection between POM API DLL

and POM server is not established and after that it always returns true whether the

connection to POM server is established or not. So if the DLL init fails it is required to

restart the desktop application.

deinit

Syntax

deinit()

Parameters

None

Description

The desktop developer must run this when the desktop is shutting down to clean-up POM
Desktop library’s resources used

Note: While doing deinit operation, there are some exceptions thrown in the log as the
threads are interrupted at that time. However, there is no functionality impact because of
this.

If you want to logoff and login agent again in the same instance of agent desktop, then do
not initiate deinit() function after logoff. deinit() function should be used when you are
closing the agent desktop to release the resources.

getPOMAgent

Syntax

POMAgent getPOMAgent(String id, POMAgentHandlerInterface handler)

Parameters

id Agent ID

handler Callback handler object.

38

Description

The desktop developer must run this to get an agent object. The desktop developer uses
this agent object to send commands for this agent. POM in turn can invoke the handler for
asynchronous responses and notifications using callback thread. Desktop should free this
callback thread as soon as possible, so that this thread can process the responses of other
commands. Ensure that it uses a valid POMAgent object before making any command
request.

Note: This method should be called before every login request (AGTLogon) to create

new POMAgent object.

removePOMAgent

Syntax

Boolean removePOMAgent (String id)

Parameters
id Agent ID.

Description

The desktop developer must invoke this to when the desktop developer has completed
using the POMAgent object which was obtained with getPOMAgent. Ensure that this is
invoked after processing the response for AGTLogoff command.

Commands

Asynchronous response for each command is available from POM in the corresponding

command”RESP” method. Each command also has a int return type. Each command

request can return one of the following error code based on the error:

Error Code: 9999 (POM_NOT_AVAILABLE)

Library sends it back if any command cannot be sent to POM. This gets generated
internally and sent back with the appropriate response RESP.

Error Code: 9998 (PAM_NOT_AVAILABLE_FOR_ZONE)

Library sends it back if an agent manager does not manages the zone provided in the
AGTLogon command. This is sent only for AGTLogon command.

Error Code: 9997 (INVALID_ARGUMENT)

Library sends it back if any argument provided to the API is not right. This error can be
sent by any command.

Error Code 9996 (SDK_Failure)

If the library is unable to send the command to POM, then this error code is generated.

39

This error can be sent by any command.

AGTLogon

Command Syntax

int AGTLogon (String agentExt, String pwd, boolean isForce, String locale, String
timeZone, String zoneName)

Parameters

agentExt This is agent extension

pwd Password used for authenticating the agent on CC Elite. POM server will
accept empty string in password field as empty password is supported on
Communication Manger for agent. So POM server will allow login if the agent
password on Communication Manager is empty and empty password is
provided from desktop.

 Note: null in password will not be accepted.

isForce isForce is a flag, desktop uses to permit a forceful login to POM.

isForce is true when the desktop wants to permit this agent to be
able to login in the following scenarios:

• Even if this agent has already logged in from a different desktop.

• The desktop/agent PC crashed while the agent was already logged in.

 Note:
 Force login agent will drop the customer call and nailing of the agent.

So if the agent is in talking state, agent should wait for the current
call to complete before force login.

locale Locale of the agent.

timeZone Time zone of the agent.

Note:

POM restricts only Null values of locale and time Zone during login.

40

zoneName Zone of the agent.

Description

The agent sends this command from the desktop when the agent wants to login to POM.
This logon API is for CCElite desktop. POM can then use this agent for a campaign when
the agent becomes ready.

Logon for AACC

Command Syntax

int AGTLogon(String agentExt, String pwd, boolean isForce, String locale, String
timeZone, String zoneName, String agentName, POMAgentSkill[] agentSkills)

Parameters:

agentExt This is the agent extension. This is the SIP URL that is used by POM
to send the nailing call in AACC mode.

pwd This parameter is not used in case of AACC mode as AAAD is already
authenticating agent credentials.

isForce This is a flag which can be used by the desktop to allow a forceful login

to POM. It is set to true when the desktop wants to allow this agent to
be able to login in the following scenarios:

• - even if this agent has already logged in from a different desktop.

 the desktop/agent PC crashed while the agent was already logged in.

locale Locale of the agent.

timeZone Timezone of the agent.

 Note:

POM restricts only Null values of locale and timeZone during login.

zoneName Zone of the agent.

agentName Displays the name of the agent. The Agent Manager references the
agent name while integrating with AAAD.

agentSkills The agent skillset array to be sent by AAAD.

Description

The agent sends this command from the desktop when the agent wants to login to POM.
POM can then use this agent for a campaign when the agent becomes ready. This login
command is for AAAD agent desktop

Response Syntax

41

AGTLogonRESP(int result)

Return Value Parameters

result “0” indicates success.

Description

Asynchronous callback response for AGTLogon.

Error codes

Error code Error message Description

2 This agent is not

registered with the

system

POM system does not recognize the logged in agent. You

can force login again.

6 Unable to verify
password

You can see this message only in POM integration with CC

Elite. POM cannot get the password from AES. Check the

password of the agent and check the AES Web service.

7 Agent is already logged
in

POM displays the message if the agent has already logged

in. You can force login again.

9 Agent skills not found Check the agent ID. The agent ID must match the agent ID

specified in Contact Center. If the error message persists,

check the AES web services.

10 Unable to change the

state of the agent

POM cannot change the agent state. Login again to the POM

system.

11 Internal error.

Unable to login

agent

The agent cannot login to the POM system. Login again to

the POM system.

12 Login failure. Zone

not found

The agent cannot login because of zone error. Check the zone

for which the agent logs in. The zone must match one of the

zones specified in POM.

13 Login failure. Invalid
locale

The agent cannot login because of locale error. Check the

locale of the agent. The locale must not be Null. If Null,

specify a locale for the agent.

Note:

POM checks only Null value for locale values, and does

not restrict any other string value

15 Login failure.

Invalid

Timezone

The agent cannot login because of time zone error. Check the

time zone of the agent. The time zone must not be Null. If

Null, specify time zone of the agent.

Note:

POM checks only Null value for time zone values, and

does not restrict any other string value

16 Login failure. Invalid

Agent Name

You can see this message only if you have POM integration

with AACC. The agent name cannot be Null. You must

specify a value for agent name.

42

17 Login failure.

Authentication of

agent failed.

You see this message only if you have POM integration with

CC Elite. Check the agent password. The agent password

must match the agent password specified in the Contact

Center.

AGTLogoff

Command Syntax

AGTLogoff()

Parameters

None

Description

The agent sends this command from the desktop when it wants to logout from POM. An
agent can send this command ONLY when the command is in “NotReady” state.

Error code Error message Proposed solution

541 Unable to logoff.

Please move to not

ready state

 Agent needs to move to not ready state and then retry to
logoff

Response Syntax

AGTLogoffRESP(int result)

Return Value Parameters

result “0” indicates success.

Description

Asynchronous callback response for AGTLogoff.

AGTStateChange
Command Parameters

int AGTStateChange(POMAgentState agentState, String reasonCode, String
reasonName, Boolean hasWalkedAway)

43

Parameters

agentState An agent can specify the state to which the agent wants to
transition to from the current state. The current agent states are:

• Ready: The agent is ready to pick calls.

• NotReady: The agent wants to take a break

• PendingNotReady: The agent is in the middle of the call and
has issued a request to go to NotReady state, but POM cannot
send the agent to NotReady.

reasonCode reasonCode is AUX or reason code the agent selects from the
desktop while going to NotReady state.

reasonName reasonName is the AUX or reason code the agent selects from
the desktop while going to NotReady state.

hasWalkedAway This flag is set to true if it considers the agent as walkaway agent.
If an agent does not perform any actions for two consecutive calls,
then the desktop considers that the agent has walked away and
changes the call state to NotReady, so that it does not send the
next call to this agent. Except for a nontimed preview campaign an
agent does not necessarily have to click buttons on the desktop to
handle a call, considering that the customer disconnects the calls
and implements the autowrapup

Description

The agent sends this command when it wants to go Ready or NotReady. An agent goes
to Ready state when it wants to accept calls from POM. Unless the agent is ready POM
will not handover a call to the agent. If the agent is in NotReady state, POM will not pass
on the outbound call to the agent. An agent can go to NotReady state from a Ready state
only after the current call is done OR to put it in other words, the agent can go to
NotReady state only if it is in Idle state. If the agent is in the middle of a call OR in wrap up
state, the agent can issue a NotReady request. POM accepts this request and puts the
agent in PendingNotReady state. Once the agent is done with disposing the existing call,
POM will immediately put the agent in NotReady state and will not give it a new call until it
goes back to Ready State. An important point to note is that if this agent has pending
consults + pending callbacks, POM will not move the agent from PendingNotReady to
NotReady until the pending consults + pending callbacks are completed.

Error codes

Error code Error message Description

63 State change request

sent more than once

with the same reason

code

When the agent tries to change the agent state to

NotReady with the same reason, POM returns this

error. The agent must select other reason code to

mention different reason for NotReady.

44

64 Unable to change the
current state

POM does not allow the agent to change the state to

NotReady or Ready from the current state.

Response Syntax

AGTStateChangeRESP(POMAgentState pomAgentState, int result)

Return Value Parameters

pomAgentState Agent state of type POMAgentState

result “0” indicates success.

Description

Asynchronous callback response for AGTStateChange.

AGTHoldCall

Command Syntax

int AGTHoldCall (String sessionID)

Parameters

sessionID Unique ID of the session for the entire contact processing duration.

Description

The agent sends this command when it wants to put the customer on hold. The customer
can associate a Hold application with a strategy. The agent plays the hold application to
the customer if an agent puts it on Hold. If the customer disconnects the call when an
agent has put the customer on Hold, POM drops the call and moves the agent to Wrapup
state.

Error codes

Error code Error message Description

101 Unable to hold Unable to hold call due to telephony errors.

102 Unable to hold as call is
disconnected

This error comes when agent tries to hold the call

which is disconnected.

103 Unable to hold as agent
is not on call

This error comes when agent is not on call.

45

Response Syntax

AGTHoldCallRESP(String sessionID, int result)

Return Value Parameters

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

Description

Asynchronous callback response for AGTHoldCall.

AGTUnholdCall

Command Syntax

int AGTUnholdCall (String sessionID)

Parameters

sessionID Unique ID of the contact for the entire contact processing duration.

Description

The agent sends this command when it wants to take the customer out of hold state.

Error codes

Error code Error message Description

121 Unable to hold. Unable to unhold call due to telephony errors.

122 Unable to hold as call is
disconnected.

This error comes when agent tries to unhold the call

which is disconnected.

123 Unable to hold as agent
is not on call.

This error comes when agent is not on call.

Response Syntax

AGTUnholdCallRESP(String sessionID, int result)

Return Value Parameters

sessionID Unique ID of the call for the entire contact processing duration.
result “0” indicates success.

46

Description

Asynchronous callback response for AGTUnHoldCall.

AGTReleaseLine

Command Syntax

int AGTReleaseLine(String sessionID)

Parameters

sessionID Unique ID of the call for the entire contact processing duration.

Description

The agent sends this command when the agent wants to disconnect the customer call.
POM moves the agent to Wrapup state after the agent disconnects the customer call.

An agent can give this command only when the agent is in Talking state.

Error codes

Error code Error message Description

81 Unable to release the

call

POM cannot release the call for the agent. The agent

has some pending commands which the agent must

address.

82 Call is already

disconnected

This error comes when agent tries to disconnect the

call which is already disconnected.

Response Syntax

AGTReleaseLineRESP (WrapupData wrapupDetails, String sessionID, int result)

Return Value Parameters

wrapupDetail This structure contains the following 3 values:

• acwMaxTime: Maximum time permitted to an agent to wrapup the call.

• acwExtendable: Boolean value indicating if the agent can request
more wrapup time.

• defaultCompCode: The completion code POM uses to wrapup the call.

sessionID Unique ID of the call for the entire contact processing duration.

47

result “0” indicates success.

Description

Asynchronous callback response for AGTReleaseLine.

AGTGetCompCodes

Command Syntax

int AGTGetCompCodes(String sessionID)

Parameters

sessionID Unique ID of the call for the entire contact processing duration.

Description

The agent sends this command when the agent wants a list of disposition codes linked
with the campaign that the agent is handling. POM sends back the custom completion
code list linked with the campaign that this agent is part of.

The agent can give this command in Talking/Wrapup state.

Note:

It is not recommended to use this command every time before wrapping up the call. Use
this command for the first customer call on a campaign (or for the first call after
AGTJobAttached notification) and cache the completion code list at desktop side and
refresh it at every first call after job attach. Use this cached completion code list while
wrapping up the call.

Reponse Syntax

AGTGetCompCodesRESP(POMCompletionCode[] completionCodesList, String
sessionID, int result)

Return Value Parameters

compCodeList List of custom completion codes linked with the current job.

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success

Description

Asynchronous callback response for AGTGetCompCodes.

48

AGTWrapupContact

Command Syntax

int AGTWrapupContact(POMCompletionCode completionCode, String sessionID)

Parameters

completionCode An agent can provide a completion code (disposition code) to dispose
the call.

sessionID Unique ID of the call for the entire contact processing duration.

Description

The agent sends this command when the agent wants to wrap up the current call. The
agent has to select a completion code to wrap up the call. Desktop needs to show the
completion code list that is received by invoking command AGTGetCompCodes OR
completion code received from AGTAutoReleaseLine or AGTReleaseLine.

Error codes

Error code Error message Description

201 Unable to wrapup as

contact record not

found

This error comes when contact record is cleared from

the agent object.

202 Unable to wrapup

with this completion

code

POM cannot update the provided completion code for

the contact. Try to update the contact with a different

completion code.

Reponse Syntax

AGTWrapupContactRESP(String sessionID, int result)

Return Value Parameters

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

Description

Asynchronous callback response for AGTWrapupContact.

AGTExtendWrapup

49

Command Syntax

int AGTExtendWrapup(String sessionID)

Parameters

sessionID Unique ID of the call for the entire contact processing duration.

Description

The agent sends this command when it wants to extend the wrapup time of the current
call. The agent gives this command only in wrapup state. Agent can specify a wrapup
time and number of wrapup extensions in the strategy editor.

• Wrapup time: Time value in seconds before which the agent must provide a
disposition for the call.
Wrapup extensions: If an agent needs more time to wrapup a call, then it can ask for
an wrapup extension from POM. If the POM user has provided extensions in the
campaign strategy, then POM sends back the extension time permitted for this
agent. The agent can get more than the wrapup time (above) to dispose the current
call.

Reponse Syntax

AGTExtendWrapupRESP (WrapupData wrapupDetails, String sessionID, int result)

Return Value Parameters

wrapupDetail This structure contains the following 3 values:

• acwMaxTime: Maximum time permitted to an agent to wrapup the call.

• acwExtendable: Boolean value indicating if the agent can request
more wrapup time.

• defaultCompCode: The completion code which POM uses to wrapup the
call.

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

Description
Asynchronous callback response for AGTExtendWrapup.

AGTGetConsultTypes

Command Syntax

int AGTGetConsultTypes(String sessionID)

Parameters

50

sessionID Unique ID of the call for the entire contact processing duration.

Description

The agent sends this command to determine the types of consult supported for the
current job that the attaches the agent

The supported types are:

• Agent: You can consult any agent which is ready + nailed + attached to the same job

• External – You can consult any external party. In POM you can define external party
by adding a contact in Address book. You can also enter a free form number for
consultation.

The agent can send this command in Talking state only.

Response Syntax

AGTGetConsultTypesRESP(POMDestinationType[] destinationTypes, bool
allowFreeForm, String sessionID, int result)

Return Value Parameters

destinationTypes POMDestinationType enumerator

allowFreeForm Boolean flag indicating if the agent can enter a free form
number for consultation.

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

Description
Asynchronous callback response for AGTGetConsultTypes.

AGTGetConsultDestsForType

Command Syntax

int AGTGetConsultDestsForType(POMDestinationType destinationType, String
sessionID)

Parameters

destinationType The selected transfer type Agent/External.

sessionID Unique ID of the call for the entire contact processing duration.

Description

The agent sends this command after selecting a consultation type. The can send this
command only after AGTGetConsultTypes and in Talking state.

51

Note:

POM supports maximum packet size of 16000 bytes. If the list of agents or list of
external addresses exceeds 16000 bytes, POM truncates the list of agents or list of
external addresses.

For POM server, AGTGetConsultDestsForType may need more processing based on
the Agent list or External addresses and data may be huge in size. So it is
recommended that use this command only when needed or only when agent selects
that particular type of consult.

Error codes

Error code Error message Description

382 No destinations

available

POM cannot send external destinations for consult.

The administrator must select some addresses for

the campaign for which the contact is being

processed. 383 Agents are not

available

POM cannot send agent destinations for consult.

No available agents for consult in the running job

are there.

Response Syntax

AGTGetConsultDestsForTypeRESP(POMDestination[] destinations, String sessionID, int
result)

Return Value Parameters

destinations List of available agents for the selected type of consult.

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

Description
Asynchronous callback response for AGTGetConsultDestTypes.

AGTConsultCall

Command Syntax

int AGTConsultCall (POMDestination destination, String sessionID)

Parameters

destination POM sends the selected destination from the list in response to
AGTGetTransferDestsForType or AGTGetConfDestsForType.

sessionID Unique ID of the call for the entire contact processing duration.

Description

52

The agent sends this command after selecting a destination that returns by either
AGTGetConsultDestsForType. An agent has to consult before attempting a transfer or
a conference.

Error codes

Error code Error message Description

141 Unable to consult as the selected

agent is currently not ready

Agent cannot consult with other agent if

the agent is in either Not Ready, or the

agent is unnailed, If the agent selects

such agent, POM returns the error.

The agent must choose some

other agent for consult.

142 Unable to consult as the selected

agent has logged out

 Agent cannot consult with other agent if

the agent is in process of logging out from

the system. If the agent selects such

agent, POM returns the error.

The agent needs to choose some other

agent for consult.

143 Unable to consult as the selected

destination is invalid

If the agent desktop sends

invalid or null destination,

POM returns the error.

144 Unable to consult as the selected

agent already has maximum pending

consults

Agent cannot consult with other agent

if the agent has more than 2 pending

consults.

Response Syntax

AGTConsultCallRESP(String sessionID, int result)

Return Value Parameters

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

Description
Asynchronous callback response for AGTGetConsultDestTypes.

AGTCompleteTranser

Command Syntax

int AGTCompleteTransfer(String sessionID)

53

Parameters

sessionID Unique ID of the call for the entire contact processing duration.

Description

The agent sends this command when it wants to transfer the consultation call to the
passive agent in the consult. POM transfers the customer call to the passive agent, who
now becomes the call owner. Call owner moves the active agent which issues this
command directly to “Idle” state assuming it ready for the next call.

Error codes

Error code Error message Description

421 System error. Unable to
consult

POM cannot transfer the call. The agent must retry

the transfer or cancel the consult.

Response Syntax

AGTCompleteTransferRESP (bool canDispose, POMWrapupDetails wrapupDetails,
String sessionID, int result)

Return Value Parameters

canDispose For an external transfer canDispose is true and the agent has

to provide disposition for the call

wrapupDetails This structure contains the following 3 values:

• acwMaxTime: Maximum time permitted to an agent to wrapup the call.

• acwExtendable: Boolean value indicating if the agent can
request more wrapup time.

• defaultCompCode: The completion code which POM uses to wrapup
the call.

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

Description

Asynchronous callback response for AGTCompleteTransfer.

AGTCancelConsult

Command Syntax

int AGTCancelConsult (String destAgentID, String sessionID)

54

Parameters

destAgentID The selected destination for which the consult intends to cancel request.

sessionID Unique ID of the call for the entire contact processing duration.

Description

The active agent in a consult (customer call owner) sends this command to POM
requesting it to cancel the ongoing consult with the passive agent. POM informs the
passive agent about this action and makes the passive agent ready to accept a new call by
moving the passive agent to Idle state. Using this command, you can cancel a pending
consult request.

Error codes

Error code Error message Description

401 System error. Unable to

cancel the consult

If the system cannot find the instance of consult,

System displays the error on the agent desktop.

Response Syntax

AGTCancelConsultRESP(String sessionID, int result)

Return Value Parameters

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

Description

Asynchronous callback response for AGTCancelConsult.

AGTStartConf

Command Syntax

int AGTStartConf (String sessionID)

Parameters

sessionID Uique ID of the call for the entire contact processing duration.

Description

The agent sends this command when it wants to conference with the passive agent in the
consult. POM joins the customer call with the active and the passive agents. The active
agent’s state changes to ConferenceOwner, while the passive agent becomes
ConferencePassive.

55

Response Syntax

AGTStartConfRESP(String sessionID, int result)

Return Value Parameters

sessionID Unique ID of the call for the entire contact processing duration.

Return Values
result “0” indicates success.

Description

Asynchronous callback response for AGTStartConf.

AGTEndConf

Command Syntax

int AGTEndConf (String sessionID)

Parameters

sessionID Unique ID of the contact for the entire contact processing duration.

Description

Agents involved in a conference can send this command when agent have to end the
conference. The agent can send this command only in conference state. When the agent
ends the conference, it informs the passive agent about it and the active agent moves
back from conference state to Talking state. The passive agent can now receive new calls
and it moves the conference owner from Conference to Talking state.

Error codes

Error code Error message Description

303 Unable to end the

conference as passive

agent not found

If the system cannot find any passive agent in the agent

buffer, the system displays the error on the agent

desktop.

Response Syntax

AGTEndConfRESP(String sessionID, int result)

Return Value Parameters

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

56

Description

Asynchronous callback response for AGTEndConf.

AGTConfChangeOwnership

Command Syntax

int AGTConfChangeOwnership (String sessionID)

Parameters

sessionID Unique ID of the call for the entire contact processing duration.

Description

The Conference owner can give this command to transfer the conference ownership to
the passive agent in the conference. POM then moves the passive agent from
ConferencePassive state to ConferenceOwner state and vice-versa for the original
conference owner. This command should be used for internal conference between two
POM agents.

Response Syntax

AGTConfChangeOwnershipRESP(String sessionID, int result)

Return value parameters

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

Description

Asynchronous callback response for AGTConfChangeOwnership.

AGTRedial

Command Syntax

int AGTRedial (POMContactNumber contactNumber)

Parameters

contactNumber The contact which needs to be redialed.

Description

57

An agent sends this command when it wants to redial the customer that it was talking to
before disconnecting the call. AGTRedial is a useful command which is used if the
customer call disconnects because of some reason (such as network not reachable/weak
signal/disconnect by mistake). The agent can dial any number from the available numbers
assigned to the contact or free from number. The agent desktop can send this command
in wrapup state.

Error codes

Error code Error message Description

362 Unable to redial as

the address is invalid

If the customer number to redial is Null, the system

displays the error on the agent desktop.

Response Syntax

AGTRedialRESP(String sessionID, int result)

Return Value Parameters

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

Description

Asynchronous callback response for AGTRedial.

AGTSendDTMF

Command Syntax

int AGTSendDTMF (String dtmf, String sessionID)

Parameters

dtmf The dtmf digit that agent wants to send on the call.

sessionID Unique ID of the call for the entire contact processing duration.

Description

An agent can send this command if it wants to send dtmf during the call. This command is
useful if the agent is interacting with an IVR or an answering machine. The agent can send
one dtmf at a time.

Error codes

Error code Error message Description

341 Cannot send DTMF as

invalid data received

If the DTMF input is invalid or Null, the system displays

the error on the agent desktop.

342 Unable to send DTMF Unable to send DTMF because of telephony error.

58

343 System error. Unable

to send DTMF

If the telephony fails to send DTMF input, the

system displays the error on the agent desktop.

Response Syntax

AGTSendDTMFRESP(String sessionID, int result)

Return Value Parameters

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

Description

Asynchronous callback response for AGTSendDTMF.

AGTGetCallbackTypes

Command Syntax

int AGTGetCallbackTypes (String sessionID)

Parameters

sessionID Unique ID of the call for the entire contact processing duration.

Description

An agent can send this command to check the types of callbacks which POM supports.
POM supports the following callback types:

• Standard: Any agent having the right skill (skill assigned to the job in which
schedules the callback) receives the callback.

• Agent: Preferrably POM tries to send the callback to the agent which scheduled the
callback OR Any agent having the right skill (skill assigned to the job in which
schedules the callback).

• Campaign: Any agent having the right skill (skill assigned to the campaign
selected for the callback) receives the callback.

An agent has to be ready to receive a callback.

Response Syntax

59

AGTGetCallbackTypesRESP(POMCallbackType[] callbackTypes, String
defaultExpiryTime, String sessionID, int result)

Return Value Parameters

callbackTypes POMCallbackTypes enumerator (Agent, Standard, Campaign)

defaultExpiryTimes Callback default expiry time value.

sessionID: Unique ID of the call for the entire contact processing duration.

result: “0” indicates success.

Description

Asynchronous callback response for AGTGetCallbackTypes.

AGTGetCallbackDestsForTypes

Command Syntax

int AGTGetCallbackDestsForTypes (String sessionID)

Parameters

sessionID Unique ID of the contact for the entire contact processing duration.

Description

An agent can send this command to request POM to send back the list of available
destinations for the selected callback type. An agent can set callbacks only in
Talking/Wrapup/Preview state.

Note:

POM supports maximum packet size of 16000 bytes. If the list of campaigns or list of
agents exceeds 16000 bytes, POM truncates the list of campaigns or list of agents.

Command Syntax

int AGTGetCallbackDestsForType(POMCallbackType callbackType, String zoneName,
String sessionID)

Parameters

callbackType The callback type which needs to be scheduled.

zoneName Callback destination list of only this zone is expected.

sessionID Unique ID of the contact for the entire contact processing duration.

60

Description

An agent can send this command to request POM to send back the list of available
destinations for the selected callback type. An agent can set callbacks only in Preview,
Talking and Wrapup state.

Note:

POM supports maximum packet size of 16000 bytes. If the list of campaigns or list of
agents exceeds 16000 bytes, POM truncates the list of campaigns or list of agents.

Error codes

Error code Error message Description

221 Cannot get

destinations as

callback type is

invalid

If the callback type in API is Null, the system displays

the error on the agent desktop,

222 Unable to get

zone of the

contact

If the system cannot find the zone of a contact on

which the system creates the callback, the system

displays the error on the agent desktop.

223 Unable to get

campaigns for the

organization

If the system cannot find any campaign for the

organization, the system displays the error on the

agent desktop.

Note: For POM server, AGTGetCallbackDestsForType may need more processing based
on the Agent list or Campaign list (Agent or Campaign callback type) and data for this
command may be huge in size. So it is recommended that use this command only when
needed or only when agent selects that particular type of callback.. For Agent Owned
Callback (self-agent callback) there is no need to send this command to get agent list,
desktop has all the information to create callback for the current (self) agent.

Response Syntax

AGTGetCallbackDestsForTypeRESP(POMCallbackType callbackType,
POMCallbackDest[] callbackDests, String sessionID, int result)

Return Value Parameters

callbackType Type of the callback destinations sent back from POM.

callbackDestinations List of available destinations for callback.

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

Description

Asynchronous callback response for AGTGetCallbackDestsForType.

AGTCreateCallback

61

Command Syntax

int AGTCreateCallback (POMCallbackType callbackType, POMCallbackDest
callbackDest, String callbackTime, String callbackTimezone, String callbackExpiryTime,
POMContactNumber contactNumber, String agentNotes, String sessionID)

Parameters

callbackType The callback type which needs to be scheduled.

callbackDest The callback destination which must be dialed

callbackTime The callback time in UTC time zone.

callbackTimezone The time zone for which the callback is tobe dialed

callbackExpiryTime Time limit in minutes after which the callback expires,
starting from callbackTime.

contactNumber The contact number which must be dialed

agentNotes The agent can set notes which can be referred during the callback.

sessionID Unique ID of the call for the entire contact processing duration.

Description

An agent can send this command to request POM to create a callback. The agent can
give this command in Talking/Wrapup/Preview state only. According to the callback type,
POM can send a pending callback notification to the agent few minutes (configurable
value) before the scheduled time of the callback.

Error codes

Error code Error message Proposed solution

481 Invalid callback type

selected

This error comes when desktop provides invalid

callback type.

484 Unable to create

callback as the

campaign is not found

For a standard callback, if the system cannot find the

campaign job which creates the callback, the system

displays the error on the agent desktop.

485 Unable to create

the callback as

invalid callback

type received

If the system receives an invalid or Null callback type

from the desktop, the system displays the error on the

agent desktop.

62

486 Unable to create

callback as callback

time received in

invalid format

If the date format provided in this API does not match

with yyyy/MM/dd/ HH:mm, the system displays the

error on the agent desktop.

487 Unable to create the

callback as the expiry

time is invalid

If the expiry time sent in this API is invalid or lesser

than 0, the system displays the error on the agent

desktop.

488 Unable to create

callback as the

callback time is

invalid

If the callback scheduled time is earlier than current

time, the system displays the error on the agent

desktop.

Reponse Syntax

AGTCreateCallbackRESP(String sessionID, int result)

Return Value Parameters

sessionID Unique ID of the call for the entire contact processing duration.
result “0” indicates success.

Description

Asynchronous callback response for AGTCreateCallback.

AGTGetErrorString

Note: This is obsolete method, use AGTGetErrorInfo instead of AGTGetErrorString

Command Syntax

int AGTGetErrorString (String errorCode)

Parameters

errorCode POM sends the error code in response to a command failure

Description

Desktop can run this function to get details of the error sent in response to a command.
The error code sent back is a number. AGTGetErrorString returns a string which provides
some details about the error.

.

Error Codes:

Error code Error message Description

63

1001 Unable to find error

string for this error

codecallback type

is invalid

This error comes when server is not able to find error

string from the resource for provided error code.

Response Syntax

AGTGetErrorStringRESP(String errorMsg, String localizedErrorMsg, int result)

Return Value Parameters

errorMsg Error message.

localizedErrorMsg Localized error message based on the locale passed during agent
login.

result “0” indicates success.

Description

Asynchronous callback response for AGTGetErrorString.

AGTGetErrorInfo

Command Syntax

int AGTGetErrorInfo (POMErrorCode errorCode)

Parameters

errorCode Error code information sent by desktop to agent manger. It has errorCode and
apiName parameter that has to be filled by desktop. apiName field is optional ,
it is recommended that it should be filled by desktop.

Description

Desktop can run this function to get details of the error sent in response to a command.

Response Syntax

int AGTGetErrorInfoRESP(POMErrorInfo errorInfo, int result)

Return Value Parameters

errorInfo Error information sent back to desktop. This obect contains errorCode,
errorType, errorString and localizedErrorString and apiName.

64

result “0” indicates success.

Description:

Errors that are sent from POM to desktop may be displayed as pop up based on the
desktop implementation and thus the agent becomes irritated as he has to press OK
button for all the errors. So in POM 302, this API is added which provides error type along
with error string. Based on this error type desktop can decide to display the error as pop-
up or to display in status bar or to suppress it. This errorType is enum parameter of
errorInfo object.

Error Type:

1. Info

 Desktop can suppress this information or can display it as information in
status bar

2. Minor

 Desktop can display it as error in status bar.

3. Major

 Desktop can display this error as pop-up or in status bar with red color. If
there is form on top of main form and the error is received as major, then it
is recommended to display it in status bar of child form in red. E.g. if a
callback form is open on top of main form and if any error occurs related to
callback and it is better to display it on status bar in red instead of pop-up.

4. Critical

 Display this type error as a pop-up.

Refer the “POM API Error Codes” for categorization of errors.

Error Codes:

Error code Error message Description

1001 Unable to find error

string for this error

codecallback type

is invalid

This error comes when server is not able to find error

string from the resource for provided error code.

AGTPreviewDial

Command Syntax

int AGTPreviewDial (POMContactNumber contactNumber, String sessionID)

Parameters

65

contactNumber The contact number that needs to be dialed for preview.

sessionID Unique ID of the call for the entire contact processing duration.

Description

Agent can send this command if it wants to accept the preview notification and it wants
to call the customer. Agent can select from the available numbers and the agent can
runs AGTPreviewDial. The agent runs this command only for a PreviewCampaign and
in Preview state. For dialing free form number, desktop needs to set “Name” field of
contactNumber object to “ExternalNumber”

Response Syntax

AGTPreviewDialRESP(String sessionID, int result)

Return Value Parameters

sessionID Unique ID of the call for the entire contact processing duration.

result: “0” indicates success.

Description

Asynchronous callback response for AGTPreviewDial.

AGTPreviewCancel

Command Syntax

int AGTPreviewCancel (String sessionID)

Parameters

sessionID Unique ID of the call for the entire contact processing duration.

Description

Agent can send this command if the agent does not need to accept a preview contact and
instead cancel the dial request. POM moves this agent from Preview state to Wrapup
state. An agent can decide if the agent wants to reject a contact dial attempt for any
reason and provide those details during wrapup.

Response Syntax

AGTPreviewCancelRESP(WrapupData wrapupDetails, String sessionID, int result)

Return Value Parameters

wrapupDetails This structure consists of the following 3 values:

• acwMaxTime: Maximum time permitted to an agent to wrapup the call.

66

• acwExtendable: Boolean value indicating if the agent can
request more wrapup time.

• defaultCompCode: The completion code POM uses to wrapup the call.

sessionID Unique ID of the call for the entire contact processing duration.

Return Values
result “0” indicates success.

Description

Asynchronous callback response for AGTPreviewCancel.

AGTGetCustomerDetails

Command Syntax

int AGTGetCustomerDetails (String sessionID)

Parameters

sessionID Unique ID of the call for the entire contact processing duration.

Description

Agent can run this command if it wants complete details of a contact. Details include Title/
FirstName/LastName/Address/Phone/email fields and custom fields. Usually this
command must run after receiving a new call notification, that is, AGTCallNotify.

Note:

You can use the AGTGetCustomerDetails to get customer data after call is
connected to agent. If the database is updated with new data after the call is
connected, AGTGetCustomerDetails does not give the updated data if you call again
from the agent desktop.

Response Syntax

AGTGetCustomerDetailsRESP(POMCustomerDetails customerDetails, String sessionID,
int result)

Return Value Parameters

customerDetails POMCustomerDetails object containing customer data.

sessionID Unique ID of the call for the entire contact processing duration.

result: “0” indicates success.

Description

67

Asynchronous callback response for AGTGetCustomerDetails.

AGTSetCustomerDetail

Command Syntax

int AGTSetCustomerDetail (POMKeyValuePair pomKeyValuePair, String sessionID)

Parameters

pomKeyValuePair New value that needs to be changed for a key.

sessionID Unique ID of the call for the entire contact processing duration.

Description

Agent can run this command if it wants to change a field value of a customer data

Error codes

Error code Error message Description

641 Attribute is read only,

cannot update this

attribute

If the agent tries to update a read-only attribute through

the agent desktop, the system displays the error on the

agent desktop.

642 Invalid value entered.

Unable to save

attribute

If the validation of the value of the contact attribute fails

on the system, the system displays the error on the

agent desktop. For example, if the attribute is float type

provides a string value such as "ABCD" for the

attribute, the system displays the error on the agent

desktop.

Response Syntax

AGTSetCustomerDetailRESP(String sessionID, int result)

Return Value Parameters

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

Description

Asynchronous callback response for AGTSetCustomerDetail.

68

AGTBlendToInbound

Command Syntax

int AGTBlendToInbound()

Parameters

None

Description

This command is sent by AACC blender to move an agent from Outbound to Inbound.

Error codes

Error code Error message Description

581 Agent is already

assigned to Inbound

If using this API, an inbound agent is tried moving to

inbound again; the system displays the error on the

agent desktop.

Response Syntax

AGTBlendToInboundRESP(int result)

Return Value Parameters

result “0” indicates success.

Description

Asynchronous callback response for AGTBlendToInbound.

AGTBlendToOutbound

Command Syntax

int AGTBlendToOutbound()

Parameters

None

Description

This command is sent by AACC blender to move an agent from Inbound to Outbound.

Error codes

69

Error code Error message Description

601 Agent is already

assigned to Outbound

If using this API, an outbound agent is tried moving to

outbound again; the system displays the error on the

agent desktop.

Response Syntax

AGTBlendToOutboundRESP(int result)

Return Value Parameters

result “0” indicates success.

Description

Asynchronous callback response for AGTBlendToOutbound.

AGTNailupAgent

Command Syntax

int AGTNailupAgent()

Parameters

None.

Description

Blender sends this command when it moves the agent from Inbound to the Outbound
queue.

Response Syntax

AGTNailupAgentRESP(int result)

Return Value Parameters

result “0” indicates success.

Description

Asynchronous callback response for AGTNailupAgent.

AGTReadyForNailup

Command Syntax

int AGTReadyForNailup()

70

Return value parametersNone.

Description

The desktop sends this command when it has processed the AGTNailupChange-
PendingNailup notification. The notification gives an agent enough time to prepare for the
nailup. The notification also acts as an indication to the desktop (with a softphone)
making the next call as a nailing call which must be auto-answered and the call is not a
generic inbound call.

Response Syntax

AGTReadyForNailupRESP(int result)

Return Value Parameters

result “0” indicates success.

Description

Asynchronous callback response for AGTReadyForNailup.

GetAgentStatusResponse

Command Syntax

int GetAgentStatusResponse (POMAgentStatus status)

Parameters

status Value having the agent state, call state, and call state value.

Description

Desktop sends this command on receiving GetAgentStatus notification. Agent manager
sends GetAgentStatus when it wants to check the current agent state on the desktop. So,
when Agent Manager is restarted, it sends GetAgentStatus when the desktop connects to
Agent Manager after restart. The desktop must set desktop’s current known Agent State,
Nailing State, and Call State.

Response Syntax

GetAgentStatusResponseRESP(int result)

Return Value Parameters

result “0” indicates success.

Description

Asynchronous callback response for GetAgentStatusResponse.

Also see:

71

GetAgentStatus

AGTLostNailing

Command Syntax

int AGTLostNailing()

Parameters

None

Description

Desktop sends this command when it detects loss of nailing in the softphone or
hardphone.

Response Syntax

AGTLostNailingRESP (WrapupData wrapupDetails, Sting sessionID, int result)

Return value parameters

wrapupDetails This structure consists of the following 3 values:

• acwMaxTime: Maximum time permitted to an agent to wrapup the call.

• cwExtendable: Boolean value indicating if the agent can request
more wrapup time.

• adefaultCompCode: The completion code POM uses to wrapup the call.

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

Description

Asynchronous callback response for AGTLostNailing.

AGTPendingLogout

Command Syntax

int AGTPendingLogout()

Parameters

None.

Description

An agent sends this command at any state to logout from the desktop. If the agent is in the

72

middle of the call, then POM waits for wrap up and moves the agent to not ready state and
then logout the agent. This operation is mandatory to perform, if the desktop detects an
erroneous condition.

Response Syntax

AGTPendingLogoutRESP(int result)

Return Value Parameters

result “0” indicates success.

Description

Asynchronous callback response for AGTPendingLogoutRESP.

AGTAddAgentNote

Command Syntax

int AGTAddAgentNote (String agentNote)

Parameters

 agentNote Notes to be stored by POM.

Description

An agent can use this command to store agent notes for a contact in POM. For
consult/transfer/ conference/callbacks, the agent uses these notes as reference.

Error code Error message Description

561 Invalid data received.

Unable to add agent

notes

If the agent notes are Null or empty, the system displays

the error on the agent desktop.

562 System error.

Unable to add

agent notes

If the system fails to add the agent notes, the system

displays the error on the agent desktop.

563 System error.

Unable to add

agent notes

If the system fails to add agent notes because it cannot

find the contact, the system displays the error on the

desktop.

Response Syntax

AGTAddAgentNoteRESP(String sessionID, int result)

73

Return Value Parameters

sessionID Unique ID of the call for the entire contact processing duration.
result: “0” indicates success.

Description

Asynchronous callback response for AGTAddAgentNote.

AGTRefreshAgentNotes

Command Syntax

int AGTRefreshAgentNotes (String sessionID)

Parameters

sessionID Unique ID of the call for the entire contact processing duration.

Description

An agent can use this command to have agent notes stored for this contact for the current
job. The agent can have the notes saved during
talking/consult/transfer/conference/callbacks.

Note:

POM supports maximum packet size of 16000 bytes. If the notes exceed 16000 bytes,
POM truncates the notes.

Response Syntax

AGTRefreshAgentNotesRESP(String[] agentNotes, String sessionID, int result)

Return Value Parameters

agentNotes Agent notes added earlier for the call.

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success.

Description

Asynchronous callback response for AGTRefreshAgentNotes.

AGTGetTimeZones

74

Command Syntax

int AGTGetTimezones()

Parameters

None

Description

POM uses this command to get a list of all supported time zones. This command must run
before creating callbacks.

Response Syntax

AGTGetTimezonesRESP(POMKeyValuePair[] timezones, int result)

Return Value Parameters

timeZones List of supported time zones.

result “0” indicates success.

Description

Asynchronous callback response for AGTGetTimeZones

AGTAvailableForNailup

Command Syntax

AGTAvailableForNailup()

Parameters

None

Description

Desktop sends this command only when the agent gets Ready for the first time after
logging in.

Response Syntax

AGTAvailableForNailupRESP(int result)

Return Value Parameters

result “0” indicates success.

75

Description

Asynchronous callback response for AGTAvailableForNailup.

AGTAgentDisconnected

Command Syntax

int AGTAgentDisconnected()

Parameters

None

Description

A component must send this command which monitors the desktop. Sending this command
permits POM to remove this agent from pacing and POM stops sending new notifications to
this agent.

Response Syntax

AGTAgentDisconnectedRESP(int result)

Return Value Parameters

result “0” indicates success.

Description

Asynchronous callback response for AGTAgentDisconnected.

AGTAddToDNC

Command Syntax

int AGTAddToDNC (POMAttribute[] addressList)

Parameters

addressList List of addresses to be added to DNC list.

Description

The agent can add a contact address or more addresses into the DNC list, POM maintains.

Error Codes

Error code Error message Description

76

621 Unable to add to

DNC. Contact

address already

present.

If the contact address is already in DNC, the system

displays the error on the agent desktop.

622 System error. Unable

to add to DNC

If the system cannot add the contact address to DNC,

the system displays the error on the agent desktop.

623 Invalid data received.

Unable to add to DNC

If the contact attribute for which the system tries to add

the contact address to DNC is Null, or not present in the

system, the system displays the error on the agent

desktop.

Response Syntax

AGTAddToDNCRESP(String sessionID, int result)

Return Value Parameters

sessionID Unique ID of the call for the entire contact processing duration.

result “0” indicates success

Description

Asynchronous callback response for AGTAddToDNC.

AGTIsInDNC

Command Syntax

int AGTIsInDNC (String addressValue, String sessionID)

Parameters

addressValue Address to be verified in POM DNC list.

sessionID Unique ID of the call for the entire contact processing duration.

Description

The agent can run this command to verify if the address is already in the POM DNC list.

Response Syntax

AGTIsInDNCRESP(bool present, int result)

Return Value Parameters

present True if the value is in the POM DNC list, false otherwise.

77

result “0” indicates success.

Description

Asynchronous callback response for AGTIsInDNC.

AGTGetZoneList

Command Syntax

int AGTGetZoneList()

Parameters

None.

Description

The agent can run this command to get a list of zones configured on POM.

Response Syntax

AGTGetZoneListRESP(String[] zoneList, int result)

Return Value Parameters

zoneList List of zones configured on POM.

result “0” indicates success.

Description

Asynchronous callback response for AGTGetZoneList.

AGTSaveAgentForHA

Command Syntax

int AGTSaveAgentForHA()

Parameters

None.

Description

The agent must run this if it is interested in POM restoring the agent desktop state in a
scenario where the desktop crashes and was restarted. So, if the agent invokes
AGTSaveAgentForHA and after some time while performing some activity for a customer

78

the desktop crashes, then if the agent re-logs in then POM tries to restore the agent state
back to what it was before the crash situation.

Note: The current release does not support Agent HA. Ensure that you do not use the

AGTSaveAgentForHA command through the agent desktop.

Response Syntax

AGTSaveAgentForHARESP(int result)

Return Value Parameters

result “0” indicates success.

Description

Asynchronous callback response for AGTSaveAgentForHA.

AGTSkillsChanged

Command Syntax

int AGTSkillsChanged (POMAgentSkill[] agentSkills)

Parameters

agentSkills The current agent skill set.

Description

AAAD sends this when it detects any changes in the agent skillset on AACC.

Response Syntax

AGTSkillsChangedRESP(int result)

Return Value Parameters

result 0” indicates success.

Description

Asynchronous callback response for AGTSkillsChanged.

AGTGetContactAttributes

79

Command Syntax

int AGTGetContactAttributes()

Parameters

None.

Description

The agent can send this command to get the list of attributes and attributes types, linked
with the current contact. This command does not send the attribute values in response to
this command request. To get contact attribute values, the agent must run the command
AGTGetCustomerDetails.

Response Syntax

AGTGetContactAttributesRESP(int result)

Return Value Parameters

result “0” indicates success.

Description

Asynchronous callback response for AGTGetContactAttributes.

Notifications

AGTStateChangeNotify

Notification Syntax

AGTStateChangedNotify (POMAgentState agentState)

Notifcation Parameters

agentState Agent state. Value can be one of Ready/NotReady/PendingNotReady

Description

POM sends this notification when it detects change in agent state. If the agent requests to
go to Ready state by invoking AGTStateChange, with a response for AGTStateChange
command POM sends back this notification with the agentState as Ready. If the agent
requests to go to NotReady state during a call, POM sends back AGTStateChange
notification with the agentState as PendingNotReady. But, when POM finds that the
agent has finished agent’s calls, the agent which was put in PendingNotReady state is

80

sent to NotReady state and POM informs this to the desktop by sending
AGTStateChange notification.

AGTCallNotify

Notification Syntax

AGTCallNotify (POMContact contact, String sessionID)

Notifcation Parameters

contact POMContact object containing the customer and job related information
about the contact which is (preview campaign)/got (Predictive +
Progressive campaign) dialed.

sessionID sessionID: Unique ID of the call for the entire contact processing duration.

Description

POM sends notification for Predictive and Progressive campaigns when POM connects
the outbound call to the customer with the agent. POM sends this notification to the
selected agent, so that the agent gets to know the customer that got dialed. The desktop
must then run AGTGetCustomerDetails command to get more details about the
customer.

AGTAutoReleaseLine

Notification Syntax

AGTAutoReleaseLine (WrapupData wrapupDetails, String sessionID)

Notifcation Parameters

wrapupDetails This structure contains the following 3 values:

• acwMaxTime: Maximum time permitted to an agent to wrapup the call.

• acwExtendable: Boolean value indicating if the agent can
request more wrapup time.

• defaultCompCode: The completion code POM uses to wrapup the call.

sessionID Unique ID of the call for the entire contact processing duration.

Description

POM sends this notification when it detects that the customer has disconnected the call.
The desktop must permit the agent to wrapup the call by creating a timer with the time
value set to acwMaxTime. If the agent needs more time to wrapup the call and if
acwExtendable is set to true, then the agent can run AGTExtendWrapup and get some

81

more time from POM. POM uses defaultCompCode to auto wrapup the call, if the agent
does not select a completion code during the wrapup time. Desktop can perform an
autowrapup after the acwMaxTime expires and the agent does not run
AGTWrapupContact. Desktop can use the defaultCompCode for AGTWrapupContact.

If acwMaxTime is received as zero with answering machine completion code
(Answer_Machine), desktop needs to wrap up the call immediately without agent
interaction with the completion code answering machine received in
AGTAutoReleaseLine notification.

AGTConsultNotify

Notification Syntax

AGTConsultNotify (POMContact contact, String requestingAgentId, String sessionID)

Notifcation Parameters

contact POMContact object containing the customer and job related
information about the contact for which POM sends this
consult request.

requestingAgentID Agent ID of the consult starting agent.

sessionID Unique ID of the call for the entire contact processing duration.

Description

POM sends this notification when an agent (active) requests a consult with another agent
(passive). If the passive agent is busy on another call, POM sends AGTPendingConsult
to the passive agent. POM sends AGTConsultNotify only when it successfully takes the
passive agent into the consultation call.

AGTConsultCancelled

Notification Syntax

AGTConsultCancelled (String requestingAgentId, String sessionID)

Notifcation Parameters

requestingAgentID Agent ID of the agent which initiated the cancel consult request.

sessionID Unique ID of the call for the entire contact processing duration.

Description

POM sends this notification when a consult is cancelled/dropped. The other agent
performs cancel operation and POM sends this notification to an active agent. POM

82

sends this notification either because of AGTCancelConsult or AGTAutoReelaseLine
operations.

AGTTransferNotify

Notification Syntax

AGTTransferNotify (POMContact contact, String sessionID)

Notifcation Parameters

contact POMContact object containing the customer and job related information
about the contact for which this transfer happened.

sessionID Unique ID of the call for the entire contact processing duration.

Description

POM sends this notification when an agent (active) completes the transfer to the
consulted agent (passive). POM sends AGTTransferNotify to the passive agent informing
it about the call ownership. POM moves the earlier active agent to Idle state and the new
active agent to Talking/Busy state.

This release supports the transfer capability in external conference, so that agent can
leave the external conference. It will transfer the call to external party and drop from the
conference.

AGTConferenceNotify

Notification Syntax

AGTConferenceNotify (POMContact pomContact, String sessionID)

Notifcation Parameters

contact POMContact object containing the customer and job related
information about the contact for which this conference happened.

sessionID Unique ID of the call for the entire contact processing duration.

Description

POM sends this notification when an agent (active) starts the conference with the
consulted agent (passive). POM sends AGTConferenceNotify to the passive agent
informing it about the conference. POM moves the earlier active agent to
ConferenceOwner state and the passive agent to ConferencePassive state.

83

AGTConferenceEnded

Notification Syntax

AGTConferenceEnded (String sessionID)

Notifcation Parameters

sessionID Unique ID of the call for the entire contact processing duration.

Description

POM sends this notification to an agent informing it that the other agent has ended the
conference. POM can also send this when the customer releases the call.

AGTConferenceOwnershipChanged

Notification Syntax

int AGTConferenceOwnershipChanged (String sessionID)

Notifcation Parameters

sessionID Unique ID of the call for the entire contact processing duration.

Description

The Conference owner can give this command to transfer the conference ownership to
the passive agent in the conference. POM then moves the passive agent from
ConferencePassive state to ConferenceOwner state and vice-versa for the original
conference owner.

AGTCapabilitiesChanged

Notification Syntax

AGTCapabilitiesChanged (POMCapabilities capabilities)

Notifcation Parameters

capabilities Almost 17 capabilities are associated with an agent. This object contains
the status of those capabilities.

Description

POM sends this notification from time to time, when it detects a Call/Agent/Nailed/Job
status change. Some of the capabilities are CanHold/CanTransfer/CanConsult. This
notification is a critical notification because this notification helps the desktop in becoming
stateless. The desktop can hide/ unhide various controls based on values in capabilities.

84

AGTNailupChange

Notification Syntax

AGTNailupChange (POMNailupStatus nailupStatus)

Notifcation Parameters

nailupStatus Values are PendingNailup / NailedUp /
PendingNailupDrop / NotNailed / NailingLost

Description

POM sends this notification to the desktop informing it about the agent’s current nailing
state. This notification is send when POM detects a nailing state change.

v

AGTCallStateChangedNotify

Notification Syntax

AGTCallStateChangedNotify (POMCallState callState)

Notifcation Parameters

callState Provides current call state value. Some values are
Preview/Dialing/Talking/Held/Wrapup.

Description

POM sends this notification to the desktop when it detects a change in the current call
state. The call state changes based on the agent state machine inside POM and also
based on actions taken by the agent during a call.

AGTDialFailed

Notification Syntax

AGTDialFailed (WrapupData wrapupDetails, POMDialFailReason dialFailReason, String
sessionID)

Notifcation Parameters

wrapupDetails This structure contains the following 3 values:

• acwMaxTime: Maximum time permitted to an agent to wrapup the call.

• acwExtendable: Boolean value indicating if the agent can
request more wrapup time.

85

• defaultCompCode: The completion code POM uses to wrapup the call.

dialFailReason An enumerator value linked with a possible dial fail reason.

sessionID Unique ID of the call for the entire contact processing duration.

Description

POM sends this notification to the agent if the Preview Dial trail fails or a Redial attempt
fails. POM moves the agent to Wrapup state after sending this notification. The agent can
use the defaultCompCode to auto dispose the call. The action POM takes after receiving
this notification is similar to AGTReleaseLine and AGTAutoReleaseLine.

AGTConsultDialFailed

Notification Syntax

AGTConsultDialFailed (POMDialFailReason dialFailReason, String sessionID)

Notifcation Parameters

dialFailReason An enumerator value linked with a possible dial fail reason.

sessionID Unique ID of the call for the entire contact processing duration.

Description

POM sends this notification to the agent that attempts a consult to another agent. The
agent stays in Talking state. A consult can fail because of various reasons especially if
the consulted party is an external number.

AGTConsultPending

Notification Syntax

AGTConsultPending (String requestingAgent, String requestingAgentID, String
requestingCampaign, String sessionID)

Notifcation Parameters

requestingAgent Agent requesting the consult.

requestingAgentId Agent ID of the agent requesting the consult.

consultrequestingCampaign Name of the campaign to which the consult requesting
agent is part of.

sessionID Unique ID of the call for the entire contact processing duration.

Description

86

POM sends this notification when the agent (active) requests a consult with another agent
(passive) when the passive agent is already busy in a call that is the passive agent is
either in Busy state. The receiving agent can decide on an action with the current call
based on this notification.

AGTPendingConsultComplete

Notification Syntax

AGTPendingConsultComplete (String sessionID)

Notifcation Parameters

sessionID Unique ID of the call for the entire contact processing duration.

Description

POM sends this notification to the initiator agent when the recipient agent successfully
completes the consult.

AGTPreviewCallbackPending

Notification Syntax

AGTPreviewCallbackPending (String dueTime, String sessionID)

Notifcation Parameters

dueTime Time at which the callback is due.

In POM 303, POM server can send time in UTC (yyyy/MM/dd HH:mm), if
the UTC is set in TimeZonePendingCallbackDueTime parameter in
database (POM configuration table pim_config). So desktop can convert
the time as per agent desktop machine time zone.

The existing functionality in which POM sends due time as per the POM
server time zone will work as it to maintain backward compatibility and this
is the default behavior.

sessionID Unique ID of the call for the entire contact processing duration.

Description

POM sends this notification to an agent a few seconds (configurable value on POM)
before the scheduled callback time. This notification is useful for the agent in deciding the
agent’s action for the current call.

AGTPreviewCallbackCancelled

87

Notification Syntax

AGTPreviewCallbackCancelled (String dueTime, String sessionID)

Notifcation Parameters

sessionID Unique ID of the call for the entire contact processing duration.

Description

POM sends this notification to an agent if POM cancels the callback because it has expired.

AGTAgentLoggedOut

Notification Syntax

AGTAgentLoggedOut()

Notifcation Parameters

None

Description

POM sends this notification when it successfully logs out an agent. This notification is
useful if the agent has issued a AGTPendingLogout request. This notification provides the
agent confirmation about agent’s logout operation.

AGTCustomerDetailsChanged

Notification Syntax

AGTCustomerDetailsChanged (POMAttribute attribute, String sessionID)

Notifcation Parameters

attribute POMAttribute that has changed.

sessionID Unique ID of the call for the entire contact processing duration.

Description

POM sends this notification to determine the current agent state. POM sends this
notification either when agent manager restarts while the desktop is in use OR if agent
manager does not detect any activity from the agent for a considerable time. The desktop
developer must fill up the current agent state in the POMAgentStatus structure and send
back in the notification method response.

88

AGTEnableCancelConsult

Notification Syntax

AGTEnableCancelConsult (String sessionID)

Notifcation Parameters

sessionID Unique ID of the call for the entire contact processing duration.

Description

POM sends this notification to the active agent so that the desktop can enable the cancel
consult feature. Certain scenarios/situations are there in which POM cannot cancel the
consult. POM uses this notification to take care of such scenarios.

AGTInvalidCommandName

Notification Syntax

AGTInvalidCommandName (String commandName)

Notifcation Parameters

commandName Details of the data that POM received.

Description

POM sends this notification to the desktop if POM receives an invalid command.

GetAgentStatus

Notification Syntax

POMAgentStatus GetAgentStatus (String agentID)

Notifcation Parameters

agentID ID of the requested agent’s status.

Description

POM sends this notification to determine the current agent state. POM sends this either
when agent manager restarts while the desktop is in use OR if agent manager does not
detect any activity from the agent for a considerable time.

The desktop developer must fill up the current agent state in the POMAgentStatus structure

89

and send back in the notification method response.

POM sends this notification to determine the current agent state. POM sends this
notification either when agent manager restarts while the desktop is in use OR if agent
manager does not detect any activity from the agent for a considerable time.

The desktop developer must fill up the current agent state in the POMAgentStatus structure
and send back in the notification method response.

Also see:

GetAgentStatusResponse

POMAvailable

Notification Syntax

POMAvailable()

Notifcation Parameters

None

Description

POM sends this notification when the agent manager connects to the library for the first
time OR if the agent manager restarts while the desktop is still in use.

POMNotAvailable

Notification Syntax

POMNotAvailable()

Notifcation Parameters

None.

Description

The library sends this notification when it detects that the connection to the agent manager
is lost.

AGTBlendedtoOutbound

Notification Syntax

AGTBlendedtoOutbound()

Notifcation Parameters

90

None

Description

POM sends this notification when the agent is moved to Outbound.

AGTBlendedToInbound

Notification Syntax

AGTBlendedToInbound()

Notifcation Parameters

None

Description

POM sends this notification when the agent is moved to Inbound.

AGTZoneDown

Notification Syntax

AGTZoneDown (String zoneName, int gracePeriodInMillis)

Notifcation Parameters

zoneName Name of the zone.

gracePeriodinMillis Grace period in milliseconds after which POM forcefully logs out the
agent

DescriptionPOM sends this notification when it detects that a zone is going down. The
agent must finish off all his current activities before gracePeriodInMiilis, otherwise POM
forcefully logs out the agent.

AGTJobAttached

Notification Syntax

AGTJobAttached (String campaignName)

91

Notifcation Parameters

campaignName Name of the campaign.

Description

POM sends this notification when the agent is attached to a new job. The associated
campaign name is sent as an argument.

Earlier, In CCElite mode the skill information was refreshed from Communication

Manager while attaching to a job. Any request to refresh the skill would take time to

reflect depending on Communication Manager work load. In the current release, POM

does not refresh the skill information while attaching an agent to a job. If the agent skill

information changes, the agent needs to logout and login again for the changes to take

effect.

92

Call Flow and Capability Matrix

Simple Call Flow

93

94

Call flow and capability matrix

95

Capability matrix

 H

ol

d

Un

hol

d

Tra

nsf

er

Co

nfe

ren

ce

Rel

ea

se

Dis

pos

itio

n

Ori

gin

ate

Cre

ateC

allba

ck

Sen

dD

TM

F

Upd

ate

Rec

ord

Leav

eCon

feren

ce

Lea

ve

Con

sult

End

Conf

eren

ce

Chan

geOw

nersh

ip

R

ea

dy

Not

Re

ady

R

ec

or

d

Idle N N N N N N N N N N N N N N N Y N

Held N Y N N N N N N N N N N N N N Y N

Talkin

g

Y N Y Y Y Y Y Y Y Y N N N N N Y N

Consu lt

(Owne

r)

N N Y Y N N N N N N N Y N N N Y N

Consu

lt

(Recip

ient)

N N N N N N N N N N N Y N N N Y N

Agent

Confer

ence

(Owne

r)

N N N N N N N N N Y N N Y Y N Y N

External

Confer

ence

(Owne

r)

N N Y N N N N N N Y N N Y Y N Y N

Confer

ence

(Recip

ient)

N N N N N N N N N N Y N N N N Y N

Wrapu

p

N N N N N Y N Y N N N N N N N Y N

NotRe

ady

N N N N N N N N N N N N N N Y N N

Pendi

ng Not

Ready

N N N N N N N N N N N N N N Y N N

Ready N N N N N N N N N N N N N N N Y N

Recor

ding

Prese

nt

N N N N N N N N N N N N N N N Y N

Call flow and capability matrix

96

Previe

w/

Callba

ck

N N N N N N N Y N Y N N N N N Y N

Dialin

g

N N N N N N N N N N N N N N N Y N

Logs and traces, Error messages, Troubleshooting, and Miscellaneous Notes

97

Logs and traces, Error messages, Troubleshooting,

and Miscellaneous Notes

Logs and traces

The library generates own logs for it using Apache log4net library. A configuration file is
shipped with the library, which stores the path locations of the dependent libraries and

also the log4net library. The log4net configuration file log4net.xml is also shipped with the

POM Desktop API libraries.

Error messages

If an API sends back an error code, then the desktop developer invokes
AGTGetErrorString to get the appropriate error message. AGTGetErrorString localizes
the error messages and the appropriate localized message are available based on the
locale provided with AGTGetErrorString. POM receives the API request and the returns
the value back. POM sends the error codes with the response for a command. All
response messages ending with RESP have an error code resolved with a localized error
message.

Note:

All error codes do not have an appropriate error message linked with them. There are
certain error codes for which the AGTGetErrorString must not be invoked because
the error codes are detected at the API level, POM does not receive the request .
Only errors that POM detects, have an appropriate error message response with
AGTGetErrorString. POM sends back all such error codes while invoking the
commands.

Following error codes are not associated with error messages:

Error Code: 9999 (POM_NOT_AVAILABLE)

POM sends back the error code if the POM does not receive the command. POM
generates the error code internally and sends the error code back with the appropriate
response RESP.

Error Code: 9998 (PAM_NOT_AVAILABLE_FOR_ZONE)

POM sends back the error code if POM the agent manager does not manage the zones
provided in the AGTLogon command.

Error Code: 9997 (INVALID_ARGUMENT)

POM sends back if API receives any incorrect argument

Error Code 9996 (SDK_Failure)

POM generates the error code if the library cannot send the command to POM.

Note:

Logs and traces, Error messages, Troubleshooting, and Miscellaneous Notes

98

Ensure that you localize or translate the error codes if required, and manage the error
codes.

Troubleshooting

The library logs are important and useful in debugging issues in the first phase. The
logging levels must be set to FINEST level to track issues. The logs lists all
communication messages between the desktop library and POM. Logs also logs
exceptions/errors which are useful in understanding issues. The logs also indicate the
flow of data between the library user and POM.

In AACC mode agent login failed after restarting CCMM POMProxy and POM services.
To resolve this issue sequence needs to be maintained. First start POM agent manager
and when it is up and running/initialized start AACC CCMM proxy.

POM API error codes

Error Code Error
Type

Message

0 Success

1 Major Command Failure

2 Major This agent is not registered with the system

3 Minor Unable to login. Check media server.

5 Minor Agent is already nailed.

6 Major Unable to verify password.

7 Major Agent is already logged in.

8 Minor Agent is forcefully logging in to the system.

9 Major Agent skills not found.

10 Major Unable to change the state of the agent.

11 Major Internal error. Unable to login agent.

12 Major Login failure. Zone not found.

13 Major Login failure. Invalid Locale.

14 Major Login failure. Invalid Agent Extension.

15 Major Login failure. Invalid Timezone.

16 Major Login failure. Invalid Agent Name.

17 Major Login failure. Authentication of agent failed.

61 Info Agent is already in ready state.

62 Minor Agent walkaway received when agent is handling a call.

63 Info State change request sent more than once with the same reason code.

64 Major Unable to change the current state.

81 Minor Unable to release the call.

82 Info Call is already disconnected.

101 Major Unable to hold.

102 Minor Unable to hold as call is disconnected.

103 Minor Unable to hold as agent is not on call.

Logs and traces, Error messages, Troubleshooting, and Miscellaneous Notes

99

121 Major Unable to unhold.

122 Minor Unable to unhold as call is disconnected.

123 Minor Unable to unhold as agent is not on call.

141 Minor Unable to consult as the selected agent is currently not ready.

142 Minor Unable to consult as the selected agent has logged out.

143 Major Unable to consult as the selected destination is invalid.

144 Minor Unable to consult as the selected agent already has maximum pending

 consults.

181 Minor Unable to conference.

182 Minor Unable to conference as agent selected is not in a consult with this

 agent.

183 Minor Unable to conference as agent selected for conference has logged out.

184 Minor Unable to conference as agent selected for conference is currently not

 ready.

201 Major Unable to wrapup as contact record not found.

202 Major Unable to wrapup with this completion code.

221 Major Cannot get destinations as callback type is invalid.

222 Minor Unable to get zone of the contact.

223 Info Unable to get campaigns for the organization.

241 Minor Unable to dial as agent is not in a preview.

242 Minor Unable to cancel as agent is not in a preview.

261 Minor Moving agent to pending not ready state.

281 Minor Conference owner cannot leave the conference.

301 Minor Cannot end the conference as the agent is not in a conference.

302 Minor Cannot end the conference as the agent is not the owner of the

 conference.

303 Major Unable to end the conference as passive agent not found.

321 Minor Cannot change ownership as this is not an agent type of conference.

341 Minor Cannot send DTMF as invalid data received.

342 Minor Unable to send DTMF as agent is not in a call.

343 Major Unable to send DTMF.

361 Minor Unable to redial as agent is not in wrapup.

362 Minor Unable to redial as the address is invalid.

382 Info No destinations available.

383 Info Agents are not available.

401 Major Unable to cancel the consult.

402 Minor Unable to cancel the pending consult as it has already started.

421 Major Unable to consult.

441 Minor System error. Unable to start recording.

461 Minor System error. Unable to stop recording.

481 Minor System error. Unable to stop recording.

482 Minor not found. Unable to create the callback.

483 Minor Unable to create the callback as the agent is not in a call.

484 Major Unable to create callback as the campaign is not found.

485 Major Unable to create the callback as invalid callback type received.

486 Major Unable to create the callback as callback time received in invalid format.

487 Major Unable to create callback as the expiry time is invalid.

488 Major Unable to create callback as the callback time is invalid.

Logs and traces, Error messages, Troubleshooting, and Miscellaneous Notes

100

501 Info Unable to extend the wrapup time as agent is not in wrapup state.

 521 Minor Unable to find the customer details.

541 Minor Unable to logoff. Move to not ready state.

561 Info Invalid data received. Unable to add agent notes.

562 Major Unable to add agent notes.

563 Major Unable to add agent notes.

581 Info Agent is already assigned to Inbound.

601 Info Agent is already assigned to Outbound.

621 Info Unable to add to DNC. Contact address already present.

622 Major Unable to add to DNC.

623 Major Invalid data received. Unable to add to DNC.

624 Minor Invalid address. Unable to add to DNC.

641 Minor Attribute is read only, cannot update this attribute.

642 Major Invalid value entered. Unable to save attribute.

1001 Info Unable to find error string for this error code.

9001 Minor Initialization failed as server is not reachable.

9002 Major Agent is not registered.

9003 Major System error. Unexpected command received

9004 Minor This request cannot be processed in the current agent state.

9005 Minor System is not available.

9006 Major Unable to process request as agent is not nailed.

9007 Major System error. Check media server.

9008 Major System error. Invalid data received in the request.

9009 Critical System error. Media server not reachable.

9010 Major Parameters received in request are less than expected.

9011 Major System error. Invalid command name received.

9012 Minor Please wait while system is initializing.

9050 Major System error. Unable to process the request.

Logs and traces, Error messages, Troubleshooting, and Miscellaneous Notes

101

Miscellaneous notes

1. Consult is not a capability. So you can use the following logic to control the

accessibility of the consult button/menu:

a. Enable Consult button IF (LEAVECONSULT : FALSE,

CANTRANSFER: TRUE, CANCONFERENCE : TRUE)

b. Disable Consult button IF (LEAVECONSULT : TRUE,

CANTRANSFER: TRUE, CANCONFERENCE : TRUE)

2. Callback – Callbacks can be set for Free form number (i.e. a contact number not

currently associated with the contact on POM) and in this scenario it is expected

the user specifies the string “ExternalNumber” in the contact number object.

3. Agent walkaway – The desktop developer track agent actions, such that if for two

consecutive calls the agent has not clicked anything on the desktop, then the

desktop must send AGTStateChange (NotReady) with the walkaway flag set to

true. This operation ensures that POM stops sending calls to the agent if the

agent has walked away from his station.

4. It is the customer’s preference to allow/disallow the passive agent involved in a

consult/ conference to modify/update/work on the desktop. Only relevant buttons

should be enabled. The passive party should not be allowed to modify customer

details. Only agent notes should be enabled.

102

Sequence Diagrams

Sequence 1 - Nailing

103

Sequence 2 - Consult

104

Sequence 3 - Cancel consult by active agent

Sequence Diagrams

105

Sequence 4 - Cancel consult by passive agent

Sequence Diagrams

106

Sequence 5 - Transfer by active agent

Sequence Diagrams

107

Sequence 6 - Conference by active agent

Sequence Diagrams

108

Sequence 7 - Conference end by conference owner

Sequence Diagrams

109

Sequence 8 - Conference left by passive agent in a
conference

Sequence Diagrams

110

Sequence 9 - Conference ownership changed by conference
owner

Sequence Diagrams

111

Sequence 10 - State change sequence

Sequence Diagrams

112

Sequence 11 - Blending

Sequence Diagrams

113

Sequence 12 - Call drop by agent

Sequence Diagrams

Sequence 13 — Call drop by customer

Sequence Diagrams

Sample Code

Sample code to use the API libraryThe code is written in
VB.net

Initialize the library

Create agent and log in

Log off agent

Dim libInitDone As Boolean = False

libInitDone = POMAgentFactory.init(pamSocketInfoarray)

If libInitDone = False Then

MsgBox("Library could not be initialized. None of the PAM are reachable.")

loginForm.Visible = True

End If

Private agentHandler As POMAgentHandler

agentHandler = New POMAgentHandler

agent = POMAgentFactory.getPOMAgent(AgentID, agentHandler)

Dim returnCode As Int32 = agent.AGTLogon(AgentExt, Password, forceLogin, agentLocale,

timeZone, zoneName)

agent.AGTLogoff()

Sequence Diagrams

