

02-300358
Release 7.1.1
August 2017

Avaya Aura®
Application Enablement Services
Device, Media and Call Control API

XML Programmer’s Guide

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide

© 2016 Avaya Inc.

All Rights Reserved

Notice

While reasonable efforts were made to ensure that the information in this
document was complete and accurate at the time of printing, Avaya Inc. can
assume no liability for any errors. Changes and corrections to the information
in this document may be incorporated in future releases.

For full support information, please see the complete document,
Avaya Support Notices for Software Documentation, document number
03-600758.
To locate this document on our Web site, simply go to
http://www.avaya.com/support and search for the document number in the
search box.

Documentation disclaimer

Avaya Inc. is not responsible for any modifications, additions, or deletions to
the original published version of this documentation unless such
modifications, additions, or deletions were performed by Avaya. Customer
and/or End User agree to indemnify and hold harmless Avaya, Avaya's
agents, servants and employees against all claims, lawsuits, demands and
judgments arising out of, or in connection with, subsequent modifications,
additions or deletions to this documentation to the extent made by the
Customer or End User.

Link disclaimer

Avaya Inc. is not responsible for the contents or reliability of any linked Web
sites referenced elsewhere within this documentation, and Avaya does not
necessarily endorse the products, services, or information described or
offered within them. We cannot guarantee that these links will work all of the
time and we have no control over the availability of the linked pages.

Warranty

Avaya Inc. provides a limited warranty on this product. Refer to your sales
agreement to establish the terms of the limited warranty. In addition, Avaya’s
standard warranty language, as well as information regarding support for this
product, while under warranty, is available through the following Web site:
http://www.avaya.com/support.

Copyright

Except where expressly stated otherwise, the Product is protected by
copyright and other laws respecting proprietary rights. Unauthorized
reproduction, transfer, and or use can be a criminal, as well as a civil, offense
under the applicable law.

Avaya support

Avaya provides a telephone number for you to use to report problems or to ask
questions about your product. The support telephone number is 18002422121
in the United States. For additional support telephone numbers, see the Avaya
Web site: http://www.avaya.com/support.

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide

ContentsContentsContentsContents
Contents ... iii

About this document ... 7

Scope of this document .. 7

Intended Audience ... 8

Conventions used in this document .. 8

Related documents .. 9

ECMA documents .. 9

Providing documentation feedback ... 9

AE Services 7.x Modifications .. 10

New in AE Services 7.1.1 ... 10

Update for AE Services 7.0.1 server ... 10

New in AE Services 7.0 .. 10

Chapter 1: API Services ... 12

Supported CSTA services ... 12

Application Session Services ... 14

Capability Exchange Services ... 14

Physical Device Services and Events .. 15

Voice Unit Services and Events ... 18

Call Control Services and Events .. 19

Logical Device Services and Events .. 23

Snapshot Services ... 24

Monitoring Services ... 25

Routeing Services.. 26

System Services .. 27

Call Associated Services ... 28

Avaya Extensions .. 29

Call Information Services and Events .. 30

Device Services and Events .. 31

Extended Voice Unit Services ... 32

Media Control Events .. 33

Registration Services ... 33

E164 Conversion Service .. 40

Tone Collection Services and Events .. 40

Tone Detection Events .. 41

Differences between Avaya API and ECMA-269 41

iv Issued: August 2017

Voice Unit Services perspective .. 41

Chapter 2: Getting Started .. 43

Setting up the development environment ... 43

Downloading the Application Enablement Services Device, Media and Call
Control XML API SDK ... 43

Setting up your test environment ... 44

Understanding basic CSTA concepts .. 44

Devices .. 45

Physical Elements ... 45

Logical Elements ... 45

Calls ... 46

Request and response framework ... 46

Call Recording ... 47

Cell phone recording .. 48

Recording warning tone ... 49

Signaling Encryption ... 49

Media Encryption ... 49

Accessing the client API reference documentation 50

Using the Device, Media and Call Control Dashboard 51

Learning from sample code .. 51

Chapter 3: Writing a client application ... 52

Setup ... 53

The CSTA Header ... 55

Establish a connection to the AE Services server 56

Setting up the IO Streams ... 57

Receiving negative acknowledgements .. 57

Establishing an application session .. 58

SessionCharacteristics ... 61

DeviceID Type ... 62

Event Filter Mode... 63

Maintaining a Session ... 64

Getting device identifiers .. 65

Requesting notification of events ... 73

Endpoint Registration Events ... 76

Endpoint Registration Information.. 78

Device and Media Control versus Call Control 78

Multiple DeviceIDs ... 79

DeviceIDs and Device Instances ... 80

Registering devices ... 80

 Contents

Issued: August 2017 v

Telephony Logic .. 96

Device and Media Control ... 96

Call Control .. 102

Getting ANI information for a call ... 105

Recording and playing voice media ... 106

Playing a Warning Tone .. 112

Detecting and collecting DTMF tones .. 114

Determining when far-end RTP media parameters change 118

Recovery ... 119

Recovering a Session using StartApplication Session......................... 119

Transfer Monitor Objects ... 122

Cleanup ... 123

Media Encryption ... 124

The AES Encryption Scheme .. 124

Specifying the Devices’ Encryption Capability 128

MediaStartEvent Handling ... 130

Encrypting and Decrypting the RTP Stream .. 132

Security considerations .. 140

Advanced Authentication and Authorization Policies 141

User Authentication Policies .. 142

User Authorization Policies .. 142

AA policy use cases ... 144

IPv6 Support ... 145

Usage of IPv6 addresses in AE Services .. 147

Mixed IPv4 and IPv6 networks .. 148

Chapter 4: High Availability... 149

Application Enablement Services Geo-Redundant High Availability
(GRHA) ... 149

What does GRHA provide? ... 150

What does GRHA not provide? ... 151

DMCC Service Recovery ... 152

Why is DMCC Service Recovery needed? .. 153

When is DMCC Service Recovery used? .. 153

DMCC Support of ESS & LSP ... 156

Why is ESS & LSP support needed? ... 156

What has changed? ... 156

How is ESS & LSP support administered? .. 157

Programming Considerations for High Availability 157

Chapter 5: Debugging .. 159

vi Issued: August 2017

Common negative acknowledgements .. 160

Possible race conditions ... 161

Improving performance ... 162

TLS Connection Error .. 163

Getting support .. 164

Appendix A: Communication Manager Features 165

Appendix B: Constant Values ... 168

Physical Device Constants ... 168

Registration Constants ... 178

Appendix C: Server Logging ... 181

Appendix D: TSAPI Error Code Definitions ... 186

CSTA Universal Failures ... 186

ACS Universal Failures ... 188

Appendix E: Routeing Services .. 190

Routeing Services Sequence Diagram .. 190

RouteRegister .. 192

RouteRequest... 192

RouteSelect .. 193

RouteUsed Event ... 195

RouteEnd Request ... 196

RouteEnd Event: .. 196

RouteRegisterAbort ... 200

RouteRegisterCancel ... 201

Appendix F: ACS Universal Error Codes ... 202

Glossary .. 204

Index ... 207

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide 7

About this documentAbout this documentAbout this documentAbout this document

This chapter describes the:

• Scope of this document

• Intended Audience

• Conventions used in this document

• Related documents

• Providing documentation feedback

Scope of this document

This document instructs you on how to use the Avaya Aura® Application
Enablement
Services Device, Media and Call Control API to develop and debug XML
applications that require device, media and call Control.

• Chapter 1: API Services provides background information about the
Application Enablement Services Device, Media and Call Control API
and CSTA.

• Chapter 2: Getting Started gets you ready to program to this API.
• Chapter 3: Writing a client application and Chapter 5: Debugging

guide you in developing and debugging applications.

• Chapter 4: High Availability provides information on what you can
expect from the AE Services High Availability feature. It discusses
the various strategies used by AE Services to ensure that
applications have reliable access to the server and its components.

• Appendix A: Communication Manager Features lists the switch
features that your application can take advantage of.

• Appendix B: Constant Values lists the values for the XML messages
parameters which take a constant value and that are switch specific.

• Appendix C: Server Logging gives instructions on increasing the
detail of server logging.

• Appendix D: TSAPI Error Code Definitions lists all of the values for
the TSAPI error codes that may be present in the DMCC/TSAPI log
files when employing DMCC Call Control Servces.Appendix E:
Routeing Services describes the Routeing Services requests and
responses.

• Appendix F: ACS Universal Error Codes lists the ACS error codes
and their meaning.

• The Glossary defines the terminology and acronyms used in this
book.

8

Intended Audience

This document is written for XML applications developers. A developer must:
• know basic XML concepts
• be familiar with XML programming
• be familiar with XML Schema Definition (XSD)
• understand telephony concepts

You do not need to fully understand CSTA concepts or all of the Avaya
Aura®Communication Manager features; however a working knowledge or, at
least,
some familiarity of both would be most helpful.
If you are new to CSTA, you may wish to start by reading ECMA-269, section
6.1, “CSTA Operational Model: Switching Sub-Domain Model”. Also become
familiar with the table of contents so that you know the kinds of information
available there. All of the descriptions of the CSTA services implemented by this
API are also found in Avaya Aura® Application Enablement Services Device,
Media and Call Control XML Programmer’s Reference (called here XMLdoc),
found online on the Avaya Support Centre website
(http://www.avaya.com/support).

For those new to Avaya Communication Manager, you may wish to take a
course from Avaya University (http://www.avaya.com/learning) to learn more
about Communication Manager and its features. It is recommended that you
start with the Avaya Communication Manager Overview course.You may also
wish to peruse Appendix A: Communication Manager Features in this guide to
get some ideas of how applications can take advantage of Communication
Manager’s abilities.

Conventions used in this document

The following fonts are used in this document:

To represent@ This font is used@

Code and Linux commands <?xml version="1.0"

encoding="UTF-8"?>

XML requests, responses, events and
field names

the GetDeviceId request

Window names The buttons are assigned on
the Station form.

Browser selections Select Member Login

Hypertext links Go to the
http://www.avaya.com/support

website.

The term connector can be
found in the glossary.

 About this document

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 9

Related documents

Documents can be found on the Avaya Support Centre website
(http://www.avaya.com/support)

• The Avaya Aura® Application Enablement Services Overview (02-
300360). This contains a complete list of all Application
Enablement Services documents.

ECMA documents

The Avaya Aura® Application Enablement Services Device, Media and
Call Control XML Programmer’s Reference (XMLdoc) contains much of
what you need to know about CSTA services. For CSTA details not found
in the XMLdoc or this document, please refer to the following documents.
They are found in the Publications section of the ECMA web site
(http://www-ecma-international.org/).

ECMA-269: Services for Computer Supported Telecommunications
Applications (CSTA) Phase III

o ECMA-323: XML Protocol for Computer Supported
Telecommunications Applications (CSTA) Phase III

o ECMA-354: Application Session Services

o ECMA Technical Report TR/72: Glossary of Definitions and
Terminology for Computer Supported Telecommunications
Applications (CSTA) Phase III

Providing documentation feedback

Let us know what you like or do not like about this book. Although we
cannot respond personally to all your feedback, we promise we read each
response we receive.

Please email feedback to document@avaya.com

Thank you.

10

AE Services 7.x ModificationsAE Services 7.x ModificationsAE Services 7.x ModificationsAE Services 7.x Modifications

New in AE Services 7.1.1

To identify an incoming SIP trunk call as either voice or video via CTI, AE Services
7.1.1 has added support for Channel Type in CSTA Delivered and CSTA
Established events.

Delivered and Established event Channel Type values

UNKNOWN - The channel type is not specified.

VOICE - The channel type is voice.

VIDEO - The channel type is video.

Update for AE Services 7.0.1 server

• Support for the TLSv1.2 protocol on AE Services server 7.0.1

In AE Services 7.0.1, only the Transport Layer Security (TLS) 1.2 protocol is
enabled by default. The lower level TLS protocols 1.0 and 1.1 are disabled
by default. Note, according to the National Institute of Standards and
Technology (NIST) Special Publication 800-52, TLS version 1.1 is required,
at a minimum, in order to mitigate various attacks on the TLS 1.0 protocol.
The use of TLS 1.2 is strongly recommended.

This change may cause older AE Services clients (version AE Services 7.0
and earlier) that are using TLS to fail to establish a secure socket connection
to the AE Services 7.0.1 server. In order to achieve a more secure
client/server socket connection, we encourage current client applications
based on the XML SDK to upgrade their TLS client implementation to
support TLS 1.2. If upgrading the TLS client is not a viable option, an AE
Services administrator can enable the TLS 1.1 and/or TLS 1.0 protocol via
the AE Services Management Console web interface. Note, all three TLS
protocol versions can be active at the same time. This allows a gradual
migration of current client applications to move towards a more secure TLS
protocol over a period of time.

New in AE Services 7.0

New features and capabilities in this release of Application Enablement Services
include:

• General Enhancements:
o Application Enablement Services 7.0 runs on Red Hat Enterprise

Linux version 6 update 5 (RHEL 6.5), with appropriate security
patches from Red Hat.

o Support for Out-of-Band Management (OOBM)

 AE Services 7.x Modifications

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 11

o Support for the Avaya Virtual Application Manager (AVAM) common
services

• Enhancements to Application Enablement Services services:
o Increased maximum number of DMCC station registrations from 4K

to 8K.

o Shared memory implementation for Transport Service to increase
reliability and performance.

• Enhancements to Application Enablement Services Geo-Redundancy High
Availability:

o The use of virtual IP addresses on all active interfaces.

o Support for features similar to those used by the Fast-Reboot High
Availability (FRHA).

• Other Changes to Application Enablement Services:
o Dropped support for the AE Services on Bundled offer.

o Dropped support for the AE Services on System Platform offer,
including the FRHA and MPHA features.

o Use of a 1 yr. self-signed certificate unique to each AE Services
server as the default server certificate‡

‡
WARNING: Since the default certificate used by earlier releases of AE Services has been replaced, any

applications that rely on this certificate for SSL/TLS will fail SSL negotiation with an AE Services 7.0
server. To overcome this in your test environment, you will need to export the server certificate from the
AE Services and import into your application’s trust-store. Note that, for a production environment, you are
strongly advised to create your own server certificates and install them on the AE Services server (and
include the CA in your application’s trust-store). Please refer to the “certificates” section of the AE Services
Administration and Maintenance Guide for more details

12

Chapter 1: API ServicChapter 1: API ServicChapter 1: API ServicChapter 1: API Serviceseseses
This chapter provides an overview of what CSTA services the API
supports and what extensions Avaya has implemented. This API supports
the following telephony services:

• device control

• media control

• call control

• call recording, message playing and dubbing

• DTMF tone detection

• TTY character detection

• media session control and TTY

• routeing

These services are provided through an XML protocol. Some of the
interfaces conform to the CSTA III standard (ECMA-269) and some are
Avaya extensions to the CSTA standard.

CSTA specifies that for any given service some parameters are mandatory
and some parameters are optional. To determine which of the optional
parameters Avaya supports or which of the field values Avaya supports,
refer to the requests and responses detailed in the programmer’s
reference (XMLdoc).

NOTE: The ECMA standards body requests that CSTA-compliant
implementations reflect conformance to the standard through a Protocol
Implementation Conformance Statement (PICS). The Application
Enablement Services Device, Media and Call Control API PICS is reflected
in the programmer’s reference.

This chapter lists:

• Supported CSTA Services

• Avaya extensions

• Differences between Avaya API and ECMA-269

Supported CSTA services

In CSTA, each service is defined to be a request that either comes from
the application to a switch or from a switch to the application. This API,
however, is based on a client/server model where the application is the
client and the AE Services server software and Communication Manager
together act as the server. Thus, this API allows an application:

 Chapter 1: API Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 13

• to request services of Communication Manager

• to request notification of asynchronous events on Communication
Manager

The following sets of CSTA services are supported in the Application
Enablement Services Device, Media and Call Control API and described in
the sections that follow:

Table 1 - Supported CSTA services

Sets of
supported
CSTA
services

CSTA
specifications

CSTA XML
protocol

License
Consumed

Application
Session
Services

ECMA-354, Ch. 4 ECMA-354, Ch. 5 None

Call
Associated
Services

ECMA-269, sec.
18

ECMA-323, sec
16

None

Capability
Exchange
Services

ECMA-269, sec.
13

ECMA-323, sec.
11

None

Physical
Device
Services and
Events

ECMA-269, sec.
21

ECMA-323, sec.
19

None

Voice Unit
Services and
Events

ECMA-269, sec.
26

ECMA-323, sec.
24

None

Call Control
Services

ECMA-269, sec.
17

ECMA-323, sec.
15

TSAPI or Advanced
TSAPI

Logical
Device
Services

ECMA-269, sec.
22

ECMA-323, sec.
20

TSAPI

Snapshot
Services

ECMA-269, sec.
16

ECMA-323, sec.
14

TSAPI

System
Services

ECMA-269, sec.
14

ECMA-323, sec.
12

None

Monitoring
Services

ECMA-269, sec.
15

ECMA-323, sec.
13

Depends on Service
being monitored

Routeing
Services

ECMA-269, sec.
20

ECMA-323, sec.
18

Advanced TSAPI

14

Application Session Services

ECMA’s Application Session Services are used to establish and maintain a
relationship between an application and a server for the purpose of
exchanging application messages. This relationship is called an application
session. It is required that a relationship such as this be established before
application messages are exchanged.

This API supports the following Application Session Services:

Table 2 - Application Session Services

Service Description XSD

Start
Application
Session

Initiates an
application
session between
an application
and a server

start-application-session.xsd

Stop
Application
Session

Terminates an
existing
application
session

stop-application-session.xsd

Reset
Application
Session Timer

Resets the
duration that an
existing
application
session should
be maintained

reset-application-session-timer.xsd

Set Session
Characteristics

Allows
applications to
use E.164
numbers for
device ids and/or
specify an
automatic event
filtering mode for
user-facing
applications.

set-session-characteristics.xsd

Capability Exchange Services

CSTA’s Capability Exchange Services provide physical device information
from the switching function.

This API supports the following Capability Exchange Services:

Table 3: Capability Exchange Services

Service Description XSD

GetPhysicalDeviceInformation Provides the class
(voice, data, image or

get-physical-device-
information.xsd

 Chapter 1: API Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 15

Table 3: Capability Exchange Services

Service Description XSD

 other) and type
(station, ACD, ACD
Group or other) of a
device.

GetPhysicalDeviceName Allows applications to
obtain the name
assigned to a device
in the Communication
Manager Integrated
Directory Database.

get-physical-device-
name.xsd

Physical Device Services and Events

CSTA’s Physical Device Services provide physical device control. The
device must be (or represent) an IP phone or DCP station equipped with a
speaker-phone1.The control allows an application to manipulate and
monitor the physical aspects of a device, which includes buttons, lamps,
the display, and the ringer. The services simulate manual action on a
device as well as provide the ability to request status of physical elements.
The events provide notification of changes to the physical elements of the
device. To learn how to use Physical Device Services and Events, see
Monitoring and controlling physical elements.

This API supports the following Physical Device Services:

Table 4: Physical Device Services

Service Description XSD

Button
Press

Simulates the
depression of a
specified button
on a device

button-press.xsd

Get Button
Information

Gets the button
information for
either a specified
button or all
buttons on a
device, including
the button
identifier, button
function,
associated
extension (if
applicable), and
associated lamp

get-button-information.xsd

1
 Devices that are not equipped with a speaker-phone (e.g. CallMaster) are not supported.

16

Table 4: Physical Device Services

Service Description XSD

identifier (if
applicable)

Get Display

Gets a snapshot
of the contents of
the physical
device's display

get-display.xsd

Get
Hookswitch
Status

Gets the
hookswitch status
of a specified
device, either on
hook or off hook

get-hookswitch-status.xsd

Get Lamp
Mode

Gets the lamp
mode status for
either a specified
button or all
buttons on a
device, including
how the lamp is lit
(flutter, off,
steady, etc.),
color and
associated button

get-lamp-mode.xsd

Get
Message
Waiting
Indicator

Gets the
message waiting
status of a
specified device,
either on or off

get-message-waiting-indicator.xsd

Get Ringer
Status

Gets the ringer
status of the
ringer associated
with a device,
including ring
mode (ringing/not
ringing) and the
ring pattern
(normal ring,
priority ring, etc.)

get-ringer-status.xsd

Set
Hookswitch
Status

Sets the
hookswitch status
of a specified
device to either
onhook or
offhook

set-hookswitch-status.xsd

 Chapter 1: API Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 17

This API supports the following CSTA Physical Device events:

Table 5: Physical Device Events

Event Description XSD

Display
Updated

Occurs if the
contents of a
device's display
has changed

display-updated-event.xsd

Hookswitch
Status
Changed

Occurs if the
switch has
changed the
device's
hookswitch
status

hookswitch-event.xsd

Lamp Mode
Changed

Occurs if the
lamp mode
status of a
particular lamp
has changed

lamp-mode-event.xsd

Ringer Status
Changed

Occurs if the
ringer attribute
associated with a
device has
changed status

ringer-status-event.xsd

E 911 Call
Blocked

Occurs if the
switch has
blocked the 911
emergency
request

physical-device-feature-private-events.xsd

Service Link
Status
Changed

Occurs if the
service link
status associated
with a device has
changed.

physical-device-feature-private-events.xsd

18

 Voice Unit Services and Events

CSTA’s Voice Unit Services allow an application to record voice stream
data coming into a device and to play messages to the device’s outgoing
voice stream.

The CSTA Voice Unit Service has been extended by Avaya to provide a
Dubbing Service and an updated Stop, Suspend, and Resume Service
which is specific for either Playing or Recording. For additional information
on these extended services, please see the "Extended Voice Unit
Services" section. This API supports the following Voice Unit Services:

Table 6: Voice Unit Services

Services Description XSD

Play
Message

Plays a pre-
recorded voice
message on the
outgoing RTP
media stream of a
particular device
based on a
specified criterion

play-message.xsd

Record
Message

Starts recording
the media stream
for a specified
device with the
specified codec
and criteria

record-message.xsd

 Resume

Restarts the
playing and
recording of
previously
suspended
messages at their
current positions

resume.xsd

Stop

Stops the playing
and recording of
messages

stop.xsd

Suspend

Temporarily stops
the playing and
recording of
messages and
leaves their
position pointers
at their current
locations

suspend.xsd

 Chapter 1: API Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 19

Table 6: Voice Unit Services

Services Description XSD

Delete
Message

Deletes a
specified
message (.wav
file) from AE
Services

delete-message.xsd

This API supports the following CSTA Voice Unit events:

Table 7: Voice Unit Events

Events

Description XSD

Play

Indicates that a
message is being
played

play-event.xsd

Record

Indicates that a
message is being
recorded

record-event.xsd

Stop

Indicates that a
play or record
operation for a
message on a
device has been
stopped or has
completed

stop-event.xsd

Suspend
Play

Indicates that a
message is
suspended in
play

suspend-play-event.xsd

Suspend
Record

Indicates that a
message is
suspended during
recording

suspend-record-event.xsd

Call Control Services and Events

Call Control provides a set of services needed for performing high-level
third party call control that allow an application to control the state of calls.

Call control events are used to determine call activity at a specific device
and to report changes to information related to calls, such as state
transitions through which connections pass. For example, the Delivered
event indicates when a connection state transits to the "Alerting" state.
Conversely, when a connection enters the "Failed" state, the application
receives a Failed event.

20

The Call Control Services utilize the TSAPI Service on the AE Services
server. The use of the Call Control Services requires the setup of the
connection and cti-link between the AE Services server and
Communication Manager as well as one basic TSAPI license for each
device that is monitored.

NOTE: Care must be taken when using the Call Control services to
ensure that the switch name is properly set in the DeviceID. Please see
“Populating the Switch Name field” in section Getting device identifiers for
more information.

This API supports the following Call Control Services:

Table 8: Call Control Services

Services Description XSD

Alternate
Call

Places an existing call on hold and then
retrieves a previously held or alerting call at the
same device.

alternate-
call.xsd

Answer Call Answers a call that is ringing, queued, or being
offered to a device.

answer-
call.xsd

Conference
Call

Provides a conference of an existing held call
and another active call at a conferencing
device. The two calls are merged into a single
call at the conferencing device.

conference-
call.xsd

Consultation
Call

Places an existing active call at a device on
hold and initiates a new call from the same
device.

consultation-
call.xsd

Consultation
Direct Agent
Call

Places an existing active call at a device on
hold and initiates a new direct-agent call from
the same controlling device.

consultation-
call-private-
data.xsd

Consultation
Supervisor
Assist Call

Places an existing active call at a device on
hold and initiates a new supervisor-assist call
from the same controlling device.

consultation-
call-response-
private-
data.xsd

Clear
Connection

Releases a specific device from a call. clear-
connection.xsd

Deflect Call Deflects an alerting call to another device. deflect-call.xsd

Directed
Pickup Call

Moves a specified call and connects it at a new
specified destination.

directed-
pickup-call.xsd

Generate
Digits

Generates DTMF or rotary digits on behalf of a
connection in a call.

generate-
digits.xsd

Hold Call Places a specific connection on hold. hold-call.xsd

Make Call Establishes a call between two devices. make-call.xsd

 Chapter 1: API Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 21

Table 8: Call Control Services

Services Description XSD

Make Direct
Agent Call

Originates a call between two devices: a user
station and an ACD agent logged into a
specified split.

make -call-
private-
data.xsd

Make
Supervisor
Assist Call

Originates a call between two devices: an ACD
agent’s extension and another station extension
(typically a supervisor) device.

make -call-
private-
data.xsd

Make
Predictive
Call

Originates a call between two devices by first
creating a connection to the called device.

make-
predictive-call-
private-
data.xsd

Reconnect
Call

Clears an existing connection and then
connects a previously held connection at the
same device.

reconnect-
call.xsd

Retrieve
Call

Connects to a call that had previously been
placed on hold.

retrieve-
call.xsd

Selective
Listening
Hold

Allows a client application to prevent a specific
party on a call from hearing anything said by
another specific party or all other parties on the
call. It allows a client application to put a party’s
listening path to a selected party on listen-hold,
or all parties on an active call on listen-hold.

selective-
listening-
hold.xsd

Selective
Listening
Retrieve

Allows a client application to retrieve a party
from listen-hold for another party or for all
parties that were previously being listen-held.

selective-
listening-
retrieve.xsd

Single Step
Conference
Call

Adds a device to an existing call. single-step-
conference-
call.xsd

Single Step
Transfer
Call

Replaces a device in an existing call with
another device.

single-step-
transfer.xsd

Transfer
Call

Transfers a held call to the consulted party. transfer-
call.xsd

This API supports the following Call Control events:

Table 9: Call Control Events

Events Description XSD

CallCleared Indicates that a call has been cleared and
no longer exists within the switching sub-
domain.

call-cleared-
event.xsd

Conferenced Indicates that the conferencing device has
conferenced itself or another device with

conferenced-
event.xsd

22

Table 9: Call Control Events

Events Description XSD

an existing call.

ConnectionCleared Indicates that a device in a call has
disconnected or dropped out from a call.

connection-
cleared-
event.xsd

Delivered Indicates that a call is being presented to
a device in either the Ringing or Entering
Distribution modes of the alerting state.

delivered-
event.xsd

Diverted Indicates that a call has been diverted
from a device.

diverted-
event.xsd

Established Indicates that a device has answered or
has been connected to a call.

established-
event.xsd

Failed Indicates that a call cannot be completed
and/or a connection has entered the Fail
state.

failed-
event.xsd

Held Indicates that an existing call has been put
on hold.

held-
event.xsd

NetworkReached Indicates that a call has cut through the
switching sub-domain boundary to another
network; that is, has reached and
engaged a Network Interface Device (e.g.,
trunk, CO Line).

network-
reached-
private-
data.xsd

Originated Indicates that a call is being attempted
from a device.

originated-
event.xsd

Queued Indicates that a call has been queued queued-
event.xsd

Retrieved Indicates that a previously held call has
been retrieved.

retrieved-
event.xsd

ServiceInitiated Indicates that a telephony service has
been initiated at a monitored device.

service-
initiated-
event.xsd

Transferred Indicates that an existing call has been
transferred to another device and that the
device transferring the call has been
dropped from the call.

transfered-
event.xsd

 Chapter 1: API Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 23

Logical Device Services and Events

CSTA’s Logical Device Services provide forwarding, do not disturb, agent
state ACD Split and Call Linkage capabilities. These services utilize the
TSAPI Service on the AE Services server. The use of the Logical Device
Services requires the setup of the connection and cti-link between the AE
Services server and Communication Manager as well as a basic TSAPI
license.

NOTE: Care must be taken when using the Logical Device Services to
ensure that the switch name is properly set in the DeviceID. Please see
“Populating the Switch Name field” in section Getting device identifiers for
more information.

This API supports the following Logical Device Services:

Table 10: Logical Device Services

Services Description XSD

Get ACD Split Provides the number of ACD agents
available to receive calls through the
split, the number of calls in queue, and
the number of agents logged in.

get-acd-
split.xsd

Get Agent Login Provides the extension of each ACD
agent logged into the specified ACD split.

get-agent-
login.xsd

Get Call Linkage
Data

Responds with the CallLinkageData for a
normal callID. (Avaya Universal Call ID –
UCID)

get-call-
linkage-
data.xsd

Get Agent State Provides the agent state at a specified
device.

get-agent-
state.xsd

Get Forwarding Gets the forwarding status of a specified
device.

get-
forwarding.xsd

Get Do Not Disturb Gets the do not disturb status of a
specified device.

get-do-not-
disturb.xsd

Set Agent State Requests a new agent state at a
specified device.

set-agent-
state.xsd

Set Forwarding Sets the forwarding status of a specified
device.

set-
forwarding.xsd

Set Do Not Disturb Sets the do not disturb status of a
specified device.

set-do-not-
disturb.xsd

This API supports the following Logical Device events:

Table 11: Logical Device Events

Events Description XSD

24

Table 11: Logical Device Events

Events Description XSD

Agent Login
Extension

A private event that is sent after a
GetAgentLogin Request/Response.

agent-login-
extension-
event.xsd

Agent
Logged Off

Indicates that an agent has logged off an ACD
device or an ACD group.

agent-logged-
off-event.xsd

Agent
Logged On

Indicates that an agent has logged on to an
ACD device or an ACD group.

agent-logged-
on-event.xsd

Forwarding Indicates that the forwarding status has
changed. Note that the “forwardTo” parameter
is not supported for this event. In order to get
the “forwardTo” information, you must use the
“Get Forwarding” request.

forwarding-
event.xsd

Do Not
Disturb

Indicates that the do not disturb status has
changed.

do-not-
disturb-
event.xsd

Snapshot Services

CSTA’s Snapshot Services allow an application to obtain 3rd party
information about a call or a device.

The use of the Snapshot Services requires the setup of the connection and
cti-link between the AE Services server and Communication Manager as
well as a basic TSAPI license.

NOTE: Care must be taken when using the Snapshot Services to ensure
that the switch name is properly set in the DeviceID. Please see
“Populating the Switch Name field” in section Getting device identifiers for
more information.

This API supports the following Snapshot Services:

Table 12: Snapshot Services

Services Description XSD

Snapshot
Call

Provides information about the devices
participating in a specified call. The
information returned includes device identifiers,
their connections in the call, and local connection
states of the devices in the call as well as call
related information.

snapshot
call.xsd

Snapshot
Device

The Snapshot Device service provides
information about calls associated with a given
device. The information provided identifies each
call the device is participating in and the local
connection state of the device in that call.

snapshot
device.xsd

 Chapter 1: API Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 25

Table 12: Snapshot Services

Services Description XSD

Monitoring Services

CSTA’s Monitoring Services allow clients to receive notification of events.
By starting a monitor, the application indicates that it wants to be notified of
events that occur on a device.

Once a monitor is established, AE Services notifies the application of
relevant activity by sending messages called event reports, or simply
events.

This API supports the following Monitoring Services:

Table 13: Monitoring Services

Services Description XSD

Change
Monitor
Filter

Modifies the set of event reports that are filtered
out (not sent) over an existing monitor.
(Available in XML SDK only).

change-
monitor-
filter.xsd

Call
Monitoring

Provides call event reports passed by the call
filter for a call already in progress.

monitor-
start.xsd

Calls Via
Device
Monitoring

Provides call event reports passed by the call
filter for all devices on all calls that involve the
device.

monitor-
start.xsd

Monitor
Start

Initiates event reports (otherwise known as
events) for a device

monitor-
start.xsd

Monitor
Stop

Cancels a previously initiated Monitor Start
request

monitor-
stop.xsd

26

Routeing Services

CSTA’s Routeing Services allow the Communication Manager to request
and receive routing instructions for a call. These instructions, issued by a
client routing server application, are based on the incoming call information
provided by the Communication Manager.

This API supports the following Routeing Services:

Table 14 - Routeing Services

Services Description XSD

Route
Register
Request

The Route Register Request service is used to
register the application as a routeing server for a
specific routeing device or as a routeing server
for all routeing devices within the switching sub-
domain.

route-
register.xsd

Route
Register
Abort

This service is used by the switching function to
asynchronously cancel an active routeing
registration. There is no positive
acknowledgement defined for this service.

route-
register-
abort.xsd

Route
Register
Cancel

The Route Register Cancel service is used to
cancel a previous route registration.

route-
register-
cancel.xsd

Route End The Route End service ends a routeing dialogue.
This service is bi-directional. There is no positive
acknowledgement defined for this service.

route-end.xsd

Route
Request

The Route Request service requests that the
application provide a destination for a call.

route-
request.xsd

Route
Select

The Route Select service is used by the
application to provide the destination requested
by a previous Route Request.

route-
select.xsd

Route Used The Route Used service provides the actual
destination for a call that has been routed using
the Route Select service.

route-
used.xsd

 Chapter 1: API Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 27

System Services

CSTA’s System Services allow an application to obtain the status of the
switching system. The application can query for the status or it can
register to indicate that it wants to be notified of changes in status.

The application can query for the the status of one or all administered
TSAPI CTI links (Tlinks) on AE Services. The application can also
register for changes in Tlink status for one or all administered switches.
Once an application is registered, notifications are sent when the Tlink
status changes (e.g. linkUp/linkDown) for the switch(s) it is registered.

This API supports the following System Services:

Table 15: System Services

Services Description XSD

System
Register

Allows the application to register for System
Status notifications for one or all administered
TSAPI CTI links (Tlinks). The application can
register to receive a System Status notification
(linkup/linkDown) each time the status of a
TSAPI CTI link changes. This request includes a
filter so the application can filter those status
events that are not of interest to the application.

system-
register.xsd

System
Register
Cancel

Cancels a previously System Register request. system-
register-
cancel.xsd

Request
System
Status

Allows the application to get a snapshot of the
current status for one or all administered Tlinks.

request-
system-
status.xsd

System
Status

Sent to the application when the status for the
System Registration has changed (e.g.
linkup/linkdown).

system-
status.xsd

Change
System
Status Filter

Modifies the set of event reports that are filtered
out (not sent) for an existing System
Registration.

change-
system-
status-
filter.xsd

System
Register
Abort

Sent to the application when an active System
Registration has been cancelled (e.g. if the
TSAPI Service is stopped).

system-
register-
abort.xsd

Get Time of
Day

Allows the application to get the current time of
day for a specified switch.

get-time-of-
day.xsd

NOTE: The System Status link up/down notification is sent when the AEP
connection or CTI link status changes.

28

Call Associated Services

Call Associated Services allows applications to request the Communication
Manager to generate a recording telephony tone on behalf of a specific device.
The application can also cancel the recording telephony tone for the device.

This API supports the following Call Associated Services:

Table 16: Call Associated Services

Services Description XSD

Generate
Telephony
Tones

Allows the application to request a warning tone
be played when the specified device is on a call
or joins a call in progress.

generate-
telephony-
tones.xsd

Cancel
Telephony
Tones

Stops warning tone from being played when a
specified device is on a call or joins a call that is
in progress. If the device is active on a call when
the warning tone is cancelled, the change is
effective after the active call ends.

cancel-
telephony-
tones.xsd

Telephony
Tones
Event Start

Requests the application be notified when the
Communication Manager fails to generate a
recording warning tone during recovery. See
Table 17: Call Associated Event.

telephony-
tones-event-
start.xsd

Telephony
Tones
Event Stop

Cancels a previously initiated Telephony Tones
Event Start request.

telephony-
tones-event-
stop.xsd

This API supports the following event:

Table 17: Call Associated Event

Events Description XSD

GenerateTelephonyTonesAbort

An event that indicates that the
Communication Manager
failed to regenerate the
recording warning telephony
tone for the specified device,
following a fail-over
recovery. The application must
send a new
GenerateTelephonyTones
request in order to re-establish
the warning tone.

generate-
telephony-
tones-
abort.xsd

 Chapter 1: API Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 29

Avaya Extensions

The API provides extensions to CSTA that are meant to enhance the
capabilities of CSTA and provide higher-level services and useful events
that make development of telephony applications easier. The extensions
are summarized in this section. More complete descriptions of each
extension can be found in the Programmer’s Reference (XMLdoc).

The Avaya extensions have been implemented per the CSTA guidelines
described in ECMA-269, section 28, “Vendor Specific Extensions Services
and Events”.

The Avaya extensions are listed below and described in the following
sections.

Table 18: Avaya extensions to CSTA services

Avaya
extension

Extends
which CSTA
service set

Purpose License
Consumed

Call
Information
Services
and Events

None Provides the ability to obtain
detailed call information and to
determine the status of the call
information link.

None

Device
Services

None Provides an identifier for a given
dial string on Communication
Manager

None

Extended
Voice Unit
Services

Voice Unit
Services

Provides dubbing of recorded
messages and other extensions
to playing and recording of files

None

Media
Control
Events

None Provides the ability to be notified
when the far-end RTP and RTCP
parameters for a media stream
change.

None

Registration
Services

None Provides ability to gain main,
dependent or independent
control over Communication
Manager endpoints - also
referred to as device registration

DMCC or
IP_API_A

E164
Conversion
Services

None Allows an application to convert
from an E.164 to a
Communication Manager dial
string and vice versa.

None

Tone
Collection
Services
and Events

None Detects DTMF tones and buffers
them as requested before
reporting them to the application

None

30

Table 18: Avaya extensions to CSTA services

Avaya
extension

Extends
which CSTA
service set

Purpose License
Consumed

Tone
Detection
Events

Replaces
Data
Collection
Services

Detects DTMF tones and reports
each tone as it is detected

None

Call Information Services and Events

Avaya’s Call Information Services allow applications to get detailed call
information and to determine the status of the call information link. The call
information link must be operational to get the call information. The call
information link is one of the communication links between Communication
Manager and the AE Services.

This API supports the following Call Information Services:

Table 19: Call Information Services

Services Description XSD

Get Call
Information

Used to get detailed call information for a
device.

get-call-
information.xsd

Get Link
Status

Used to get the status of the call information
link from AE Services to a specified switch
name (Communication Manager).

get-link-status.xsd

Call
Information
Events
Start

Used to start events notification on the
status of the Call Information link.

call-information-
events-start.xsd

Call
information
Events
Stop

Used to stop events notification on the
status of the Call Information link.

call-information-
events-stop.xsd

Get SIP
Header

Used to get SIP customer information of the
active call on the specified device

sip-header-
information.xsd

SIP Header
Events
Start

Requests a listener to be established to
receive the SIP header information

sip-header-
information.xsd

SIP Header
Events
Stop

Requests an established listener to be
removed. No SIP Header event will be
received after this.

sip-header-
information.xsd

 Chapter 1: API Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 31

This API supports the following Call Information Events:

Table 20: Call Information Events

Events Description XSD

Link Up Occurs when a link has come up
(transport level) and is now active.
Occurs the first time the link is brought
up, as well as every time the link is
brought up after being down.

call-information-
events.xsd

Link Down Occurs when a link has gone down
(transport level) and is now inactive.
Occurs when it is determined that
Communication Manager is not
responding or Communication Manager
and Device, Media and Call Control API
are out of sync. Response will indicate
which link is down and whether AE
Services will attempt to reconnect
automatically.

call-information-
events.xsd

SIP Header
Notify

Occurs when the SIP header data has
been retrieved.

sip-header-
information.xsd

Device Services and Events

All services that operate on a particular device use a device identifier to
specify the device. Avaya’s Device Services provide up to three instances
of a device identifier for a given dial string on Communication Manager.
The device instance is an existing field in the DeviceID which has been
supported since AE Services 5.2. The device instance may be in the range
0 – 2, with a default value of 0 for backwards compatibility. A device can
be controlled by more than one application session or transferred between
application sessions that belong to the same authenticated and authorized
user.

This API supports the following Device Services:

Table 21: Device Services

Services Description XSD

Get Device
ID

Gets the device identifier that represents the
device described by its extension number and
the Communication Manager upon which it
resides and the instance of the device. You
may get up to three instances of the device
identifier.

get-device.xsd

GetThird
Party
Device ID

Gets a third party device identifier for use with
Call Control Services and Snapshot Services

get-device.xsd

32

Table 21: Device Services

Services Description XSD

Get Device
ID List

Retrieves the list of DeviceIDs for a given
session.

get-deviceid-
list.xsd

Release
Device ID

Releases the deviceID and the respective
memory resources associated with a DeviceID.

release-
deviceid.xsd

Get
Monitor List

Retrieves the list of cross reference identifiers,
monitor filters and events filters for a given
session.

get-monitor-
list.xsd

Transfer
Monitor
Objects

Transfers the DeviceIDs for a given session to
another session belonging to the same user.
Transfers the monitors that were added for each
DeviceID.

transfer-
monitorobject.xsd

NOTE: The GetDeviceIdList, GetMonitorList and
TransferMonitorObjects requests are applicable to DeviceIDs which
are obtained from both the GetDeviceID and GetThirdPartyDeviceID
requests.

Extended Voice Unit Services

Avaya’s Extended Voice Unit Services are used in conjunction with
CSTA’s Voice Unit Services.

These Extended Voice Unit services are provided:

Table 22: Extended Voice Unit Services

Services Descriptions XSD

 Start Dubbing Starts replacing an
existing recording
session with the
specified file

start-dubbing.xsd

 Stop Dubbing Stops replacement of an
existing recording
session

stop-dubbing.xsd

 Stop Playing Stops only the player,
not the recorder

stop-playing.xsd

 Stop Recording Stops only the recorder,
not the player

stop-recording.xsd

 Suspend Playing Suspends only the
player, not the recorder

suspend-playing.xsd

 Suspend Recording Suspends only the
recorder, not the player

suspend-recording.xsd

 Resume Playing Resume playing, but not
recording

resume-playing.xsd

 Chapter 1: API Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 33

Table 22: Extended Voice Unit Services

Services Descriptions XSD

 Resume Recording Resumes recording, but
not playing

resume-recording.xsd

Media Control Events

Avaya’s Media Control events provide a way for an application to respond
to changes in the far-end RTP/RTCP parameters of a media stream.

This API supports the following Media Control events:

Table 23: Media Control Events

Events Descriptions XSD

 Media Start Indicates when the far-
end RTP parameters
have changed and an
RTP session has been
established. Also
provides the media
encryption keys if media
encryption is enabled for
the device.

media-events.xsd

 Media Stop Indicates when the far-
end RTP parameters
have changed to null and
the RTP session has
been disconnected

media-events.xsd

Registration Services

Avaya’s Registration Services provide the ability to gain Main, Dependent
or Independent control over a device and to specify the desired media
mode for that device through a registration process. Communication
Manager allows up to three instances of the same extension to be
registered with it. Only one of these instances can be the Main – the other
instances (if registered) must be Dependent or Independent. Main,
Dependent and Independent control are described in Registration modes.

Registering a terminal gives the application access to the signalling and
possibly the media of a DCP (digital) or IP telephone or extension that is
administered for softphone access on Communication Manager. The
device type administered on Communication Manager must be one that is
equipped with a speaker-phone. Devices that are not speaker-phone
equipped (e.g. CallMaster) are not supported.

Unregistering a device gives up control of the device. A terminal must be
registered with Communication Manager before acting upon it with any of
the API services. If the application, used the Registration Services to
register a device on Communicaion Manager, the application must
unregister the device once it is through with it

34

The desired media parameters are also specified at registration time. The
options for the Media parameters are described in Media modes.

Registration Services requests can take some time to process and send a
response. It is recommended that you write your application such that your
thread will not be blocked while waiting for the response to these requests.

Endpoint Registration Events

Endpoint Registration events were first introduced in AE Services 6.3
and Communication Manager 6.3 and can be monitored just like any
other DMCC Registration Services event.

The main difference between Endpoint Registration events and the
existing Registration and Terminal events is that Endpoint Registration
events can be monitored for any H.323 or SIP endpoint that can be
registered to Communication Manager. The endpoints do not have to be
registered using DMCC, as is the case for the existing Registration and
Terminal events. For Endpoint Registration events, the endpoints can be
registered to Communication Manager via any current means, provided
they use the H.323 or SIP protocols for registering.

Endpoint Registration events can be monitored by a DMCC application in
the same manner that other DMCC events are monitored - by using
DMCC Monitoring services.

Similarly to the existing Registration events, Endpoint Registration events
are monitored on a "per device" basis.

When the endpoint registers or unregisters against the Communication
Manager switch, the appropriate “registrationEventNotify()” method will
be called, enabling the DMCC application to handle the event and the
data contained within it.

The Endpoint Registration event contains the following data:
1. Monitored DeviceID2
2. Endpoint DeviceID2
3. IP address of the endpoint. In the case where an endpoint was

registered via DMCC, this will be the IP address of the AE Services
server.

4. MAC address of the endpoint. In the case where an endpoint was
registered via DMCC, the MAC address wil be all zeros.

5. Product Type – the product type as provisioned in Communication
Manager.

6. Network Region – the network region for the extension as provisioned
in Communication Manager2

2 The Monitored DeviceID is the DeviceID specified in the original Monitoring Services request,
while the Endpoint DeviceID is the DeviceID of the endpoint being registered/unregistered.
These
two DeviceIDs may be different (usually in the value of the “instance” field), since up to 3
endpoints can be registered to the same extension number.

 Chapter 1: API Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 35

7. Dependency Mode – the dependency mode used during registration:
main, dependent or independent.

8. Media Mode – the media mode used during registration: client,
telecommuter or none. Note that DMCC’s “server media” mode is
considered the same as “client media” by the Communication
Manager

9. Unicode Script – the Unicode script options as provisioned in
Communication Manager.

10. Set Type – the model of the phone as provisioned in Communication
Manager.

11. Signaling Protocol Type – the protocol used to register: H.323 or
unknown.

12. Service State – the overall service state of the station after the
endpoint has registered. This will normally be “in-service”.

The Endpoint Unregistration event contains the following data:

1. Monitored DeviceID
2. Endpoint DeviceID.
3. IP address of the endpoint. In the case where an endpoint was registered

via DMCC, this will be the IP address of the AE Services server.
4. Dependency Mode – the dependency mode used during registration:

main, dependent or independent.
5. Reason – a string value indicating the reason for the unregistration.
6. Code – an integer value indicating the reason for the unregistration.
7. Set Type – the model of the phone as provisioned in Communication

Manager
8. Service State – the overall service state of the station after the endpoint

has unregistered. Note that the overall service state may still be “in-
service” if there are other endpoints registered to the same extension.

Endpoint Registration Information

Not only can the DMCC application be notified whenever an endpoint registers
or unregisters against the Communication Manager switch, it can also send a
request to get the current registration state and endpoint data associated with
the extension. This request may be sent at any time after the DMCC client has
acquired the DeviceID. Thus, the device may, or may not, be registered against
Communication Manager at the time of the request for Endpoint Registration
Information.

The EndpointRegistrationInfo request should be used for queries of physical
stations, not for extensions associated with agent IDs. Note that it will return an
error if a logical agent extension number is used as the deviceID for the query.

36

If the specified device has one or more endpoints registered against
Communication Manager for that extension, then the response will contain a set
of data for each of the registered endpoints. The set of data for each registered
endpoint is identical to the data outlined in the Endpoint RegisteredEvent.
However, if there are no endpoints registered against Communication Manager
for the specified device, then the response to the Endpoint Registration
Information request will be empty.

 Chapter 1: API Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 37

The Registration Services are:

Table 24: Registration Services

Services Descriptions XSD

Get
Registration
State

Returns the registration state
for the requested instance of a
device.

get-registration-
state.xsd

Redirect Media Redirects the media stream of
the previously registered
instance of a device to a new
address.

redirect-media.xsd

Change
Device
Security Code

Allows a DMCC client to
change the security code of an
extension on Communication
Manager.

change-device-security-
code.xsd

Validate
Device
Security Code

Allows a DMCC client to
validate the security code of an
extension on Communication
Manager.

validate-device-security-
code

Register
Terminal

Registers a specific instance of
a device with Communication
Manager in order to control the
device.

register-terminal.xsd

Unregister
Terminal

Unregisters the specified
instance of a device from
Communication Manager in
order to give up control of the
device.

unregister-terminal.xsd

Endpoint
Registration
Information3

Retrieves the current
registration information for the
specified device. Registration
data for up to 3 H.323 and 1
SIP endpoint may be included
in the response. Note that the

endpoint-registration-
info.xsd

3
 The EndpointRegistrationInfo query is meant to be used for queries to physical stations, not for

extensions associated with agent IDs. It will return an error if a logical agent extension number
is used as the deviceId for the query.

38

Table 24: Registration Services

Services Descriptions XSD

device does not have to be
registered through DMCC, but
it must be registered to
Communication Manager using
the H.323 protocol.

This API supports the following Registration Services event:

Table 25: Registration Events

Events Descriptions XSD

Terminal
Unregistered

Occurs when the device
instance is unregistered by
Communication Manager. This
event will not be sent if the
application requests
unregistration.

registration-events.xsd

Terminal
Reregistered
Event

Occurs when the
Communication Manager, to
which the device is registered,
fails-over to an ESS or LSP.
This causes the device to be
unregistered from the Main
switch and re-registered with
the ESS/LSP. Similarly,
another Reregistered event will
be sent when the ESS/LSP
switches back to the Main CM.
Note that the CM fail-over (and
consequent re-registration)
may negate any temporary
changes (on the switch) that
have been set up for the
device.

terminal-unregistered-
event.xsd

Endpoint

Registered
Event

Occurs when an H.323 or SIP
endpoint registers against the
device’s extension number.
Note that the endpoint does not
have to be registered via
DMCC, but the Communication
Manager must be CM 6.3 or
later (for H.323 endpoints) and
CM 6.3.2 (for SIP endpoints).

endpoint-registration-
events.xsd

 Chapter 1: API Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 39

Endpoint

Unregistered
Event

Occurs when an H.323 or SIP
endpoint unregisters from the
device’s extension number.
Note that the endpoint does not
have to be registered via
DMCC, but the Communication
Manager must be CM 6.3 or
later (for H.323 endpoints) and
CM 6.3.2 (for SIP endpoints).

endpoint-registration-
events.xsd

NOTE: If a device is registered in client media mode, then the Media
Control events described in the section Media Control Events may also
occur.

NOTE: Previously with Terminal Services, the actual response from the
RegisterDevice and UnregisterDevice requests came as an event.
With Registration Services the response your application receives is a true
indication of success or failure.

40

E164 Conversion Service

Avaya’s Conversion Services give the application the ability to use the AE
Services Management Console Dial Plan administration pages to convert
E.164 numbers to dial strings and back again.

Table 26: E164 Conversion Service Requests

Events Descriptions XSD

Convert E164
To Extension

Converts a list of E164
numbers to extensions, using
the administered conversion
rules for the given switch.

e164-convert.xsd

Convert
Extension To
E164

Converts a list of extension
numbers to E164 numbers,
using the administered
conversion rules for the given
switch.

e164-convert.xsd

Tone Collection Services and Events

Avaya’s Tone Collection Services collect DTMF tones coming into a
device, stores them in a buffer, and reports the tones based on application-
specified retrieval criteria. The retrieval criteria can be one or more of the
following:

• The specified number of tones has been detected

• The specified tone has been detected

• The specified amount of time has passed

If multiple criteria are specified, then the first condition that occurs
terminates the retrieval and reports the string of DTMF tones collected.
Both in-band and out-of-band tone collection are supported. Out-of-band
tone collection is recommended.

When tones are retrieved and reported to the application, they are
removed from the buffer. If the buffer fills up, the oldest tones are
overwritten with the new detected tones.

This API supports the following Tone Collection Services:

Table 27: Tone Collection Services

Services Description XSD

Start Tone
Collection

Starts collecting DTMF tones
sent to a device and specifies
the termination criteria

tone-collection-start.xsd

Tone
Collection
Criteria

Specifies the retrieval criteria tone-collection-
criteria.xsd

 Chapter 1: API Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 41

Table 27: Tone Collection Services

Services Description XSD

Stop Tone
Collection

Stops collecting DTMF tones
sent to a device and reports the
tones that have been buffered.
This flushes the buffer

tone-collection-stop.xsd

Flush Buffer Reports the tones received
since the last time the buffer
was flushed and flushes the
buffer

tone-collection-
flushbuffer.xsd

Tone Collection Services generates these events:

Table 28: Tone Collection Events

Events Description XSD

Tones
Retrieved

Occurs when tones are
retrieved from the buffer. This
event reports the retrieved
tones to the application.

tone-collection-
events.xsd

Tone Detection Events

Avaya’s Tone Detection Events notify an application whenever a DTMF
tone has been detected coming into a device. Both in-band and out-of-
band tone detection is supported. Out-of-band tone detection is
recommended.

When the application requests monitoring for DTMF tones, the following
event will be generated when a DTMF has been sent to the device:

Table 29: Tone Detection Events

Events Description XSD

Tone Detected Occurs when a DTMF digit has
been sent to the device

tone-detection-
events.xsd

Differences between Avaya API and ECMA-269

The Avaya API differs from the ECMA specification in the following ways:

• Voice Unit Services perspective

Voice Unit Services perspective

The mechanism for call control in this API is to register a dial string with
Communication Manager using Registration Services and then to use
Physical Device Services to manipulate that dial string. Therefore this API
follows a device-based call control model. There are a few subtle side
effects of using the device-based control model that are worth noting.

42

• CSTA specifies that the Voice Unit Play Message service “plays a
voice message on a particular connection”. While this is an
ambiguous description, the apparent intent was to play a message
to a particular device, which is a third party perspective. This API’s
implementation of the Play Message service is just the opposite of
this. This API’s Play Message service plays a message from the
device, a first party perspective. It plays the message as if coming
from the device and going to everyone else on the call.

• Similarly, CSTA specifies that the Voice Unit Record Message
service “starts recording a new message from a specified
connection.” The apparent intent was to record the data coming
from the device. This API implementation records the data coming
to the device. It records what the device hears instead of what
someone says at the device.

• Since Avaya’s implementation of Voice Unit Services are relative to
a device instead of a connection, only the device identifier portion of
a connection identifier is used.

 Chapter 2: Getting Started

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 43

Chapter 2: GChapter 2: GChapter 2: GChapter 2: Getting Startedetting Startedetting Startedetting Started
This section describes what you need to do and what you need to know
before you begin programming to this API, including:

• Setting up the development environment

• Understanding basic CSTA concepts

• Call recording

• Signaling Encryption

• Media Encryption

• Accessing the client API reference documentation

• Learning from sample code

Setting up the development environment

XML developers must have the necessary tools to traverse an XML
message, such as an XML parser. We also strongly recommend that the
developer use tools that automatically parse/build XML messages and
validate them based on the XSDs. The developer should consider using an
XML binding tool that can automatically build objects from XSDs, then
automatically marshall these objects to XML and vice/versa.

Downloading the Application Enablement Services
Device, Media and Call Control XML API SDK

The Application Enablement Services Device, Media and Call Control API
SDK contains the XSD files that you will need to reference as you write
your application, as well as several sample applications.

To download the Application Enablement Services Device, Media and Call
Control XML API SDK from the Avaya DevConnect Web site:

1. Go to www.avaya.com/devconnect.

2. Select Member Login.

3. Log in with your email address and password.

4. Download the SDK (cmapixml-sdk-7.0.0.x.x.x.bin or
cmapixml-sdk-7.0.0.x.x.x..exe).from the DevConnect Web site
by navigating to the Application Enablement Services page and
selecting the appropriate SDK from the Technical Resources
section.

NOTE: The Application Enablement Services page can be located through
the SDK and API Index link under the left-hand DevConnect Search.

44

The download location defaults to the desktop, but it does not matter
where you download the files in your directory system. The SDK file is:

cmapixml-sdk-7.0.0.x.x.x..bin or cmapixml-sdk-
7.0.0.x.x.x..exe

where x is the load number.

Expand the SDK ZIP file using any application or tool that recognizes the
ZIP file format. Follow the instructions to accept the End-User License
Agreement (EULA) and install the SDK. All of the SDK files are placed into
a directory named cmapixml-sdk.

The directories where the XSD files are:

• cmapixml-sdk/xsd/csta-schemascmapixml-sdk/xsd/avaya-
csta-schemas

The location of the primary XSDs used to validate the data you will send to
the server is:

• cmapixml-sdk/xsd/csta.xsd

• cmapixml-sdk/xsd/avaya-csta-schemas/avaya-csta.xsd

The location of the sample applications provided with the SDK is:

• cmapixml-sdk/examples/src/samplefiles

Setting up your test environment

Before running an application you will need to have an AE Services server
machine setup. For instructions see the appropriate Avaya Aura®
Application Enablement Services Implementation Guide for the offer you
have purchased.

Understanding basic CSTA concepts

CSTA stands for Computer-Supported Telecommunications Applications. It
is a standard produced by ECMA, an international standards body
(http://www.ecma-international.org). CSTA provides a standard for
Computer-Telephony Integration (CTI). When fully implemented, CSTA
allows an application to:

• monitor calls on dial strings, lines or trunks

• modify the behavior of calls

• make a call between two parties

The Avaya Application Enablement Services Device, Media and Call
Control API implements a subset of CSTA. The API supports monitoring
and making calls at the physical device level. Applications using this API
have first party device control and media control and third-party call
control.

 Chapter 2: Getting Started

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 45

The following sections describe what you need to know about the CSTA
concepts of:

• Devices

• Physical elements and Logical elements

• Calls

• Service requests and Service responses

• Events

• Negative acknowledgements

Devices

In the context of this API, a device refers to a software instantiation of a
phone or dial string that is registered on Communication Manager. Such a
device is also referred to as a softphone. A device has physical and logical
elements.

Physical Elements

The physical element of a device encompasses the set of attributes,
features, and services that have any association with physical components
of the device that make up the user interface of the device. Physical
elements can be manipulated, such as pushing buttons or going offhook,
or they can be observed, such as observing the ringer or whether a lamp is
lit. The physical elements of a device include:

• Buttons

• Hookswitch

• Display

• Lamps

• Message waiting indicator

• Ringer

This API supports all of these physical elements.

Logical Elements

A logical element is the part of a device that is used to manage and
interact with calls at a device. This element represents the media stream
channels and associated call handling facilities that are used by the device
when involved in a call. The logical elements that this API supports are:

• DTMF tones coming into the device

• Media stream coming into and out of the device

• Do Not Disturb

• Call Forwarding

46

Calls

 Calls can be:

• made from and received by a device

or

• made using Call Control Services

CSTA performs most telephony services against a connection that
identifies a particular call. For Voice Unit Services and Extended Voice
Unit Services, services are requested for a device instead of a connection.
For these services, only the device portion of the connection ID is used.

Request and response framework

Your application will need to be able to:

• make service requests

• process service responses

• parse error codes

• monitor for and parse events

This section describes what requests, responses, negative
acknowledgements and events are and how to use them.

Service Requests

In this API an application requests services of the AE Services server.
Examples of a request are “give me a device identifier”, “press a button”,
“give me information about a lamp’s status”, or “notify me when a tone
comes into the device”.

Each request is processed by the AE Services server. The server may
complete a request synchronously in one logical step or it may take
additional steps to pass the request to Communication Manager and
handle the response(s) before responding asynchronously to the
application with the request’s results in an event or negative
acknowledgement.

To make a request, the application must construct the appropriate XML
message and send that to AE Services.

 Chapter 2: Getting Started

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 47

Service responses

Each service request is acknowledged with a service response (positive or
negative acknowledgement). Some service requests, particularly those
that request information, are completed in a single logical step, thus the
results of the request are reported in the service response (single-step
requests follow CSTA’s atomic model). Other service requests, particularly
those that require AE Services to pass on a request to Communication
Manager, take multiple steps to complete. (These follow CSTA’s multi-step
model.) Responses to multi-step requests merely indicate that the request
was received and is being processed.

In some cases, response data values may indicate an error in the request
or in the processing of a single-step request.

Service responses are in the form of XML messages. You must have the
necessary tools to traverse an XML message in order to get the
information out of the XML message.

Events

Events are asynchronous occurrences on a device that an application can
choose to monitor for and respond to. Examples of events are the
DisplayUpdatedEvent, which indicates that the device’s display has
changed, or TerminalUnregisteredEvent, which indicates that the
device has been unregistered by Communication Manager.

An application indicates its desire to be notified of events by starting a
monitor using the MonitorStart request. Once a monitor is established,
the AE Services server notifies the application of relevant activity by
sending messages called event reports, or simply events.

NOTE: Once you receive an event, release the event thread immediately
and continue to do event processing on a different thread.

Negative acknowledgements

The AE Services server may respond to a service request with a negative
acknowledgement. The XML message received will have the XML tag
<CSTAErrorCode> present. It will be up to the application as to how it
chooses to handle such messages. The application does not need to send
back a message to the AE Services server when such a message is
received. Review the server logs to make sure that other adverse
conditions have not transpired.

Call Recording

Call recording provides the ability to record phone calls by employing the
DMCC Registration Services (see the “Registering Devices” section in
chapter 3) and, optionally, the DMCC Voice Unit Services (see the
“Recording and Playing Voice Media” section in chapter 3). If the client
recording application chooses not to employ the DMCC Voice Unit Services,
then the application is responsible for directing the RTP stream to a suitable
recording application capable of handling the media.

48

NOTE: That the Call Recording feature is supported for calls that are handled
by DCP, H.323 and SIP endpoints, or by a mobile device. The available
methods for recording phone calls, via AE Services, include the following:

Service observing method

A DMCC service client recording application registers as a Communication
Manager Service Observing extension in independent (or dependent) mode.
When a call is accepted by the user the service observer recording client is
added to the call.

Single step conference method

A DMCC service client recording application registers as a standard
Communication Manager extension in independent (or dependent) mode. A
JTAPI, TSAPI or DMCC client application can monitor the user’s extension
and, when a call is accepted by the user, it conferences the recording client
extension into the call.

Multiple registrations method

A DMCC service client recording application registers as the same extension
(either in dependent or independent mode) as that of the user who is taking
the calls. Since the incoming media in all of the extension’s RTP streams is
the same as for the main registrant (i.e., the user), the client application
receives the same RTP as the user, and can record the RTP. The DMCC
service call recording client is also able to register and connect after the user
is already on the call. Note that Communication Manger does not play any
warning tones into the call while recording is in progress. It is up to the
customer to warn the calling parties via an announcement. It should be
noted that when the extension of the user taking the call is associated with a
SIP endpoint, the DMCC service client application must register in
Independent mode. Also, this feature does not increase the number of
parties on a call.

Cell phone recording

Beginning in AE Services 6.2 is the ability to record calls originating or
terminating at an off-PBX phone (for example a SIP phone or a cell phone).
This feature combines the AE Services Multiple Registrations method with
the Avaya EC500 or the Avaya One-X Mobile (OPTIM) applications. The
DMCC service client application is able to connect to, and record, calls:

• answered either at the desk set or at the mobile device

• answered at the desk set and then extended to the mobile device

• answered at the mobile device and then retrieved at the desk set

Note: For mobile calls and SIP endpoint calls, the Cell Phone Recording
feature does not use the call control aspect of the Multiple Registration
feature.

 Chapter 2: Getting Started

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 49

Recording warning tone

For AE Services 6.3, and later releases, is the ability to request
Communication Manager to insert a tone into the audio stream of the parties
in a call. This tone serves to indicate that the audio stream is being recorded
using either the Single Step Conferencing method or the Multiple
Registrations method. The tone that is played is inserted by Communication
Manager and is identical to that already used by the Service Observing
feature. See Playing a Warning Tone for more information.

Signaling Encryption

AE Services offers the ability to encrypt the signaling channel between the
AE Services server and Communication Manager. However, the option to
encrypt this link is not under the direct control of your application. Instead,
it is an option that is provisioned on Communication Manager, via the “set
network-region” page. See the "Setting up a network region for Device and
Media Control" subsection of the "Administering Communication Manager
for AE Services" chapter of the Avaya Aura® Application Enablement
Services Administration and Maintenance Guide.

The encryption of the signaling link is automatically negotiated between the
AE Services server and Communication Manager during the device
registration, and the resultant encryption used is dependent on the options
set for the network region. The following encryption types are supported:

• Challenge

• Pin-Eke

• H323TLS

Note that the H323TLS option is only available for use with Communication
Manager 6.3.6, or later, running in FIPS mode. In this case, the AE Services
Management Console (OA&M) “Communication Manager Interface” -> “Switch
Connections” -> “Add/Edit Connection” web-page must have both of the
“Secure H323 Connection” and “Provide AE Services certificate to switch”
check-boxes checked.

When registering the device, the negotiated signaling encryption type is
included as a parameter in the RegisterTerminalResponse message.
However, if the device is registered using the older (deprecated) Terminal
Services, the negotiated signalling encryption type is not included.

Media Encryption

You have the ability to encrypt the RTP (media) stream between the
application and the other endpoint of the call.

50

The option to encrypt the RTP stream is provisioned on the
Communication Manager, this time via the “change ip-codec-set” page.
See the "Creating the Device and Media Control codec set" subsection of
the "Administering Communication Manager for AE Services" chapter of
the Avaya Aura® Application Enablement Services Administration and
Maintenance Guide. However, in this case, the application does have
some (albeit limited) control over the type of encryption used. Media
encryption will be one of the following types:

• Advanced Encryption Scheme (AES)

• SRTP encryption schemes (multiple options)

• no media encryption

When registering the device, the application may specify which media
encryption schemes that it supports. For more details see “Choosing the
media encryption”.

This list of application-supported media encryption schemes is matched to
the list of encryption schemes provisioned on Communication Manager’s
“change ip-codec-set” page for the device’s codec set. Communication
Manager will pick an encryption scheme that is common to both lists, if
possible.

Note that the encryption scheme and encryption keys (if any) chosen by
Communication Manager will be indicated in the MediaStartEvent
message.

Accessing the client API reference documentation

You may need to reference the XML Programmer’s Reference((XMLdoc)
provided with this API. It is available on the Avaya Support site
(www.avaya.com/support) as both a viewable HTML document and a
downloadable zip file.

This HTML documentation will also ship with the SDK. This documentation
describes all of the interfaces and their parameters.

In addition, the SDK ship with a "Dashboard" application which documents
all of the capabilities of the API and provides the ability to get detailed help
about every interface. This Dashboard application can greatly reduce the
learning curve.

For information on getting started with using the Dashboard tool, see
Avaya Aura® Application Enablement Services Device, Media, and Call
Control .NET API Programmer’s Guide, which is available on the Avaya
Support site.

If you choose to download the zip file, then do the following to browse the
HTML-based XMLdoc:

 Chapter 2: Getting Started

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 51

1. Expand the ZIP file using any application or tool that recognizes the
ZIP file format. All of the XMLdoc files are placed into a directory
named XMLdoc

2. Go to the XMLdoc directory.

3. Double click on index.html (or open this file with a browser).

Using the Device, Media and Call Control Dashboard

The Device, Media and Call Control .NET SDK ships with a "Dashboard"
tool that is very useful for developers just learning about the API and its
capabilities. The Dashboard tool allows you to easily try out all of the
capabilities of the .NET SDK without having to write any code.

For developers using the XML SDK, this tool allows you to easily see and
capture all of the XML messages being exchanged with the AE Services
server.

In addition, Visual Studio will provide help with the parameters as you are
writing the code.

For more details on using the Dashboard tool, see the Device, Media and
Call Control .NET Services Programmer Guide.

Learning from sample code

Another key learning tool is the set of sample code files that are provided
with this API. This sample code is located in the following directory:

cmapixml-sdk/examples/src/

• CmapiXML.cs - a C# example

• CmapiXMLCpp.cpp - a C++ .NET example

• samplefiles/ExampleCmapiXML.java - a Java example

Each of the examples simply show how to connect to the AE Services
server and how to send very basic XML messages.

52

Chapter 3: Writing a client applicationChapter 3: Writing a client applicationChapter 3: Writing a client applicationChapter 3: Writing a client application
This chapter describes how to write an application using the Application
Enablement Services Device, Media and Call Control API. It will frequently
refer to the details in the XMLdoc, so you may wish to have ready access
to the XMLdoc while reading this chapter. Read Accessing the client API
reference documentation to find out how to get access to the XMLdoc.

Your application may have these different parts:

• Setup

o The CSTA Header

o Establish a connection to the AE Services server

o Setting up the IO Streams

o Receiving negative acknowledgements

o Establishing an application session

o Getting device identifiers

o Requesting notification of events

• Device and Media Control versus Call Control

o Registering devices

• Telephony Logic for performing actions after various events occur

o Device and Media Control

� Monitoring and controlling physical elements

o Call Control

� Monitoring and Controlling Calls

o Recording and playing voice media

o Detecting and collecting DTMF tones

o Determining when far-end RTP media parameters change

• Recovery

• Cleanup

o Stop collecting tones

o Stop recording or playing

o Unregister the device

o Stop monitoring for events

o Release the device identifier

o Stop the application session

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 53

Each part is described in the sections below.

Setup

This section describes the different setup steps that must be taken by
every application. Applications using the Device, Media and Call Control
XML protocol require some infrastructure pieces to be built. Such facilities
are:

• connection to the Application Enablement Services server

• socket management

• negative acknowledgement handling

• synchronous and asynchronous message handling and event
notification

Creating such facilities are very technology-specific and beyond the scope
of this document.

The following sections provide several code fragments to illustrate one
implementation. These fragments are provided in C#, C++ and VB and
come from various.NET applications. These code samples are for
illustration purposes only, and as such, should not be taken as the optimal
choice for your application. The following sections provide many sample
XML messages that will be sent between the application and AE Services.
The content of the messages are for illustration purposes only and will vary
depending on your environment and application needs. However, the
structure of the message is important to note.

The following figure shows the four specific XML messages that must be
constructed by the application and sent to AE Services in order to get
started.They are:

• Start Application Session

• GetDeviceId

• MonitorStart

• RegisterTerminal

NOTE: The RegisterTerminal message is required for device/media
applications. The RegisterTerminal message is not required for
applications that use third party call control only.

54

You must send these messages in the order shown. The figure also shows
what XML messages your application will receive from the server in
response. You must wait for a response for each of these requests before
moving on to the next. You must receive a positive response to your
StartApplicationSession message, indicating that a session was
successfully established between your application and the server, before
you can exchange any subsequent message with the server. After you
send the RegisterTerminal message you will receive the corresponding
RegisterTerminalResponse, however, it is not guaranteed that the
response message will come back in the order expected. At this point the
connector can begin to send asynchronous messages. The use of each of
these requests is described in further detail in later sections of this chapter.

Figure 1: Required XML API messages

XML API Client Connector Server

<GetDeviceId>

<GetDeviceIdResponse>

<RegisterTerminal>

<RegisterTerminalResponse>

<LampModeEvent>

<StartApplicationSession>

<StartApplicationSessionResponse>

<MonitorStartResponse>

<MonitorStart>

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 55

 The CSTA Header

Proper construction of the XML messages is very important. All XML
messages must have prepended the appropriate header as specified by
CSTA. The CSTA header consists of a two byte version field; a two byte
length field and a four byte invoke ID as illustrated in the following figure.
All data is sent using network byte ordering (most significant byte first).

 0 | 1 2 | 3 4 | 5 | 6 | 7 8........

Version Length Invoke ID XML Message
Body

Version

The version indicates the format of the XML instance message. The
following header format is defined:

• 00 - indicates that the message body consists of an Invoke ID
component followed by an XML instance message.

Length

The length is defined as the length of the full message which is the length
of the message body plus the length of the message header.

The invoke ID

A four byte Invoke ID is provided in order to correlate a CSTA service
request with the corresponding response message. This Invoke ID is
provided in the message body that precedes the XML instance message. It
is encoded as four ASCII numerical characters. You will need to populate
the Invoke ID field in the CSTA header with a unique value for every
request you send. That same value will be returned in the Invoke ID field of
the corresponding service response message (positive or negative).
Responses to requests might not be sent to your application in the same
order that the application sent the requests. Use the Invoke ID to correlate
each response with the request.

Request and response XML messages must use Invoke IDs between 0
and 9998. A value of "9999" is used by AE Services when sending events
to your application.

Figure 2: Example XML message passing

56

Establish a connection to the AE Services server

Connect to the AE Services server using the AE Services server IP
address (that you have assigned) and the port. Device, Media and Call
Control API uses the secure port 4722 as the default for remote client
connections. The port is usually set during configuration of the server and
you will need to use the AE Services Management Console web-page to
change this default if you wish to use the unsecure port.

Following is a C# code example of connecting to the secure port of an AE
Services server:

 public static TcpClient client;

 public static SslStream sslStream;

 public static bool ValidateServerCertificate(object
sender,

 X509Certificate certificate,

 X509Chain chain,

 SslPolicyErrors sslPolicyErrors)

 {

 if (sslPolicyErrors == SslPolicyErrors.None)

 return true;

 if (sslPolicyErrors ==
SslPolicyErrors.RemoteCertificateNameMismatch)

 return true;

 return false;

 }

 client = new TcpClient(server, port);

XML API Client Connector Server

<GetDisplay> (Invoke Id 80)

<GetLampMode> (Invoke Id 90)

<GetDisplayResponse> (Invoke Id 80)

<GetLampModeResponse> (Invoke Id 90)

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 57

 sslStream = new SslStream(

 client.GetStream(),

 false,

 new
RemoteCertificateValidationCallback(ValidateServerCertificat
e),

 null

);

NOTE: You must have version 2.0 of the .NET framework

Setting up the IO Streams

Set up the IO streams. Depending on what programming language you are
using to develop your application, this step may already be taken care of
by the language itself.

Following is a C# code fragment:

BinaryWrite writer = new BinaryWriter(stream);

BinaryReader reader = new BinaryReader(stream);

Receiving negative acknowledgements

Each service request may generate a negative acknowledgement. When
AE Services responds with one, the XML message sent will have the XML
tag <CSTAErrorCode> present. It will be up to the application as to how to
handle such messages. The application does not need to send back a
message to the Application Enablement server when such a message is
received.

An example of the structure of the XML message your application may
receive is:

<?xml version="1.0" encoding="UTF-8"?>

<CSTAErrorCode xmlns="http://www.ecma-
international.org/ecma-323/csta/ed3">

<operation>invalidCallingDeviceID</operation>

</CSTAErrorCode>

Note: This is an example of a Negative Acknowledgement that could be
received as a response to a MakeCall request.

58

We recommend that the application log all possible negative
acknowledgements since this will be an important source of information for
debugging the application. Look at the server side logs for more
information about what happened (Appendix C: Server Logging). The logs
will contain helpful information that you may need to provide to
DevConnect.

For more information on negative acknowledgements please see section
9.2.2 and 9.3 in the ECMA-269: Services for Computer Supported
Telecommunications Applications (CSTA) Phase III found in the
Publications section of the ECMA web site (http://www.ecma-
international.org/):

The CSTA specification provides a long list of standard error messages
that a request could return. This list of standard CSTA errors is somewhat
limiting in that it does not cover all the possible errors. The latest version of
the CSTA specification extended the error message capability by allowing
the creation of vendor specific errors. To utilize this new capability an XSD,
avaya-error.xsd, was created. This XSD specifies an enumeration of all
the extended error codes. Private error codes were added to convert
TSAPI ACS Universal errors. These errors will be sent to the application
instead of the generic CSTAErrorCode ‘unspecified’ when applicable.
Appendix D: TSAPI Error Code Definitions contains a table of the errors
that were added and their meaning. The use of an XSD will make it easy
for any client (Java, C#, etc.) to have a programmatic way of knowing what
AE Services extended error codes are possible.

The sample applications included in the Java SDK for Device, Media and
CallControl API are more extensive than those for the XML SDK. If you
want to see examples of a wider variety of XML requests and responses,
you may want to examine the XML messages generated and received by
these sample applications. In order to do so, follow the instructions in
Appendix C: Server Logging to increase the log level on the AE Services
server so that it will trace XML message to its log files. Then follow the
instructions in the example/bin/README.txt file in the Java SDK to run
the Java sample applications. The /var/log/avaya/aes/dmcc-
trace.log.x files will now show every XML message sent and received
by the server. See also Using the Device, Media and Call Control
Dashboard.

Establishing an application session

Establish an application session between your application and the server
for the purpose of exchanging application messages. It is required that an
application session be established before application messages can be
exchanged. Construct the StartApplicationSession XML message and
send it to AE Services. You must specify the cleanup delay and the
application session duration in this request.

The following is the structure of the XML message you send:

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 59

<?xml version="1.0" encoding="utf-8"?>

<StartApplicationSession
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.ecma-international.org/standards/ecma-
354/appl_session">

 <applicationInfo>

 <applicationID>someApp</applicationID>

 <applicationSpecificInfo>

 <SessionLoginInfo
xmlns="http://www.avaya.com/csta">

 <userName xmlns="">user1</userName>

 <password xmlns="">password1</password>

 <sessionCleanupDelay
xmlns="">60</sessionCleanupDelay>

 <sessionID xmlns="" />

 </SessionLoginInfo>

 </applicationSpecificInfo>

 </applicationInfo>

 <requestedProtocolVersions>

 <protocolVersion>http://www.ecma-
international.org/standards/ecma-323/
csta/ed3/priv2</protocolVersion>

 </requestedProtocolVersions>

 <requestedSessionDuration>180</requestedSessionDuration>

</StartApplicationSession>

Each release adds functionality to the previous releases. Specify the
following protocol strings in the protocolVersion element of the
message:

• To access release 5.2 functionality use the string http://www.ecma-
international.org/standards/ecma-323/csta/ed3/priv4"

• To access release 6.1 functionality use the string http://www.ecma-
international.org/standards/ecma-323/csta/ed3/priv5

• To access release 6.2 functionality use the string
"http://www.ecma-international.org/standards/ecma-

323/csta/ed3/priv6"

• To access release 6.3 functionality use the string http://www.ecma-
international.org/standards/ecma-323/csta/ed3/priv7

60

• To access release 6.3.1 functionality use the string
http://www.ecma-international.org/standards/ecma-
323/csta/ed3/priv8

• To access release 6.3.3 functionality use the string
http://www.ecma-international.org/standards/ecma-
323/csta/ed3/priv9

• To access release 7.0.0 functionality use the string
http://www.ecma-international.org/standards/ecma-
323/csta/ed3/privA

If the requested version is not valid or supported by the server, then a
StartApplicationSessionNegResponse shall be sent back and the error
code shall be set to RequestedProtocolVersionNotSupported

AE Services 3.x, 4.x and 5.x applications are expected to run against the
AE Services 6.3 as long as the protocol version associated with the SDK is
specified correctly. Appendix A in the Avaya Aura® Application
Enablement Services Overview document contains more information on
API and client compatibility.

NOTE: There is a limitation of one session per socket. if you attempt to
initiate a new session on the same socket you will receive a
StartApplicationSessionNegResponse.

NOTE: The following URL: http://www.ecma-
international.org/standards/ecma-323/csta/ed2/priv1, used throughout the
code samples in the Application Session sections of this book is not a
reachable URL. This URL was obtained by taking the CSTA namespace
for the XML schemas and adding an Avaya private data version to the end.

Once the StartApplicationSession message is processed by the AE
Services server, a response will be returned. This response from the
service will be either a StartApplicationSessionPosResponse, or a
StartApplicationSessionNegResponse.

The StartApplicationSessionPosResponse XML message will contain
the session identifier, the protocol version and the actual session time-out
for this session. The application must extract the session identifier from
within this message.

The following example shows the structure of the positive response from
which you will extract information:

<?xml version="1.0" encoding="UTF-8"?>

<StartApplicationSessionPosResponse xmlns="http://www.ecma-
international.org/standards/ecma-354/appl_session">

 <sessionID>469421A9364D46D6444524AE41BEAD72-0</sessionID>

 <actualProtocolVersion>http://www.ecma-
international.org/standards/ecma-323/csta/
ed3/priv2</actualProtocolVersion>

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 61

 <actualSessionDuration>180</actualSessionDuration>

</StartApplicationSessionPosResponse>

The server may respond with a StartApplicationSessionNegResponse
with an error code to define why the server failed to start the session.
These error codes have been outlined in the ECMA-354: Application
Session Services standard. Your application may also receive a special
negative response message that is associated with a failure while
attempting to recover a session. Please see the DMCC Service Recovery
for details.

The following example shows the structure of the negative response:

<?xml version="1.0" encoding="UTF-8"?>

<StartApplicationSessionNegResponse xmlns="http://www.ecma-
international.org/standards/ecma-354/appl_session">

 <errorCode>

 <definedError>invalidApplicationInfo</definedError>

 </errorCode>

</StartApplicationSessionNegResponse>

NOTE: You may only send subsequent requests to the server if a positive
response was received, indicating a session was successfully established.

SessionCharacteristics

Starting with the 5.2 release of AE Services, DMCC applications are able
to specify several “Session Characteristics” that will alter the way their
application interfaces with DMCC. Setting these Session Characteristics is
optional and will default to be backwards compatible with older
applications, if not specified.

At present, there are no restrictions on the number of times that the
Session Characteristics may be changed for a given session. However,
changing the characteristics in the middle of a session may have
unforeseen issues involving possible Call Control or Logical Device
Feature services events and their delivery to the client. Thus, it is
recommended that the Session Characteristics are set up immediately
after the session has been established. Thereafter, the application should
exercise caution in setting new characteristics for the session.

The following are the session characteristics that can be specified.

Note: SessionCharacteristics should be set once after Start Application
Session to avoid possible Call Control or Logical Device Feature services’
event delivery problems.

62

DeviceID Type

The two Device ID Types that can be specified are “DMCC” and “Tel URI”.

The “DMCC” DeviceID type is the type that has been supported in previous
releases of DMCC, and is the default if no DeviceID type is specified.

The “Tel URI” type allows an application to interact with DMCC using
E.164 numbers rather than switch-specific extensions and dial strings.
DMCC leverages the Dial Plan provisioning on AE Services Management
Console pages in order to work in this mode.

There are several benefits to using Tel URI mode as follows:

Applications can look up telephone numbers in an enterprise directory and
provide those telephone numbers to DMCC without knowledge or concern
of the Communication Manager dial plan.

The above benefit is extended to numbers external to Communication
Manager. The application would not have to be aware of the ARS code to
denote an external number, nor would it have to be aware of the
international dialing code.

The application does not have to be aware of a switchname for the given
device. Instead, DMCC will attempt to discover the appropriate
Communication Manager instance on receipt of a Monitor Start or
Snapshot Device request.

While this mode can be extremely useful there are several important
limitations to be considered prior to using Tel URI mode.

Only Monitoring Services, Call Control Services, Snapshot Services and
Logical Device Feature Services may be used when working in this mode.

If Monitoring Services is used in Tel URI mode, the application must take
care to only subscribe to Call Control ,Logical Device Feature and
Endpoint Registration events.

The first request issued by the application must be a Monitor Start or
Snapshot Device request as those requests are used to associate the Tel
URI with a particular administered Switch.

The Dial Plan must have been provisioned in the AE Services
Management Console pages for the Communication Manager(s) of
interest.

A given AE Services instance may only serve users in a single country,
even if the Communication Manager is a multi-national deployment. This
is because the dial plan rules do not take the calling number into account
when determining how to convert a called number.

For more details on how to provision Dial Plan rules, please see the
section on Dial Plan Administration in the “Avaya MultiVantage®
Application Enablement Services Implementation Guide for Microsoft
Office Live Communications Server 2005 or Microsoft Office
Communications Server 2007”

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 63

Event Filter Mode

An Event Filtering Mode of “None” corresponds to the “regular” DMCC
behavior applications are used to receiving, and is the default if no Event
Filter mode is specified. Note that filters specified in a Monitor Start
request will continue to be applied even if the default Event Filtering Mode
of “None” is requested.

“Desktop Call Control” event filtering may be leveraged by applications that
are directly representing call state to end-users. In this mode, DMCC will
filter out events that would otherwise lead to confusing call states for the
user. The following events filtering is applied in this mode:

Delivered and Established events that would reveal the presence of a
silent observer. When Single Step Conference is used to add a participant
to a call, an application can optionally specify that the participant be added
in “listen-only” mode. This is generally used to add automata such as
virtual call recording extensions. A participant that has been added using
the Communication Manager Service Observing feature would also be a
silent participant. It is generally beneficial to hide the presence of such
silent observers from an end-user application that otherwise shows all
parties on the call.

Established events that indicate that a call has been answered at a
different device than the one being monitored. This generally occurs in a
situation where one user has a bridged appearance of another. In that
scenario, both devices alert and the call can be answered at either device.
In general, an end-user application showing call state on the device that
did not answer would then want to show that the call has been cleared.
Consequently, DMCC will convert such an Established event to a
Connection Cleared event prior to sending the event to the application.

• Bridged Appearance Alert provisioning is applied. This provisioning
allows the administrator to specify whether applications monitoring a
station with bridged appearances of another station should receive
Delivered events that would indicate that a bridged appearance is
alerting. For example, consider a case where an assistant has
bridged appearances of several executives. In some deployments, it
may not be desirable for that assistant’s call control application to
indicate that there is an incoming call for one of these bridged
appearances. In other deployments, it may be desirable for the
application to alert in this scenario. The Bridged Appearance Alert
provisioning allows the administrator to specify which behavior is
desired for their particular deployment, and even allows per-user
provisioning.

• An example SetSessionCharacteristics message is provided
below

<?xml version="1.0" encoding="utf-8"?>

64

<SetSessionCharacteristics
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.avaya.com/csta">
 <sessionCharacteristics>
 <deviceIDType>TelURI</deviceIDType>

<eventFilterMode>DesktopCallControl</eventFilterMode>
 </sessionCharacteristics>
</SetSessionCharacteristics>

The following is an example of the positive response:

<?xml version="1.0" encoding="UTF-8"?>
<SetSessionCharacteristicsResponse
xmlns="http://www.avaya.com/csta" />

Maintaining a Session

The example StartApplicationSessionPosResponse message above
contains a value for the actualSessionDuration. This represents the
amount of time in seconds that a session will remain active. Your
application must send periodic ResetApplicationSessionTimer XML
messages to the server in order to keep the session alive. This message
represents a "keep alive" message to reset the timer on a particular
session. The server must receive one such message during each session
time-out interval. We recommend that your application send this "keep
alive" message to the server at intervals that are approximately 1/3 the
session duration. This allows for up to 2 messages to be lost / delayed
before the application session is put into an inactive mode.

So, in order to maintain a session with a180 second duration, a
ResetApplicationSessionTimer message should be sent
approximately every 60 seconds in order to ensure that you maintain an
active session.

An example ResetApplicationSessionTimer message is provided
below.

<?xml version="1.0" encoding="utf-8"?>

<ResetApplicationSessionTimer
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.ecma-international.org/standards/ecma-
354/appl_session">

 <sessionID>469421A9364D46D6444524AE41BEAD72-
0</sessionID>

 <requestedSessionDuration>180</requestedSessionDuration>

</ResetApplicationSessionTimer>

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 65

This must be done before the session expires. If the server receives no
such "heartbeat" at least once during a session time-out interval, it will
place the application session in an inactive state on the server.

The server will respond with a
ResetApplicationSessionTimerPosResponse if the application session
has been kept alive.

The following example shows the structure of the positive response:

<?xml version="1.0" encoding="UTF-8"?>

<ResetApplicationSessionTimerPosResponse
xmlns="http://www.ecma-international.org/standards/ecma-
354/appl_session">

 <actualSessionDuration>180</actualSessionDuration>

</ResetApplicationSessionTimerPosResponse>

If the server responds with a
esetApplicationSessionTimerNegResponse, then the application may
need to initiate recovery by sending another StartApplicationSession,
with the same SessionID to recover the session..

The following example shows the structure of the negative response:

<?xml version="1.0" encoding="UTF-8"?>

<ResetApplicationSessionTimerNegResponse
xmlns="http://www.ecma-international.org/standards/ecma-
354/appl_session">

 <errorCode>

<definedError>serverCannotResetSessionTimer</definedError>

 </errorCode>

</ResetApplicationSessionTimerNegResponse>

Getting device identifiers

Set up at least one device identifier for each Communication Manager
phone or extension that your application needs to work with. As you will
see later, AE Services allows you to create up to three instances of a
device identifier.

AE Services allows each DeviceID to be controlled by multiple client
sessions that belong to the same user. Each session will then invoke the
same requests.

66

In the case of an application failure, one session can then takeover all of
the devices on another session, preserving the device registrations and
monitor states. The new session will receive information enabling them to
process events without starting new monitors. See Transfer Monitor
Objects for more information.

In past releases of Device and Media Control, there was only one type of
device identifier. With the introduction of third party call control through Call
Control Services, Logical Device Feature Services and Snapshot Services,
a new type of device identifier is required. There is now first party device
identifiers and third party device identifiers.

First party device identifiers are the types of device identifiers that have
been supported in past releases. These device identifiers have the
following properties:

• Can only be obtained from Device Services

• Can be used to register a virtual softphone and perform device and
media control

• Can also be used for third party call control operations, but only if
they contain a Communication Manager connection name

• Must be released to be cleaned up

Third party device identifiers have the following properties:

• Are not exclusive to session

• Can be obtained from Device Services or may be returned by Call
Control Services/Logical Device Feature Services/Snapshot
Services

• Can only be used with Call Control Services, Logical Device
Feature Services and Snapshot Services

• Need not be released

There are several valid ways to get a first party device ID. It is
recommended that the application take advantage of the H.323
Gatekeeper List feature so that both first party device IDs and third party
device IDs are acquired in the same way: by giving a switch name and an
extension number. This feature requires the administrator to administer
through the AE ServicesManagement Console web pages a list of IP
addresses that can be used for H.323 registrations. See the "Administering
Switch Connections" section of the "AE Services OAM Administration and
CTI OAM Admin" chapter of the Avaya Aura® Application Enablement
Services Administration and Maintenance Guide.

If an application is not using Call Information Services, Call Control
Services or Snapshot Services, it is also valid to include only a
switchIPInterface and dial string in the getDeviceID message, and
thereby not administer the H.323 Gatekeeper list.

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 67

Construct the GetDeviceId XML message and send it to AE Services.
The following is the structure of the XML message you send:

<?xml version="1.0" encoding="utf-8"?>

<GetDeviceId xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http:// www.w3.org/2001/XMLSchema"
xmlns="http://www.avaya.com/csta">

 <switchName>MySwitch</switchName>

 <switchIPInterface>111.2.33.444</switchIPInterface>

 <extension>4750</extension>

</GetDeviceId>

The AE Services server responds with the GetDeviceIdResponse XML
message. The application must extract the device identifier from within this
message.

The following example shows the structure of the response from which you
will extract information:

<?xml version="1.0" encoding="UTF-8"?>

<GetDeviceIdResponse xmlns="http://www.avaya.com/csta">

 <device typeOfNumber="other" mediaClass="voice"
bitRate="constant">4750::111.2.33.444:0</device>

</GetDeviceIdResponse>

Note: The XML tags for the device identifier are not consistent throughout
the XML messages. This inconsistency is CSTA-related. In the sample
above of the GetDeviceIdResponse XML message, the device identifier is
bracketed by the <device> tags. In the MonitorStart XML message, the
device identifier is bracketed by the <deviceObject> tags.

Note: The DeviceID and ConnectionID formats are subject to change in
future releases. Your applications should not be parsing these IDs, but
rather should be using them as keys in their requests.

Note: According to the call-connection-identifiers.xsd schema, it is
valid to have a ConnectionID that consists of only a DeviceID or a CallID.
This is a standard CSTA schema and is general to many implementations
in addition to Avaya’s. Though the schema states that the DeviceID or
CallID are optional, this is not always true for Avaya’s implementation. For
connection ID’s received from Call Control Services or Snapshot Services,
the application should treat ConnectionID opaquely and should send the
exact XML content that was received from the Device Media and Call
Control Service. This will always include both a DeviceID and a CallID.

Comparing Device Identifiers

68

Depending on how you obtained the DeviceIDs, there may be small
formatting differences between two DeviceIDs that you might think should
be equal. A DeviceID comprises of four main parts:

1. the phone extension – normally consists of 4-13 digits.

2. the name of the switch associated with the extension – this should
match one of the “Switch Connections” provisioned via the AE
Services Management Console web-pages.

3. the IP address of the CLAN or Processor Ethernet interface used to
connect the phone to the switch (optional)

4. the instance of the phone extension – ranges from 0-2 (default = 0)

Parts 1, 3 & 4 are comprised of numeric digits and normally pose no
comparison problems. However, part 2 (switchname) consists of
alphanumeric characters and can contain either upper-case or lower-case
alphabetic letters. Thus, for example, it is possible to obtain the DeviceIDs:

deviceId1 = <device typeOfNumber="other"
mediaClass="voice"
bitRate="constant">12345:myswitch:192.168.1.1:0”</device>

deviceId2 = <device typeOfNumber="other"
mediaClass="voice"
bitRate="constant">12345:MYSWITCH:192.168.1.1:0”</device>

where the first DeviceID may have been obtained from a “GetDeviceId” request,
while the second DeviceID may have been obtained from an event. Always
perform case-insensitive string comparisons when comparing DeviceIDs that
contain a switchName.

Populating the Switch Name and Switch IP Interface fields

For first party device ID’s, there are several ways to populate the
switchName and/or IP Interface fields:

• Your application can specify a switchName, a switchIPInterface,
and an extension when getting a device ID. In this case,
administration of the H.323 Gatekeeper list for the switch
connection (transport link) is not required.

• Your application can get a switchName by using the Gatekeeper
List feature. Your application would specify just an extension and
switchIPInterface as in previous releases of the API. If this is
done, it is required that you administer an H.323 Gatekeeper list for
the Switch Connection. The AE Services server, upon receiving the
GetDeviceID request, will go to its administration database, and will
resolve the given switchIPInterface to a switchName, then
populate this value in the DeviceID.

• The AE Services server also offers a feature which will use a round-
robin algorithm to distribute softphones to a list of H.323
Gatekeepers (i.e. to automatically populate the
switchIPInterface field). If using this feature, the application

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 69

need only know a symbolic name for the switch, rather than
maintaining a list of Gatekeepers with which it wishes to register. To
take advantage of this feature, the list of H.323 Gatekeepers must
be administered in web AE Services Management Console for the
given Switch Connection.

Note that this feature has been modified for AE Services 6.1. Thus:

• Prior to AE Services 6.1, when getting a DeviceID, the application
would specify only a switchName and extension. Upon receiving
the “GetDeviceID” request, the switch would pick the next H.323
Gatekeeper from the list, and return it, as part of the DeviceID.
Later, when the application attempts to register the device, it would
register with that gatekeeper. Unfortunately, if the gatekeeper was
out-of-service when the device registration occurred, it was
necessary for the application to release the DeviceID and get
another one before the registration could be re-attempted.

o For AE Services 6.1 and later, if only the switchName and

extension are specified in the “GetDeviceID” request, the
choice of H.323 Gatekeeper is delayed until the device is
actually being registered. In this case, the DeviceID that is
returned to the application (in response to GetDeviceID) will
have “0.0.0.0” as the switchIPInterface portion of the
DeviceID. This designation is merely meant to indicate that the
H.323 Gatekeeper for registration has not yet been chosen.
Delaying the choice of gatekeeper until the device needs to be
registered allows greater flexibility for the application. Thus, if a
gatekeeper is down or out-of-service at the time of registration,
then it will not be picked from the list of gatekeepers. Instead,
the out-of-service gatekeeper will be skipped, and the next
available in-service gatekeeper will be allocated for the device
registration. In this way, the need for the application to invoke
“ReleaseDeviceID” and re-invoke “GetDeviceID” (in order to
pick another gatekeeper) is avoided. Furhermore, the
probability of picking an out-of-service gatekeeper IP address is
much reduced. Note that the H.323 gatekeeper being used for a
given DeviceID can actually change during the life of the
registration. The most common cause for this is a failover of the
Communication Manager to/from an ESS or LSP. If you need to
know which H.323 gatekeeper is currently being used for a
given device registration, then you can do one of the following:

� On the AE Services Management Console (OA&M),
navigate to “Status” -> “Status and Control” -> “DMCC
Service Summary” and click on “Device Summary”. If the
DeviceID is registered, then the current H.323
gatekeeper IP address is listed on the form.

� From your application program, issue a
“GetRegistrationState” request for the device. If the
device is registered, then the response will include the
current H.323 gatekeeper IP address.

70

For third party device ID’s:

• Your application must always specify a switchName, and an
extension when getting a device ID.

• There is no switchIPInterface for third party device ID’s.

Note: The switchName field is only required for Call Information, Call
Control Services, Snapshot Services and Logical Device Feature Services.
If an application is not using one of these services and does not wish to
take advantage of the round-robin H.323 Gatekeeper assignment feature,
it is not required to administer an H.323 gatekeeper list or specify a
switchName in the GetDeviceID request. In this case, the switchName
field of the DeviceID is simply not populated, and any calls with this
DeviceID to Call Information Services, Call Control Services or Snapshot
Services will fail.

Using E.164 conversion services

E.164 is an ITU-T recommendation defining the international public
telecommunication numbering plan used in the PSTN and other data
networks. E.164 numbers can have a maximum of 15 digits and are
usually written with a + prefix. To actually dial such numbers from a normal
fixed line phone the appropriate international call prefix must be used.

Many organizations use E.164 format when storing employee’s telephone
numbers in their directory (for example, Microsoft Active Directory or Lotus
Domino). If your application performs directory queries based on an
individual’s name, it may receive E.164 format numbers in return. In such
cases, you must convert the E.164 number to a Communication Manager
extension or dial string before getting a Device ID to use with the Device,
Media and Call Control services.

Likewise, if you need to perform a directory query to resolve an extension
number received from Device, Media and Call Control into a name, you
must convert the extension number to an E.164 number before performing
your query.

E.164 Conversion Services, in conjunction with the AE Services Dial Plan
rules, can help your application perform both of these conversions. The
following code snippet shows how you can convert E.164 numbers into
Communication Manager extensions / dial strings.

E164ToDialString Request

<ConvertE164ToDialString
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.avaya.com/csta">

 <switchName>MySwitch</switchName>

 <e164List>

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 71

 <e164Number>+13035381212</e164Number>

 <e164Number>+13035381234</e164Number>

 <e164Number>+17205554321</e164Number>

 </e164List>

</ConvertE164ToDialString>

E164ToDialString Response

<?xml version="1.0" encoding="UTF-8"?>

<ConvertE164ToDialStringResponse
xmlns="http://www.avaya.com/csta">

 <switchName>MySwitch</switchName>

 <resultList>
 <result>

 <resultType>CONVERTED</resultType>

 <e164>+13035381212</e164>

 <dialString>5381212</dialString>

 </result>

 <result>

 <resultType>CONVERTED</resultType>

 <e164>+13035381234</e164>

 <dialString>5381234</dialString>

 </result>

 <result>

 <resultType>CONVERTED</resultType>

 <e164>+17205554321</e164>

 <dialString>917205554321</dialString>

 </result>

 </resultList>

</ConvertE164ToDialStringResponse>

Note: This example presumes that dial plan rules have been administered
to indicate that numbers starting with "+1303538" are Communication
Manager extensions that should be converted to 7 digit numbers, and that
any other numbers starting with "+1" should have an ARS code (for
example, ’9’ for an outside number) placed in front. The resulting
converted numbers would then be "5381212", "5381234" and
"917205554321".

Converting from dial strings to E.164 is done in a very similar fashion.

72

For more information on administering dial plan rules, see the
Administering Dial Plan Settings chapter of the Avaya Aura® Application
Enablement Services Administration and Maintenance Guide.

Populating the optional Controllable by Other Sessions field

For first party device ID’s:

There are two ways to populate the controllableByOtherSessions field:

• Your application can specify Boolean.FALSE which means that only
one session can control the DeviceID. The effect is the same as not
setting the controllableByOtherSessions parameter. This is for
backward compatibility with applications that use an earlier version
of the SDK.

• Your application can specify Boolean.TRUE which means that more
than one session can control the DeviceID. It is recommended that
user authorization be enabled for device(s) that can be controlled by
multiple sessions. There are three different authorization policies
offered and that are explained in the “User Authorization Policies”
section.

Getting DeviceID state information

The requests in this section enable an application to get information about
DeviceIDs associated with a given session.

The following example shows how to get the DeviceID list for another
sessionID that belongs to the user. If the sessionID is not set, then the
request sessionID is assumed.

Construct the GetDeviceIdList XML message and send it to AE
Services. The following is the structure of the XML message you send:

<?xml version="1.0" encoding="utf-8"?>

<GetDeviceIdList
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.avaya.com/csta">

 <sessionID>469421A9364D46D6444524AE41BEAD72-
0</sessionID>

</GetDeviceIdList>

The following example shows how to get the monitor list for another
sessionID that belongs to the user. If the sessionID is not set, then the
request sessionID is assumed.

Construct the GetMonitorList XML message and send it to AE Services.
The following is the structure of the XML message you send:

<?xml version="1.0" encoding="utf-8"?>

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 73

<GetMonitorList xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.avaya.com/csta">

 <sessionID>469421A9364D46D6444524AE41BEAD72-
0</sessionID>

</GetMonitorList>

The GetDeviceIdListResponse and the GetMonitorListResponse
contain only the actual sessionID that was used for the request. The list of
devices (and monitors) for the sessionID are sent as multiple events. The
events your application will receive are GetDeviceIdListEvent and
GetMonitorListEvent.

Requesting notification of events

To receive notification of all changes in the switching function, the
application must use a feature called monitoring.

To monitor for certain types of events, an application must establish a
monitor using the MonitorStart request. By starting a monitor, the
application indicates the device that it is interested in observing.

By default, per CSTA standards, an application that sends a
MonitorStart request will begin receiving all events. You must
specifically state what events you do not want to receive.

Avaya has implemented a feature that allows an application to request to
receive only certain events. This is done using the invertFilter
parameter.

NOTE: In releases prior to 5.2 the application must set the invertFilter
to receive Call Control and Logical Device feature events.

Once a monitor is established, AE Services notifies the application of
relevant activity by sending messages called event reports, or simply
events. For details about this request, see the XMLdoc.

Events for which your application can choose to be notified of include:

• Telephony events. Examples of telephony events are when the lamp
state has changed or a DTMF digit has been detected.

• Asynchronous responses to service requests. For example, after
requesting to register a device, an event is received indicating
whether the request succeeded or failed.

To monitor for certain types of events, an application must construct the
MonitorStart XML message and send it to AE Services.

Following is a sample MonitorStart message. Consult the tables of events in
the Chapter 1: API Services and the XMLdoc to determine what events an
application can request notification for:

<?xml version="1.0" encoding="utf-8"?>

74

<MonitorStart xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.ecma-international.org/standards/ecma-
323/csta/ed3">

 <monitorObject>

 <deviceObject typeOfNumber="other"
mediaClass="notKnown">4750::111.2.33.444:0</deviceObject>

 </monitorObject>

 <requestedMonitorFilter>

 <physicalDeviceFeature>

 <displayUpdated>true</displayUpdated>

 <hookswitch>false</hookswitch>

 <lampMode>true</lampMode>

 <ringerStatus>false</ringerStatus>

 </physicalDeviceFeature>

 </requestedMonitorFilter>

 <extensions>

 <privateData>

 <private>

 <AvayaEvents>

 <invertFilter>true</invertFilter>

 </AvayaEvents>

 </private>

 </privateData>

 </extensions>

</MonitorStart>

This example MonitorStart message requests that the application be
notified of the following events:

• DisplayUpdatedEvent

• LampModeChangedEvent

In response to the MonitorStart request, AE Services:

• starts a monitor

• allocates a Monitor Cross Reference Identifier that uniquely identifies
the monitor

• provides a positive acknowledgement that includes this Monitor Cross
Reference Identifier

The structure of the response is:

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 75

<?xml version="1.0" encoding="UTF-8"?>

<MonitorStartResponse xmlns="http://www.ecma-
international.org/standards/ecma-323/csta/ed3">

 <monitorCrossRefID>1</monitorCrossRefID>

 <actualMonitorFilter>

 <physicalDeviceFeature>

 <displayUpdated>true</displayUpdated>

 <hookswitch>false</hookswitch>

 <lampMode>true</lampMode>

 <ringerStatus>false</ringerStatus>

 </physicalDeviceFeature>

 </actualMonitorFilter>

 <extensions>

 <privateData>

 <private>

 <AvayaEvents

 xmlns:ns1="http://www.avaya.com/csta"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="AvayaEvents">

 <invertFilter>true</invertFilter>

 </AvayaEvents>

 </private>

 </privateData>

 </extensions>

</MonitorStartResponse>

After the device is registered, the connector will begin sending any events
that the application has indicated that it was interested in receiving. A
message from the server with an Invoke ID of 9999 indicates that this is an
event. Each event contains the Monitor Cross Reference Identifier that
correlates the event back to the Monitor Start service that established the
monitor. Look in the body of the message for this Monitor Cross Reference
Identifier to find out which MonitorStart this event is associated with. It is
left to the application to determine how to handle the event messages that
are being sent.

These event reports cease after AE Services terminates the monitor.
Service termination can result from a client request (using the
MonitorStop request) or it can be initiated by the server. When an
application sends a MonitorStop request, AE Services will:

76

• stop the monitor

• release the Monitor Cross Reference Identifier

• stop providing events to the application

Once the monitor is terminated, the monitor cross reference ID is no longer
valid. See ECMA-269, section 6.7.2, “Monitoring” for an overview of
monitoring and related concepts such as monitor objects, monitor types,
monitor call types, and monitor filters.

Endpoint Registration Events

Endpoint Registration events were first introduced for AE Services 6.3 and
Communication Manager 6.3, and can be monitored just like any other DMCC
Registration Services event.

The main difference between Endpoint Registration events and the existing
Registration & Terminal events is that Endpoint Registration events can be
monitored for any H.323 or SIP endpoint that can be registered to
Communication Manager. The endpoints do not have to be registered
using DMCC, as is the case for the existing Registration & Terminal events.
For Endpoint Registration events, the endpoints can be registered to
Communication Manager via any current means, provided they use the H.323
or SIP protocols for registering.

Endpoint Registration events can be monitored by a DMCC application in the
same manner that other DMCC events are monitored - by using DMCC
Monitoring services.

Similarly to the existing Registration events, Endpoint Registration events are
monitored on a "per device" basis. Example MonitorStart request for the
terminalUnregisteredEvent follows:

<?xml version="1.0" encoding="utf-8"?>

<MonitorStart xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.ecma-international.org/standards/ecma-
323/csta/ed3">

 <monitorObject>
 <deviceObject typeOfNumber="other"
mediaClass="notKnown">4750::111.2.33.444:0</deviceObject>
 </monitorObject>
 <requestedMonitorFilter>
 <physicalDeviceFeature>
 <displayUpdated>true</displayUpdated>
 <hookswitch>true</hookswitch>
 <lampMode>true</lampMode>
 <ringerStatus>true</ringerStatus>
 </physicalDeviceFeature>
 </requestedMonitorFilter>

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 77

 <extensions>
 <privateData>
 <private>
 <AvayaEvents
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="">
 <invertFilter
xmlns="http://www.avaya.com/csta">true</invertFilter>
 <terminalUnregisteredEvent
xmlns="http://www.avaya.com/csta">
 <unregistered>true</unregistered>
 <reregistered>true</reregistered>
 </terminalUnregisteredEvent>
 <physicalDeviceFeaturesPrivateEvents
xmlns="http://www.avaya.com/csta">

<serviceLinkStatusChanged>true</serviceLinkStatusChanged>
 </physicalDeviceFeaturesPrivateEvents>
 </AvayaEvents>
 </private>
 </privateData>
 </extensions>

</MonitorStart>

Thus, whenever the endpoint registers or unregisters against the
Communication Manager switch, the terminalUnregisteredEvent, is sent
to the DMCC application.

The Endpoint Registration event contains the following data:
1. Monitored DeviceID4.
2. Endpoint DeviceID4.
3. IP address of the endpoint. In the case where an endpoint was registered

via DMCC, this will be the IP address of the AE Services server.
4. MAC address of the endpoint. In the case where an endpoint was

registered via DMCC, the MAC address wil be all zeros.
5. Product Type – the product type as provisioned in Communication

Manager.
6. Network Region – the network region for the extension as provisioned in

Communication Manager.
7. Dependency Mode – the dependency mode used during registration:

main, dependent or independent.
8. Media Mode – the media mode used during registration: client,

telecommuter or none. Note that DMCC’s “server media” mode is
considered the same as “client media” by the Communication Manager.

9. Unicode Script – the Unicode script options as provisioned in
Communication Manager.

10. Set Type – the model of the phone as provisioned in Communication
Manager.

4
 The Monitored DeviceID is the DeviceID specified in the original Monitoring Services request,

while the Endpoint DeviceID is the DeviceID of the endpoint being registered/unregistered.
These two DeviceIDs may be different (usually in the value of the “instance” field), since up to 3
H.323 and 1 SIP endpoints can be registered to the same extension number.

78

11. Signaling Protocol Type – the protocol used to register: H.323, SIP or
unknown.

12. Service State – the overall service state of the station after the endpoint
has registered. This will normally be “in-service”.

The Endpoint Unregistration event contains the following data:

1. Monitored DeviceID
2. Endpoint DeviceID.
3. IP address of the endpoint. In the case where an endpoint was registered

via DMCC, this will be the IP address of the AE Services server.
4. Dependency Mode – the dependency mode used during registration:

main, dependent or independent.
5. Reason – a string value indicating the reason for the unregistration.
6. Code – an integer value indicating the reason for the unregistration.
7. Set Type – the model of the phone as provisioned in Communication

Manager.
8. Service State – the overall service state of the station after the endpoint

has unregistered. Note that the overall service state may still be “in-
service” if there are other endpoints registered to the same extension.

Endpoint Registration Information

Not only can the DMCC application be notified whenever an endpoint registers
or unregisters against the Communication Manager switch, it can also send a
request to get the current registration state and endpoint data associated with
the extension. This request may be sent at any time after the DMCC client has
acquired the DeviceID. Thus, the device may, or may not, be registered
against Communication Manager at the time of the request for Endpoint
Registration Information.

The EndpointRegistrationInfo request should be used for queries of physical
stations, not for extensions associated with agent IDs. Note that it will return an
error if a logical agent extension number is used as the deviceID for the query.

If the specified device has one or more endpoints registered against
Communication Manager for that extension, then the response will contain a
set of data for each of the registered endpoints. The set of data for each
registered endpoint is identical to the data outlined in the Endpoint
RegisteredEvent. However, if there are no endpoints registered against
Communication Manager for the specified device, then the response to the
Endpoint Registration Information request will be empty.

Device and Media Control versus Call Control

The differences between Device and Media Control and Call Control, are
the differences between first-party and third-party call control.

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 79

Device and Media Control use first-party call control, where an application
interacts with an endpoint using the model of a person physically
manipulating a phone. For example, to make a call a person picks up a
handset and presses each digit, one after the other. Similarly, to make a
call an application invokes a method to cause the endpoint to go off hook
and invokes a PressButton method once for each digit. This gives an
application fine-grained control of and information about an endpoint’s
state.

Call Control uses third-party call control, where an application issues
higher level instructions. To make a call an application only has to invoke a
single MakeCall method, which causes one endpoint to call another. It is
somewhat inexact, but you can think of the model of third-party call control
as a graph in which endpoints are nodes and calls are edges. The
methods of the API reconfigure the graph by adding, deleting, or moving
edges.

Applications using Device and Media control require registration of devices
used in the application. Registration of an end point associated with the
Device, Media and Call Control API requires an IP_API_A license.

Applications using Call Control Services do not need to register devices,
and thus do not consume IP_API_A licenses; however, they do need a
TSAPI or UNIFIED_CC_DESKTOP license in order to use the Call Control
service.

NOTE: It is important to consider license consumption when deciding
which style of call control to use. If your application uses Device and Media
control for other reasons than controlling calls (for example, to record
media or to push feature buttons on a telephone) then you may want to
consider using first party call control in order to not consume an additional
license. If, on the other hand, your application is primarily concerned with
call control, consider using Call Control Services as its higher level
operations and events are often easier to use.

Multiple DeviceIDs

In AE Services 4.1, the ability to register up to three instances of the same
deviceID was introduced. This ability allowed the client application to
implement a rudimentary, client-side, high-availability setup, which allowed
the client to “control” the extension from a secondary or tertiary DeviceID, if
control of the primary DeviceID failed. The deviceID was identified by the
extension number and the Communication Manager to which it was being
registered (either by switch-name and/or by IP address of the CLAN).
Communication Manager allows up to three registrations against the same
extension, providing that only one registers in Main Dependency mode;
the other two should register in either Independent or Dependent
Dependency modes (see Registration modes, Dependency modes and
Media modes). Unfortunately, each instance of the deviceID needed to be
registered from a different IP endpoint, as determined by Communication
Manager. In practice, this meant that each instance of the deviceID
needed to be registered through a different AE Server.

80

DeviceIDs and Device Instances

Starting with Communication Manager 5.2 and this release of AE Services,
the need for multiple AE Servers in order to register multiple instances of
the same device with the same switch has been eliminated.

The deviceID has been expanded to include the device instance, as well
as the extension, switchname and CLAN IP address. Thus, you can obtain
up to three instances of the same deviceID through just one AE Server.

When you obtain a deviceID (using Device services getDeviceID), If you
do not specify which device instance you require, the instance will
automatically default to instance ‘0’; otherwise, you may specify which of
the three possible instances of the deviceID that you require. For example:

<?xml version="1.0" encoding="utf-8"?>

<GetDeviceId xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.avaya.com/csta">

 <switchName>myswitch</switchName>

 <switchIPInterface>135.9.71.67</switchIPInterface>

 <extension>4750</extension>

 <deviceInstance>1</deviceInstance>

</GetDeviceId>

<?xml version="1.0" encoding="UTF-8"?>

<GetDeviceIdResponse xmlns="http://www.avaya.com/csta">

 <device typeOfNumber="other" mediaClass="voice"
bitRate="constant">4750: myswitch:135.9.71.67:1</device>

</GetDeviceIdResponse>

Registering devices

The registering of devices, in AE Services, is done through Device &
Media Control. To monitor or control a device, an application must register
the device with Communication Manager. This tells Communication
Manager whether you want to control the extension as Main, Dependent
or Independent and what kind of media access you want.

Only devices that are softphone-enabled on Communication Manager’s
Station form can be registered.

You must check the registration state of a device with a
GetRegistrationState request before sending a register request if it is
controlled by more than one clients session.

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 81

NOTE: Registering a device with Communication Manager is only
necessary for device and media control, not call control. The registration
dependency modes and media modes are described in Dependency
modes and Media modes. You will find information on the call capacities
your application can expect to be able to handle I n the "Capacities for
calls in Device, Media and Call Control applications" section of the
"Capacities for types of applications" chapter of the Avaya Aura®
Application Enablement Services Overview

Communication Manager 5.0 and later allows up to three Device, Media
and Call Control Station clients to register to one extension. This extension
must be administered as a DCP or Avaya H323 IP Softphone. If
necessary, all three end points registered to the common extension can
be configured to be in three different “network regions”. Also, all three
endpoints that are registering to an extension can request separate media
streams. Each DMCC endpoint registration must either:

• go through different AE Servers, if they specify the same
instance of the deviceID (instance ‘0’ by default).

• go through one AE Server, if they specify different instances of
the deviceID.

The first option provides a measure of high availability with standalone (not
in a standard High-Availability configuration) Application Enablement
Servers. For example, the client could register the same endpoint through
two different AE Servers and have recorded media flowing to both. The
second option also provides the ability to record dual feeds for recorded
media, but provides High-Availability through the standard Application
Enablement Services 5.2 paired-servers configuration. Each media (RTP)
stream is the summed stream of all the participants in the call. For
example, if an Agent using a physical phone with extension 1000, is talking
to extension 1001 and extension 1002. And a DMCC endpoint is registered
to extension 1000 as Dependent in Client media mode, at the time of the
call, the DMCC endpoint will receive the summed talk streams of Agent (at
extension 1000) and extensions 1001 and 1002. Note that the DMCC
endpoint registered in Dependent (or Independent mode when a physical
set is registered/present), is connected to the call in listen only mode.
Therefore no additional talk time slot is allocated for this DMCC endpoint.
Also, this DMCC endpoint does not count toward the number of
participants that can be in a conference call.

Registration is performed through the RegisterTerminalRequest of
Registration Services. In the RegisterTerminalRequest you must at a
minimum specify which device to register and the password that is
administered for the device on the Communication Manager Station form.
There are also a number of options to choose from.

An application must construct the RegisterTerminalRequest XML
message and send it to AE Services.

<?xml version="1.0" encoding="utf-8"?>

82

<RegisterTerminalRequest
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.avaya.com/csta">

 <device typeOfNumber="other"
mediaClass="notKnown">4750::111.2.33.444:0</device>

 <loginInfo>

 <forceLogin>true</forceLogin>

 <sharedControl>false</sharedControl>

 <password>1234</password>

 <mediaMode>SERVER</mediaMode>

 <dependencyMode>MAIN</dependencyMode>

 </loginInfo>

</RegisterTerminalRequest>

In previous releases of Device and Media Control, the RegisterDevice
request of the Terminal Services interface (now deprecated) was used to
register a device/station. Using the RegisterDevice request, responses to
registration / unregistration requests were simply acknowledgements by
the server of receipt of the request. The actual outcome of the request was
reflected through events that arrived later.

This has been changed with Registration Services. The responses to
registration requests indicate the outcome of the request.

The following is a response to the above request showing that AES
encryption was granted and that signaling encryption is enabled (as
indicated by the "pin-eke" response).

<?xml version="1.0" encoding="UTF-8"?>

<RegisterTerminalResponse xmlns="http://www.avaya.com/csta">

 <device>

 <deviceIdentifier xmlns:ns1="http://www.ecma-
international.org/standards/ecma-323/ csta/ed3"
typeOfNumber="other" mediaClass="voice"
bitRate="constant">4750::111.2.33.444:0</deviceIdentifier>

 </device>

 <signalingEncryption>pin-eke</signalingEncryption>

 <code>1</code>

</RegisterTerminalResponse>

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 83

The only registration event supported with Registration Services is the
TerminalUnregisteredEvent. This event is sent if the AE Services
server automatically unregisters the device. The typical cause is when the
network or Communication Manager is unresponsive. The reason for
unregistration is reflected in the event’s cause code. Its value is one of the
Registration Constants listed in Appendix B: Constant Values. If a device
becomes automatically unregistered, it is up to the application to reregister.

The following is an example of a TerminalUnregisteredEvent:

<?xml version="1.0" encoding="UTF-8"?>

<TerminalUnregisteredEvent
xmlns="http://www.avaya.com/csta">

 <monitorCrossRefID xmlns:ns1="http://www.ecma-
international.org/standards/ecma-
323/csta/ed3">6</monitorCrossRefID>

 <device>

 <deviceIdentifier xmlns:ns2="http://www.ecma-
international.org/standards/ecma-323/csta/ed3"
typeOfNumber="other" mediaClass="voice"
bitRate="constant">4750::111.2.33.444:0</deviceIdentifier>

 </device>

 <reason>Received unregistration request from switch
reason=2018 text=2018-Rebooting Ext released</reason>

 <code>-1</code>

</TerminalUnregisteredEvent>

As part of the registration initialization process, multiple physical device
events are sent by the Communication Manager indicating the initial states
of the lamps, ringer, hookswitch and display.

Note: If your application needs to register many devices, we recommend
you spread out the registration of the devices. Register no more than 50
stations at one time and wait until your application has received all of the
responses before attempting to register more stations.

Some important decisions you will need to make when registering a device
include:

• What registration dependency mode to choose

• What registration media mode to choose

• What codecs to choose

• What media encryption to choose

Controllable telephone types

84

For Device and Media Control, any DCP or H323 IP Softphone that can be
enabled for IP Softphone can be controlled by the AE Services server. The
device type administered on Communication Manager must be one that is
equipped with a speaker-phone. Devices that are not speaker-phone
equipped (e.g. CallMaster) are not supported.In the case of DCP and H323
IP softphones, it is not necessary to have a physical set present. Device,
Media and Call Control end points can register in any registration
dependency mode. An end point registered in Main mode (see
Registration modes, Dependency modes) is usually a physical set, but a
DMCC end point can also register as Main.

DMCC client application can register using only MAIN and INDEPENDENT
dependency mode against an extension that is provisioned as a SIP set.
DEPENDENT dependency mode is not supported for SIP sets.

The MAIN dependency mode use case would be that the user has a SIP
station on their desk but also wants to use a DMCC application to register
in media mode set to TELECOMMUTER when they’re at home.
However, a special Feature Name Extension (FNE) has to be dialed to tell
CM whether another TSAPI-based client can be controlling / monitoring the
H.323 set or the SIP set at any given time. For more information on FNE,
please refer to Avaya Aura Communication Manager Administration
manual.

DMCC client registered in INDEPENDENT dependency mode can only be
used to record calls answered on SIP desktop set or when the call is
answered on a cell-phone (via Communication Managers EC500 feature)
by the SIP desktop user. Neither device or first party call control of SIP
endpoint is supported via the registered endpoint.

For DMCC Call Control Services, any Communication Manager supported
endpoint can be controlled by the AE Services server. This includes SIP
endpoints, as well as DCP and H.323 IP endpoints. You cannot choose
Independent or Dependent dependency mode with SIP endpoints, so you
cannot exercise device monitoring/control over them. See the “AE Services
Overview” document for more information on SIP Support.

NOTE: For details on how to softphone enable a device, see the
appropriate Avaya Aura® Application Enablement Services Installation
and Upgrade Guide for the offer you have purchased.

Registration modes

Dependency modes

At registration time, the application must specify the desired registration
dependency mode. This indicates who controls the device’s physical
elements and media. The dependency mode choices are:

• Main dependency mode

There can be only one Main registrant associated with an extension.

An instance of a device that registers in this mode does not depend on
registration of any other endpoints using the same extension.

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 85

Once in a call this end point can talk and listen.

Only an endpoint registered as Main can block the transfer of talk
capability to an endpoint register as Dependent or Independent via
the "share-talk" button.

NOTE: "share-talk" button push is processed only if an endpoint
registers using any media mode other than None.

The necessary XML message fragment needs to be in the
RegisterTerminal XML message.

<dependencyMode>MAIN</dependencyMode>

<sharedControl>false</sharedControl>

See the RegisterTerminal example for context.

• Independent dependency mode

An instance of a device that registers in this mode can originate and
receive calls and can talk and listen even when the Main device is not
registered.

If an end point registers as Main after an endpoint registers as
Independent on the same extension, talk capability is transferred to
the endpoint registered as Main.

An endpoint registered as Independent cannot block transfer of talk
capability by pressing the "share-talk" button.

The necessary XML message fragment needs to be in the
RegisterTerminal XML message.

<dependencyMode>INDEPENDENT</dependencyMode>

<sharedControl>false</sharedControl>

See the RegisterTerminal example for context.

• Dependent dependency mode

A device will be allowed to register in this mode only if another instance
of a device is already registered to Communication Manager (using the
same extension) in Main mode.

A request to register using Dependent mode will fail unless another
endpoint is already registered to that extension in Main mode.

Communication Manager will unregister a device registered in
Dependent mode if the Main endpoint unregisters.

When on a call, endpoints registered as Dependent will be in listen-
only mode.

An endpoint registered as Dependent cannot block transfer of talk
capability by pressing the "share-talk" button.

The necessary XML message fragment needs to be in the
RegisterTerminal XML message.

86

<dependencyMode>DEPENDENT</dependencyMode>

<sharedControl>false</sharedControl>

See the RegisterTerminal example for context.

 For further information on the "share-talk" button see the "share-
talk" button

When to use:

• Main

Use this mode when you need to be able to answer calls, make calls,
talk, or listen, regardless of the presence of other registrants.

This mode can be used with any Media Mode including No Media.

A simple IVR application would use Main mode.

• Independent

Use this mode when you wish registration to succeed regardless of
whether a Main registrant already exists.

This mode can be useful when two instances of an application register
an extension that doesn’t have an associated end-user telephone. One
instance of the application would register in Main mode and the other in
Independent mode. Communication Manager will allow either
application to answer calls, make calls, talk (one at a time) or listen,
immediately after they register.

• Dependent

Use this mode when you wish registration to succeed only if a Main
registrant already exists and you want to unregister when the Main
registrant unregisters.

This mode can be useful if you wish to listen to a call whose device is
already registered as Main.

This mode would also be useful if you wish to monitor/control a physical
device.

Media modes

When a device is registered by an application, the application has access
to the real-time protocol (RTP) media stream coming into and going out
from the softphone.

There are four media modes available when a device is registered in Main
dependency mode: server media, client media, telecommuter, and No
Media.

When the device is registered in either Dependent or Independent
dependency mode, then only server media, client media or No media is
available to control the media stream.

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 87

The following table, Registration Dependency and Media modes, illustrates
what media modes are allowed with each dependency mode.

Table 30: Registration Dependency and Media modes

 Client Telecommuter Server No Media

Main Allowed5 Allowed2 Allowed2 Allowed

Dependent Allowed Not Allowed Allowed Allowed6

Independent Allowed Not Allowed Allowed Allowed

When multiple endpoints are registered to the same extensions, all
endpoints see activity on other endpoints when status changes to the
device’s hookswitch, lamps, ringer, and display. An endpoint in this case
would not be aware of the following action taken by another endpoint:

• If endpoint A presses a digit to make a call, other endpoints (for
examples, B and C, assuming 3 endpoints registered to an extension)
will not see the digits sent by A to the AE Services server.

• Speaker button press, head set button press and taking the hand set off
the cradle are all seen as off-hook by Communication Manager.
Therefore other endpoints registered to the same extensions will only
see off-hook event.

• Feature button presses are undetectable unless the feature button has a
lamp that toggles when the button is pressed.

The RTP parameters that an application can control or state preferences
for at registration time are:

• Local RTP and RTCP addresses

• Coder/decoder (codec): G.711 A–law, G.711 Mu–law, G.729, G.729A

Choosing a media mode

The following table shows the media modes available, when to use each,
and how to request each:

NOTE: Although it is possible for the client application to start a monitor on
a terminal that is registered in telecommuter or no-media mode, the client
application will not receive MediaStart or MediaStop events.

Table 31: Choosing a media mode

Media
modes

When to use How to set

5
 Corresponds to Exclusive Control in previous releases

6
 Corresponds to Shared Control in previous releases. In this mode, the user of a telephone is

not notified of actions initiated by an application except through resulting status changes to the
device’s lamps and display. Also in this mode, the application is not notified of actions initiated
by a user of the telephone except by status changes to device’s hookswitch, lamps, ringer, and
display.

88

Table 31: Choosing a media mode

Media
modes

When to use How to set

Server
media
mode

This mode is used when the
application wants the AE Services
server to handle media processing.
The AE Services server handles
media with Voice Unit Services and
Tone Detection Services or Tone
Collection Services. Voice Unit
Services is used to record and play
messages. Tone Detection Services or
Tone Collection Services are used to
detect out-of-band DTMF tones. In
server media mode, the media stream
terminates on the AE Services server.
To detect changes to the far-end
RTP/RTCP parameters, start a
monitor for MediaControlEvents.

If you want codecs
other than the default,
set just the codecs in
LocalMediaInfo, but
do not set the
RTP/RTCP address in
LocalMediaInfo. To
use the default
codecs, do not set
anything in
LocalMediaInfo.

Client
media
mode

This mode is used when application
wants to process the media itself. The
RTP stream can be terminated on any
machine that can be controlled by the
application. To detect out-of-band
DTMF tones, start a monitor for
ToneDetectionEvents or
ToneCollectionEvents.

Set LocalMediaInfo's
RTP/RTCP address to
the IP address and
port where the media
stream is to be
terminated. If you want
codecs other than the
default, set the codecs
in LocalMediaInfo.
May also set media
encryption. The media
can be terminated on
any machine that can
be controlled by the
application.

Telecommu
ter mode

This mode is used when an
application wants the media to go to a
real telephone. The real telephone can
be an internal dial string to
Communication Manager or a PSTN
telephone number.

 Although it is possible for the
client application to start a monitor on
a terminal that is registered in
telecommuter mode, the client
application will not receive events.

Set
LocalMediaInfo's

telecommuter to the
telephone number of
the real telephone that
you are directing the
media to.

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 89

Table 31: Choosing a media mode

Media
modes

When to use How to set

No Media This mode is used when the
application does not want an RTP
stream to be setup to it by
Communication Manager.

Note: Although it is possible for
the client application to start a monitor
on a terminal that is registered in no
media mode, the client application will
not receive events

Following are two examples of how to choose main dependency mode and
server media mode:

<?xml version="1.0" encoding="utf-8"?>

<RegisterTerminalRequest
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.avaya.com/csta">

 <device typeOfNumber="other"
mediaClass="notKnown">4750::111.2.33.444:0</device>

 <loginInfo>

 <forceLogin>true</forceLogin>

 <sharedControl>false</sharedControl>

 <password>1234</password>

 <mediaMode>SERVER</mediaMode>

 <dependencyMode>MAIN</dependencyMode>

 </loginInfo>

 <localMediaInfo>

 <codecs>g729</codecs>

 </localMediaInfo>

</RegisterTerminalRequest>

or

<?xml version="1.0" encoding="utf-8"?>

<RegisterTerminalRequest
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.avaya.com/csta">

 <device typeOfNumber="other"
mediaClass="notKnown">4751::111.2.33.444:0</device>

 <loginInfo>

90

 <forceLogin>true</forceLogin>

 <sharedControl>false</sharedControl>

 <password>1234</password>

 <mediaMode>SERVER</mediaMode>

 <dependencyMode>MAIN</dependencyMode>

 </loginInfo>

</RegisterTerminalRequest>

Following is an example of how to choose main dependency mode and
client media mode:

<?xml version="1.0" encoding="utf-8"?>

<RegisterTerminalRequest
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.avaya.com/csta">

 <device typeOfNumber="other"
mediaClass="notKnown">4750::111.2.33.444:0</device>

 <loginInfo>

 <forceLogin>true</forceLogin>

 <sharedControl>false</sharedControl>

 <password>1234</password>

 <mediaMode>CLIENT</mediaMode>

 <dependencyMode>MAIN</dependencyMode>

 </loginInfo>

 <localMediaInfo>

 <rtpAddress>

 <address>111.2.33.444</address>

 <port>4725</port>

 </rtpAddress>

 <rtcpAddress>

 <address>111.2.33.444</address>

 <port>4726</port>

 </rtcpAddress>

 <codecs>g729</codecs>

 <codecs>g729A</codecs>

 <packetSize>20</packetSize>

 <encryptionList>aes</encryptionList>

 <encryptionList>none</encryptionList>

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 91

 </localMediaInfo>

</RegisterTerminalRequest>

Following is an example of how to choose main dependency mode and
telecommuter media mode:

<?xml version="1.0" encoding="utf-8"?>

<RegisterTerminalRequest
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.avaya.com/csta">

 <device typeOfNumber="other"
mediaClass="notKnown">4750::111.2.33.444:0</device>

 <loginInfo>

 <forceLogin>true</forceLogin>

 <sharedControl>false</sharedControl>

 <password>1234</password>

<telecommuterExtension>3035551234</telecommuterExtension>

 <mediaMode>TELECOMMUTER</mediaMode>

 <dependencyMode>MAIN</dependencyMode>

 </loginInfo>

</RegisterTerminalRequest>

The following table shows the media control capabilities of the Application
Enablement Services server for both server media mode and client media
mode.

Table 32: Media Control Capabilities

Media control capabilities server media
mode

client media
mode

Record media from a call into a
WAV file

provided by the
server

provided by the
application

Dub a recording with the contents
of another compatible WAV file

provided by the
server

provided by the
application

Play a voice announcement or
tone from a prerecorded WAV file

provided by the
server

provided by the
application

Play a list of prerecorded
announcements from separate
WAV files

provided by the
server

provided by the
application

Stop, pause, or resume
outstanding play or record
operations

provided by the
server

provided by the
application

92

Table 32: Media Control Capabilities

Media control capabilities server media
mode

client media
mode

Detect out-of-band DTMF tones provided by the
server

provided by the
application

Detect inband DTMF tones provided by the
server

provided by the
application

Manage media related event
monitors

provided by the
server

provided by the
application

Originate and terminate RTP
streams on any machine that the
application has control of

 provided by the
applicationa

Media encryption provided by the
server

provided by the
applicationa

Insert a Recording Warning Tone provided by
Communication
Manager

provided by
Communication
Manager

 a. The media encryption and decryption must be explicitly done by the
application code, unless the application is using the Avaya provided client media
stack. If the Avaya client media stack is used, then the media
encryption/decryption will be provided by the client media stack itself..

Redirecting media

This request is provided by Registration Services. It allows an application
that has registered a device in client media mode, to redirect the media to
any destination, even in the middle of a call.

If a call is underway, redirecting the media stream causes the current
media stream to be directed to the requested location; otherwise, it causes
any future media stream to be directed to the requested location.

Note that there is a known limitation in the implementation of this feature in
Communication Manager. The CM expectation is that the media will be
directed to a new IP destination. Thus, when CM checks the RedirectMedia
request for a new destination, it only checks if the IP address has changed
(not the port number). Thus, a RedirectMedia request that specifies the
same IP address, but a different port number, will not be redirected for the
call in progress. However, there is a workaround for this scenario. This
workaround requires the application to send two RedirectMedia requests,
instead of one.

For example, if the media is currently going to IP address 10.9.20.17 and
port 4725, and you want to redirect it to port 4730 at the same IP address,
you could do the following:

1) RedirectMedia to IP address 0.0.0.0 and port 4725 (specifying a null IP
address will effectively stop the media to the device, but will not end the call)

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 93

2) RedirectMedia to IP address 10.9.20.17 and port 4730 (since the IP
address has now changed, Communication Manager will correctly process
this request)

The "share-talk" button

Although Communication Manager 5.0 (and later releases) allows up to
three Device, Media and Call Control station clients to register to one
extension, for each extension only one "Talk" time slot is used. If there are
three endpoints registered with that extension, only one at a time will be
able to talk, but all three can listen.

If your application wants the ability to share the talk capability, you will use
the "share-talk" button. The "share-talk" button must have been
administered in Communication Manager. For information on how to
administer the share-talk button on Communication Manager, please see
the Avaya Aura Application Enablement Services Administration and
Maintenance Guide.

Communication Manager will process a "share-talk" button push only if the
media mode of that endpoint is not No Media and the extension is in a call.

Once in a call, an endpoint registered as Main can press this button to
block any endpoint registered as Dependent or Independent from taking
over the talk capability. The Main endpoint can then unblock it by pushing
this button again.

If a Main endpoint has not blocked the talk capability, a Dependent or
Independent endpoint can press this button to acquire the "Talk"
capability. The Dependent or Independent endpoint can press this button
a second time to move the talk capability back to the Main endpoint.

Interpretation of the ’share-talk’ button lamp state

By an endpoint registered as Main:

• Steady On

The Main endpoint currently has the Talk capability. If Main presses
the button while in this state, the Talk capability will be blocked (see
Flutter).

• Flutter

The Main has blocked the talk capability from being taken over by a
Dependent or Independent endpoint. Main can unblock by pressing this
button one more time and the lamp will transit back to "Steady On".

• Off

A Dependent or Independent endpoint has taken over the talk
capability. If a Main endpoint wants to talk it can take over the talk
capability at any time by pressing the button (lamp will transit back to
"Steady On" after the button push).

By an endpoint registered as Dependent or Independent:

94

• Steady On

The Dependent or Independent endpoint currently has the Talk
capability. When this transition happens Communication Manager will turn
the "share-talk" button lamp off at other endpoints associated with this
extension. While in this state, a Dependent or Independent endpoint can
transfer the talk capability back to Main by pushing the button.

• Flutter

The Main has blocked the talk capability from being taken over; The
Dependent or Independent endpoint cannot obtain the talk capability.

• Off

A Dependent or Independent endpoint has no Talk capability,
however it can take over the Talk capability if it desires.

Choosing a codec

A codec is the algorithm used to encode and decode audio media. For
devices choosing media modes of either client-media or server-media, the
application can optionally specify at registration time what codecs are
preferred for the device. The codec options are:

• G.711 A-law (g711A)

• G.711 Mu-law (g711U)

• G.729 (g729)

• G.729 Annex A (g729A)

• G.723 (Client Media mode only)

• G.726 (Client Media mode only)

Specify the set of codecs your application supports using the
Registerterminal request as shown below. If you do not specify a set of
codecs in the RegisterTerminal request, AE Services will default to
G.711 A-law as the first choice and G.711 Mu-law as the second choice. If
Communication Manager cannot satisfy your request for specific codecs,
then calls will still go through, but there will be no media.

NOTE: For server media mode you cannot specify a mixture of G.711 and
G.729 codecs for a single device. This is because there is no conversion
offered by the server.

The necessary XML message fragment needs to be in the
RegisterTerminal XML message.

 <localMediaInfo>

 <codecs>g729</codecs>

 </localMediaInfo>

See the RegisterTerminal example for context.

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 95

For more information about selecting and administering network regions
and their codecs, see the "Administering Communication Manager"
chapter of the appropriate Avaya Aura® Application Enablement Services
Installation and Upgrade Guide for the offer you have purchased.

Choosing the media encryption

For devices choosing media modes of either client or server media, the
application can optionally specify, at registration time, what media
encryption is preferred for the device’s media stream.

The media encryption options are:

• Advanced Encryption Scheme (AES)

• SRTP (multiple options)

• none (that is no encryption of the media stream)

Specify the set of encryption options your application supports using the
RegisterTerminal request as shown below. If you do not specify a set of
encryption options the AE Services server will default to "none" (no media
encryption).

The necessary XML message fragment needs to be in the
RegisterTerminal XML message.

<localMediaInfo>

<encryption>aes</encryption>

</localMediaInfo>

See the RegisterTerminal example for context.

The following is the associated response showing that AES encryption was
granted and signaling encryption is enabled (as indicated by the "pin-eke"
response).

<?xml version="1.0" encoding="UTF-8"?>

<RegisterTerminalResponse xmlns="http://www.avaya.com/csta">

 <device typeOfNumber="other"

 mediaClass=""

 bitRate="constant">

 2100::192.123.45.67:0</device>

 <signalingEncryption>pin-eke</signalingEncryption>

 <code>1</code>

</RegisterTerminalResponse>

96

Telephony Logic

AE Services notifies your application when requested telephony events
occur:

• Registration events indicate unregistration by Communication
Manager.

• Physical Device events indicate changes to the status of the ringer,
display, and lamps.

• Media Control events indicate when the media stream parameters
have changed.

• Voice Unit events indicate the status of recording and playing
messages.

• Tone Detection events indicate when a DTMF digit is received and
when collection begins and ends.

• Tone Collection events indicate when specified tone retrieval criteria
are met.

• Call Control events indicate changes to the status of the call.

• Logical Device Feature events indicate when forwarding and do not
disturb events occur.

• System Status events indicate when a TSAPI Tlink comes up or goes
down.

• Call Associated events indicate when a regenerated telephony tone
request fails

Device and Media Control

Monitoring and controlling physical elements

Physical elements of a device are monitored and controlled with Physical
Device Services..

To monitor for physical device events, you must request notification of
these events through the MonitorStart XML message as described in
Requesting notification of events.

Device based call control can be accomplished with a combination of:

• determining the current status of physical elements on a device, such
as requesting the list of buttons administered for the device

• monitoring for particular physical device events, such as when the
phone starts ringing

• activating physical elements of the device, such as going offhook

Knowing what buttons are administered

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 97

If your application needs to press any buttons or determine which lamps
have changed state, you will need to know what buttons are administered
on the device. Buttons are assigned to devices during station
administration via the Communication Manager system access terminal
(SAT) interface. Your application must send the GetButtonInformation
request in order to get the list of buttons administered for a device. Each
button item in the list includes the following information:

• button identifier - indicates the address or location of the button. Its value
is one of the Button ID Constants listed in Appendix C: Constant
Values. Constants are available for both administered buttons and fixed
buttons (those buttons that are preset and pre-labeled on a telephone
set).

• button function - indicates what the button does when pressed. Its value
is one of the Button Function Constants listed in Appendix C: Constant
Values.

• associated extension - indicates whether there is an extension number
associated with this button and what the extension number is.

• associated lamp - indicates whether there is a lamp associated with the
button. If there is, its lamp identifier is the same as the button identifier.

NOTE: There is no direct indication provided by the API to the application
of changes to the provisioned information for a monitored device. Thus
collecting the device's configuration when the application initializes is an
incomplete solution. A robust application should periodically validate that
the current configuration of the device is aligned with the representation of
that configuration as derived by the application. In order to do so, an audit
of the information should be developed and run at some recurring cycle, or
when unexpected feedback to button presses is received. An audit can be
realized by utilizing the GetButtonInformation request and comparing the
results with the previously obtained information.

Detecting an incoming call

When a call comes into a device, these three changes occur to the
physical device:

• The phone rings.

• A green call appearance lamp flashes.

• The display changes to show caller information.

The following events are sent to an application that requested notification
of these events:

98

• RingerStatusEvent - The ring pattern is supplied in the event
structure. For a list of possible ring patterns see Appendix C:
Constant Values for Ringer Pattern Constants. Following is an
example of the structure of the RingerStatusEvent that a client
application may receive. Since this message is an asynchronous
message sent by the server there is a MonitorCrossRefID which
is very important for correlating the message to the MonitorStart.

<?xml version="1.0" encoding="UTF-8"?>

<RingerStatusEvent xmlns="http://www.ecma-
international.org/standards/ecma-323/csta/ ed3">

 <monitorCrossRefID>17</monitorCrossRefID>

 <device>

 <deviceIdentifier typeOfNumber="other"
mediaClass="voice"
bitRate="constant">4750::111.2.33.444:0</deviceIdentifier>

 </device>

 <ringer>0000</ringer>

 <ringMode>ringing</ringMode>

 <ringPattern>11</ringPattern>

</RingerStatusEvent>

NOTE: Per CSTA specification the device identifier for the
RingerStatusEvent XML message uses <deviceIdentifier> tags.

• LampModeEvent - The identifier of the lamp that has changed and the
lamp’s mode is supplied in the event structure. Once you know
where the call appearance lamps are (see Knowing what buttons
are administered), you can determine if it is a call appearance lamp
and if it is flashing by comparing the lamp mode against the FLASH
constant. For a complete list of the possible lamp modes, see
Appendix C: Constant Values for Lamp Mode Constants. Following
is an example of the structure of the LampModeEvent that a client
application may receive.

<?xml version="1.0" encoding="UTF-8"?>

<LampModeEvent xmlns="http://www.ecma-
international.org/standards/ecma-323/csta/ed3">

 <monitorCrossRefID>22</monitorCrossRefID>

 <device><deviceIdentifier typeOfNumber="other"
mediaClass="voice"
bitRate="constant">4750::111.2.33.444:0</deviceIdentifier>

 </device>

 <lamp>263</lamp>

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 99

 <lampMode>3</lampMode>

 <lampBrightness>unspecified</lampBrightness>

 <lampColor>1</lampColor>

</LampModeEvent>

Note: Per CSTA specification the device identifier for the LampModeEvent
XML message uses <deviceIdentifier> tags.

• DisplayUpdatedEvent - The display contents are supplied in the
event structure. In general the number of DisplayUpdatedEvent
messages you will receive before the display update is complete
can vary. For the 4624 IP telephone there will be three such
messages corresponding to the same monitorCrossRefID. This is
specific to Communication Manager. The application will have to
discard all but the last DisplayUpdatedEvent messages. Following
is an example of the structure of the DisplayUpdatedEvent that a
client application may receive.

<?xml version="1.0" encoding="UTF-8"?>

<DisplayUpdatedEvent xmlns="http://www.ecma-
international.org/standards/ecma-323/csta/ed3">

 <monitorCrossRefID>23</monitorCrossRefID>

 <device>

 <deviceIdentifier typeOfNumber="other"
mediaClass="voice"
bitRate="constant">4750::111.2.33.444:0</deviceIdentifier>

 </device>

 <logicalRows>1</logicalRows>

 <logicalColumns>48</logicalColumns>

 <contentsOfDisplay>a=EXT 4750 to EXT 4700 so
</contentsOfDisplay>

</DisplayUpdatedEvent>

NOTE: Per CSTA specification the device identifier for the
DisplayUpdatedEvent XML message uses <deviceIdentifier> tags.

Your application may want to key off of just the LampnModeEvent, or it may
want to wait for the other events before responding to an incoming call.
The events might come in any order.

Determining that the far end has ended the call

If all far-end parties drop on a call, these changes occur on the local
device:

• The call appearance green lamp turns off.

• The display is updated based on the current state of the extension.
For example:

100

o Returns to an idle state showing extension, date and time
information

o Begins showing information about a ringing call at the
extension

o Is not updated and continues to show information relative to
an active display feature such as Directory Lookup

The following events are sent to an application that requested notification
of these events:

• LampModeEvent - The identifier of the lamp that has changed and the
lamp’s mode is supplied in the event structure. Once you know
where the call appearance lamps are (see Knowing what b), you
can determine if it is a call appearance lamp and if the lamp is now
off by comparing the lamp mode against the OFF constant. A
complete list of possible lamp modes can be found in Appendix C:
Constant Values under Lamp Mode Constants.

NOTE: Communication Manager sends lamp updates not only for lamp
transitions, but also to refresh lamps. Therefore, some LampModeEvents
indicate that the lamp is in the same state it was in before the event.

• DisplayUpdatedEvent - The display contents are supplied in the
event structure.

Making a call

To make a call from a telephone, a person would typically:

1. Go offhook

2. Press a sequence of dial pad buttons (0-9, *, #) to initiate a call, such as
pressing 5551234, with a 100 msec delay in between each digit

3. Listen for an answer

4. Begin a two-way conversation or listen to a recording

Here is how you might program each of those steps:

1. To go offhook, you could simply send the SetHookswitchStatus
request. However, this approach could cause a conflict with a
potential incoming call. That is, if a call came in just before you went
offhook, then your dialing attempt would fail and instead you would
be connected with the incoming caller.

To avoid conflicting with an incoming call, keep track of the lamp
transitions of the call appearances. If a lamp goes from off to
steady, then you can make an outbound call. But if the lamp goes
from off to flashing and then to steady, then you have just picked up
an incoming call.

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 101

One method to reduce the chance of conflicting with an incoming
call is to begin a call by pressing the last call appearance button
using the ButtonPress request. This avoids using the same call
appearance as an incoming call which comes in to the first available
call appearance. To further assure that even the last call
appearance is not in use, make sure the lamp is off before you
press the button.

2. To press the dial pad buttons to dial a number, send the
ButtonPress request and the constants defined for dial pad buttons
in Appendix C: Constant Values for Button ID Constants, such as
Dial Pad 7 or Dial Pad #.

NOTE: .Dial Pad 0 through Dial Pad 9 have string values of “0” through “9”,
therefore using the strings “0” - “9” will work. However, Dial Pad * and Dial
Pad # are not set to “*” and “#”; instead they are “10” and “11”, respectively
(as specified by CSTA). The ButtonPress request will not work with “*”
and “#”. Therefore, it is safer to get in the habit of using the constants, not
the literals.

An application must construct the ButtonPress XML message and send it
to AE Services.

<ButtonPress xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http:// www.ecma-international.org/standards/ecma-
323/csta/ed3">

 <device typeOfNumber="other"
mediaClass="notKnown">4750::111.2.33.444:0

 </device>

 <button>4</button>

</ButtonPress>

Below is the corresponding response:

<?xml version="1.0" encoding="UTF-8"?>

<ButtonPressResponse xmlns="http://www.ecma-
international.org/standards/ecma-323/csta/ ed3" />

3. If your application is handling its own media (as determined by the
local RTP address set at registration time) then you can determine
from the media stream that there is media other than ringback
coming from the far end. Your application will need an RTP stack
and a call progress tone detector. For the RTP stack, you may use
a third-party vendor stack, your own stack or the media stack
provided by Avaya. Avaya’s media stack is described in the Media
Stack API Javadoc. Avaya does not provide a call progress tone
detector.

102

If AE Services is handling the media, you should wait an appropriate
period of time before playing a message to the far end or recording
the far end’s media stream. This is to allow time for the RTP
connection to be made end-to-end.

4. To have a real-time conversation in server media mode, the
application must handle the media.

To play a message to the far end or record the far end’s media
stream, use Voice Unit Services (see Recording and playing voice
media for more details).

Call Control

Monitoring and Controlling Calls

Making a call

You will make a call by simply constructing the MakeCall XML message
and sending it to the server:

<MakeCall xmlns="http://www.ecma-
international.org/standards/ecma-323/csta/ed3">

 <callingDevice>tel:+13034433036;ext=3036</callingDevice>

<calledDirectoryNumber>tel:+13034433037</calledDirectoryNumb
er>

 <autoOriginate>doNotPrompt</autoOriginate

></MakeCall>

Below is the corresponding response:

<?xml version="1.0" encoding="UTF-8"?>

<MakeCallResponse xmlns="http://www.ecma-
international.org/standards/ecma-323/csta/ed3">

 <callingDevice>

 <deviceID typeOfNumber="other" mediaClass="notKnown"
bitRate="constant">tel:+13034433036;ext=3036</deviceID>

 <callID>436</callID>

 </callingDevice>

</MakeCallResponse>

Detecting an incoming call

When an incoming call has been detected, your application will receive the
DeliveredEvent. The Following is an example of the structure of the
DeliveredEvent that a client application may receive.

<?xml version="1.0" encoding="UTF-8"?>

<DeliveredEvent xmlns="http://www.ecma-
international.org/standards/ecma-323/csta/ed3">

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 103

 <monitorCrossRefID>8</monitorCrossRefID>

 <connection>

 <deviceID typeOfNumber="other" mediaClass="notKnown"
bitRate="constant">tel:+13034433037</deviceID>

 <callID>436</callID>

 </connection>

 <alertingDevice>

 <deviceIdentifier
typeOfNumber="explicitPrivate:localNumber"
mediaClass="notKnown" bitRate="constant">tel:+13034433037</
deviceIdentifier>

 </alertingDevice>

 <callingDevice>

 <deviceIdentifier
typeOfNumber="explicitPrivate:localNumber"
mediaClass="notKnown"
bitRate="constant">tel:+13034433036;ext=3036

 </deviceIdentifier>

 </callingDevice>

 <calledDevice>

 <deviceIdentifier
typeOfNumber="explicitPrivate:localNumber"
mediaClass="notKnown" bitRate="constant">tel:+13034433037

 </deviceIdentifier>

 </calledDevice>

<lastRedirectionDevice><notKnown/></lastRedirectionDevice>

 <localConnectionInfo>connected</localConnectionInfo>

 <cause>newCall</cause>

</DeliveredEvent>

Answering a call

When a call has been answered, your application will receive the
EstablishedEvent. The Following is an example of the structure of the
EstablishedEvent that a client application may receive.

<?xml version="1.0" encoding="UTF-8"?>

<EstablishedEvent xmlns="http://www.ecma-
international.org/standards/ecma-323/csta/ed3">

 <monitorCrossRefID>8</monitorCrossRefID>

 <establishedConnection>

104

 <deviceID typeOfNumber="other" mediaClass="notKnown"
bitRate="constant">tel:+13034433037</deviceID>

 <callID>436</callID>

 </establishedConnection>

 <answeringDevice>

 <deviceIdentifier
typeOfNumber="explicitPrivate:localNumber"
mediaClass="notKnown" bitRate="constant">tel:+13034433037

 </deviceIdentifier>

 </answeringDevice>

 <callingDevice>

 <deviceIdentifier
typeOfNumber="explicitPrivate:localNumber"
mediaClass="notKnown"
bitRate="constant">tel:+13034433036;ext=3036

 </deviceIdentifier>

 </callingDevice>

 <calledDevice>

 <deviceIdentifier
typeOfNumber="explicitPrivate:localNumber"
mediaClass="notKnown" bitRate="constant">tel:+13034433037

 </deviceIdentifier>

 </calledDevice>

<lastRedirectionDevice><notKnown/></lastRedirectionDevice>

 <localConnectionInfo>connected</localConnectionInfo>

 <cause>newCall</cause>

</EstablishedEvent>

Ending a call

When a call has ended, your application will receive the
ConnectionClearedEvent. The Following is an example of the structure
of the ConnectionClearedEvent that a client application may receive.

<?xml version="1.0" encoding="UTF-8"?>

<ConnectionClearedEvent xmlns="http://www.ecma-
international.org/standards/ecma-323/csta/ed3">

 <monitorCrossRefID>8</monitorCrossRefID>

 <droppedConnection>

 <deviceID typeOfNumber="other" mediaClass="notKnown"
bitRate="constant">tel:+13034433036;ext=3036</deviceID>

 <callID>436</callID>

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 105

 </droppedConnection>

 <releasingDevice>

 <deviceIdentifier
typeOfNumber="explicitPrivate:localNumber"
mediaClass="notKnown"
bitRate="constant">tel:+13034433036;ext=3036

 </deviceIdentifier>

 </releasingDevice>

 <cause>normalClearing</cause>

 <deviceHistory>

 <DeviceHistoryListItem>

 <oldDeviceID>

 <numberDialed typeOfNumber="other"
mediaClass="notKnown"
bitRate="constant">tel:3036;phone-context=dialstring

 </numberDialed>

 </oldDeviceID>

 <eventCause>normal</eventCause>

 <oldConnectionID>

 <deviceID typeOfNumber="other"
mediaClass="notKnown"
bitRate="constant">tel:3036;phone-
context=dialstring</deviceID>

 <callID>436</callID>

 </oldConnectionID>

 </DeviceHistoryListItem>

 </deviceHistory>

</ConnectionClearedEvent>

Getting ANI information for a call

There are two ways to get ANI information for a call.

• Using Call Control Services

Start a Third Party Call Control Monitor configured to monitor at
least one of the "Originated", "Delivered", "Established", and
"Failed" events. When any of these events arrive, the ANI
information will be available via the "getCallingDeviceId"
accessor in the event parameter.

• Using the conference display button

106

If the application wishes to use only device and media control, it
can alternatively use the conference display button.

In order to use the conference display button to get ANI information
for the call, the conference display button (conf-dsp) will have to
have been administered for that dial string in Communication
Manager.

Once an incoming call is received by your application for the dial
string, your application should press the conference display button
of the extension repeatedly to get the ANI information (through the
DisplayUpdatedEvent of Physical Device Services) for each party
on the call.

Recording and playing voice media

If your application needs to record incoming media or play a message on a
call, then at registration time:

• You must choose to handle the media yourself (client media) or have
the AE Services server do it for you (server media). See Choosing
a media mode.

This section describes how to use Voice Unit Services to have the AE
Services server record and play media for you.

Some basic rules of Voice Unit Services are:

• Wave files

All digital audio files that are created or played using Voice Unit
Services are in the Wave Resource Interchange File Format (RIFF).
The standard Wave file structure is used for all encoded media types.
See http://www.sonicspot.com/guide/wavefiles.html for a description of
the Wave structure.

G.729 formatted files, however, use non-standard field values in some
of the standard format chunk fields. They are:

o The compression code value is 131 (0x0083).

o The block align value is 10 (0x000A).

o The bits per sample value is 1 (0x0001).

An external G.729 converter is required to convert a G.729 Wave file
into a standard RIFF Wave file that can be played.

• Files on AE Services

All Wave files are assumed to be on the AE Services server
machine in the directories specified in the AE Services
Management Console under the media properties as the player
directory and the recorder directory.

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 107

Note: These two directories do not have to be the same. These directories
are the root directory of the relative paths specified in the PlayMessage
and RecordMessage requests.

• Encoding algorithms

Files to be played can be encoded in these formats:

o PCM 8 bit or 16 bit

o G.711 A-law

o G.711 Mu-law

o G.729

o G.729A

Recordings can be made of calls in these formats

o PCM 8 bit or 16 bit

o G.711 A-law

o G.711 Mu-law

o G.729

Note: Codecs must be specified at registration time.While in server media
mode you cannot specify a mixture of G.711 and G.729 codecs for a single
device. This is because there is no conversion offered by the server.

• Conversions between encoding algorithms

Files to be played can be converted from any PCM type to any
G.711. No other conversions are supported for playing.

Messages to be recorded can be converted from G.711 to PCM.
No other conversions are supported for recording.

• Using with Tone Detection or Tone Collection Services

The Voice Unit Services player and recorder may be setup to
detect DTMF tones at the same time Tone Detection or Tone
Collection Services is being used. However, there is no guarantee
which service will detect a tone first.

Note: While in server or client mode, the MediaStartEvent, contains the
codec that CM has selected to be used by the endpoint.

Recording

To record the RTP media stream of a device, send the Voice Unit Services
RecordMessage request. This request records only the media coming from
other parties on the call to the device; not the media that is being played
from this device using the Voice Unit Services PlayMessage request. Only
media packets that are received are recorded; lost packets are not
replaced.

108

The application can specify an alphanumeric filename for the recording or
let the filename default to a format of <timestamp><extension>.wav. The
alphanumeric filename may contain a relative directory path. Filenames
specified for recorded files must be relative to the configured directory,
their directories must already exist, and recordings cannot overwrite an
existing file. If it is defaulted, then the resulting filename is returned in the
RecordMessageResponse message.

Since recording is associated with a device rather than a call, a recording
could contain the incoming media from multiple calls. Recording continues
until one of the following occurs:

o Application explicitly stops the recording by sending a Voice Unit
Services Stop request (stops both playing and recording) or by sending
an Extended Voice Unit Services StopRecording request.

o Application requests that AE Services automatically stop the recording
when a specified termination criterion is met. Multiple termination
criteria can be specified in which case the first criterion that is met
stops the recording. Termination criteria options include:

o When a DTMF tone is received by the device.

To request this termination criterion, set the termination
parameter’s terminating conditions so that DTMFDigitDetected is
set to true.

o When recording reaches a specified duration.

To request this termination criterion, set the maxDuration
parameter to the maximum number of milliseconds allowed for the
recording.

If you wish to record one entire call and only one call, then your application
can monitor the lamp events to determine when the call has ended and
explicitly stop the recording after the call has ended.

NOTE: No negative acknowledgement is received if the application
requests that recording stop when there is no active recording.

Once an active recording on a device has been stopped, a StopEvent
sent to the application indicates that the recording has finished and the
recorded file is ready for the application.

The recording can also be:

o suspended temporarily - with the Voice Unit Services Suspend request
(suspends both recording and playing) or with the Extended Voice Unit
Services SuspendRecording request.

o dubbed with another recording - with the Extended Voice Unit Service
StartDubbing and StopDubbing requests. See next section for more
information on dubbing.

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 109

o resumed - with the Voice Unit Services Resume request (resumes
both recording and playing) or with the Extended Voice Unit Services
ResumeRecording request.

o stopped - with the Voice Unit Services Stop request (stops both
recording and playing) or the Extended Voice Unit Services
StopRecording request.

o deleted - with the Voice Unit Services DeleteMessage request.

To record a message an application must construct the RecordMessage
XML message and send it to AE Services.

<?xml version="1.0" encoding="UTF-8"?>

<RecordMessage xmlns="http://www.ecma.ch/standards/ecma-
323/csta/

 ed2">

 <callToBeRecorded>

 <deviceID typeOfNumber="other" mediaClass=""

 bitRate="constant">4750::111.2.33.444:0</deviceID>

 </callToBeRecorded>

</RecordMessage>

Below is the corresponding response:

<?xml version="1.0" encoding="UTF-8"?>

<RecordMessageResponse xmlns="http://www.ecma-
international.org/standards/ecma-323/ csta/ed3">

 <resultingMessage>0</resultingMessage>

 <extensions>

 <privateData>

 <private>

 <RecordMessageResponsePrivateData
xmlns:ns1="http://www.avaya.com/csta"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="RecordMessageResponsePrivateData">

 <timestamp>1080520327543</timestamp>

 <filename>200403281732074750</filename>

 </RecordMessageResponsePrivateData>

 </private>

 </privateData>

 </extensions>

</RecordMessageResponse>

110

NOTE: Per CSTA specification the device identifier for the
RecordMessage XML message uses the tag <deviceID>

Dubbing

A recording can be dubbed with another Wave file by sending the
Extended Voice Unit Services StartDubbing and StopDubbing requests.
Dubbing records the specified Wave file over the recording repeatedly from
the time the StartDubbing request is sent until the StopDubbing request
is sent. This may be helpful to avoid recording sensitive information such
as a spoken password or other private or security-based information.

Since the application must explicitly stop the dubbing, the application must
have the logic to know when to stop. It may be based on time, or an
incoming DTMF tone such as “#”, or a manual action by an agent who is
monitoring events.

Playing

To play one or more messages to the RTP stream of a call as if the
message(s) are coming from the device, send the Voice Unit Services
PlayMessage request. The message(s) can be played once, multiple
times, for a particular duration or until a DTMF tone is received by the
device.

The filename of the file to be played can be alphanumeric. The
alphanumeric filename may contain a relative directory path. One or more
files can be specified as long as they are of the same encoding type.

To play a message an application must construct the PlayMessage XML
message and send it to AE Services.

<?xml version="1.0" encoding="utf-8"?>

<PlayMessage xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http:// www.ecma-international.org/standards/ecma-
323/csta/ed3">

 <messageToBePlayed>0</messageToBePlayed>

 <overConnection>

 <deviceID typeOfNumber="other"
mediaClass="notKnown">4750::111.2.33.444:0</deviceID>

 </overConnection>

 <extensions>

 <privateData>

<private><PlayMessagePrivateData><fileList>0001.wav</fileLis
t>

 </PlayMessagePrivateData></private>

 </privateData>

 </extensions>

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 111

</PlayMessage>

Below is the corresponding response:

<?xml version="1.0" encoding="UTF-8"?><PlayMessageResponse
xmlns="http://www.ecma-international.org/standards/ecma-
323/csta/ed3" />

Since playing is associated with a device rather than a call, the playing of
the message(s) may continue across multiple calls to which the device is a
party. Playing continues until one of the following occurs:

• Application explicitly stops the playing with a Voice Unit Services Stop
request (stops both playing and recording) or with an Extended
Voice Unit Services StopPlaying request.

• A specified termination criterion is met.

Multiple termination criteria can be specified in which case the first criterion
that is met stops the playing. Termination criteria options include:

• When a DTMF digit is received by the device.

To request this termination criterion, set the termination parameter’s
terminating conditions so that DTMFDigitDetected is set to true.

• When playing occurs for a specified duration.

To request this termination criterion, set the duration parameter to the
maximum number of milliseconds allowed for the playing.

• When the played message(s) have been repeated a specified
number of times with a specified interval in between.

To request this termination criterion, set playCount and playInterval in
the extensions parameter.

If you wish to play message(s) to one entire call and only one call, then
your application can watch the lamp events to determine when the call has
ended and explicitly stop the playing after the call has ended.

Once active playing on a device has stopped, a StopEvent indicates that
the playing has finished.

NOTE: No negative acknowledgement is returned and no event is
generated if the application requests that playing stop when there is no
active playing.

The playing of the message can also be:

o suspended temporarily- with the Voice Unit Services Suspend
request (suspends both recording and playing) or the Extended
Voice Unit Services SuspendPlaying request

o resumed - with the Voice Unit Services Resume request (resumes
both recording and playing) or the Extended Voice Unit Services
ResumePlaying request

112

o stopped - with the VoiceUnitServices Stop request (stops both
recording and playing) or the Extended Voice Unit Services
StopPlaying request

Monitoring Voice Unit Events

Your application can receive and respond to Voice Unit events by
requesting to be notified of those events through the MonitorStart XML
message as described in Req. The events indicate when your Voice Unit
Service requests have been accepted and processing has begun, and
when processing has ended.

The following example shows the structure of the asynchronous message
RecordEvent that a client application may receive. The
monitorCrossRefID is to be used by the application to correlate
messages.

<?xml version="1.0" encoding="UTF-8"?>

<RecordEvent xmlns="http://www.ecma-
international.org/standards/ecma-323/csta/ed3">

 <monitorCrossRefID>29</monitorCrossRefID>

 <connection><deviceID typeOfNumber="other"
mediaClass="voice"
bitRate="constant">4750::111.2.33.444:0</deviceID></connecti
on>

 <message>200711290914424750</message>

 <length>0</length>

 <currentPosition>0</currentPosition>

 <cause>normal</cause>

 <extensions><privateData><private>

 <RecordMessagePrivateData
xmlns:ns1="http://www.avaya.com/csta" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
xsi:type="RecordMessagePrivateData">

 <filename>200711290914424750.wav</filename>

 <timestamp>1196352882605</timestamp>

 </RecordMessagePrivateData>

 </private></privateData></extensions>

</RecordEvent>

NOTE: Per CSTA specifications the device identifier tag in the above
example of the RecordEvent XML message is <deviceID>.

Playing a Warning Tone

Beginning in AE Services 6.3 and Avaya Aura Communications Manager 6.3
is the ability to request Communication Manager to insert a tone into the audio

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 113

stream of the parties in a call. This tone serves to indicate that the audio
stream is being recorded using either the Single Step Conferencing method or
the Multiple Registrations method. The tone that is played is inserted by
Communication Manager and is identical to that already used by the Service
Observing feature.

Note that, for AE Services 6.3, the client application requests the recording
warning tone for a specific device, not a specific call. Thus, if the recording
warning tone has been activated for a device, any time that the specified
device is included in a call, the recording warning tone will be inserted into the
call. This will continue to be the case for every call in which the device is a
party, until such time that the client application requests that Communication
Manager deactivate the recording warning tone.

To use this feature, a recording application sends a GenerateTelephonyTones
request for a specific device to AE Services. A warning tone is played each
time the device from the GenerateTelephonyTones request joins a call. The
recording application can stop warning tones from being played by sending a
CancelTelephonyTones request for the device.

Also note that, if the client application requests the activation of the recording
warning tone while the specified device is already in a call, the tone will not be
applied to the existing call. However, the tone will be applied to all subsequent
calls in which the device is a party.

Similarly, if the client application requests the deactivation of the recording
warning tone while the specified device is already in a call, the tone will not be
removed from the existing call. However, the tone will be removed from all
subsequent calls.

In the case of an AE Services server fail-over (or Communication Manager fail-
over), AE Services will automatically re-establish the recording warning tone
for all devices on which the tone is currently activated. However, there is a
very small chance that the tone may not be re-established for some reason. In
this rare case, AE Services will send a GenerateTelephonyTonesAbort event
to the client application. In order to receive this event, the application must
send a TelephonyTonesEventStart request for each device it wants to receive
notification (i.e. an event) when AE Services fails to re-establish
GenerateTelephonyTones. An event id is sent to the application in the
TelephonyTonesEventStartResponse. If AE Services fails to re-establish the
GenerateTelephonyTones, a GenerateTelephonyTonesAbort event (containing
the event id from the TelephonyTonesEventStartResponse) is sent to the
recording application. The application can then send a
GenerateTelephonyTones request for the device to have the warning tone
played on subsequent calls. The application sends a
TelephonyTonesEventStop request to cancel the notification.

Playing a Warning Tone - Single Step Conference Method

To use the Single Step Conference method, a recording application registers
to Aura Communications Manager extension “A” and monitors a user’s
extension “B” that will be recorded. Prior to the user accepting any calls, the
recording application sends a GenerateTelephonyTones request for the
extension to which it is registered (“A”). When the user’s extension (“B”)

114

accepts a call, the recording application joins the call using Single Step
Conference and begins recording the call. The warning tone is played when
the recording application extension (“A”) joins the call at the user’s extension
(“B”).

After the final call to be recorded has finished, the recording application sends
a CancelTelephonyTones request to the extension to which it is registered
(“A”) to stop the warning tone from being played.

Playing a Warning Tone - Multiple Registration Method

To use the Multiple Registration method, a recording application registers to
the same extension (in either dependent or independent DependencyMode) of
the user that is taking the calls to be recorded. Prior to the user accepting any
calls, the recording application sends a GenerateTelephonyTone request for
the extension to which it is registered. When the (Main) user answers a call,
the recording application is automatically connected to the call and a warning
tone is played.

After the final call to be recorded has finished, the recording application sends a
CancelTelephonyTones request to the extension to which it is registered, to
stop the warning tone from being played.

Detecting and collecting DTMF tones

If your application needs to detect DTMF tones coming to a device from another
party on the call, then you can use Tone Detection Services or Tone Collection
Services. To use these services, you must do the following:

o Register the device in server media mode to detect both out-of-band and
in-band tones or in client media mode to detect only out-of-band tones.

DTMF tones are generated by parties on a call by pressing the dial pad digits 0
through 9 and * and # during the call. If the device that is being monitored is on
a call and another party on the call presses a dial pad digit, then Tone Detection
Services can be used to report each DTMF tone to the application.

In contrast, Tone Collection Services can be used to buffer the received tones
and report them to the application when the specified retrieval criteria are met.
The retrieval criteria may be one or more of the following:

o a specified number of tones has been detected

o a specified tone (called a “flush character”) has been detected

o a specified amount of time (called a “time-out interval”) has elapsed

When at least one of the retrieval criteria is met, the following retrieval steps are
performed by the AE Services server:

1. The buffered tones, up to and including the tone which met the retrieval
criteria, are removed from the buffer.

2. The retrieval criteria are cleared (optional).

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 115

3. The application is notified of the retrieved tones with the
TonesRetrievedEvent.

If more than one retrieval criterion is specified, the first one to occur causes the
retrieval criteria to be met.

Some basic rules of these services are:

o Touch tone detection mode

Both sets of services can detect in-band and out-of-band DTMF tones.
In-band tones are transmitted within the media stream. Out-of-band
tones are transmitted in the signalling channel. The AE Services server
always detects out-of-band tones. If the application wishes to also detect
in-band tones (not recommended), then the tone detection mode must
be explicitly set to in-band.

Set the tone detection mode before the AE Services server is started up.
The mode is provisioned in the AE Services Management Console
interface under the media properties as the ttd_mode

To detect only out-of-band, set the mode to OUT_BAND. To detect both
in-band and out-of-band, set to IN_BAND. See the appropriate Avaya
Aura® Application Enablement Services Installation and Upgrade Guide
for the offer you have purchased for instructions of how to choose
between in-band and out-of-band for AE Services and Communication
Manager and how to setup the ttd_mode property.

o Using with Voice Unit Services tone detection

The Voice Unit Services player and recorder may be setup to detect
DTMF tones at the same time Tone Detection or Tone Collection
Services is being used. However, there is no guarantee which
service will detect a tone first.

Detecting individual tones

To detect tones one at a time:

o Request to be notified of the ToneDetectedEvent through the
MonitorStart XML message as described in Req .

o Now each time a tone is detected by AE Services, the application
will receive a ToneDetectedEvent.

o When you no longer wish to be notified of detected tones, send a
MonitorStop request.

Collecting multiple tones

To have the AE Services server collect multiple tones and report them to
the application based on specified retrieval criteria, send the
ToneCollectionServices requests in this order:

1. Request to be notified of the TonesRetrievedEvent through the

MonitorStart XML message as described in Req.

116

2. Start tone collection by sending the Tone Collection Services
ToneCollectionStart request. This causes each detected tone to be put

in a buffer. Following is an example ToneCollectionStart XML

message:

 <?xml version="1.0" encoding="UTF-8"?>

<?xml version="1.0" encoding="utf-8"?>

<ToneCollectionStart
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.avaya.com/csta">

 <object>

 <device typeOfNumber="other" mediaClass="notKnown"
xmlns="http:// www.ecma-
international.org/standards/ecma-323/csta/
ed3">4750::111.2.33.444:0</device>

 </object>

</ToneCollectionStart>

Following is the corresponding response:

<?xml version="1.0" encoding="UTF-8"?>

<ToneCollectionStartResponse
xmlns="http://www.avaya.com/csta" />

3. Set the retrieval criteria with the Tone Collection Services
ToneRetrievalCriteria request. Following is an example
ToneRetrievalCriteria XML message.

<?xml version="1.0" encoding="utf-8"?>

<ToneRetrievalCriteria
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.avaya.com/csta">

 <object>

 <device typeOfNumber="other" mediaClass="notKnown"
xmlns="http:// www.ecma-
international.org/standards/ecma-323/csta/
ed3">4750::111.2.33.444:0</device>

 </object>

 <numberOfTones>5</numberOfTones>

 <flushCharacter>#</flushCharacter>

</ToneRetrievalCriteria>

Following is the corresponding response:

<?xml version="1.0" encoding="UTF-8"?>

<ToneRetrievalCriteriaResponse
xmlns="http://www.avaya.com/csta" />

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 117

When one of the retrieval criteria is met, you will receive the
TonesRetrievedEvent. This event will contain the cause of the event. The
cause of the event may be any of the following:

o BUFFERFLUSHED - when the ToneCollectionFlushBuffer request
is sent

o CHARCOUNTRECEIVED - when the number of tones specified in the
retrieval criteria is received

o FLUSHCHARRECEIVED - when the tone specified in the retrieval
criteria is received

o TIMEOUT - when the amount of time specified in the retrieval criteria
has elapsed

If you wish to be notified of more tones, send the Tone Collection Services
ToneRetrievalCriteria request again. There is no need to stop and
restart the collection.

You can start and stop monitors at any time during collection.

If for any reason you wish to flush the buffer during collection, send the
Tone Collection Services ToneCollectionFlushBuffer request. Your
application will receive a TonesRetrievedEvent with a cause of
BUFFERFLUSHED as a result. This will report the tones collected since the
last time the buffer was flushed. You may want to flush the buffer at the
end of a call. Following is an example ToneCollectionFlushBuffer XML
message.

<?xml version="1.0" encoding="utf-8"?>

<ToneCollectionFlushBuffer
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.avaya.com/csta">

 <object>

 <device typeOfNumber="other" mediaClass="notKnown"
xmlns="http:// www.ecma-
international.org/standards/ecma-323/csta/
ed3">4750::111.2.33.444:0</device>

 </object>

 <sendEvent>false</sendEvent>

 <clearCriteria>true</clearCriteria>

</ToneCollectionFlushBuffer>

When you no longer wish to be notified of collected tones, stop tone
collection with the Tone Collection Services StopToneCollection request
and send a MonitorStop request. This will cause the server to stop
collecting DTMF tones sent to a device and report the tones that have
been buffered. This flushes the buffer.

118

You may want to set up interdigit timers limiting the maximum amount of
time you will wait between tones or a duration timer limiting the maximum
amount of time before stopping the tone detection

Determining when far-end RTP media parameters
change

To determine when the far-end RTP media parameters change,
applications that control their own media (client media mode) will need to
request to be notified of the following events:

o MediaStartEvent

o MediaStopEvent

Here is the sequence of media control events an application should be
prepared to receive:

1. When media is first established for a call, the application receives a
MediaStartEvent. However, it does not guarantee that the call has been

established end-to-end yet.

2. If the switch changes the far-end RTP parameters for a call, the application
receives a MediaStopEvent. At that point the current far-end RTP

parameters should no longer be used. A MediaStopEvent could indicate

that the call has ended, but do not depend on that event alone to determine
the end of a call; the call appearance lamp will also change if it is the end of a
call.

3. If there are new far-end RTP parameters, then the application will
subsequently receive a MediaStartEvent.

One scenario in which a MediaStopEvent and then a MediaStartEvent
may be received is when the switch shuffles a call. Shuffling occurs when
the switch changes the path of the media. For example, if the media is
going from calling party A to the switch and then to called party B, the
switch may choose to change the media path such that it goes directly
between endpoints A and B. In this case, the switch would tell both A and
B to stop using the switch address as the far-end address and to start
using the other endpoint as the far-end address. In other words, A would
be notified that B is now the far end and B would be notified that A is the
far end. Later the switch may choose to change the path again due to
some change in the call, such as a conference or transfer. Each time the
path changes, the endpoints are notified via media control events to stop
using the current far-end address and to start using the new far-end
address.

In server media mode all of this is usually transparent to the user, unless
the codec happens to change. In this case you may need to play a
different wav file in the codec of the new form. For this reason it is
recommended that you give a single codec when registering devices.

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 119

Recovery

Chapter 4: High Availability contains more information on the high
availability feature DMCC provides.

The "keep alive" messages that are sent periodically by the application to
the AE Services server provide a way for the application to verify that the
AE Services server is operational even if there is no other activity from the
application. In addition, the session cleanup delay provides a mechanism
for the application to reestablish its session after a short network
interruption without having to reestablish their state (e.g. register devices
again). This section tells you how to take advantage of these new features
to design a more robust Device, Media and Call Control application.

Recovering a Session using StartApplication Session

In the event that the server returns a
ResetApplicationSessionTimerNegResponse, some recovery action will
be required.

An example negative response message is presented below.

<?xml version="1.0" encoding="UTF-8"?>

<ResetApplicationSessionTimerNegResponse
xmlns="http://www.ecma-international.org/standards/ecma-
354/appl_session">

 <errorCode>

<definedError>serverCannotResetSessionTimer</definedError>

 </errorCode>

</ResetApplicationSessionTimerNegResponse>

There are two standardized error types defined for the
ResetApplicationSessionTimerNegResponse. The first is
invalidSessionId, which indicates that the session is either not known
by the server, or it has been cleaned up. The invalidSessionId error
code is not recoverable.

The other type of error code is serverCannotResetSessionDuration.
This error code indicates that the session has timed-out, but has not yet
been cleaned up.

To attempt to recover the session, a StartApplicationSession
message should be sent that contains the SessionID passed in the
SessionLoginInfo portion of the XML message.

See the example message below.

<?xml version="1.0" encoding="utf-8"?>

120

<StartApplicationSession
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.ecma-international.org/standards/ecma-
354/appl_session">

 <applicationInfo>

 <applicationID>someApp</applicationID>

 <applicationSpecificInfo>

 <SessionLoginInfo
xmlns="http://www.avaya.com/csta">

 <userName xmlns="">user1</userName>

 <password xmlns="">password1</password>

 <sessionCleanupDelay
xmlns="">60</sessionCleanupDelay>

 <sessionID
xmlns="">469421A9364D46D6444524AE41BEAD72-0</sessionID>

 </SessionLoginInfo>

 </applicationSpecificInfo>

 </applicationInfo>

 <requestedProtocolVersions>

 <protocolVersion>http://www.ecma-
international.org/standards/ecma-323/csta/ed3/
priv2</protocolVersion>

 </requestedProtocolVersions>

 <requestedSessionDuration>180</requestedSessionDuration>

</StartApplicationSession>

If the StartApplicationSession message above is processed by the
server prior to the sessionCleanupDelay timer expiring, and there were
no other defined error conditions encountered, then a
StartApplicationSessionPosResponse will be returned. If the
sessionCleanupDelay timer expires before the server is able to process
the StartApplicationSession messages, then a
StartApplicationSessionNegResponse will be returned. An example
negative response message is provided below.

<?xml version="1.0" encoding="UTF-8"?>

<StartApplicationSessionNegResponse xmlns="http://www.ecma-
international.org/

standards/ecma-354/appl_session">

 <errorCode>

 <applError>Could not re-establish existing
session.</applError>

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 121

 </errorCode>

</StartApplicationSessionNegResponse>

At this point the application would be required to establish a new session
as outlined in the section Establishing an application session.

Stopping an active session using StopApplicationSession

When an existing session is no longer required, send a
StopApplicationSession message. An example message is provided
below.

<?xml version="1.0" encoding="utf-8"?>

<StopApplicationSession
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.ecma-international.org/standards/ecma-
354/appl_session">

 <sessionID>469421A9364D46D6444524AE41BEAD72-
0</sessionID>

 <sessionEndReason>

 <appEndReason>Application Request</appEndReason>

 </sessionEndReason>

</StopApplicationSession>

The server will return either a positive or negative response to this request.
A negative response can safely be ignored.

General Event Response to an Inactive Session

There are four types of negative acknowledgements that an application
can expect to receive. The section below will list the type and provide the
required recovery steps.

• invalidSessionID - The sessionID given by the application is not
valid or not known by the server. This could mean that the session
has timed out or was placed in an inactive state. It is possible that
the session could be recovered by sending a
StartApplicationSession message with the SessionID as
outlined in Recovering a Session using
StartApplicationSession

• SessionTimerExpired – The session terminated due to the session
timing out. At this point the application should start a new session
as outlined in the section Establishing an application session

• ResourceLimitation – The session terminated due to a resource
constraint. At this point the application should start a new session
as outlined in the section Establishing an application session

122

Transfer Monitor Objects

The TransferMonitorObjectRequest of Device Services is used to
transfer the DeviceIDs for a given session to another session belonging to
the same user. This request will also transfer the monitors that were added
for each DeviceID. This allows one application instance to take over for
another application instance in the event of a failure.

Each deviceID and its established monitors is returned in a
MonitorObjectData. A list of MonitorObjectData is returned in the
TransferMonitorObjectsResponse.

The processing of a TransferMonitorObjects request may cause event
notification to be interrupted if the client application has not set up the to
session to receive the from session's events. This can be achieved by
retrieving the established cross reference identifiers from the
TransferMonitorObjects response. The response will contain a
MonitorStartResponse for each valid monitor that is associated with a
transferred device ID.

Important side effects and recommended client application actions:

• All the monitors for each device ID will be transferred from the from to
the to session.

• The from session will be removed at the end of the transfer.

• The client application must set up the to session to receive the events
from the transferred monitors.

• The client application must release the resources that were allocated
for the from session.

The following example demonstrates how to transfer the monitor objects
between two ID’s that belong to the user. A monitor object can be either a
device ID or a call object.

<?xml version="1.0" encoding="utf-8"?>

<TransferMonitorObjects
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.avaya.com/csta">

 <fromSessionID>2E7EE0A185BF2C1F71902BF8888B67AF-
16</fromSessionID>

 <toSessionID>28860932245E4EE8AC961D040459D8E7-
17</toSessionID>

</TransferMonitorObjects>

Following is the corresponding response:

<?xml version="1.0" encoding="UTF-8"?>

<TransferMonitorObjectsResponse
xmlns="http://www.avaya.com/csta">

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 123

 <fromSessionID>2E7EE0A185BF2C1F71902BF8888B67AF-
16</fromSessionID>

 <toSessionID>28860932245E4EE8AC961D040459D8E7-
17</toSessionID>

</TransferMonitorObjectsResponse>

NOTE: The Java SessionManagementApp sample application shows how
a client application can transfer device ID’s from one session to another
and shows how to reconstruct the transferred objects which is a necessary
step in addition to the code shown above.

Cleanup

If the cleanup session timer expires, resources are reclaimed. It is
important to free resources when they are no longer needed. This is most
likely to occur when your application:

• Detects the end of a call

• Is finished with a device

• Is about to exit

Cleanup should occur in this order:

1. Stop collecting tones

At the end of a call, you can choose to stop collecting DTMF tones for
the device. Alternatively, you can let the collection and the retrieval
criteria continue across calls. In that case you might just flush the
buffer at the end of each call.

When finished with a device, stop the tone collection for that device.

When the application is about to exit, stop tone collection on all
devices.

2. Stop recording or playing

At the end of a call, you can choose to stop recording or playing, or let
the recording or playing continue across calls on the device.

When finished with a device, stop both recording and playing on that
device.

When the application is about to exit, stop both recording and playing
on all registered devices.

Both recording and playing can be stopped on a device by sending the
Voice Unit Services Stop request or can be individually stopped by
sending the Extended Voice Unit Services StopRecording request or
StopPlaying request.

3. Unregister the device

124

When finished with a device, unregister it by sending the Registration
Services UnregisterTerminal request.

When the application is about to exit, unregister each registered
device. If you fail to unregister a device, Communication Manager will
keep the device registered to AE Services indefinitely.

NOTE: It is possible that this device is being controlled by more than
this application session. If this device is controlled by more than one
session, the various application sessions that are working with the
device should be communicating to determine whether or not the
device should be released before sending an unregister request. If this
session is the only session controlling the device, a negative
acknowledgement will be thrown from the ReleaseDeviceID request,
indicating that unregistration is required before the device can be
released.

4. Stop monitoring for events

When your application no longer needs to receive events for a device,
send a MonitorStop request.

5. Release the device identifier

When finished with a device identifier, release it by sending the Device
Services ReleaseDeviceID request.

When the application is about to exit, release each device identifier.

6. Stop the application session

This must be done as the last thing before closing the socket. Close the
application session by sending the Application Session Services
StopApplicationSession request. You will receive either a
StopApplicationSessionPosResponse or a
StopApplicationSessionNegResponse.

Media Encryption

Application Enablement Services offers the user the ability to encrypt the
voice RTP streams between the DMCC softphone and the far end of the
call.

For Application Enablement Services, the only encryption scheme
available is the Advanced Encryption Standard (AES) media encryption.

NOTE: All of the code in the following sections on encryption is in Java.
This is meant to serve as a guideline to aid you. If your application is
written in another programming language, you may transcribe the code
into the appropriate language.

The AES Encryption Scheme

1. Encrypting the Voice Stream

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 125

To transmit voice information over a digital medium, the analog voice
signal is sampled at discrete intervals. Each sample is represented as an
8-bit number or 8-bit byte. Samples (bytes) are transmitted sequentially as
a stream of bits. If a G.711 codec is used to generate the samples and if
20 milliseconds worth of data is sent in each Internet Protocol (IP) packet,
then each packet will contain 160 bytes which equals 1280 bits. (8000
samples/second for 20 milliseconds).

To send the voice data, the stream of voice bits is exclusive OR’d with a
second stream of bits before being transmitted. This second stream of bits
is generated cryptographically and the resulting transmitted stream is said
to be “encrypted”. The two bit streams are processed in fixed “chunks” of
128 bits as illustrated in Figure 3.

Figure 3: Encryption of the Voice Stream

A 128 bit initialization vector (IV) is encrypted with key KE (128 bits) using
the AES encryption algorithm to produce 128 bits of output. Those 128 bits
are exclusive OR’d with the first 128 bits of the voice packet. The
initialization vector is incremented by one, and the process repeated for
the next 128 bits. Ten repetitions are required to send one 20 millisecond
packet which contains 1280 bits of voice data. This means that the AES
encryption engine is run 10 times to send one packet. This mode of using
AES is called counter mode (because the IV acts as a counter).

On the receiving end, the same process is used to recover the original
voice data. The receiver must have the exact same key (KE) and the same
initialization vector (IV).

1. Generating Key Material

In order to generate the encryption key, initialization vector, and other keys
to be seen shortly, the following operations are performed. Note that these
computations are performed anew for each RTP packet.

AES

IV

Transmitted
Bits 0-127

Key = Ke

Voice Bits
0-127

IV+1

Transmitted
Bits128-255

Key = Ke

Voice Bits
128-255

IV+2

Transmitted
Bits 256-383

Key = Ke

Voice Bits
256-383

AES AES

126

Let the packet index “i” be defined as:

i = (32-bit ROC) || (SEQ for RTP)

where ROC is the roll over counter, SEQ is the 16-bit sequence number
from the RTP packet and || indicates concatenation. This is shown in
Figure 4..

Figure 4: Structure of the Packet Index

Let

r = i DIV key_derivation_rate

where DIV denotes integer division rounded down with the convention that
dividing by 0 equals 0. The SRTP algorithm supports changing the keys
periodically, even while the voice stream is active. The key derivation rate
is the rate of this change. A value of zero indicates that the keys are not
changed periodically. When the rate is zero, “r” is also zero (48 bits). Note
that in the first computation of “r”, the value of SEQ used in the
computation of “i” is the initial value at the beginning of the media stream.

Let

key_id = <label> || r

where <label> = 0x00 for RTP packet encryption and 0x02 for the salting
key used to generate the IV as illustrated in Figure 5.

Figure 5: key_id Structure

Now let x = key_id XOR master_salt

This is shown in Figure 6.

Figure 6: Computation of ’"x"

32 bits of ROC 16 bits of SEQ 48 bit packet index, i

48 bits of "i" DIV key_derivation_rate

8 bits of label

56 bits of key_id

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 127

The keys for encryption and IV generation are the result of encryption of
(“x” * 216) with a key called the master key. (The master key is distributed
by the Media Gateway Controller for each voice IP media link as the link is
established.)

The values of “x” for Avaya’s implementation are shown in figure 6. Note
that two values of “x” are computed, one (xe) is used to compute the value
of KE and a second value of “x” (xs) is used in the computation of the IV.

For Avaya’s implementation: Key_derivation_rate = 0 Master_salt
= 0

Figure 7: Values of "x" for Avaya’s Implementation

2. Creating the Initialization Vector

The Initialization Vector (IV) changes for each packet (1280 voice bits for
20ms G.711) according to the following equation:

IV = (SSRC * 264) XOR (KS * 2
16
) XOR (i * 2

16
)

where KS is known as the session salting key and SSRC is the
synchronization source from the RTP packet currently being encrypted.
Note that “i” contains the packet sequence number SEQ and therefore the
IV must be recalculated for each RTP packet.

The 112 bit KS is computed from xs using the pseudo random function
(PRF) as follows.

KS = PRF_112 (master_key, xs * 2
16
)

8 bits of label

Implicit 56 bits of zero 48 bits of "i" DIV key_derivation_rate

XOR

gives

112 bits of master_salt

112 bits of "x"

112 bits of zero
Xe
to generate
Ke

8 bits of label = 0000 0010

 56 bits of zero 48 bits of zero
Xs
to generate
Ks

128

The pseudo random function is defined to be AES in counter mode with its
output stream truncated as necessary (left most bits are retained).

The process for IV generation is shown in Figure 8..

Figure 8: 128-bit IV Generation

3. Creating the Encryption Key KE

The process for generating the session key (KE) uses the pseudo random
function (AES in counter mode) to produce a 128 bit value as follows:

KE = PRF_128 (master_key, xE * 2
16
)

Specifying the Devices’ Encryption Capability

You may control whether your CMAPI softphone will support media
encryption or not by specifying the supported encryption types in the local
MediaInfo structure:

// specify either AES or no encryption for this device (let
CM choose)

String [] encryptionList = {MediaConstants.AES,
MediaConstants.NOENCRYPTION};

MediaInfo localMediaInfo = new MediaInfo();

localMediaInfo.setEncryptionList(encryptionList);

station.register (password, false, localMediaInfo, new
MyAsyncRegistrationCallback());

Using the RegisterTerminal XML, this becomes, for example:

<?xml version=”1.0” encoding=”UTF-8”?>

<RegisterTerminalRequest xmlns=”http://www.avaya.com/csta”>

 <device typeOfNumber=”other” mediaClass=”voice”
bitRate=”constant”>

 4750:mySwitch:111.2.33.4:0

 </device>

 <loginInfo>

SSRC * 264

Ks * 216

i * 216

Initialization
vector

gives

XOR

XOR

64 bits of zeroSSRC

64 bits of zero 16 bits of zero

IV

16 bits of zero

counter

112 bits of Ks

32 bits of zero

48 bits of packet_index "i"

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 129

 <forceLogin>true</forceLogin>

 <dependencyMode>MAIN</dependencyMode>

 <mediaMode>CLIENT</mediaMode>

 <password>1234</password>

 </loginInfo>

 <localMediaInfo>

 <rtpAddress>

 <address>55.6.7.88</address>

 <port>4123</port>

 </rtcpAddress>

 <rtpAddress>

 <address>55.6.7.88</address>

 <port>4124</port>

 </rtcpAddress>

 <codecs>g711U</codecs>

 <packetSize>20</packetSize>

 <encryptionList>aes</encryptionList>

 <encryptionList>none</encryptionList>

 </localMediaInfo>

</RegisterTerminalRequest>

This specifies that the CMAPI softphone will support both AES encryption
and no media encryption. In this case, the decision to encrypt the media
stream is left up to the Communication Manager (as specified in the CM’s
“change ip-codec” form).

Alternatively, you may force AES media encryption to be chosen by
specifying a supported encryption type of only AES:

// must use AES encryption

String [] encryptionList = {MediaConstants.AES};

or in XML:

<encryptionList>aes</encryptionList>

and, of course, you may force no encryption to be chosen by specifying:

// encryption not supported

String [] encryptionList = {MediaConstants.NOENCRYPTION};

and in XML:

<encryptionList>none</encryptionList>

130

MediaStartEvent Handling

If you have chosen to receive and handle the media stream as part of your
application (you have chosen client-media mode), you will receive the
media encryption information in the MediaStartEvent. In addition to the
usual “RTP address”, “RTP port”, “codec” etc., the MediaStartEvent will
also contain an “Encryption” object containing the encryption protocol and
keys chosen by Communication Manager.

The MediaStartEvent looks like this:

<?xml version=”1.0” encoding=”UTF-8”?>

 <MediaStartEvent xmlns="http://www.avaya.com/csta">

 <ns1:monitorCrossRefID xmlns:ns1="http://www.ecma-
international.org/standards/ecma-323/csta/ed3"> 32

 </ns1:monitorCrossRefID>

 <connection>

 <ns2:deviceID xmlns:ns2="http://www.ecma-
international.org/standards/ecma-323/csta/ed3"
typeOfNumber="other" mediaClass="voice" bitRate="constant">
4700:cmapichawk:135.9.71.250:0

 </ns2:deviceID>

 </connection>

 <rtpAddress>

 <address>135.9.71.201</address>

 <port>2082</port>

 </rtpAddress>

 <rtcpAddress>

 <address>135.9.71.201</address>

 <port>2083</port>

 </rtcpAddress>

 <codec>g711U</codec>

 <packetSize>20</packetSize>

 <encryption>

 <protocol>aes</protocol>

<transmitKey>{38,4F,0B,34,DF,00,2A,BE,F0,C7,55,80,1D,1D,33,A
8}

 </transmitKey>

<receiveKey>{38,4F,0B,34,DF,00,2A,BE,F0,C7,55,80,1D,1D,33,A8
}

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 131

 </receiveKey>

 <payloadType>-1</payloadType>

 </encryption>

 </MediaStartEvent>

and, to obtain the encryption parameters from the event (in Java):

 String protocol =
startEvent.getEncryption().getProtocol();

 String transmitKey =

 startEvent.getEncryption().getTransmitKey();

 String receiveKey =

 startEvent.getEncryption().getReceiveKey();

 int payloadType =

startEvent.getEncryption().getPayloadType().intValue();

When you start to process the RTP stream, you need to pass the
encryption information to your RTP stream read/write methods to enable
them to do the media encryption/decryption. On receipt of a new
MediaStartEvent, you must use the new encryption keys provided in the
event, recalculate the Initialization vector (IV), and reset the Roll Over
Counter (ROC).

If you are using Avaya’s client-media-stack, you may call the Audio “start”
method (as usual) passing the encryption information as an extra
parameter:

In Java, this would be:

MediaEncryption encryption = new MediaEncryption();

encryption.setProtocol(protocol);

encryption.setTransmitKey(transmitKey);

encryption.setReceiveKey(receiveKey);

encryption.setPayloadType(payloadType);

audio.start(rtpAddress, rtcpAddress, codec, packetSize,
encryption);

Media Encryption Information

The Encryption object in the MediaStartEvent contains the following
information:

o Encryption protocol

o Separate media encryption transmit and receive keys

o Payload type

The encryption keys and the payload type are only required if the
encryption protocol is “MediaConstants.AES”.

132

For SDK compatibility reasons, the transmit and receive keys are
formatted as Strings. For example, the transmit key may be in the form:

String transmitKey =

 “{38,4F,0B,34,DF,00,2A,BE,F0,C7,55,80,1D,1D,33,A8}”

and similarly for the receive key. The curly braces and commas are
actually part of the String. In order to be used by the encryption/decryption
routines, the keys need to be converted to byte arrays of the form (for
example):

byte[] txKey = { 0x38, 0x4F, 0x0B, 0x34, 0xDF, 0x00, 0x2A,
0xBE,

0xF0, 0xC7, 0x55, 0x80, 0x1D, 0x1D, 0x33, 0xA8 };

If you use Avaya’s client-media-stack, the Audio “start” method will
automatically do the String to byte[] conversion for you.

Encrypting and Decrypting the RTP Stream

The encryption transmit and receive keys, along with the roll over counter
(ROC) plus the RTP header’s SSRC and sequence number, are used to
calculate the Initialization Vector.

Roll Over Counter (ROC)

The ROC (initially set to zero) is a 32-bit unsigned integer which records
how many times the 16-bit RTP sequence number (SEQ) has been reset
to zero within the same SSRC (after incrementing up through 65,535)
Unlike the sequence number (SEQ), which your secure RTP
implementation (SRTP) extracts from the RTP packet header, the ROC is
maintained by the header of each RTP packet. The ROC must also be
knowledgeable of the SSRC that is included in the header of each RTP
packet. The SSRC is a 32 bit randomly chosen value in an RTP packet
that is used to represent the synchronization source (RFC1889). From one
MediaStartEvent to the next MediaStopEvent, the SSRC will remain the
same. If the SSRC changes, this is usually an indication that a new RTP
stream has started. However, note that it is also possible for a new RTP
stream to start without changing the SSRC. Thus, if a new
MediaStartEvent is received, then a new RTP stream is deemed to have
started. When this situation occurs the new encryption keys (included in
the event) must be used, the Initialization Vector (IV) must be recalculated,
and the ROC must be reset to zero.

 // Increment the ROC whenever the sequence number rolls
over

 incomingReadSSRC = rtpHdr.ssrc;

 incomingSeqNum = rtpHdr.seqNum;

 if (currentReadSSRC == incomingReadSSRC) {

 if (incomingSeqNum > currentSeqNum) {

 // Do nothing

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 133

 } else if (incomingSeqNum < (currentSeqNum - 100)) {

 // Sequence number has probably rolled over

 ++readROC;

 } else {

 // out of sequence RTP packet - ignore it

 return 0;

 }

 } else if (incomingReadSSRC == prevReadSSRC) {

 // very late RTP packet from previous call - ignore
it

 return 0;

 } else {

 // New SSRC (that is new call) - reset ROC

 readROC = 0;

 prevReadSSRC = currentReadSSRC;

 currentReadSSRC = incomingReadSSRC;

 }

 currentSeqNum = incomingSeqNum;

and similarly for writeROC.

Creating the Encryption Keys Using the Pseudo Random Function

The pseudo random function PRF_n(key,x) produces a bit string of length
“n” from a string “x” which is encrypted using the encryption key named
“key”. The AES Symmetric algorithm mode is “ECB” with no padding.

private static final byte XeRx[] =
{0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0};

String algorithm = “aes”;

String modeECB = “ECB”;

String modeCTR = “CTR”;

String padding = “NoPadding”;

Cipher cipher = null;

SecretKey key = null;

byte[] KeRx = null;

// Set up and initialize JCE Engine

try {

 String cipherSpec = algorithm + "/" + modeECB + "/"
+ padding;

134

 cipher = Cipher.getInstance(cipherSpec);

} catch (Exception e) {

 e.printStackTrace();

}

// Generate the symmetric key using the JCE Engine and
the readMasterKey from the

// MediaStartEvent and then use the Avaya XeRx value to
calculate the KeRx value

key = new SecretKeySpec(readMasterKey, algorithm);

/************ Calculate the KeRX value
*****************/

try {

 cipher.init(Cipher.ENCRYPT_MODE, key);

 KeRx = cipher.doFinal(XeRx);

} catch (IllegalStateException e) {

 // Attempting to encrypt before the cipher has been
initialized.

 // Probably a race condition resulting in the 1st
packet not being encrypted.

 // Ignore for now.

} catch (Exception e) {

 e.printStackTrace();

}

//Print

dump0x("KeRx", KeRx, 0,KeRx.length);

And, similarly for KeTx based on the writeMasterKey.

Once the media receive and transmit encryption keys (KeRx and KeTx)
are created, they will be used within the AES algorithm to encrypt and
decrypt the RTP stream.

Creating the Initialization Vectors (IV)

The ROC, together with the media encryption keys from the
MediaStartEvent, the SSRC and the RTP header sequence number are
used to calculate the IV for each direction (transmit & receive):

private static final byte XsRx[] =
{0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0};

byte[] KsRx = new byte[14];

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 135

ByteBuffer ssrcBuffer = ByteBuffer.allocate(16);

ByteBuffer KsBuffer = ByteBuffer.allocate(16);

ByteBuffer iBuffer = ByteBuffer.allocate(16);

// Convert the RTP header sequence number to bytes

byte[] seqHex = convert2Bytes(seq);

// Clear the local 16-byte buffers used in the IV
calculation

ssrcBuffer.clear();

KsBuffer.clear();

iBuffer.clear();

// Softphone PRF version

// Set up and initialize JCE Engine, and generate the
symmetric key

// using the JCE Engine and the readMasterKey (from the
MediaStart

// event). Then use the Avaya XsRx value to calculate
the KsRx value

try {

 cipher.init(Cipher.ENCRYPT_MODE, key);

 KsRx = cipher.doFinal(XsRx);

} catch (IllegalStateException e) {

 // Attempting to encrypt before the cipher has been
initialized.

 // Probably a race condition resulting in the 1st
packet not being encrypted.

 // Ignore for now.

} catch (Exception e) {

 e.printStackTrace();

}

//Print

dump0x("KsRx", KsRx, 0,KsRx.length);

KsBuffer.put(KsRx, 0, KsRx.length-2);

And, similarly for Ks-Tx based on the writeMasterKey.

136

Next, we can continue to calculate the read buffer IV (ivRx):

 // Grab the SSRC from the RTP header and populate

// the SSRCbuffer

 ssrcBuffer.position(4);

 ssrcBuffer.putInt(ssrc);

 // Setup and populate the iBuffer - this will currently

 // make the roll over counter to be zero always

 iBuffer.position(8);

 iBuffer.putInt(readROC);

 iBuffer.put(seqHex[2]);

 iBuffer.put(seqHex[3]);

 byte[] ssrcBytes = ssrcBuffer.array();

 byte[] ksBytes = KsBuffer.array();

 byte[] iBytes = iBuffer.array();

 byte[] ivRx = new byte [16];

 // XOR all 3 buffers

 for (int ii = 0; ii < ivRx.length; ii++) {

 ivRx[ii] = (byte)(ssrcBytes[ii] ^ ksBytes[ii] ^

 iBytes[ii]);

// Print

dump0x("ivRx", ivRx, 0,ivRx.length);

 and similarly for calculating the write buffer IV (ivTx).

Decrypting the Media Paylod

In the draft SRTP specification, the encryption algorithm is defined as AES
in counter mode (CTR and NoPadding). The generated IVs, along with the
KeRx or KeTx, can be used to secure the RTP stream during each
transmit and receive operation.

First obtain the data from the RTP packet:

// get the RTP packet from the read socket

ByteBuffer dst = rtpPacket.getPacket();

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 137

// Point to payload start and obtain the encrypted
payload

int hLength = 12; (RTP header size)

pLength = dst.limit() – hLength; (RTP payload size)

dst.position(hLength);

byte[] cipherData = new byte[pLength];

dst.get(cipherData, 0, pLength);

Note: cipherData will be used below by the cipher.

Then decrypt the data obtained from the RTP packet:

// Decrypt the data

try {

 String cipherSpec = algorithm + "/" + modeCTR + "/"
+ padding;

 cipher = Cipher.getInstance(cipherSpec);

} catch (Exception e) {

 e.printStackTrace();

}

byte[] plainTextResult = null;

SecretKey secKeRx = new SecretKeySpec(KeRx, algorithm);

try {

 IvParameterSpec ivSpec = new IvParameterSpec(ivRx);

 cipher.init(Cipher.DECRYPT_MODE, secKeRx, ivSpec);

 plainTextResult = cipher.doFinal(cipherData);

} catch (IllegalStateException e) {

 // Attempting to decrypt before the cipher has been
initialized.

 // Probably a race condition resulting in the 1st
packet not being

 // decrypted. Ignore for now.

} catch (Exception e) {

 e.printStackTrace();

}

138

dump0x("plainText", plainTextResult,
0,plainTextResult.length);

Finally below are the utility methods used in the code:

private static byte[] convert2Bytes(int num) {

 byte[] seq = new byte[4];

 seq[0] = (byte)((num >> 24) & 0xff);

 seq[1] = (byte)((num >> 16) & 0xff);

 seq[2] = (byte)((num >> 8) & 0xff);

 seq[3] = (byte)(num & 0xff);

 return seq;

}

public static void dump0x(String label, byte[] data, int
start, int stop) {

 byte[] b = data;

 StringBuffer sb = new StringBuffer();

 int value;

 for(int j = start; j < stop; j++) {

 value = b[j] & 0xff;

 if (j % 6 == 0)

 sb.append("\n");

 sb.append((value < 16 ? ", (byte)0x0" : ",
(byte)0x")

 +Integer.toHexString(b[j] &
0xff));

 }

 System.out.println(label+": "+sb.toString());

}

Test Data

In order to validate your code, we present here some test data against
which you may run your decipher code. Following that is the expected
output.

Input Data:

 // From the MediaStart event, we get

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 139

 byte[] readMasterKey = {

(byte)0xaa,(byte)0xaa,(byte)0xaa,(byte)0xaa,

(byte)0xaa,(byte)0xaa,(byte)0xaa,(byte)0xaa,
(byte)0xaa,(byte)0xaa,(byte)0xaa,(byte)0xaa,

(byte)0xaa,(byte)0xaa,(byte)0xaa,(byte)0xaa

 };

 // From the RTP packet, we get

 int ssrc = 987011809;

 int seq = 3;

 int roc = 0;

 // And the data to decipher is:

 cipherData =
{(byte)0xbb,(byte)0xbb,(byte)0xbb,(byte)0xbb };

Expected Output:

KeRx:

(byte)0xba, (byte)0xeb, (byte)0xc6, (byte)0x18, (byte)0xa5,
(byte)0x5c, (byte)0x35, (byte)0x1f, (byte)0x25, (byte)0xce,
(byte)0xdf, (byte)0x37, (byte)0xbf, (byte)0x70, (byte)0xf3,
(byte)0x90

KsRx:

(byte)0x98, (byte)0x12, (byte)0xf4, (byte)0x3c, (byte)0x17,
(byte)0xc5, (byte)0xd4, (byte)0x0e, (byte)0xe3,
(byte)0x8f, (byte)0x09, (byte)0xe1, (byte)0x7f, (byte)0xa8,
(byte)0xba, (byte)0xb7

IVRx:

(byte)0x98, (byte)0x12, (byte)0xf4, (byte)0x3c, (byte)0x2d,
(byte)0x11, (byte)0x4e, (byte)0xef, (byte)0xe3,
(byte)0x8f, (byte)0x09, (byte)0xe1, (byte)0x7f, (byte)0xab,
(byte)0x00, (byte)0x00

// And the deciphered data should be:

plainData = {(byte)0x05, (byte)0x43, (byte)0x2a, (byte)0x3d
};

140

Security considerations

Your application development organization has the responsibility of
providing the appropriate amount of security for your particular application
and/or recommending appropriate security measures to your application
customers for the deployment of your application. Therefore you should be
aware of the security measures that Application Enablement Services
Device, Media and Call Control API already takes and what risks are
known.

In addition to the advanced authentication and authorization policies
outlined in the next section, Application Enablement Services Device,
Media and Call Control API provides these security measures:

• Username and password are authenticated by the Device, Media and
Call Control service. Optionally, user authentication can be
disabled by provisioning a security policy for a machine, as
detailed in the “Advanced Authentication and Authorization
Policies” section below.

• Authorization Measures:

The DMCC service supports three different authorization
mechanisms. See the Advanced Authentication and Authorization
Policies section for more details.

 - Security Database (SDB). This is the default authorization
mechanism.

 - LDAP based authorization

 - Unrestricted Access

AE Services performs an authorization check on each data request
that is based on one or more SessionID’s, by making sure that each
one belongs to the same user who made the request. This applies
to GetDeviceIdList, GetMonitorList and
TransferMonitorObjects requests.

• The station password is required to register a device.

• Filenames specified for recorded files must be relative to the
configured directory, their directories must already exist, and
recordings cannot overwrite an existing file.

• Only files within the configured recorder directory can be deleted using
the VoiceUnitServices.deleteMessage() method.

Application Enablement Services also offers the user the ability to encrypt
the voice RTP streams between the IP softphone and the far end of the call.
See Media Encryption for more information.

If you are using encryption, AE Services Device, Media and Call Control API
provides these additional security measures:

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 141

• The signaling and bearer channels are encrypted.

• XML messages transmitted between the client application and the AE
Services server software are encrypted.

• The station password is passed encrypted.

• Username and password are encrypted.

• Username and password are authenticated by the Device, Media and
Call Control service.

NOTE: If you do not use encryption on the client link, the signaling and
bearer channels are unencrypted, there is no encryption of XML messages
transmitted between the client application and the AE Services server
software. In this case, the station password is passed unencrypted and,
similarly, the username and password are also sent in unencrypted.

For a complete discussion of the security guidelines for AE Services, see

White-paper on Security in Avaya Aura® Application Enablement Services. This
white paper is available on the Avaya support site along with the customer
documents.

Advanced Authentication and Authorization Policies

AE Services provides options for provisioning of authentication and
authorization policies to specific application servers based on PKI (Public
Key Infrastructure). The User Authentication and Authorization(AA) policies
will first be detailed separately, then several use cases will be provided to
illustrate how these policies can be applied to provide new AA models for
applications to leverage.

Note that in order to apply AA policies to a machine, it is necessary to have
checked the “Require Trusted Host Entry” field in the AE Services
Management Console pages. It is critical to the security model that the
identity of the application machine be validated and that they are considered
a trusted host in order to suspend otherwise required user authentication /
authorization administration.

It is also important to note that in order for DMCC to properly authenticate the
application machine, that application must have been provisioned with a
certificate and associated private key that identify that machine. The
machine’s identity can be provided in either the Common Name field or the
Subject Alternative Name (SAN) field. DNS and IP Address SAN types are
accepted. The provided certificate must have been signed by a certificate
authority (CA) that has been provisioned in AE Services as being a trusted
CA.

142

Note that, for AE Services 6.3.3 and later, the AE services Management
Console web pages also contain provisions for certificate authentication on
the Communication Manager interface, as well as the client interface. For
more information on certificate authentication for both interfaces, see the “AE
Services Administration & Maintenance” document and the “AE Services
White Paper on Security” (available for download on the Avaya Support site)
for more information.

User Authentication Policies

The User Authentication policy setting allows an administrator to specify
whether or not user-level authentication is required for sessions originating
from the application machine. If the administrator disables user-level
authentication, the far end machine can still supply a username through the
normal mechanisms, but the password will be ignored. This allows the
application machine to assert a user identity that could still be used for
authorization purposes. In order to assert a user identity, the application
machine should have somehow authenticated the user.

User Authorization Policies

There are three different authorization policies that can be applied: SDB,
Enterprise Directory, and Unrestricted Access.

SDB

This authorization policy states that the AE Services Security Database (SDB)
shall be used for authorization. When this policy is applied, DMCC applies
SDB-based authorization exactly as it did in previous releases of AE Services.

AE Services can optionally enforce an authorization policy as specified in the
Security Database (SDB) to ensure that only authorized users can monitor and
control a given device.

The SDB allows an administrator to give a user control of a specific device or
list of devices. An administrator can also allow a user to monitor/control any
device by granting them "Unrestricted Access". The administrator can also
disable the SDB entirely, which turns off all authorization enforcement and
allows any user to monitor or control any device. See the Avaya Aura® AE
Services Administration and Maintenance Guide for more information about
SDB administration.

For AE Services with Communication Manager 5.1 or later, the client
application does not have to know the extension password to register a device,
provided the following is true:

• The DeviceID contains the administered switch name associated with a
valid switch connection to Communication Manager

• The switch connection to the Communication Manager is active and
talking

• The SDB on the AE Services server is enabled

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 143

• The CTI user has “Unrestricted Access” in the SDB. (A CTI user can be
administered for "Unrestricted Access" via the "Edit CTI User" web page
on the AE Services Management Console.)

• The extension’s class of restriction (COR) on the Communication
manager has:

o “Can Be Service Observed” set to “y”

o “Can Be a Service Observer” set to “y”

A CTI user can be administered for "Unrestricted Access" via the "Edit CTI
User" web page on the AE Services Management Console.

Note that if the “Enabled SDB for DMCC Service” is not checked on the
“Security Database -> Control” page, no authorization enforcement will occur
even if an SDB authorization policy has been specified for a given host.

Enterprise Directory

This authorization policy states that an LDAP enterprise directory shall be
used for authorization. This authorization mechanism leverages the
“Enterprise Directory” OAM page. In addition to specifying basic connection
parameters, this page contains the following fields that are critical to this
authorization method:

• Search Filter Attribute Name: This indicates the attribute name in the
user record that corresponds to username. DMCC will attempt to match
a username to the contents of this attribute. An example is “SAM-
Account-Name” in Windows Active Directory.

• Device ID Attribute: This indicates the attribute name in the user record
that corresponds to the device ID to be authorized for the user. A
primary example here would be an attribute such as “Phone Number”
that contains a provisioned E.164 number for users.

When this authorization mechanism is selected, DMCC will use LDAP to
query the user record for the provisioned Device ID (e.g. Phone Number) and
will cache the retrieved Device ID. When DMCC attempts to authorize a
request, it will verify that the Device ID retrieved from the user record is a
substring of the Device ID specified in the request. This allows per-user
authorization without per-user provisioning on AE SERVICES. The substring
match accounts for a very common scenario where a Tel URI is specified in
the request (e.g. tel:+13035381234) but the user record contains an E.164
number (+13035381234) or extension (5381234).

Unrestricted Access

This authorization policy states that DMCC shall not apply any authorization
checks to sessions originating from the specified host. This allows the
administrator to give a specific application unrestricted access to all devices
without provisioning a “user” for that application.

144

AA policy use cases

The following are some use cases that illustrate the value in AA policy
provisioning.

Server based applications without enterprise user identities

In many cases for server based applications that are not associated with an
enterprise user identity, provisioning a user for the application is rather
artificial. It makes more sense to authenticate the machine instead of using
PKI. Certificate based authentication is generally accepted as being far more
secure than username / password based authentication. In general, this type
of application would have access to a large number of devices on
Communication Manager, and would therefore be given unrestricted access
to all devices.

This scenario is supported in releases prior to 5.2 by provisioning a “user” for
the application in AE Services User Management, and then either the SDB
would have to be disabled or that user would have to be granted unrestricted
access in the SDB.

In release 5.2, the administrator is not required to provision a user at all for
this scenario. Instead the administrator can provision a User Authentication
policy of “Not Required” and a User Authorization policy of “Unrestricted
Access” for the application host. The username and password supplied by
the application to DMCC are completely ignored in this case. The SDB or
Enterprise Directory can still be used to authorize other users / applications
but would not be used for this particular application.

Enterprise user based applications where user controls only their own
telephone

Many “personal productivity” applications are directly associated with an
enterprise user that wishes to monitor / control their telephone / softphone
through a DMCC-based application. In such scenarios it is desirable to
ensure that the user can only monitor / control their own Device ID, but it is
not desirable to add every enterprise user to the SDB in order to perform this
authorization.

An administrator can now authorize such requests against the provisioned
Phone Number / Extension in the LDAP enabled Enterprise Directory (e.g.,
Active Directory or Domino). For example, if a user has a provisioned E.164
Phone Number of +13035381234 and DMCC retrieves a request with a Tel
URI type Device ID of tel:+13035381234, it would perform a substring match
and authorize this request.

Two authentication mechanisms could be used in order to enable this
scenario without the need to add users to the AE Services User Management
database. For both of these mechanisms, an administrator would choose a
User Authorization policy of “Enterprise Directory”.

• User Authentication Required. With this mechanism, AE Services would
still be responsible for authenticating the username / password supplied
by the application, but the administrator would ensure that this

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 145

authentication would not use the internal User Management database.
Instead the authentication would be performed against the enterprise
directory using the provisioned Enterprise Directory configuration, or
would be performed using Kerberos as specified in the Avaya Aura® AE
Services Administration and Maintenance guide.

• User Authentication Not Required: With this mechanism, DMCC trusts
the application to have properly authenticated the user, and allows the
application to assert a user identity. This sort of mechanism would make
sense for a web app where the user has already authenticated with the
web app and AE Services has been provisioned to trust the web app
host with respect to user identity.

IPv6 Support

Network layer Internet Protocol version 6 (IPv6) increases the IP address
field from 32 bits wide to 128 bits, allowing a greater number of addressable
nodes (among other improvements). With the internet migrating to IPv6
addressing, AE Services support for it will ensure Application Enablement
Services’ compatibility with the new Internet Protocol.

Thus, in release 6.1 of Application Enablement Services, support for IPv6
networks has been added. This includes:

• Support for “pure” IPv6 networks

• Support for mixed IPv4 & IPv6 networks

IPv6 addresses are normally written as eight groups of four hexadecimal
digits. There are 3 defined forms for representing IPv6 addresses as text
strings:

1. The preferred form is x:x:x:x:x:x:x:x, where the 'x's are one to four
hexadecimal digits of the eight 16-bit pieces of the address.
Examples include:

• ABCD:EF01:2345:6789:ABCD:EF01:2345:6789

• 2001:DB8:0:0:8:800:200C:417A

2. It may be common for addresses to contain long strings of zeroes.
In order to make writing addresses containing zero bits easier, a
special syntax is available to compress the zeros. The use of "::"
indicates one or more groups of 16 bits of zeros. The "::" can only
appear once in an address. The "::" can also be used to compress
leading or trailing zeros in an address. For example, the following
addresses:

• 2001:DB8:0:0:8:800:200C:417A a unicast address

• FF01:0:0:0:0:0:0:101 a multicast address

• 0:0:0:0:0:0:0:1 the loopback address

• 0:0:0:0:0:0:0:0 the unspecified (wildcard) address

146

 may be represented as:

• 2001:DB8::8:800:200C:417A a unicast address

• FF01::101 a multicast address

• ::1 the loopback address

• :: the unspecified (wildcard) address

3. An alternative form that may be convenient when dealing with a
mixed environment of IPv4 and IPv6 nodes is ::FFFF:d.d.d.d,
where the 'd's are the decimal values of the four low-order 8-bit
pieces of the address (standard IPv4 representation). Examples
include:

• 0:0:0:0:0:FFFF:13.1.68.3

• 0:0:0:0:0:FFFF:129.144.52.38

 which are compressed to:

• ::FFFF:13.1.68.3

• ::FFFF:129.144.52.38

This form, also known as an “IPv4-mapped address”, is not commonly
used at the user application layer. There are security concerns
associated with this form, and several Microsoft Windows
implementations do not support it. To address these concerns and
limitations, the network stacks specifically require either an IPv4 address
or an IPv6 address. Thus, the use of this form in Application Enablement
Services is discouraged.

To use a literal IPv6 address in a URL, the literal address should be enclosed
in “[“ and “]” characters. For example the literal IPv6 address
“1080:0:0:0:8:800:200C:417A” would be represented as:
“[1080:0:0:0:8:800:200C:417A]”. This notation allows parsing a URL with no
confusion between the IPv6 address and port number. For example:

https://[2001:0db8:85a3:08d3:1319:8a2e:0370:7344]:443/index.html

Sun Java version 1.4 and later releases are IPv6-enabled with the extending
of the InetAddress class to the Inet6Address and Inet4Address classes. The
JVM determines whether to use Inet4Address or Inet6Address automatically
which is transparent to the developer. For example:

InetAddress ip = InetAddress.getByName(“java.sun.com”); or:

InetAddress ip = InetAddress.getByName(“135.9.30.40”); or:

InetAddress ip = InetAddress.getByName(“2001:db8::1428:57ab”); then:

Socket s = new Socket(ip, 80);

 Chapter 3: Writing a client application

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 147

Usage of IPv6 addresses in AE Services

IP addresses are prevalent throughout AE Services. For example, they can
be found in:

• AE Services Management Console web pages

• Switch Connections

• DMCC DeviceIDs

• Real Time Transport Protocol (RTP)

• Client applications

and for other uses within DMCC.

In fact, wherever an IPv4 address can be used in AE Services, an IPv6
address can now also be employed - assuming, of course, that it makes sense
for the target network topography. Thus, IPv6 addresses can be used for such
things as:

• The AE Server address, including:

o DMCC unsecured port (4721)

o DMCC secured port (4722)

o DMCC TR87 port (4723)

o AE Services Management Console web pages (443)

• Communication Manager addresses of various types, including:

o Processor Ethernet addreses

o Media Gateway addresses

o Media Processor addresses

• Client application addresses, including:

o The client server

o Endpoint RTP address (for client media mode)

Note that Communication Manager 6.0 or later is required for IPv6
connections between AE Services and CM. Also note that there is no official
support of IPv6 for the CLANs. Processor Ethernet connections to
Communication Manager should be used in IPv6 networks.

148

Mixed IPv4 and IPv6 networks

Beginning with AE Services 6.1 and Communication Manager 6.0, a dual
stack implementation will be provided that will allow AE Services to
communicate with CM using either IPv4 or IPv6. An IPv6 server on a dual-
stack host is capable of servicing both IPv4 clients and IPv6 clients. IPv4
clients send IPv4 datagrams to the server, and the server’s protocol stack
converts the client’s address into an IPv4-mapped IPv6 address. Similarly,
an IPv6 client on a dual-stack host can communicate with an IPv4 server.
The client’s resolver returns an IPv4-mapped IPv6 address for the server.
When the client calls connect() for one of these addresses, the dual stack
sends an IPv4 SYN segment.

Both IPv4 and IPv6 address formats may be used on a single AE Services
installation. For example, if multiple switch connections are administered, the
PE IP addresses for one switch connection may be in IPv4 format, while the
PE IP addresses for another switch connection may be in IPv6 format. It is
the administrator’s responsibility to enter the correct IP address for each
entity.

Note that, when working within a mixed network that includes both IPv4 and
IPv6 subnets, it is your responsibility to ensure that the network infrastructure
(routers, Ethernet switches, etc.) is capable of handling IPv4 and/or IPv6
traffic as needed.

 Chapter 4: High Availability

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 149

Chapter 4: High AvailabilityChapter 4: High AvailabilityChapter 4: High AvailabilityChapter 4: High Availability
AE Services 5.2 introduced a number of High Availability feature
enhancements to the platform. One of these feature enhancements is the
AE Services 5.2 DMCC Service Recovery feature.

In AE Services 6.1, another High Availability feature was added to provide
better support of Avaya Aura Communication Manager failover strategies –
particularly, failover to an Enterprise Survivable Server (ESS) and/or to a
Local Survivable Processor (LSP).

In AE Services 6.2, another enhancement offers faster and smoother
recovery whenever AE Services fails over to the standby server of a System
Platform High Availability configuration.

In AE Services 6.3.1, the Geo redundant High Availability (GRHA) feature set
was introduced. This GRHA feature allows the active and standby AE
Services Servers to be in two different data-centers separated by a
LAN/WAN

Note: for AE Services 7.0, the FRHA and MPHA features have been
dropped.

This chapter describes all of the High Availability features now available with
AE Services:

• Error! Reference source not found. Offer

• AE Services Geo-Redundant High Availability

• DMCC Service Recovery

• DMCC Support of ESS & LSP

• Programming Considerations for High Availability

Application Enablement Services Geo-Redundant High
Availability (GRHA)

The AE Services “Virtual Appliance on VMware” offers, with GRHA, form the
basis of the AE Services High Availability Failover feature. With the High
Availability feature, you can install two identical servers that can be addressed
and administered as a single entity. One server is active and provides service to
client applications, while the other server remains in standby mode, waiting to
take over should the active server fail. When the active server fails, the second
server quickly and automatically becomes available to client applications. Thus,
the High Availability feature is synonymous with the Automatic Failover of AE
Servers from the active server to the standby.

150

Note that this feature is only supported on the AE Services on VMware offer. It
is not supported on the AE Services Software-Only offer. Additionally, the
GRHA feature does not use, nor take advantage of, any of the inherent VMware
high-availability features and the GRHA feature is completely independent of
any VMware® HA implementation.

In the AE Services 6.3.1 release, Geo Redundant High Availability (GRHA) was
introduced as a HA option that allows the active and standby AE Services
servers to be in two different data-centers that are separated by a LAN/WAN,
provided that the maximum round trip network delay was within 100
milliseconds. This ensured that failures that affect the entire data-center (for
example, a power failure) can be minimized.

In AE Services 7.0, the GRHA feature has been enhanced to allow the active
and standby servers to be in the same data-center connected by a LAN - thus
mimicking the FRHA feature from previous AE Services releases.

A typical GRHA deployment might look like the following:

For the purposes of this discussion, the term “controlled” failover refers to a
failover requested by either an administrator or by software logic, when it
detects degradation in state of health of the current active server. The term
“uncontrolled” failover refers to a failover which occurs because the current
active server is not reachable from the current standby server.

When a controlled failover occurs, AE Services are turned off on the current
active server and are turned on for the new active (previously standby) server.
In the case of an “uncontrolled” failover, AE Services are started on new active
(previously standby) server. Depending on the “uncontrolled” failover reason,
the previous active could continue to be in an isolated network, or it could be in
shutdown state.

What does GRHA provide?

GRHA provides some very valuable features, such as:
� Protection against data-center failure

� Protection against network failure (if configured).

 LAN/WAN

Active
VMware
Platform

Active
AES
VM

Active
VMware
Platform

Standby
AES

Standby datacenter Active datacenter

GRHA

 Chapter 4: High Availability

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 151

� Preservation of provisioned and other configuration data. The data

provisioned via the AE Services Management Console, and other

means, is copied from the active server to the standby. After a

failover, the new active server will have the same provisioning data as

before.

� The need for only one set of AE Services licenses, for both AE

Services servers (active and standby).

� The AE Services server on each datacenter can be in different

networks or subnets.

� A virtual IP address that can be used to automatically point to

whichever GRHA AE Services server is active. This assumes that

the virtual IP address can span both data-centers – for example,

when both data-centers are part of an extended layer-2 network.

� GRHA utilizes very little CPU resources, and therefore does not

impact AE Services server capacities. However, note that MPHA

does have an impact on AE Services server capacities and MPHA is

only recommended for the GRHA offer - to provide hardware

protection.

� Three levels of GRHA licenses are available: SMALL, MEDIUM and

LARGE. Please refer to the Avaya Aura® Application Enablement

Services Administration and Maintenance Guide, section

“Administering the Geo Redundant High Availability feature” for more

information.

� When the virtual IP address is used to connect to the AE Services

servers, AE Services may be able to preserve or reconstruct the

following DMCC objects:

� Sessions

� DeviceIDs

� Device and Call Monitors

� Device Registrations

� System Registrations

� Recording Warning Tones

What does GRHA not provide?

Note that, for this release, GRHA does not provide the following:

Preservation of the current state of the system (if the virtual IP address is not used

for both client-side and Communication Manager connections). After a GRHA failover
has occurred, and once the application has connected to the new active AE
Server, the application must re-establish any:

o Sessions

152

o DeviceIDs
o Device and Call Monitors
o Device Registrations
o Recording Warning Tones

• Protection against AE Services software failures. However, DMCC
Service Recovery (discussed in the next section) does recover from
software failure.

• Service on IPv6 networks. Currently, GRHA is only supported on IPv4
networks.

Effect of controlled/uncontrolled failover on AE Services clients

For this release, AE Services clients must have the ability to connect to two AE
Services IP addresses. When failover occurs, the client application must detect
a session (or socket) drop. Then, it should attempt to get service from the same
AE Server for a couple of times. If the session cannot be reestablished, it
should then try the “other” AE Services server IP address to get service.
If the client connects using a new session, it must re-establish all deviceIDs
and, monitors, as well as re-register all the endpoints as if AE Services server
came out of a reboot.
The time it takes for the client to start receiving service would depend on the
total time associated with following activities:

• Time taken by the standby AE Server to detect failure. This depends on

the administered “failure detection” interval, and applies only in case of

uncontrolled failover. For controlled failover this time is close to 0.

• Time it takes for AE Services to be activated on the new active server.

Currently, this time is approximately 1 minute.

• Time it takes for the client application to connect to the new AE Server

and to recreate all of its devices, monitors and registrations.

DMCC Service Recovery

DMCC Service Recovery is an implementation within the DMCC subsystem
of AE Services. It is a software feature designed to recover one or more
DMCC devices’ previous states, following a software fault (or shutdown) that
does not allow the DMCC Java Virtual Machine (JVM) to exit normally. The
recovery procedure attempts to re-create the state of the DMCC service prior
to the fault. It does this by reading from a persisted store that contains
selected state information for each DMCC session, device, monitors and
registration. The DMCC Service Recovery feature was introduced for AE
Services 5.2 and is available on all AE Services offers. Note that on a single
server, the feature will not guard against a hardware failure, but it will allow
your application to retrieve its state when a software failure leads to a restart
of the DMCC service.

 Chapter 4: High Availability

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 153

Note: In order to recover DMCC registrations, the device(s) must be
registered using the Communication Manager Time-to-Service (TTS) feature
for TCP socket registration. This does not affect the way that the client
application registers the device(s) via the AE Services server. However, the
Time-to-Service feature must be enabled for the appropriate “IP network
region” on Communication Manager, otherwise DMCC will not be able to
perform a service recovery of the device registration(s. For more information
on enabling the Time-to-Service feature, see the “AE Services Administration
Guide”.

Note: Service requests, responses and events currently being processed
may be lost during recovery/failover.

Why is DMCC Service Recovery needed?

DMCC Service Recovery increases the availability of the DMCC Service to a
client application. This is achieved by reducing the time needed to
reconstruct runtime state information within DMCC, following a JVM restart.
Also, since the reconstruction is done automatically, it relieves the client
application of the responsibility of reconstructing the state. Finally, it reduces
the traffic between the client application and DMCC service when recovery
actions are needed.

When is DMCC Service Recovery used?

The DMCC Service goes through its life cycle management steps whenever
its Java Virtual Machine (JVM) platform is restarted. The initialization step of
life cycle management is responsible for using the DMCC Service Recovery
feature. The JVM may be restarted due to:

• An unrecoverable software error condition.

• An administrator initiated restart of AE Services.

• A failover operation from one AE Services Virtual Machine (AES VM)
to another one if GRHA is configured.

How does DMCC Service Recovery work?

As usual, a session is created for a client application when it is authenticated
by the DMCC service. Information about the session is added to persistent
storage before the StartApplicationSession response is sent to the client.
This persisted information is used to reconstruct the session in the event of a
JVM restart. Similarly, the session information is removed from persistent
storage when a StopApplicationSession request or an administrator request
or a session cleaned up event is processed by the DMCC service.

154

Similarly for DMCC Device Services, (as usual) a device is created for a
client when a GetDeviceID request is processed by the DMCC service. The
device information is added to persistent storage before the response is sent
to the client. This persisted information is used to reconstruct the deviceID in
the event of a JVM restart. Again, the device information is removed from
persistent storage when a ReleaseDeviceID request or an administrator
request or a session cleaned up event is processed by the DMCC service.

Again, (as usual) a monitor is created for a client when a MonitorStart
request is processed by the DMCC service, and a ChangeMonitorFilter
request changes the filter configuration of the monitor.

The monitor information is added to persistent storage before the response is
sent to the client, and removed from persistent storage when a MonitorStop
request or a session cleaned up event is processed by the DMCC service.

Finally, (as usual) a registration is created for an endpoint (extension) when a
RegisterTerminal request is processed by the DMCC service. Again the
registration information is added to persistent storage before the response is
sent to the client, and the registration information is removed from persistent
storage when an UnregisterTerminal request or a session cleaned up event
is processed by the DMCC service.

Following a DMCC JVM restart, the initialization of DMCC follows the same
order of precedence as for the original creation of the session etc. In other
words, when DMCC is restarted, it will read any state information available in
the persistent store. Then, it will proceed to recover the runtime state, from
this persisted data, by reconstructing its internal data objects, and thus
reproducing the previous state that the client applications were aware of. The
recovered session data is applied first, followed by device data, and then
concurrently for monitor and registration data.

To a client application, a DMCC JVM restart should manifest itself as a
temporary outage of the connection between the client and the AE Server.
Thus, on detecting such an outage, the client application should attempt to
re-establish the connection and its associated DMCC session(s).

NOTE: In order to recover DMCC registrations, the device(s) must be
registered using the Time-to-Service (TTS) feature of Communication
Manager. This feature must be enabled for the appropriate “IP network
region” on Communication Manager, or DMCC recovery of the device
registration(s) will not be possible. For more information on enabling the
Time-to-Service feature, see the “AE Services Administration Guide”.

How does DMCC Service Recovery differ from releases prior to AE
Services 5.2?

Note that the DMCC Service Recovery subsystem may cause the AE
Services server to act a little differently to previous releases. The following is
a list of points to keep in mind when dealing with AE Services 6.1

 Chapter 4: High Availability

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 155

• The DMCC Service recovery time will vary depending on the number
of call control service monitors and H.323 registrations that need to be
recovered. This is because such recovery actions require
asynchronous protocol messaging to the Communication Manager
across an IP network.

• A recovered session that is not re-established by the client application
will be released:

o Immediately if the cleanup timeout value equals 0 mins.

o After 5 minutes if the cleanup timeout value is less than 5 mins.

o After the cleanup timeout expires if it is more than 5 mins.

• There is no event to indicate that DMCC service recovery has
completed. However, there are events to indicate that a registration or
a monitor was lost during recovery. In contrast, the loss of a session
will be detected when an attempt to re-establish it fails. Similarly, the
loss of a device will be detected when a device based API service
request fails. Note that, for the AE Services GRHA failover may take
more than 1 minute and so, any session re-establishment failures
within this interval will not be valid.

• In general, a recovered session can be re-established before the
reconstruction of its associated runtime state is completed. This can
lead to undesirable behavior, if the client application assumes that all
reconstruction was completed. A client application may explicitly
determine whether a given resource is ready to be used, through the
existing API methods GetSessionIdList, GetDeviceIdList,
GetMonitorList and GetRegistrationState. It can implicitly determine
readiness of a resource from the responses to other API service
requests.

• Only Time-to-Service (TTS) H.323 registrations can be recovered by
the DMCC service. The client application is responsible for recovering
(that is re-registering) all non-TTS registrations.

• DMCC Service Recovery will not preserve an “in-progress” server-
media recording or playback of a “wav” file. However, following the
successful recovery of the device registration(s) after a fault, a new
recording or playback may be started on the device(s).

How does Time-to-Service Support differ from releases prior to AE
Services 5.2?

Note that the DMCC Service Recovery subsystem relies on the Time-to-Service
feature of Communication Manager to allow the recovery of device registrations.
Some side-effects of TTS registration may include:

• The RAS keep-alive messages between the AE Server and
Communication Manager, for each device registration, are much less
frequent. Instead of occurring every minute (as for non-TTS
registrations), the keep-alive messages will be sent only every 7
hours, under some conditions.

156

• The Q931 signaling channel between the AE Server and
Communication Manager, for each device registration, may be torn
down by Communication Manager, and re-established when needed.
If a client application makes a request that requires the Q931 signaling
channel (e.g. an off-hook or on-hook request), there may be a slight
delay (usually milliseconds) while the signaling channel is re-
established.

• The client application makes a request that requires the Q931
signalling channel (e.g. on on-hook or off-hook request), there may be
a slight delay (usually milliseconds) while the signalling channel is re-
established.

DMCC Support of ESS & LSP

This feature is available on all AE Services offers (VMWare and Software-
Only). Note that it does not guard against a failover of the AE Server itself;
instead, it guards against the possibly unfortunate consequences of a failover
of the Communication Manager Server.

Like “DMCC Service Recovery”, DMCC ESS & LSP Support is a software
feature designed to recover one or more DMCC devices’ previous states,
following a software fault (or shutdown) that causes the Communication
Manager to failover to an Enterprise Survivable Server (ESS) or to a Local
Survivable Processor (LSP). The recovery attempts to restore the registration
state of the DMCC stations prior to the fault.

Why is ESS & LSP support needed?

Prior to AE Services 6.1, the failover of Communication Manager from the
Main to an ESS or an LSP would result in all previously registered DMCC
stations becoming unregistered. The client application would receive an
UnregisterTerminalEvent for each station, with an indication that connection
to the CM had been lost - but no further information was included. It was then
up to the application to attempt to re-register with the Main and, if that failed,
to re-register with an ESS or LSP. The application would need to know the IP
addresses of the CLANs or Processor Ethernet connections to each ESS
and LSP, since registration to anything other than the Main, using the
switchName, was not possible.

What has changed?

In AE Services 6.1, this situation has been greatly improved. If ESS/LSP
support has been properly administered, then:

• A failover of CM from Main to ESS or LSP will be detected by the AE
Services Transport server. This information will be automatically
passed on to DMCC.

 Chapter 4: High Availability

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 157

• DMCC will then unregister the stations from that particular Main, and
re-register them with the appropriate ESS or LSP node. This is done
automatically by DMCC, and no intervention from the client application
is required.

• If the re-registration is successful, it is completely transparent to the
client application. If a re-registration fails (for any reason), then the
client application will receive a normal UnregisterTerminalEvent for
that station.

• Similarly, a switch from the ESS or LSP back to the Main CM will be
detected by the AE Services Transport server, and DMCC will be
informed. Note that this switch back to Main can be administered to
be either automatic or controlled.

• Again, DMCC will then unregister the stations from that particular ESS
or LSP node, and re-register them with Main. This is done
automatically by DMCC, and no intervention from the client application
is required. The re-registration is completely transparent to the client
application, unless a failure occurs.

Note that, in all cases in which a re-registration must be performed, any
active call on the device will be terminated.

How is ESS & LSP support administered?

In AE Services 6.1, the user has the option of administering a survivability
hierarchy for each “Switch Connection”, via the AE Services MANAGEMENT
CONSOLE web pages. The AE Services Transport server will manage all of
the connections to the ESS and LSP nodes (as well as to the Main).

From the “Switch Connections” page, the user can still specify the IP
address(es) of the Processor Ethernet or the CLANs used by the Main
Communication Manager server (as previously in AE Services 5.2).
However, additionally, the user may specify:

• a list of ESS and/or LSP nodes, including their Processor Ethernet IP
addresses.

• a priority order/hierarchy for the nodes.

This list and its hierarchy will be used by the AE Services Transport server
(in conjunction with the Communication Manager nodes themselves) to
determine which Switch Connection is active, at any given time, and (hence)
which nodes are providing service.

Programming Considerations for High Availability

As mentioned earlier, an AE Services failover to a standby server or a
DMCC JVM restart on the same server should manifest itself as a temporary
outage of the connection between the client and the AE Server.

158

The duration of the outage depends on a number of factors:

• the type of failover

• the number of DMCC sessions currently established

• the number of DeviceIDs currently in use

• the number of devices currently registered

• the number of device and/or call monitors currently in use

Typically, the outage can last anywhere from a few seconds to several
minutes depending on the factors mentioned above. In the case of a
failover using MPHA, the event may be completely transparent to the client
applications.

On detecting such an outage, the client application should attempt to re-
establish the connection and its associated DMCC session(s). See the
section on Recovery for more information.

The DMCC Dashboard can be used to simulate session recovery and
failover by unchecking the “Auto Cleanup” checkbox at the top of the Main
dashboard screen.

 Chapter 5: Debugging

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 159

Chapter 5: Chapter 5: Chapter 5: Chapter 5: DebuggingDebuggingDebuggingDebugging
This chapter describes:

• Common negative acknowledgements

• Possible race conditions

• Improving performance

• TLS Connection Error

• For AE Services 6.3.x clients or older, an error may occur when trying
to establish a secure TLS connection to the AE Services 7.0.1 server
in which the TLS 1.2 protocol is enabled by default. In order to achieve
a more secure client/server socket connection, we encourage current
client applications based on the XML SDK to upgrade their TLS client
implementation to support TLS 1.2. If upgrading the TLS client is not a
viable option TLS 1.0 can be enabled via the AE Services
Management Console interface (under Networking->TCP/TLS
Settings).

• Getting support

In debugging your application, you will rely on:

1. Negative Acknowledgements that your application received and logs.
See Receiving negative acknowledgements.

2. Server-side logs found at /var/log/avaya/aes. See the Avaya Aura®
Application Enablement Services Administration and Maintenance Guide
guide to learn more about the server’s logs.

Client applications receive negative acknowledgements when errors occur.
Debugging is highly dependent on viewing the server logs to get more
detailed information about what went wrong. Appendix C: Server Logging
contains more information.

The CSTA standard allows the ability to define some private, proprietary
negative acknowledgements. In most cases the AE Services platform
attempts to utilize the negative acknowledgements specified in the CSTA
standard. However, there is not always a perfect match so we have created
private ones. There are only a few so far which can be found in avaya-
error.xsd.

The remainder of this chapter describes:

o Common negative acknowledgements

o Possible race conditions

o Improving performance

o Getting support

160

Common negative acknowledgements

Common negative acknowledgements that you may encounter are listed
below along with their potential solutions:

Table 33: Common negative acknowledgements

Negative Acknowledgement Potential cause and solution

<CSTAErrorCode>

 <privateErrorCode>

 castorException

 </privateErrorCode>

</CSTAErrorCode>

This typically means there was a problem on
the server when attempting to parse the
XML the client sent to the server. It is
recommended that you double check the
sent XML to verify it is valid.

<CSTAErrorCode>

 <privateErrorCode>

 validationError

 </privateErrorCode>

</CSTAErrorCode>

This likely means the server was unable to
unmarshal the XML sent to it from the client
application. This could be because of a
missing required attribute. Double check the
sent XML to verify it is valid.

<CSTAErrorCode>

 <privateErrorCode>

 invalidSessionID

 </privateErrorCode>

</CSTAErrorCode>

The sessionID given by the application is
not valid or not known by the server. This
could mean that the session has timed out
or was placed in an inactive state. It is
possible that the session could be recovered
by sending a StartApplicationSession
message with the SessionID as outlined in
Recovering a Session using StartApplication
Session

<CSTAErrorCode>

 <privateErrorCode>

 sessionTimerExpired

 </privateErrorCode>

</CSTAErrorCode>

The session terminated due to the session
timing out.

<CSTAErrorCode>

 <privateErrorCode>

 resourceLimitation

 </privateErrorCode>

</CSTAErrorCode>

The session terminated due to a resource
constraint.

 Chapter 5: Debugging

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 161

Table 33: Common negative acknowledgements

<CSTAErrorCode>

 <privateErrorCode>

 sessionCleanedUpByAdmin

 </privateErrorCode>

</CSTAErrorCode>

The session was manually terminated by an
administrative user via the AE SERVICES
Management Console.

<CSTAErrorCode>

 <operation>

invalidConnectionIdentifier

 </operation>

</CSTAErrorCode>

Device specified in the Voice Unit Services

PlayMessage or RecordMessage request is
unregistered. It may have been
automatically unregistered due to a loss of
communication with Communication
Manager. Check the health of
Communication Manager and the network
and then try again.

<CSTAErrorCode>

 <stateIncompatibility>

 notAbleToPlay

 </ stateIncompatibility >

</CSTAErrorCode>

Two different threads of the application may
be trying to play messages to the same
device at the same time. Modify the
application so that this does not occur.

<CSTAErrorCode>

 unspecifiedError

</CSTAErrorCode>

When one of these is sent to the client then
it is best to look at the server logs in order to
determine what the problem is.

<CSTAErrorCode>

 <operation>

 generic

 </operation>

</CSTAErrorCode>

Error codes like this or similar where the
error value is “generic” are the result of
there not being a very good mapping of the
server’s internal problem to the CSTA
negative acknowledgement specification.
Typically there was an error message
attached to the negative acknowledgement
on the server that could not be sent over to
the client. Look at the server logs in order to
view the error message.

Possible race conditions

You should be aware of some scenarios in which two different threads may
be acting in opposition to one another, against a single device. Some known
race conditions are described below:

162

o When AE Services detects through its “keep-alive” mechanism that it can
no longer communicate with a Communication Manager C-LAN (CLAN)
or processor C-LAN (PROCR) that has devices registered to it (possibly
due to a network failure or congestion), AE Services automatically
unregisters the devices; any media sessions for those devices are
cleaned up; and an UnregisterEvent is sent to all the applications that
requested to be notified of these events. If, at the same time, an
application is in the middle of sending a media request to play a file, start
tone detection, or start recording on one of those automatically
unregistered devices, a negative acknowledgement is sent indicating that
the media session is unavailable.

o If one thread is actively playing a message to a device and a second
thread attempts to play a message to the same device, the second
thread will receive a NotAbleToPlayException.

o If an application simultaneously uses both of the following:

o Voice Unit Services to request that playing or recording terminate
when a specified DTMF digit is detected

o Tone Detection Services or Tone Collection Services to listen for
DTMF tones

there is no guarantee of which of the following occurs first when the
termination digit is received:

o the Voice Unit Services player/recorder terminates and a
StopEvent is generated.

o the Tone Detection Services/Tone Collection Services generates
a ToneDetectedEvent/TonesRetrievedEvent

If the application assumes the player or recorder has stopped playing/recording
when the ToneDetectedEvent/TonesRetrievedEvent is received and
requests another play/record request, a negative acknowledgement may be
received if the play/record is still in progress on that device. If the application
wants to be certain that the player/recorder is finished, it should wait for the
StopEvent before making another play/record request.

Improving performance

Many different factors can potentially affect the performance of your system.
The system has three main parts that may be affected:

• the AE Services server

• Communication Manager

• the network

An excessive load on any of these has the potential to slow down the overall
system. Here are other factors to check that also may affect your system
performance.

 Chapter 5: Debugging

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 163

On the AE Services server:

• Ensure that your AE Services server machine meets the minimum
requirements specified in the appropriate Avaya Aura® Application
Enablement Services Installation and Upgrade Guide for the offer you
have purchased (VMWare or software only).

• Avoid running any other applications on the AE Services server
machine.

• Check that the AE Services servers’ Linux operating system resources
are tuned correctly for your application needs. The server software
makes no assumptions concerning your application needs and
therefore does not tune the kernel for you. Refer to Linux
“Performance Tuning” chapter in the Deployment Guide found at

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5/

• Update the Linux kernel with the latest updates available.

On Communication Manager:

• Ensure that Communication Manager is properly configured for your
network and business needs. Misconfigured Communication Manager
elements can lead to performance issues.

On the network:

• Ensure that your network traffic is properly balanced. One way to do
this professionally is to ask Avaya to perform a network assessment.
There is also a VoIP Readiness Guide available from the Avaya
Support Centre (http://www.avaya.com/support). For more
information about improving the performance of your network, see the
“Network Quality and Management” section of Administration for
Network Connectivity for Avaya Communication Manager (555-233-
504).

TLS Connection Error

For AE Services 6.3.x clients or older, an error may occur when trying to
establish a secure TLS connection to the AE Services 7.0.1 server in which
the TLS 1.2 protocol is enabled by default. In order to achieve a more secure
client/server socket connection, we encourage current client applications
based on the XML SDK to upgrade their TLS client implementation to support
TLS 1.2. If upgrading the TLS client is not a viable option TLS 1.0 can be
enabled via the AE Services Management Console interface (under
Networking->TCP/TLS Settings).

164

Getting support

Development support is only available through Avaya's DevConnect Program
at this time. As an Innovator/Premier/Strategic level member of the
DevConnect Program, technical support questions can be answered through
the DevConnect Portal at www.avaya.com/devconnect.

As a Registered member of the program, support is not available. If you
require support as a Registered member, you can apply for a higher level of
membership that offers support and testing opportunities through the
DevConnect Portal. Membership at the Innovator/Premier/Strategic level is
not open to all companies. Avaya determines membership status above the
“Registered” level.

 Appendix A: Communication Manager Features

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 165

Appendix Appendix Appendix Appendix AAAA:::: Communication Manager Communication Manager Communication Manager Communication Manager
FeaturesFeaturesFeaturesFeatures

Here is a list of key features in Communication Manager that you may wish
to take advantage of in developing your applications. This is not an
exhaustive list - just a subset of features most likely to be used in
applications. For descriptions of these features, see any of the
Communication Manager administration guides.

• AAR/ARS Partitioning

• Abbreviated Dialing

• Abbreviated and Delayed Ringing

• Abbreviated Programming

• Administration Without Hardware

• Authorization Codes

• Automatic Alternate Routing (AAR)

• Automatic Call Distribution (ACD) Features

o Announcements

o Automatic Answering With Zip Tone

o Multiple Call Handling

o Service Observing

• Observe Digital Sets/IP Phones

• Observe Logical Agent IDs

• Automatic Call Distribution (ACD) Features:

o Basic Hunt Group Call

o Agents in Multiple Splits

o Agent Login/Out

o Display - Agent Terminal

• Automatic Callback (on Busy)

• Automatic Callback on Don’t Answer

• Automatic Route Selection (ARS)

• Bridged Call Appearance (single-line, multi-appearance)

o Hunt Group Redirect Coverage

166

o Multiple Coverage Paths

o Temporary Bridged Appearance

o Remove Temporary Bridged Appearance

• Call Coverage Features

o Call Coverage Consult with Conference/Transfer

• Call Coverage Features

o Consult

o Coverage Paths

o Send All Calls

o Temporary Bridged Appearance

• Call Forwarding / Busy Don’t Answer @ Call Vectoring

o VDN of Origin Announcements

• Call Forwarding by Service Observer

• Call Forwarding by Service Observed

• Call Forwarding Features:

o Call Forwarding All Calls

o Call Forwarding - Busy and Don’t Answer

o Call Forwarding - Don’t Answer

o Call Forwarding - Off Net

• Call Park

• Call Pickup

o Directed Call Pickup

o Remove Temporary Bridged Appearance

o Remove Auto-Intercom

• Call Vectoring:

o VDN of Origin Display

• Consult

• Coverage of Calls Redirected Off Net

• Drop (button operation)

• Group Paging

• Hold (single-line, multi-appearance)

• Hold - Automatic

 Appendix A: Communication Manager Features

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 167

• Hold (single-line, multi-appearance)

• Hold - Automatic [from IR1V4 WCC]

• Hunting/Hunt Groups

• IP Trunks

• Last Number Dialed

• Leave Word Calling - Switch

• Malicious Call Trace

• Message Waiting Indication

• Music-on-Hold Access

o Held Calls

o Conference-Terminal Calls

o Transferred Trunk Calls

• Personalized Ringing

• Personal Station Access

• Priority Calling

• Recorded Announcement

• Terminal Translation Initialization (TTI)

• Tone on Hold

• Transfer (single-line, multi-appearance)

• Voice Terminal Display

o Calling Number Display (SID/ANI/Extn ID)

o Called Number Display (internal & DCS)

o Stored Button Display

168

 Appendix Appendix Appendix Appendix BBBB: : : : Constant ValuesConstant ValuesConstant ValuesConstant Values
Here are tables describing the values for the XML message parameters
which take a constant value and that are switch specific. These values are
specific to Avaya’s Communication Manager switch. These include:

• Physical Device Constants

o Lamp Mode Constants

o Lamp Color Constants

o Button Function Constants

o Button ID Constants

o Ringer Pattern Constants

• Registration Constants

o Reason code constants for the RegisterFailedEvent and the
UnregisterEvent

o Reason code constants for the UnregisterEvent

o Reason code constants for the RegisterFailedEvent

Physical Device Constants

Table 34: Lamp Mode Constants

Lamp Mode Value

Broken Flutter 0

Flutter 1

Off 2

Steady 3

Wink 4

Inverted Wink 6

Flash 7

Inverted Flash 8

Table 35: Lamp Color Constants

Lamp Color Value

Red 1

Green 3

 Appendix B: Constant Values

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 169

Table 36: Button Function Constants

Button Function Value

Abbreviated Dial Program "67"

AD Special Character "68"

Analog Bridged Appearance "114"

Abbreviated Dial "65"

Button to force Abbreviated / Delayed Ring Transition "226"

Administered Connection alarm button "128"

ACA referral call activate button "77"

CDR Account Code Button "134"

Enter Terminal Self-Admin Mode "150"

ACD - After Call Work "91"

Move agent while staffed alert "225"

Alternate FRL button "162"

Incoming ANI Request (Russian trunks only) "146"

ACD - supervisor assist button "90"

SVN Auth Code Halt "214"

Attended group - number of queued calls "89"

Attended group - oldest time "88"

Audix One-Step Recording "301"

Automatic message waiting indication "70"

Auo call back "33"

Auto-dial ICOM "69"

ACD - Auto-In "92"

Automatic Wakeup entry mode "27"

Autodial button "227"

Bridged appearance of primary extension "73"

Button Ring Control entry mode "258"

Enhanced View Button "151"

Station busy indicator "39"

General call appearance, no aux data "6"

Call the displayed number "16"

170

Table 36: Button Function Constants

Button Function Value

Call forwarding button "74"

Park/Unpark button "45"

UM call pickup "34"

Call Timer "243"

Caller Information "141"

CAS (branch) back-up mode lamp "76"

SMDR primary printer alarm "106"

SMDR secondary printer alarm "117"

Call Forward/Busy Don't answer "84"

Check-in entry mode "29"

Check-out entry mode "28"

Clocked override-time of day routing "112"

Conference "2"

Display conference parties "325"

Consult/return "42"

Coverage LWC call back "17"

Coverage retrieve LWC message "12"

Per call CPN blocking activate "164"

Per call CPN unblocking activate "165"

Crisis Alert to Digital Station or Attendant. "247"

Data extension button "43"

TOD/DATE display mode "23"

Delete LWC message "14"

Autodial, aux is uid of destination "32"

DID remove entry mode "276"

DID view entry mode "256"

Directed call pickup "230"

Directory listing for name search "26"

Display Charge button "232"

NORMAL/LOCAL mode button "124"

 Appendix B: Constant Values

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 171

Table 36: Button Function Constants

Button Function Value

User do not disturb button "99"

Drop the last party on a conference call "1"

EC500 Feature plus timer "335"

Manual exclusion "41"

Do not disturb - ext. "95"

OPTIM Extend call "345"

Conf Select Far End Mute "328"

Flash button for station on CAS MAIN call OR a call using
Trunk Flash

"110"

Goto coverage button "36"

Do not disturb - grp. "96"

Group Paging button "135"

Headset in use "241"

Hold "4"

Hunt night service button "101"

Inspect display mode "21"

Internal Automatic Answer button "108"

Last number dialed "66"

License error "312"

Link alarm button "103"

SVN login security violation "144"

Cancel LWC "19"

Lockout LWC "18"

LWC store message "10"

Major alarm button "104"

Manual message waiting button "38"

Manual override-time of day routing "113"

ACD - Manual-In "93"

MCT: Malicious Call Trace Activate "160"

MCT: Malicious Call Trace Control "161"

172

Table 36: Button Function Constants

Button Function Value

International directory assistance - Mexico "246"

International CO operator - Mexico "229"

Major/Minor alarm button "82"

Message Waiting Indicator "5"

Multimedia Voice/Data activate/deactivate "169"

Multimedia Call Mode activate "167"

Multimedia Call Forward "244"

Multimedia Data Conference activate "168"

Multimedia Multi Address activate "170"

Multimedia PC-Audio activate "166"

MMI pack or port (video) alarm “132"

Principal retrieve LWC message "11"

Message notification on mode "97"

Message notification off mode "98"

Step through LWC message "13"

Night Activate "53"

No hold conference "337"

No Answer Alert button for Redirect On No Answer
(RONA) timeout for split.

"192"

Normal display mode "15"

Off-board DS1 board alarm button "126"

Personal CO line, aux is grp id "31"

SA8312 PAGE1 alarm "329"

SA8312 PAGE2 alarm "330"

PMS alarm button "105"

Posted messages "336"

Wakeup journal printer alarm "116"

PMS journal printer alarm "115"

BCMS printer link alarm button "120"

Priority calling button "81"

 Appendix B: Constant Values

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 173

Table 36: Button Function Constants

Button Function Value

Hunt group - number of queued calls "87"

Hunt group - oldest queued time "86"

ACD - Release "94"

Ringer status "259"

Ringer cut button for stations "80"

System reset alert "109"

SVN remote access security violation "145"

SCROLL mode button "125"

Send all calls button "35"

Terminating extension group SAC button "72"

Service observing button "85"

Share Talk “331”

Manual signalling "37"

SVN station security call activate button "231"

Station Lock "300"

Start Billing "257"

STORED-NUMBER display mode "22"

Single-Digit Stroke Counts "129"

Secondary extensions "40"

ELAPSED-TIME display mode "24"

Conf/Transfer Toggle Swap "327"

Transfer "3"

Facility acc test trunk access alert "121"

Trunk ID button "63"

Trunk name when DCS (also DCS CAS MN) "111"

Trunk night service button "102"

Add FBI to station "239"

Remove FBI from station "240"

UUI-info button "228"

VC pack or port (audio) alarm "133"

174

Table 36: Button Function Constants

Button Function Value

Busy verification button "75"

VIP check-in "277"

Reschedule VIP wakeup as regular wakeup "148"

Place VIP wakeup call "147"

VDN of Origin Annc. Repeat Button "208"

Engen fixed voice mail "326"

Vu-Stats Station Displays "211"

Warn alarm "107"

Activate Whisper Page "136"

Answerback for Whisper Page "137"

Whisper Page Off "138"

Multi-Digit Stroke Count "140"

Table 37: Button Id Constants for 4624, 6424, 8410D & 8434D phones

Button Id Value

Dial Pad 0 "0"

Dial Pad 1 "1"

Dial Pad 2 "2"

Dial Pad 3 "3"

Dial Pad 4 "4"

Dial Pad 5 "5"

Dial Pad 6 "6"

Dial Pad 7 "7"

Dial Pad 8 "8"

Dial Pad 9 "9’

Dial Pad * "10"

Dial Pad # "11"

Principal Module "256"

Redial button on IP phone sets "257"

Drop button on DCP phone sets "258"

 Appendix B: Constant Values

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 175

Table 37: Button Id Constants for 4624, 6424, 8410D & 8434D phones

Button Id Value

Conference button on IP/DCP phone sets "259"

Transfer button on IP/DCP phone sets. "260"

Hold button on IP/DCP phone sets. "261"

First call appearance button on IP/DCP phone sets. "263"

Second call appearance button on IP/DCP phone sets. "264"

Third call appearance button on IP/DCP phone sets. "265"

Button 4 on IP/DCP phone sets. "266"

Button 5 on IP/DCP phone sets. "267"

Button 6 on IP/DCP phone sets. "268"

Button 7 on IP/DCP phone sets. "269"

Button 8 on IP/DCP phone sets. "270"

Button 9 on IP/DCP phone sets. "271"

Button 10 on IP/DCP phone sets. "272"

Button 11 on IP/DCP phone sets. "273"

Button 12 on IP/DCP phone sets. "274"

Button 13 on IP/DCP phone sets. "275"

Button 14 on IP/DCP phone sets. "276"

Button 15 on IP/DCP phone sets. "277"

Button 16 on IP/DCP phone sets. "278"

Button 17 on IP/DCP phone sets. "279"

Button 18 on IP/DCP phone sets. "280"

Button 19 on IP/DCP phone sets. "281"

Button 20 on IP/DCP phone sets. "282"

Button 21on IP/DCP phone sets. "283"

Button 22 on IP/DCP phone sets. "284"

Button 23 on IP/DCP phone sets. "285"

Button 24 on IP/DCP phone sets. "286"

Feature Module "512"

Call Coverage Module "1024"

Display Module "768"

176

Table 37: Button Id Constants for 4624, 6424, 8410D & 8434D phones

Button Id Value

DTDM "1280"

DXS/BLF Module "1536"

Terminal Module (Type 2) "1792"

Menu Button on IP/DCP phone sets. "785"

Exit Button on IP/DCP phone sets. "782"

First Button on the first row on IP/DCP phone sets. "770"

Second Button on the first row on IP/DCP phone sets. "771"

Third Button on the first row on IP/DCP phone sets. "772"

Fourth Button on the first row on IP/DCP phone sets. "773

First Button on the second row on IP/DCP phone sets "774"

Second Button on the second row on IP/DCP phone sets "775"

Third Button on the second row on IP/DCP phone sets "776"

Fourth Button on the second row on IP/DCP phone sets "777"

First Button on the third row on IP/DCP phone sets "778"

Second Button on the third row on IP/DCP phone sets "779

Third Button on the third row on IP/DCP phone sets "780"

Fourth Button on the third row on IP/DCP phone sets "781"

Exit Button on DCP 8410D phone sets. "273"

First Button on the first row on DCP8410 phone sets. "274

Second Button on the first row on DCP8410 phone sets. "275"

Third Button on the first row on DCP8410 phone sets. "276"

Fourth Button on the first row on DCP8410 phone sets. "277"

First Button on the second row on DCP8410 phone sets. "278"

Second Button on the second row on DCP8410 phone
sets.

"279"

Third Button on the second row on DCP8410 phone sets. "280"

Fourth Button on the second row on DCP8410 phone sets. "281"

First Button on the third row on DCP8410 phone sets. "282

Second Button on the third row on DCP8410 phone sets. "283"

Third Button on the third row on DCP8410 phone sets. "284"

 Appendix B: Constant Values

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 177

Table 37: Button Id Constants for 4624, 6424, 8410D & 8434D phones

Button Id Value

Fourth Button on the third row on DCP8410 phone sets. "285"

Exit Button on DCP 8434D phone sets. "529"

First Button on the first row on DCP8434 phone sets. "530"

Second Button on the first row on DCP8434 phone sets. "531"

Third Button on the first row on DCP8434 phone sets. "532"

Fourth Button on the first row on DCP8434 phone sets. "533"

First Button on the second row on DCP8434 phone sets. "534"

Second Button on the second row on DCP8434 phone
sets.

"535"

Third Button on the second row on DCP8434 phone sets. "536"

Fourth Button on the second row on DCP8434 phone sets. "537"

First Button on the third row on DCP8434 phone sets. "538"

Second Button on the third row on DCP8434 phone sets. "539"

Third Button on the third row on DCP8434 phone sets. "540"

Fourth Button on the third row on DCP8434 phone sets. "541"

The previous table of Button ID Constants contains the most common buttons for the most
common sets. It is not meant to be an exhaustive list.

Table 38: Ringer Pattern Constants

Ring Pattern Value

Ringer Off 0

Manual Signal 1

Attendant Incoming Call 4

Attendant Held Call 5

Attendant Call Waiting 6

Attendant Emergency 7

Intercom 9

Standard Ring 11

DID/Attendant Ring 12

Priority Ring 13

Ring Ping 14

178

Registration Constants

Table 39: Registration Constants

Reason code constants for the
RegisterFailedEvent and the UnregisterEvent

Value

Unknown -1

Non-specific -2

Internal failure -3

Network timeout 1000

Table 40: Registration Constants

Reason code constants for the UnregisterEvent
only

Value

Client application requested unregistration. 2000

Lost connection to Communication Manager switch
unregistration.

2001

Administrator initiated unregistration via AE
Services Management Console.

2002

Table 41: Registration Constants

Reason code constants for the RegisterFailedEvent only Value

A bad password/DeviceID combination was sent in the register
request

3000

A non-existent extension on the switch was specified. 3001

The phone/extension is already registered with the switch and the
forceLogin option was set to false

3002

The limit of allowed CMAPI softphones has been reached 3003

The limit of allowed IP phones has been reached 3004

The license file indicates that no IP_API_A licenses have been
purchased

3005

The 911 registration parameters did not match the 911 settings of
the station on the switch

3006

The station administration for the specified extension is not valid for
softphone use

3007

The station administration for the specified extension set-type is not
valid for shared_control.

3008

The station administration for the specified extension is not valid for 3009

 Appendix B: Constant Values

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 179

Table 41: Registration Constants

Reason code constants for the RegisterFailedEvent only Value

shared_control_invalid access code

The station administration for the specified extension is not valid for
shared_control because the access code is incorrect

3010

The call is not present on the switch, but is present on the device 3011

The device is in the wrong state 3012

The device is an invalid terminal type 3013

Resources are unavailable for the registration – they are too busy or
have reached the limit

3014

Table 42: Registration Constants

Registration encryption constants for the
RegisterTerminalResponse

Value

The extension was registered over a signaling link using "PIN-EKE"
encryption.

"pin-eke"

The extension was registered over an unencrypted signaling link. "challenge
"

Table 43: Media Constants

Media Encryption constants for the MediaStartEvent Value

The media stream is encrypted using AES. The transmit and receive
keys, plus the payload type, are included in this MediaStartEvent.

"aes"

The media stream is unencrypted. "none
"

Table 44: Media Constants

Media Encoding constants Value

The G.711A codec "g711A"

The G.711u codec "g711U"

The G.729 codec "g729"

The G.729A codec "g729A"

The G.723 codec (client media only) "g723"

180

 Appendix C: Server Logging

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 181

Appendix Appendix Appendix Appendix CCCC: : : : Server LoggingServer LoggingServer LoggingServer Logging
If you want to increase the detail of the logging, you will want to change what
is getting logged to the dmcc-trace.log.* files. You will need to edit the
/opt/mvap/conf/dmcc-logging.properties file, replacing the text in
/opt/mvap/conf/dmcc-logging.properties with the text below.

The new logging levels/information can be enabled by one of the following:

• Restart AE Services as root user via command line interface:

[root@youraes ~]# /sbin/service aesvcs restart

• To enable the logging levels without service disruption, you may restart
the DmccMain JVM from command line as follows:

[root@youraes ~]# jps
3250 Bootstrap
3732 run.jar
3707 WrapperSimpleApp
5552 Jps
4119 SnmpAgent
3649 Main
3466 LcmMain
8035 DmccMain
[root@youraes ~]# kill -12 8035

The log files are located in the /var/log/avaya/aes directory.

MVAP Server Logging Configuration File

Global properties

Default global logging level.

This specifies which kinds of events are logged across

all loggers. For any given facility this global level

can be overridden by a facility specific level

Note that the ConsoleHandler also has a separate level

setting to limit messages printed to the console.

.level=FINE

handlers defines a whitespace separated list of class

names for handler classes to load and register as handlers

on the root Logger (the Logger named ""). Each class name

182

must be for a Handler class which has a default

constructor. Note that these Handlers may be created

lazily, when they are first used.

handlers=com.avaya.common.logger.ThreadedHandler
com.avaya.common.logger.ErrorFileHandler
com.avaya.common.logger.ApiFileHandler

com.avaya.common.logger.NistFileHandler

config defines a whitespace separated list of class names.

A new instance will be created for each named class. The

default constructor of each class may execute arbitrary

code to update the logging configuration, such as setting

logger levels, adding handlers, adding filters, etc.

#config=

configure com.avaya.common.logger.ThreadedHandler

com.avaya.common.logger.ThreadedHandler logs to its target

Handler asynchronously (on an independent thread),

preventing server threads from blocking for disk I/O

com.avaya.common.logger.ThreadedHandler.target=java.util.lo
gging.FileHandler

com.avaya.common.logger.ThreadedHandler.level=FINEST

configure java.util.logging.FileHandler

level specifies the default level for the Handler (defaults to Level.ALL).

filter specifies the name of a Filter class to use (defaults to no #Filter).

formatter specifies the name of a Formatter class to use (defaults to
#java.util.logging.XMLFormatter)

encoding the name of the character set encoding to use (defaults to the
default platform #encoding).

limit specifies an approximate maximum amount to write (in bytes) to any
one file. If this is #zero, then there is no limit. (Defaults to no limit).

count specifies how many output files to cycle through (defaults to 1).

pattern specifies a pattern for generating the output file name. (Defaults to
"%h/java%u.log").

 Appendix C: Server Logging

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 183

append specifies whether the FileHandler should append onto any existing
files (defaults to #false).

java.util.logging.FileHandler.level=FINEST

java.util.logging.FileHandler.pattern=../logs/dmcc-
trace.log

java.util.logging.FileHandler.limit=10485760

java.util.logging.FileHandler.count=20

java.util.logging.FileHandler.formatter=com.avaya.common.lo
gger.MillisecFormatter

configure com.avaya.common.logger.ErrorFileHandler

This handler contains code that uses a MemoryHandler that

pushes to a ThreadedHandler whose target is a FileHandler

with the pattern specified here. The level set here

is propagated through the entire Handler chain.

The result is a log containing detailed error pretext.

com.avaya.common.logger.ErrorFileHandler.level=WARNING

com.avaya.common.logger.ErrorFileHandler.pattern=../logs/mv
ap-error.log

configure java.util.logging.MemoryHandler

filter specifies the name of a Filter class to use (defaults to no Filter).

level specifies the level for the Handler (defaults to Level.ALL)

size defines the buffer size (defaults to 1000).

push defines the pushLevel (defaults to level.SEVERE).

target specifies the name of the target Handler class. (no default).

java.util.logging.MemoryHandler.level=FINEST

java.util.logging.MemoryHandler.size=1000

java.util.logging.MemoryHandler.push=WARNING

configure com.avaya.common.logger.ApiFileHandler

This handler is a ThreadedHandler whose target is a

FileHandler with the pattern specified here. The level set

184

here is propagated to the FileHandler. By default, this

Handler is configured with a filter to log all API calls.

filter specifies the name of a Filter class to use (defaults to no Filter).

com.avaya.common.logger.ApiFileHandler.level=FINE

com.avaya.common.logger.ApiFileHandler.pattern=../logs/mvap
-api.log

com.avaya.common.logger.ApiFileHandler.filter=com.avaya.com
mon.logger.RegExFilter

configure com.avaya.common.logger.RegExFilter

Filters LogRecords by matching their Logger name using the

regular expression specified in the pattern property.

com.avaya.common.logger.RegExFilter.pattern=^com\.avaya\.ap
i.*

Facility specific properties (extra control per logger)

#com.xyz.foo.level = SEVERE

sun.rmi.level = WARNING

com.avaya.platform.jmx.Mx4jXSLTProcessor.level = WARNING

configure com.avaya.common.logger.NistFileHandler
It is configured with a filter to log nist sip stack output.
NIST SIP Stack log level : FINEST, FINER, INFO, WARNING, OFF

com.avaya.common.logger.NistFileHandler.level=OFF

com.avaya.common.logger.NistFileHandler.pattern=/var/log/avaya/a
es/dmcc-nist.log

com.avaya.common.logger.NistFileHandler.filter=com.avaya.common.
logger.NistRegExFilter

com.avaya.common.logger.NistRegExFilter.pattern=^gov\.nist\.java
x\.sip\.stack\.ServerLog

com.avaya.common.logger.NistFileHandler.LOG_MESSAGE_CONTENT=true

Enable tracing of all XML messages into the dmcc-trace.log.* files

 Appendix C: Server Logging

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 185

com.avaya.mvcs.proxy.CstaMarshallerNode.level=FINEST

com.avaya.mvcs.proxy.CstaUnmarshallerNode.level=FINEST

186

Appendix Appendix Appendix Appendix DDDD: TSAPI Error Code Definitions: TSAPI Error Code Definitions: TSAPI Error Code Definitions: TSAPI Error Code Definitions
This appendix lists all of the values for the TSAPI error codes.

There are two major classes of TSAPI error codes:

• CSTA universal Failures

• ACS Universal Failures

CSTA Universal Failures

CSTA Universal Failures are error codes returned by
CSTAErrorCode:Unexpected CSTA error code. The following table lists the
definitions for the CSTA error codes. Consult the TSAPI Programmer’s Guide
found online on the Avaya Support Centre website (http://www.avaya.com/support).

for the definition of the numeric error code.

Table 45: CSTA Error Definitions

Error Numeric
Code

genericUnspecified 0

genericOperation 1

requestIncompatibleWithObject 2

valueOutOfRange 3

objectNotKnown 4

invalidCallingDevice 5

invalidCalledDevice 6

invalidForwardingDestination 7

privilegeViolationOnSpecifiedDevice 8

privilegeViolationOnCalledDevice 9

privilegeViolationOnCallingDevice 10

invalidCstaCallIdentifier 11

invalidCstaDeviceIdentifier 12

invalidCstaConnectionIdentifier 13

invalidDestination 14

invalidFeature 15

invalidAllocationState 16

 Appendix D: TSAPI Error Code Definitions

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 187

Table 45: CSTA Error Definitions

Error Numeric
Code

invalidCrossRefId 17

invalidObjectType 18

securityViolation 19

genericStateIncompatibility 21

invalidObjectState 22

invalidConnectionIdForActiveCall 23

noActiveCall 24

noHeldCall 25

noCallToClear 26

noConnectionToClear 27

noCallToAnswer 28

noCallToComplete 29

genericSystemResourceAvailability 31

serviceBusy 32

resourceBusy 33

resourceOutOfService 34

networkBusy 35

networkOutOfService 36

overallMonitorLimitExceeded 37

conferenceMemberLimitExceeded 38

genericSubscribedResourceAvailability 41

objectMonitorLimitExceeded 42

externalTrunkLimitExceeded 43

outstandingRequestLimitExceeded 44

genericPerformanceManagement 51

performanceLimitExceeded 52

unspecifiedSecurityError 60

sequenceNumberViolated 61

timeStampViolated 62

188

Table 45: CSTA Error Definitions

Error Numeric
Code

pacViolated 63

sealViolated 64

genericUnspecifiedRejection 70

genericOperationRejection 71

duplicateInvocationRejection 72

unrecognizedOperationRejection 73

mistypedArgumentRejection 74

resourceLimitationRejection 75

acsHandleTerminationRejection 76

serviceTerminationRejection 77

requestTimeoutRejection 78

requestsOnDeviceExceededRejection 79

unrecognizedApduRejection 80

mistypedApduRejection 81

badlyStructuredApduRejection 82

initiatorReleasingRejection 83

unrecognizedLinkedidRejection 84

linkedResponseUnexpectedRejection 85

unexpectedChildOperationRejection 86

mistypedResultRejection 87

unrecognizedErrorRejection 88

unexpectedErrorRejection 89

mistypedParameterRejection 90

nonStandard 100

ACS Universal Failures

ACS Universal Failures are error codes returned by CSTAErrorCode:
Unexpected ACS error code. The following table lists the definitions for the
ACS error codes. Consult the TSAPI Programmer’s Guide for the definition of
the numeric error code

 Appendix D: TSAPI Error Code Definitions

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 189

Table 46: ACS Error Definitions

Error Numeric
Code

Description

ACSERR_APIVERDENIED -1 This return indicates that the API
Version requested is invalid and
not supported by the existing API
Client Library.

ACSERR_BADPARAMETER -2 One or more of the parameters is
invalid.

ACSERR_DUPSTREAM -3 This return indicates that an ACS
Stream is already established
with the requested Server.

ACSERR_NODRIVER -4 This error return value indicates
that no API Client Library Driver
was found or installed on the
system.

ACSERR_NOSERVER -5 This indicates that the requested
Server is not present in the
network.

ACSERR_NORESOURCE -6 This return value indicates that
there are insufficient resources to
open a ACS Stream.

ACSERR_UBUFSMALL -7 The user buffer size was smaller
than the size of the next available
event.

ACSERR_NOMESSAGE -8 There were no messages
available to return to the
application.

ACSERR_UNKNOWN -9 The ACS Stream has
encountered an unspecified
error.

ACSERR_BADHDL -10 The ACS Handle is invalid.

ACSERR_STREAM_FAILED -11 The ACS Stream has failed due
to network problems. No further
operations are possible on this
stream.

ACSERR_NOBUFFERS -12 There were not enough buffers
available to place an outgoing
message on the send queue. No
message has been sent.

ACSERR_QUEUE_FULL -13 The send queue is full.

190

Appendix EAppendix EAppendix EAppendix E: : : : Routeing ServicesRouteing ServicesRouteing ServicesRouteing Services

Routeing Services Sequence Diagram

Sequence of messages to establish a Routeing Registration and
subsequent routeing requests, responses and events:

1. A RouteRegister request is sent by the client to register as a routeing
server for a specific device or for all devices. Routeing services sends
the request to TSAPI. TSAPI sends the response to Routeing Services,
which sends the RouteRegisterResponse.

2. A Route Request is sent by TSAPI to request a destination for a call that
has arrived on a routeing device. The request includes call-related
information that the routing server (ie client application) uses to

 Appendix E: Routeing Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 191

determine the destination of the call. RouteingServices sends the Route
Request to the client.

3. The client can respond in one of the following ways to the Route
Request:

a. Send a Route Select Request that provides a destination, in which
case the request is sent to TSAPI.

b. Send a Route End request to terminate the routeing dialog for the
call and Routeing Services sends the request to TSAPI. The
client may send this if it cannot provide a route for the call in
question, in which case the switch provides the default routing for
the call.

4. A RouteUsed Event is sent by TSAPI that contains the actual destination
of a call for which the application previously sent a Route Select Request
containing a destination. RouteingServices sends the RouteUsed event
to the client.

5. A Route End Event is sent by TSAPI to terminate a routing dialog for a
call and to inform the client of the outcome of the call routing.
RouteingServices sends the Route End Request to the client. The
errorValue parameter in the request specifies the reason for the route
end request.

Requests to end a routeing registration session:

The following requests end a routeing registration session.

6. Client Application->Server Request: A Route Register Cancel request is
sent by the client application to Routeing Services which sends the
request to TSAPI. TSAPI de-allocates a routeRegisterRequestID and
returns a response to RouteingServices which sends a
RouteRegisterCancel response.

7. Server->Client application Request: A Route Register Abort event is sent
by TSAPI and a Route Register Abort request is sent to the client
application that contains the Route Register Request Id.

192

RouteRegister

Client applications use RouteRegister request to register as a routing server for
RouteReques(s) from a specific device. The application must register for routing
services before it can receive any RouteRequest(s) from the routing device. An
application may be a routing server for more that one routing device. For a specific
routing device,however, only one application is allowed to be registered as the routing
server. If a routing device already has a routing server registered, subsequent
RouteRegister requests will be negatively acknowledged, except as described in
Special usage cases.

Special usage cases: In some cases it is desirable to allow the same application to re-
register as a routing device. That is, if a routing device already has a routing server
registered, subsequent RouteRegister requests will be positvely acknowledged if
certain criteria conditions are satisfied. For example, if a link goes down with an AE
Services application, the application can re-establish itself if the following criteria are
met:

• If the login matches that of the previously registered application
• If the application name matches that of the previously registered application
• If the IP address of the client machine matches that of the previously registered

Application

The RouteRegister is sent to and handled by the TSAPI Service, not by
Communication Manager. The RouteRequest(s) are sent from the switch to the
TSAPI Service and AES through call vector processing. From the perspective of
the switch, the TSAPI Service is the routing server. The TSAPI Service processes
the RouteRequests and sends the RouteRequest(s) to the proper routing servers
based on the route registrations from applications.

If no routing server is registered for Communication Manager, all RouteRequests
from the switch will be terminated by the TSAPI Service with a Route End Request,
as if RouteEnd requests were received from a routing server.

RouteRegister Request

ErrorValue Description

OutstandingRequestLimitExceeded The specified routing device already has a
registered routing server.

RouteRequest

The switch sends a RouteRequest to request a destination for a call arrived on
a routing device from a routing server application. The application may have
registered as the routing server for the routing device on the switch that is
making the request, or it may have registered as the default routing server. The
RouteRequest includes call-related information. A routing server application
typically uses the call-related information and a database to determine the
destination for the call. The routing server application responds to the
RouteRequest via a RouteSelect request that specifies a destination for the call
or a RouteEnd request, if the application has no destination for the call.

 Appendix E: Routeing Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 193

The Routing Request Service can only be administered through the Basic Call
Vectoring feature. The switch initiates the Routing Request when the Call
Vectoring processing encounters the adjunct routing command in a call vector.
The vector command will specify a CTI link’s extension through which the
switch will send the RouteRequest to AES DMCC through the TSAPI Service.

Multiple adjunct routing commands are allowed in a call vector. In G3V3, the
Multiple Outstanding Route Requests feature allows 16 outstanding Route
Requests per call. The Route Requests can be over the same or different CTI
links. The requests are all made from the same vector. They may be specified
back-to-back, without intermediate (wait, announcement, goto, or stop) steps. If
the adjunct routing commands are not specified back-to-back, pre-G3V3 adjunct
routing functionality will apply. This means that previous outstanding
RouteRequests are canceled when an adjunct routing vector step is executed.

The first RouteSelect response received by the switch is used as the route for
the call, and all other Route Requests for the call are canceled via RouteEnd
event(s).

If an application terminates the RouteRequest via a RouteEnd request, the
switch continues vector processing.

A RouteRequest will not affect the Call Event Reports.

Like Delivered or Established Event, the RouteRequest currentRoute parameter
contains the called device. The currentRoute in Route Request contains
the originally called device if there is no distributing device, or the distributing
device if the call vectoring with VDN override feature of the PBX is turned on. In
the later case, the originally called device is not reported. The distributingDevice
feature is not supported in the RouteRequest private data.

RouteSelect

The routing server application uses RouteSelect to provide a destination to the
switch in response to a RouteRequest for a call.

An application may receive one RouteEnd event and one Error for a
RouteSelect request for the same call in one of the following call scenarios:

• A RouteRequest is sent to the application.
• Caller drops the call.
• Application sends a RouteSelect request.
• A RouteEnd event (errorValue = NoActiveCall) is sent to the application.
• The RouteSelect request is sent, but the call has been dropped.
• An Error is sent for the RouteSelect request (errorValue =

InvalidCrossRefId) to application.

RouteSelect Request

ErrorValue Description

194

RouteSelect Request

ErrorValue Description

InvalidDeviceId An invalid
routeRegisterReqID has been specified in the
RouteEndInv() request

InvalidCrossRefId An invalid routeCrossRefID has been
specified in the Route Select request.

 Appendix E: Routeing Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 195

RouteUsed Event

The switch uses a RouteUsed event to provide a destination to the routing server
application with the actual destination of a call for which the application previously sent
a request containing a destination. The routeUsed and destRoute parameters contain
the same information specified in the routeSelected and destRoute parameters of the
previous RouteSelect request of this call, respectively. The callingDevice parameter
contains the same calling device number provided in the previous RouteRequest of this
call.

Note that the number provided in the routeUsed parameter is from the routeSelected
parameter of the previous RouteSelect request of this call received by the TSAPI
Service. This information in routeUsed is not from Communication Manager and it may
not represent the true route that Communication Manager used.

Note that the number provided in the destRoute parameter is from the destRoute
parameter of the previous RouteSelect request of this call received by the TSAPI
Service. This information in destRoute is not from the Communication Manager and it
may not represent the true route that the Communication Manager used.

The number provided in the callingDevice parameter is from the callingDevice
parameter of the previous RouteRequest of this call sent by the TSAPI Service.

196

RouteEnd Request

This request is sent by the routing server application to terminate a routing
dialog for a call. The service request includes a cause value giving the
reason for the routing dialog termination.

• If an application terminates a RouteRequest via a RouteEnd request,
the switch continues vector processing.

• An application may receive one RouteEnd Event and one Error for a
RouteEnd request for the same call in the following call scenario:

o A RouteRequest is sent to the application.

o Caller drops the call.

o Application sends a RouteEnd request.

o A RouteEnd Event (errorValue = NoActiveCall) is sent to the
application.

o TSAPI Service receives the cstaRouteEndInv() request, but call
has been dropped.

o TSAPI Service sends universalFailure for the
cstaRouteEndInv() request (errorValue =
INVALID_CROSS_REF_ID) to application.

The errorValue is ignored by Communication Manager and has no effect
for the routed call, but it must be present in the API. Suggested error codes that
may be useful for error logging purposes are:

RouteEnd Request

ErrorValue Description

Generic

Normal termination (for example, application
does not want to route the call or does not
know how to route
the call).

InvalidDeviceId An invalid routeRegisterReqID has been
specified in the RouteEnd request

ResourceBusy Routing server is too busy to handle the route
request.

ResourceOutOfService Routing service temporarily unavailable due to
internal problem (for example, the database is
out of service).

RouteEnd Event:

This event is sent by the switch to terminate a routing dialog for a call and to
inform the routing server application of the outcome of the call routing.

 Appendix E: Routeing Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 197

An application may receive one RouteEnd Event and one Error for a
RouteSelect request for the same call in one of the following call scenarios:

• A RouteRequest is sent to the application.

• Caller drops the call.

• Application sends a RouteSelect Request.

• A RouteEnd Event (errorValue = NoActiveCall) is sent to the application.

• The TSAPI Service receives the RouteSelect Request, but call has been
dropped.

• An error is sent for the RouteSelect request (errorValue =InvalidCrossRefId)
to application.

RouteEnd Event

ErrorValue Description

Generic

The call has been successfully routed or
The adjunct route request to route using
NCR resulted in the call not being routed
by NCR because of an internal system
error.

SubscribedResourceAvailability The adjunct route request to route using
NCR resulted in the call not being routed
by NCR because the NCR contained
incorrectly administered trunk (NCR is
active but not set up correctly).

InvalidCallingDevice Upon routing to an agent (for a direct-
agent call), the agent is not logged in.

PrivilegeViolationSpecifiedDevice Lack of calling permission; for example,
for an ARS call, there is an insufficient
Facility Restriction Level (FRL). For a
direct-agent call, the originator’s Class Of
Restriction (COR) or the destination
agent’s COR does not allow a direct-
agent call.

InvalidDestination The destination address in the
RouteSelect request is invalid or the
adjunct route request to route using NCR
resulted in the call not being routed by
NCR because the NCR contained in
invalid PSTN number.

InvalidObjectType Upon routing to an agent (for direct-agent
call), the agent is not a member of the
specified split.

InvalidObjectState A RouteSelect request was received in
the wrong state. A second RouteSelect
request sent by the application before the
routing dialog is ended may cause this.

NetworkBusy The adjunct route request to route
using NCR resulted in the call not being

198

RouteEnd Event

ErrorValue Description

routed by NCR because there was no
NCT outgoing trunk.

NetworkOutOfService The adjunct route request to route using
NCR resulted in the call not being routed
by NCR because the NCT contained an
invalid PSTN number, and the second
leg can not be set up.

The adjunct route request to route using
NCR resulted in the call not being routed
by NCR because of a PSTN NCD
network error.

The adjunct route request to route using
NCR resulted in the call not being routed
by NCR because of a PSTN NCD no disc
error.

NoActiveCall The call was dropped (for example, caller
abandons, vector disconnect timer times
out, a non-queued call encounters a
"stop" step, or the application clears the
call) while waiting for a response to a
RouteSelect request.

NoCallToAnswer The call has been redirected. The switch
has canceled or terminated any
outstanding RouteRequest(s) for the call
after receiving the first valid RouteSelect
message. The switch sends a RouteEnd
Event with this cause to all other
outstanding RouteRequest(s) for the call.
Note that this error can happen when
Route Registers are registered for the
same routing device from two different
AE Servers and the switch is set to send
multiple RouteRequests for the same
call.

PrivilegeViolationOnSpecifiedDevice The adjunct route request to route using
NCR resulted in the call not being routed
by NCR because the PSTN NCD
exceeds the maximum Redirections

ResourceBusy The destination is busy and does not
have coverage. The caller will hear either
a reorder or busy tone.

PerformanceLimitExceeded Call vector processing encounters any
steps other than wait, announcement,
goto, or stop after the RouteRequest has
been issued. This can also happen when
a wait step times out. When the switch

 Appendix E: Routeing Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 199

RouteEnd Event

ErrorValue Description

sends RouteEnd event with this cause,
call vector processing continues.

ValueOutOfRange The adjunct route request to route using
NCR resulted in the call not being routed
by NCR because RouteSelect does not
contain a called number.

200

RouteRegisterAbort

This event notifies the application that the TSAPI Service or switch aborted a routing
registration session. After the abort occurs, the application receives no more
RouteRequest(s) from this routing registration session and the routeRegisterReqID is
no longer valid. The routing requests coming from the routing device will be sent
to the default routing server, if a default routing registration is still active.

• If no CTI link has ever received any RouteRequest(s) for the registered routing
device and all of the CTI links are down, this event is not sent.

• In a multi-link configuration, if at least one link that has received at least one
RouteRequest for the registered routing device is up, this event is not sent. It is
sent only when all of the CTI links that have received at least one
RouteRequest for the registered routing device are down.

Note: How Communication Manager sends the RouteRequest (s) for the registered
routing device, via which CTI links, is controlled by the call vectoring administered
on the switch. A routing device can receive RouteRequest (s) from different CTI
links. It is possible that links are up and down without generating this event.
• If the application wants to continue the routing service after the CTI link is up, it

must issue a RouteRegister request to re-establish a routing registration
session for the routing device.

• The RouteRegisterAbort Event is sent when a competing application sends a
RouteRequest and it has the same criteria (login, application name, and IP
address).

 Appendix E: Routeing Services

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 201

RouteRegisterCancel

Client applications use RouteRegisterCancel to cancel a previously registered
RouteRegister session. When this service request is positively acknowledged, the
client application is no longer a routing server for the specific routing device and the
RouteRequest(s) are not longer sent for the specific routing device
associated with the routeRegisterReqID to the requesting client application. Any
further RouteRequest(s) from the routing device will be sent to the default
routing server application, if there is one registered.

An application may receive RouteRequest(s) after a RouteRegisterCancel request is
sent and before a RouteRegisterCancelResponse is received. The application should
ignore the RouteRequest. If a RouteSelect request is sent for the RouteRequest, a
RouteEnd response will be received with error InvalidDeviceId. If a RouteEnd request
is sent for the RouteRequest, it will be ignored. The outstanding RouteRequest will
receive no response and will be timed out eventually.

RouteRegisterCancel Request

ErrorValue Description

InvalidDeviceId An invalid routeRegisterReqID has been specified in
the RouteEndInv() request

202

Appendix F: ACS Universal Error CodesAppendix F: ACS Universal Error CodesAppendix F: ACS Universal Error CodesAppendix F: ACS Universal Error Codes

ACS Error Code

ACS Error Code

Description

acsError

TSAPI ACS Error

acsError0

TSAPI No Thread

acsError1

TSAPI Bad Driver

acsError2

TSAPI Bad Driver ID

acsError3

TSAPI Dead Driver

acsError5

TSAPI Free Buffer Failed

acsError6

TSAPI Send to Driver

acsError7

TSAPI Receive From Driver

acsError8

TSAPI Registration Failed

acsError11

TSAPI No Memory

acsError12

TSAPI Encode Failed

acsError13

TSAPI Decode Failed

acsError19

TSAPI No Security Database

acsError23

TSAPI Bad Server ID

acsError24

TSAPI Bad Stream Type

acsError25

TSAPI Bad Password or Login

acsError26

TSAPI No User Record

 Appendix F: ACS Universal Error Codes

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 203

ACS Error Code

ACS Error Code

Description

acsError27

TSAPI No Device Record

acsError47

TSAPI Open Failed

acsError65

TSAPI Driver Unregistered

acsError66

TSAPI No ACS Stream

acsError72

TSAPI TDI Queue Fault

acsError73

TSAPI Driver Congestion

acsError74

TSAPI No TDI Buffers

acsError86

TSAPI License Mismatch

acsError87

TSAPI Bad Attribute List

acsError88

TSAPI Bad TList Type

acsError93

TSAPI System Error

acsError95

TSAPI TCP Failed

acsError105

TSAPI Load Lib Failed

204

GlossaryGlossaryGlossaryGlossary
A

AE

Used as a “shorthand” term in this documentation for Application Enablement.

AES

Stands for Advanced Encryption Scheme.

AES Management Console (Formerly OAM)

Administration and Maintence web interface to AES.

API

Application Programming Interface. A “shorthand” term in this documentation for the
Java interface provided by the Application Enablement Services.connector client API
library.

application machine

The hardware platform that the connector client API library and the client application
are running on

B

 BHCC

busy hour call capacity

C

CLAN

A Control LAN interface for Communication Manager.

client application

An application created using the Device, Media and Call Control API

CM

Avaya Aura® Communication Manager.

CMAPI softphone

Application Enablement Services Device, Media and Call Control API software objects
that represent softphone-enabled, Communication Manager telephones or extensions

Application Enablement Services Device, Media and Call Control API

The product name. This includes the server-side runtime software (see connector
server software) and the connector client API library.. This term is never used to
reference only the client API library.

connector

This describes the function of Application Enablement Services Device, Media and Call
Control API.

In this context, “connector” means software and communications protocol(s) that allow
two disparate systems to communicate. Often used to provide open access to a
proprietary system. In the case of Application Enablement Services Device, Media and

 Glossary

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 205

Call Control API, the connector enables applications running on a computing platform
to incorporate telephony functionality through interaction with Communication Manager.
connector client API library

The Application Enablement Services Device, Media and Call Control Java API, also
referred to as the AE

connector server machine

The hardware platform that the connector server software is running on. In these
documents, the term “connector server” by itself never refers to the connector server
machine. See connector server software.

connector server software

The Application Enablement Services server-side runtime software, often referred to as
the “connector server” in these documents

CSTA

Computer-Supported Telecommunications Applications

CTI

Computer Telephony Integration.

D

DMA

Direct memory access

E

ECMA

European Computer Manufacturers Association. A European association for
standardizing information and communication systems in order to reflect the
international activities of the organization.

ESS

Enterprise Survivable Server.

F

Feature Name Extension (FNE)

Certain features are made available both inside and outside the enterprise network by
simply dialing an extension. This allows some mobile phones and third-party SIP
phones to activate certain features. These are called Feature Named Extensions
(FNE’s).

H

 hold time

The total length of time in minutes and seconds that a facility is used during a call

J

 JDK

Java Developers Kit

 J2SE

Java 2 Platform, Standard Edition

206

JMX

JMX (Java Management Extensions) is a set of specifications for application and
network management in the J2EE development and application environment. JMX
defines a method for Java developers to integrate their applications with existing
network management software by dynamically assigning Java objects with
management attributes and operations

JSW

Java Service Wrapper

JVM

Java Virtual Machine. Interprets compiled Java binary code for a computer’s processor
so that is can perform a Java program’s instructions

O

P

PE

Processor Ethernet interface.

PLDS

Product Licensing and Delivery System.

R

 RPM

Red Hat Package Manager

S

SAT

System Access Terminal (for Communication Manager)

SDK

Software Development Kit. An SDK typically includes API library, software platform,
documentation, and tools.

T

TLS

Transport Layer Security.

TCP

Transmission Control Protocol. A connection-oriented transport-layer protocol, IETF
STD 7. RFC 793, that governs the exchange of sequential data. Whereas the Internet
Protocol (IP) deals only with packets, TCP enables two hosts to establish a connection
and exchange streams of data. TCP guarantees delivery of data, and also guarantees
that packets are delivered in the same order in which the packets are sent.

TSAPI

Telephony Services Application Programming Interface. A service that provides 3rd
party call control.

TTI

 Glossary

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 207

Terminal Translation Initialization. This is a feature in Communication Manager that
allows administrators, when initially administering new DCP stations, to not initially bind
the extension number to a port. When the technician is installing the stations, they then
use the TTI feature access code to bind the extension number to the station.

V

VoIP

Voice over IP. A set of facilities that use the Internet Protocol (IP) to manage the
delivery of voice information. In general, VoIP means to send voice information in
digital form in discrete packets instead of in the traditional circuit-committed protocols
of the public switched telephone network (PSTN). Users of VoIP and Internet telephony
avoid the tolls that are charged for ordinary telephone service.

X

XML

Extensible Markup Language

XSD

XML Schema Definition. Specifies how to formally describe the elements in
an Extensible Markup Language (XML) document. This description can be
used to verify that each item of content in a document adheres to the
description of the element in which the content is to be placed. This protocol
uses these instead of DTD’s.

Index

This is a dummy index, left here purely to store the format.

client application 203

<$nopage>coder/decoder, see
codecs .. 87

PICS ... 11

RTP;RTP:media stream 86

<$nopage>Resource Interchange
File Format, see RIFF 105

positive acknowledgement 46

client API library:using reference
documentation 42, 49

performance 159, 162

asynchronous responses 73

bearer channels:unencrypted 141

BHCC ... 203

buttons:associated extension 96

buttons:function 96, 168

buttons:ID constants 173

buttons:identifier 96

buttons:knowing 96, 99

buttons:get information 14

dial pad buttons 100

call appearances:detecting incoming
call ... 97

call appearances:green lamp turns
off .. 99

call appearances:lamp changes .. 98

device-based call control 40

call progress tone detector 101

incoming call:detecting;detecting
incoming call 97, 102

calls ... 45

calls:ended by far end 99

208

calls:end-of-call cleanup 122

calls:making a call 99

cleanup 122

client media mode 88

client/server model 11

CM Link 203

CMAPI softphone 203

codecs:choosing 93

encoding algorithms 106

codecs:recordings 106

Communication Manager:features
 ... 164

Communication Manager:loss of
communication with 82

Communication Manager:network
configuration............................... 163

Communication
Manager:performance 162

connector 203

CSTA:atomic model 46

CSTA:Avaya extensions to 28

CSTA:concepts 42, 43

CSTA:multi-step model 46

CSTA:services supported 11

deployment:security 140

development environment 42

Device Services 30

device:automatic unregistration .. 162

device:cleanup 122

device:unregistering 123

device:identifier 28

device:identifier:getting ... 19, 22, 23,
51, 65

logical elements 44

device:registration 28

Display Updated event:after call
ends ... 99

display:contents change 98

display:for incoming call 97

display:get contents 15

display:updated event 16

DMA .. 204

downloading:Communication
Manager API SDK 42

dropped call 99

DTMF digits:collecting 51, 113

DTMF digits:start collecting 39

DTMF digits:stop collecting.. 40, 117

DTMF digits:Tone Detected event 40

dub over a recording 108

ECMA .. 204

events .. 46

Display Updated event 16

Hookswitch Status Changed event
 .. 16

Lamp Mode event 16

Media Start event 32

Media Stop event 32

events:order of 99

Play event 18

Record event 18

Register Failed event 37, 39

events:requesting notification of .. 72

Ringer Status event 16

Stop event 18

Suspend Play event 18

Suspend Record event 18

Tone Detected event 40

Tones Retrieved event 40

exceptions:common 159

exceptions:used for debugging .. 159

exiting application 122

Extended Voice Unit Services 31

Extended Voice Unit Services:using
 .. 109

extension:specifying for a device . 30

extensions to CSTA 28

 Glossary

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 209

far-end RTP parameters 32

flush buffer 40

freeing up resources 122

G.711 ... 87

G.711:specifying during registration
 ... 93

G.729 ... 87

G.729:converter 106

G.729:non-standard RIFF values
 ... 105

G.729:specifying during registration
 ... 94

hold time 204

hookswitch:get status 15

hookswitch:set status 15

hookswitch:status changed event 16

ideas .. 164

in-band DTMF digits 114

J2SE .. 204

Javadoc:using 49

JDK .. 204

JVM .. 205

keep-alive mechanism 162

Lamp Mode event:after call ends . 99

lamps:associated with a button 96

lamps:color 167

lamps:mode.................. 98, 167, 185

lamps:status change 16, 98

lamps:transitions 100

Linux kernel:updates 163

Linux operating system:tuning.... 163

listeners:adding 80

listeners:implementing 80

far-end RTP media
parameters;RTP:parameters;media:
when far-end RTP parameters
change 51, 117

LocalMediaInfo 87

server-side logs 159

Media API Javadoc 101

Media Start event:using 51, 117

Media Stop event:using 117

media:controlling 86

media:encoding 93

media:handling 101

lost packets................................ 107

media:modes 87

server media mode 87

media:packets 107

playing messages 17

recording 17

Record Message
service;services:Record
Message;recording messages 17

message waiting indicator:get status
 .. 15

delete message 108

Monitoring Services 24

network regions 94

network:failure 82, 162

network:performance 162

out-of-band DTMF digits 114

password:specifying for station.... 81

phones:device identifier 65

Physical Device Services 14

device:physical element 44

physical elements 14

physical elements:monitoring and
controlling 51

Play Message service:using 109

resume playing;Resume
service:using;playing
message:resume; 111

suspend playing;Suspend
service:using.............................. 111

media stream:recording messages
from;media stream:playing
messages to;recording 105

210

stop recording;stop playing;Stop
service:using 111

race conditions 159, 161

recording:how to 107

resume recording 108

stop recording 108

suspend recording 108

recordMessage method:using 107

Register Device service:initialization
process .. 83

device:registering 80

requests:errors on 46

responses:asynchronous vs.
synchronous 45

RIFF ... 105

ringer:detecting incoming call 97

ringer:get status 15

ringer:pattern 97, 176

ringer:status changed event 16

RPM ... 205

RTP stack................................... 101

RTP:parameter changes 32, 87

RTP:parameters 87

demonstration source code 50

SAT .. 205

SDK .. 205

security:considerations 140

Service Provider 39

Button Press service 13, 14

ButtonPress request 100

Delete Message service 18

Get Button Information service 14

GetButtonInformation request:using
 ... 96, 97

Get Display service 15

Get Hookswitch Status service..... 15

Get Lamp Mode service 15

Get Message Waiting Indicator
service ... 15

Get Ringer Status service 15

Play Message service 17

Register Device service 36

RegisterDevice request 81

Resume service 17

Resume Playing service 31

Resume Recording service 32

Set Hookswitch Status service 15

SetHookswitchStatus method 100

Start Dubbing service 31

Start Monitor service: using 72

Start Tone Collection service 39

Stop service 17

Stop Dubbing service 31

Stop Playing service 31

Stop Recording services 31

Stop Tone Collection service 40

Suspend service 17

Suspend Playing service 31

Suspend Recording service 31

Unregister Device service 36

shuffling 118

signaling channel:unencrypted .. 141

dial pad button;* dial pad
button;pound sign dial pad
button;asterisk dial pad button;star
dial pad button; 100

Start Dubbing service:using 109

station administration:button
assignments 96

extension:device identifier 65

Stop Dubbing service:using 109

test environment 43

third party call control 41

interdigit timers 117

tone collection criteria 39

 Glossary

Application Enablement Services Device, Media and Call Control XML Programmer’s Guide
 211

Tone Detection Services:using ... 113

touch tones:detection 114

Tone Detection Services 40

Voice Unit Services:using with Tone
Collection Services;Tone Collection
Services:using with Voice Unit
Services 162

TTI .. 205

vendor-specific extensions to CSTA
 ... 28

Voice Unit Services17, 22, 23

Voice Unit Services:using 105

VoIP ... 206

VOIP:readiness guide 163

Wave files:file structure 105

ECMA .. 57

XML messages:security 141

XMLdoc 49

