Maintaining the Avaya S8730 Server for Modular Messaging
Notice

While reasonable efforts were made to ensure that the information in this document was complete and accurate at the time of printing, Avaya Inc. can assume no liability for any errors. Changes and corrections to the information in this document might be incorporated in future releases.

Documentation disclaimer

Avaya Inc. is not responsible for any modifications, additions, or deletions to the original published version of this documentation unless such modifications, additions, or deletions were performed by Avaya. Customer and/or End User agree to indemnify and hold harmless Avaya, Avaya's agents, servants and employees against all claims, lawsuits, demands and judgments arising out of, or in connection with, subsequent modifications, additions or deletions to this documentation to the extent made by the Customer or End User.

Link disclaimer

Avaya Inc. is not responsible for the contents or reliability of any linked Web sites referenced elsewhere within this documentation, and Avaya does not necessarily endorse the products, services, or information described or offered within them. We cannot guarantee that these links will work all the time and we have no control over the availability of the linked pages.

Warranty

Avaya Inc. provides a limited warranty on this product. Refer to your sales agreement to establish the terms of the limited warranty. In addition, Avaya's standard warranty language, as well as information regarding support for this product, while under warranty, is available through the Avaya Support Web site: http://www.avaya.com/support

Licenses

USE OR INSTALLATION OF THE PRODUCT INDICATES THE END USER'S ACCEPTANCE OF THE TERMS SET FORTH HEREBE AND THE GENERAL LICENSE TERMS AVAILABLE ON THE AVAYA WEB SITE (http://www.avaya.com/LicenseInfo/ (“GENERAL LICENSE TERMS”). IF YOU DO NOT WISH TO BE BOUND BY THESE TERMS, YOU MUST RETURN THE PRODUCT(S) TO THE POINT OF PURCHASE WITHIN TEN (10) DAYS OF DELIVERY FOR A REFUND OR CREDIT.

Avaya grants End User a license within the scope of the license types described below. The applicable number of licenses and units of capacity for which the license is granted will be one (1), unless a different number of licenses or units of capacity is specified in the Documentation or other materials available to End User. "Designated Processor" means a single stand-alone computing device. "Server" means a Designated Processor that hosts a software application to be accessed by multiple users. "Software" means the computer programs in object code, originally licensed by Avaya and ultimately utilized by End User, whether as stand-alone Products or pre-installed on Hardware. "Hardware" means the standard hardware Products, originally sold by Avaya and ultimately utilized by End User.

License type(s)

Designated System(s) License (DS). End User may install and use each copy of the Software on only one Designated Processor, unless a different number of Designated Processors is indicated in the Documentation or other materials available to End User. Avaya may require the Designated Processor(s) to be identified by type, serial number, feature key, location or other specific designation, or to be provided by End User to Avaya through electronic means established by Avaya specifically for this purpose.

Concurrent User License (CU). End User may install and use the Software on multiple Designated Processors or one or more Servers, so long as only the licensed number of Units are accessing and using the Software at any given time. A "Unit" means the unit on which Avaya, at its sole discretion, bases the pricing of its licenses and can be, without limitation, an agent, port or user, an e-mail or voice mail account in the name of a person or corporate function (e.g., webmaster or helpdesk), or a directory entry in the administrative database utilized by the Product that permits one user to interface with the Software. Units may be linked to a specific, identified Server.

Named User License (NU). Customer may: (i) install and use the Software on a single Designated Processor or Server per authorized Named User (defined below); or (ii) install and use the Software on a Server so long as only authorized Named Users access and use the Software. "Named User," means a user or device that has been expressly authorized by Avaya to access and use the Software. At Avaya's sole discretion, a "Named User" may be, without limitation, designated by name, corporate function (e.g., webmaster or helpdesk), an e-mail or voice mail account in the name of a person or corporate function, or a directory entry in the administrative database utilized by the Product that permits one user to interface with the Product.

Shrinkwrap License (SR). With respect to Software that contains elements provided by third party suppliers, End User may install and use the Software in accordance with the terms and conditions of the applicable license agreements, such as "shrinkwrap" or "clickwrap" license accompanying or applicable to the Software ("Shrinkwrap License"). The text of the Shrinkwrap License will be available from Avaya upon End User’s request (see “Third-party Components” for more information).

Copyright

Except where expressly stated otherwise, the Product is protected by copyright and other laws respecting proprietary rights. Unauthorized reproduction, transfer, and or use can be a criminal, as well as a civil, offense under the applicable law.

Third-party components

Certain software programs or portions thereof included in the Product may contain software distributed under third party agreements (”Third Party Components”), which may contain terms that expand or limit rights to use certain portions of the Product (“Third Party Terms”). Information identifying Third Party Components and the Third Party Terms that apply to them is available on the Avaya Support Web site: http://support.avaya.com/ThirdPartyLicense/

Preventing toll fraud

“Toll fraud” is the unauthorized use of your telecommunications system by an unauthorized party (for example, a person who is not a corporate employee, agent, subcontractor, or is not working on your company’s behalf). Be aware that there can be a risk of toll fraud associated with your system and that, if toll fraud occurs, it can result in substantial additional charges for your telecommunications services.

Avaya fraud intervention

If you suspect that you are being victimized by toll fraud and you need technical assistance or support, call Technical Service Center Toll Fraud Intervention Hotline at +1-800-643-2353 for the United States and Canada. For additional support telephone numbers, see the Avaya Support Web site: http://support.avaya.com

Suspected security vulnerabilities with Avaya Products should be reported to Avaya by sending mail to: securityalerts@avaya.com.

Trademarks

All other trademarks are the property of their respective owners.

Downloading documents

For the most current versions of documentation, see the Avaya Support Web site: http://www.avaya.com/support

Contact Avaya Support

Avaya Inc. provides a telephone number for you to use to report problems or to ask questions about your product. The support telephone number is 1-800-242-2121 in the United States. For additional support telephone numbers, see the Avaya Web site: http://www.avaya.com/support
Contents

Chapter 1: Safety Information .. 5
 General safety information .. 5
 Safety Inspection ... 6
 Electrical safety rules ... 6
 Protecting against ESD damage .. 8
 System battery ... 9

Chapter 2: Site preparation ... 11
 Recommended tools and supplies .. 11
 Recommended test equipment ... 11

Chapter 3: Server preparation and reinstallation 13
 Overview .. 13
 Front view of server .. 13
 Back view of server .. 14
 Shutting down the MAS ... 14
 Shutting down the MSS ... 15
 Removing the server from the rack ... 16
 Removing the cover from the server ... 17
 Replacing the server cover .. 17
 Replacing the server in the rack .. 18
 Restoring power to the server ... 19

Chapter 4: Adding and replacing an MAS port board 21
 MAS port boards ... 21
 Busying out ports on the MAS .. 22
 Recording Dialogic Settings .. 22
 Removing the PCI riser cage ... 24
 Reseating a port board ... 25
 Removing a port board ... 26
 Installing a new port board ... 27
 Preparing the port board ... 27
 Setting the D/480JCT-T1–EW and D/600JCT-E1120–EW boards 28
 Setting the D/82JCT-U–EW board .. 28
 Setting the D/120JCT-LS–EW board ... 29
 Setting the D/41JCT-LS–EW board .. 30
 Installing the board .. 32
 Replacing the PCI riser cage ... 34
 Connecting Dialogic port boards ... 35
 Supported port board connections ... 35
 Port board connections .. 36
 Configuring and testing the port board ... 36

Chapter 5: Replacing a DVD drive .. 39

Chapter 6: Adding and replacing a hard drive 41
 Overview .. 41
 Failed hard drive identification ... 41
 Hard drive LEDs .. 41
Chapter 1: Safety Information

General safety information

Follow these rules to ensure general safety:

- Observe good housekeeping in the area of the system units during and after maintenance.
 - Place removed covers and other parts in a safe place, away from all personnel, while you are servicing the system unit.
 - Keep your tool case away from walk areas so that other people do not trip over it.

- When lifting any heavy object:
 a. Verify that you can stand safely without slipping.
 b. Distribute the weight of the object equally between your feet.
 c. Use a slow lifting force. Never move suddenly or twist when you attempt to lift.
 d. Lift by standing or by pushing up with your leg muscles. This action removes the strain from the muscles in your back. Do not attempt to lift any objects that weigh more than 16 kg (35 lb) or objects that you think are too heavy for you.

- Do not perform any action that causes hazards to the customer, or that makes the equipment unsafe.

- Before you start the system unit, ensure that other technical support staff and customer personnel are not in a hazardous position.

- Do not wear loose clothing that can be trapped in moving parts. Ensure that your sleeves are fastened or rolled up above your elbows. If your hair is long, fasten it.

- Insert the ends of your necktie or scarf inside clothing or fasten it with a nonconductive clip, approximately 8 cm (3 inches) from the end.

- Do not wear jewelry, chains, metal-frame eyeglasses, or metal fasteners for your clothing. Metal objects are good electrical conductors.

- Wear safety glasses when you are working in any conditions that might be hazardous to your eyes.

- After service, reinstall all safety shields, guards, labels, and ground wires. Replace any safety device that is worn or defective.

- Reinstall all covers correctly before returning the server to service.
Warning:
To prevent access to electrical hazards by unauthorized personnel and to ensure continued compliance with international radiated emissions requirements, tighten all captive screws securely so they cannot be loosened without the use of a tool.

Safety Inspection

Use this list to identify potentially unsafe conditions related to the server. Each server, as it was designed and built, had required safety items installed to protect users and technical support staff from injury. If any unsafe conditions are present, determine how serious the apparent hazard is and whether you can safely continue without first correcting the problem.

Consider these conditions and the safety hazards they present:

- Electrical hazards, especially primary power. Primary voltage on the frame can cause serious or fatal electrical shock.
- Explosive hazards, such as a damaged monitor face or bulging capacitor.
- Mechanical hazards, such as loose or missing hardware.

Perform the following safety checks when servicing this unit:

1. Check exterior covers for damage such as loose, broken, or sharp edges.
2. Shutdown the system and unplug the AC power cords.
3. Check the power cord:
 - Verify that the third-ground connector is in good condition. Use a meter to measure third-wire ground continuity for 0.1 ohm or less between the external ground pin and frame ground.
 - Verify that the power cord is the appropriate type.
 - Verify that insulation is not frayed or worn.
4. Check inside the server for any obvious unsafe conditions, such as metal filings, contamination, water or other liquids, or signs of fire or smoke damage.
5. Check for worn, frayed, or pinched cables.
6. Verify that the power-supply cover fasteners, such as screws or rivets, have not been removed or tampered with.
7. If you notice any damage, replace the appropriate system components.

Electrical safety rules

Electrical current from power, telephone, and communication cables can be hazardous. To avoid any shock hazard, you must disconnect all power cords and cables.
Observer the following rules when working on electrical equipment.

- Find the room emergency power-off (EPO) switch, disconnecting switch, or electrical outlet. If an electrical accident occurs, you can then operate the switch or unplug the power cord quickly.

- Do not work alone under hazardous conditions or near equipment that has hazardous voltages.

- Disconnect all power before:
 - Doing a mechanical inspection
 - Working near power supplies
 - Removing or installing servers

- Before you start to work on the server, unplug the power cord. If you cannot unplug it, ask the customer to switch off the wall box that supplies power to the server. Afterwards, lock the wall box in the off position.

- If you must work on a server that has exposed electrical circuits, observe the following precautions:
 - Ensure that another person, familiar with the power-off controls, is near you. Another person must be there to switch off the power if necessary.
 - Stand on suitable rubber mats to insulate you from grounds such as metal floor strips and system unit frames. Obtain the mats locally, if necessary.
 - When using testers, set the controls correctly and use the approved probe leads and accessories for that tester.
 - Use only one hand when working with powered-on electrical equipment. Keep the other hand in your pocket or behind your back. This precaution can prevent a current from passing through your body.

- Regularly inspect and maintain your electrical hand tools for safe operational condition. Do not use worn or broken tools and testers.

- Never assume that power was disconnected from a circuit. First, verify that the unit is turned off.

- Always look carefully for possible hazards in your work area. Examples of hazards are moist floors, non-grounded power extension cables, power surges, and missing safety grounds.

- Do not touch live electrical circuits with the reflective surface of a plastic dental mirror. The surface is conductive. Touching a live circuit can cause personal injury and damage to the server.

- Use only approved tools and test equipment. Some hand tools have handles covered with a soft material that does not insulate you when working with live electrical currents.

- Many customers have, near their equipment, rubber floor mats that contain small conductive fibers to decrease electrostatic discharges. Do not use this type of mat to protect yourself from electrical shock.

If an electrical accident occurs:
Protecting against ESD damage

Any system component that contains transistors or integrated circuits is sensitive to electrostatic discharge (ESD). ESD damage can occur when there is a difference in charge between objects. Protect against ESD damage by equalizing the charge. The server, the part, the work mat, and the person handling the part must all be at the same charge.

Packaging materials that contain ESD-sensitive components are usually marked with a yellow and black warning symbol.

⚠️ Caution:
You must observe proper grounding techniques to prevent the discharge of static electricity from your body into ESD-sensitive components.

To avoid damaging ESD-sensitive components:

• Keep the parts in protective packages until they are ready to be inserted into the product or arrive at a static-free workstation.
• Place parts on a grounded surface before removing them from their containers.
• Handle the components only after attaching a wrist strap to your bare wrist. Attach the other end of the wrist strap to a ground that terminates at the system ground, such as any unpainted metallic chassis surface.
• Handle a circuit board by the faceplate or side edges only. Avoid touching pins, leads, or circuitry. Hold devices such as a hard disk drive in the same manner. The ESD-sensitive area of these components is located on the bottom surface.

⚠️ Caution:
Make sure that unprotected part of your hand is not in contact with the non-component side of the board.

• Keep components away from plastics and other synthetic materials such as polyester clothing. Most clothing is insulative and retains a charge even when you are wearing a wrist strap.
• Do not hand components to another person unless that person is grounded at the same potential level. In general, avoid contact with other people.
• Use the black side of a grounded work mat to provide a static-free work surface. The mat is especially useful when handling ESD-sensitive devices.
• Verify that the ESD protective devices you use are ISO 9000 certified as fully effective.
System battery

The server has an internal battery pack that provides power to the real-time clock. The internal battery pack can be either a lithium manganese dioxide, a vanadium pentoxide, or an alkaline type of battery.

⚠️ Caution:
Dispose of used batteries according to the instructions provided with the battery. You risk explosion if you replace the battery with an incorrect type.
Chapter 2: Site preparation

Recommended tools and supplies

• #2 crosspoint (Phillips) screwdriver
• A medium-width flat-blade screwdriver
• T-15 Torx screwdriver (attached to rear of server)
• A small pair of needlenose pliers
• A small pair of wire cutters
• Masking tape or felt-tip pen for marking mounting holes
• A volt/ohm meter

Recommended test equipment

Verify that the following test equipment will be available when installation and configuration of the system is complete:

• At least two telephones connected through the switch or private branch exchange (PBX). The telephones must be of the same type as most of the telephones the customer plans to use on the system.
 - Preferably the test telephones will have a data display for testing integration and the Find Me and Call Me features.
 - If the message waiting indicator (MWI) for the system is a lamp, the test telephone must be equipped with a lamp. If the MWI is a stutter tone, the telephone must be able to provide the stutter notification.
 - Place the test telephone so you can easily see the monitor while using the telephones.
• Access to a fax machine if fax messaging will be installed on the system.
Site preparation
Chapter 3: Server preparation and reinstallation

Overview

The following descriptions and procedures are required for multiple maintenance tasks.

Front view of server

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Media drive bay. DVD-ROM/CD—RW media drive for model 03; DVD-RAM/RW media drive for models 04 and 05.</td>
</tr>
<tr>
<td>2</td>
<td>Video connector</td>
</tr>
<tr>
<td>3</td>
<td>USB connectors (2)</td>
</tr>
<tr>
<td>4</td>
<td>Systems Insight Display</td>
</tr>
<tr>
<td>5</td>
<td>Hard drive bays. Two 146 GB hard drives for models 03 and 04; four or six 72 GB hard drives for model 05.</td>
</tr>
<tr>
<td>6</td>
<td>Quick release levers</td>
</tr>
</tbody>
</table>
Back view of server

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T-10/T-15 Torx screwdriver</td>
</tr>
<tr>
<td>2</td>
<td>Dialogic port boards. E1–QSIG or T1–QSIG type boards shown.</td>
</tr>
<tr>
<td>3</td>
<td>Private LAN Ethernet connection</td>
</tr>
<tr>
<td>4</td>
<td>Corporate LAN Ethernet connection</td>
</tr>
<tr>
<td>5</td>
<td>Power supply. Two power supplies for Model 05; One power supply for models 03 and 04.</td>
</tr>
<tr>
<td>6</td>
<td>Keyboard connector</td>
</tr>
<tr>
<td>7</td>
<td>Mouse connector</td>
</tr>
<tr>
<td>8</td>
<td>Serial connector</td>
</tr>
<tr>
<td>9</td>
<td>USB connectors (2)</td>
</tr>
<tr>
<td>10</td>
<td>Video connector</td>
</tr>
<tr>
<td>11</td>
<td>iLo 2 connector (not used)</td>
</tr>
<tr>
<td>12</td>
<td>Unit Identification (UID) LED button</td>
</tr>
</tbody>
</table>

Shutting down the MAS

Prerequisites

- If the server is already in operation, you must take it out of service to work inside the chassis. Schedule and publicize a time when the server will be out of operation.
- Busy out ports on the MAS.
1. Remove any disk from the DVD drive.
2. Click Start > Shut Down.
3. In the Shut Down window, select Shut Down and click OK.
 The server shuts down and turns off automatically.
4. Verify that the power button on the front of the server is off or shows amber. If the power button remains green, press and hold down the power button to turn off the server.
 If the power button is amber, the system has shut down, but power is still applied.
5. Unplug all AC power cords from the back of the server.

Caution:
You must physically unplug all AC power cords to completely remove power to the S8730 server. Do not open the server without first unplugging AC power.

Related topics:
[Busying out ports on the MAS](#) on page 22

Shutting down the MSS

Prerequisites
If the server is already in operation, you must take it out of service to work inside the chassis. Schedule and publicize a time when the server will be out of operation.

1. On the Administration main menu, select Utilities > Shutdown System.
2. On the Shutdown System page, click Shutdown.
3. At the shutdown warning message, click OK.
 The server shuts down and when done displays the message **Power down**. The shutdown process takes about 15 minutes.
4. Remove any disk from the DVD drive.
5. To turn off the power, press the power button on the front of the MSS.
6. Verify that the power button on the front of the server is off or shows amber.
 If the power button is amber, the system has shut down, but power is still applied.
7. Unplug all AC power cords from the back of the server.

Caution:
You must physically unplug all AC power cords to completely remove power to the S8730 server. Do not open the server without first unplugging AC power.

Removing the server from the rack

Prerequisites

The server must be shut down and all cables detached from the rear panel before removing the server from the rack for service. Detach the Dialogic port board, LAN Ethernet, keyboard, mouse and monitor cables as well as any other connections on the back of the server. Label all cables so you can easily reconnect them.

1. Release the latches on both sides on the front of the server.
2. Extend the server until the server rail-release latches engage.
Removing the cover from the server

3. Pull the server straight out of the rails and remove it from the rack.
4. Place the server on an antistatic mat.

Replacing the server cover

1. Place the cover on the server so that the front alignment tabs are in place.
2. Push the cover latch down.
 The cover slides forward and locks into place.
3. Use the Torx screwdriver to tighten the security screw on the cover latch.
4. Replace the Torx screwdriver in its clip on the rear panel of the server.

Replacing the server in the rack

1. Align the server on the rails and push the server into the rack until it is flush with the rack.
2. Close both quick-release levers on the front of the server to secure the server in the rack.
3. Reattach all cable connections to the back panel of the server.
Restoring power to the server

The following graphic illustrates the S8730 server with two power supplies. Models 03 and 04 ship with a single power supply; model 05 ships with the illustrated duplicate power supply.

1. Plug one end of the power cord into the back of the server and connect the power cord anchor to the handle of the power supply.

2. Plug the other end of the power cord into the UPS.

3. If the server does not start automatically within 15 seconds of the power cord being connected, turn the server on by pressing the power button on the front of the server.

4. If the server still does not start, verify that the server has AC power. Check the UPS settings, and that the UPS is receiving AC power.

For more information about troubleshooting power problems, see *Installing the Avaya S8730 Server*.
Server preparation and reinstallation
Chapter 4: Adding and replacing an MAS port board

MAS port boards

Dialogic port boards are pre-installed in any new MAS (model 03) server that uses an analog, Digital Set Emulation (DSE), E1–QSIG, or T1–QSIG switch integration protocol. Each server can have only one type of board installed. The server supports only PCI Express (PCI-e) Dialogic cards. Dialogic cards used in the S3400 and S3500 servers do not use the PCI-e form factor and cannot be transferred to the S8730 server. The S8730 supports the following Dialogic boards:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Ports per MAS</th>
<th>Supported boards</th>
<th>Maximum number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog</td>
<td>12 – 36</td>
<td>• Dialogic D/120JCT-LS-EW 12–port board</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dialogic D/120JCT-LS-EWEU (Europe) 12–port board</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 – 12</td>
<td>• Dialogic D/41JCT-LS-EW 4–port board</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dialogic D/41JCT-LS-EWEU (Europe) 4–port board</td>
<td></td>
</tr>
<tr>
<td>Digital Set Emulation</td>
<td>8 – 24</td>
<td>Dialogic D/82JCT-U-EW</td>
<td>3</td>
</tr>
<tr>
<td>E1–QSIG</td>
<td>30 – 90</td>
<td>Dialogic D/600JCT-E1120–EW</td>
<td>3</td>
</tr>
<tr>
<td>T1–QSIG</td>
<td>23 – 69</td>
<td>Dialogic D/480JCT-T1–EW</td>
<td>3</td>
</tr>
</tbody>
</table>
Busying out ports on the MAS

Prerequisites

On the PBX, the PBX administrator must busy out the ports used by the MAS. Depending on the switch integration, the administrator might be able to temporarily reroute calls to other MASs. If an MAS is unavailable, callers into the system might hear ring-no answer or a busy signal.

Use the Port Monitor to disable the MAS ports on the MAS.

1. Click Start > Programs > Avaya Modular Messaging > Port Monitor.
2. In the Port Monitor window, hold down the Shift key or Ctrl (Control) key and click to select all the ports.
3. Right-click the port list and select Disable.
4. Verify that the status of all ports is Disabled.
5. Close the Port Monitor window.

Recording Dialogic Settings

Before you shut down the server, record the settings for each Dialogic board in the MAS. You must verify these settings after you replace a board or install a new one.

1. On the MAS, click Start > Programs > Intel Dialogic System Release > Configuration Manager — DCM.
2. In the Intel Dialogic Product Configuration Manager — Properties window, click the indicated tab to display the properties that are appropriate to the type of board. Record these properties.
 - For QSIG boards:
 - Click the Interface tab and record the ISDNProtocol parameter.
 - Click the Telephony Bus tab and record the PCMEncoding parameter.
- Click the Misc tab and record the FirmwareFile2 parameter.
- Click the Country tab and record the Country parameter.

• For DSE boards:
 - Click the Telephony Bus tab and record the PCMEncoding parameter.
 - Click the Misc tab and record the FirmwareFile2 and PBXSwitch parameters.
 - Click the Country tab and record the Country parameter.

• For analog boards:
 - Click the Files tab and record the TSFFilename parameter.
 - Click the Misc tab and record the FirmwareFile2 parameter. Also verify that the TSFFileSupport and DisconnectTone parameters are set to Yes.
Removing the PCI riser cage

Prerequisites

• Shut down the server.
• Remove the server from the rack.
• Remove the server cover.
1. Remove the Torx screwdriver from the rear of the server.
2. With the screwdriver, loosen the black knobs on the PCI riser cage turning the knobs counter-clockwise.
3. Pull straight up on the riser assembly to free it from its slot.
4. Place the PCI riser cage on an antistatic mat or other static-free work surface.

Related topics:
- Shutting down the MAS on page 14
- Shutting down the MSS on page 15
- Removing the server from the rack on page 16
- Removing the cover from the server on page 17

Reseating a port board

A port board may not be functioning properly because of faulty connections. Complete the following steps to verify that the board is properly seated.

1. Locate the faulty board in the PCI cage.
2. Ensure that the board is securely seated in the slot connector.
3. Verify that all cable attachments to the board are secure. For example, check the Computer Telephony (CT) bus cable that connects multiple port boards.

Next steps

- If the board and its cables were securely seated, remove the faulty board.
- If the board or cable connections were improperly seated, replace the PCI cage, replace the server cover, return the server to the rack, restore power to the server, and test the board.
Removing a port board

1. In the PCI cage, locate the port board you are removing.
2. Remove any interior cables connected to the port board, such as the CT bus cable.
3. Remove the screw that secures the port board in its slot by turning the screw counterclockwise.
4. While holding the PCI cage steady with one hand, pull the port board directly out of the cage.
5. Cycle power on the MAS to clear out the settings for the board that was removed.
 a. Leaving the cover off the server, plug in the cables for the monitor, keyboard, and mouse.
 b. Plug in the AC power cord and let the server boot completely.
c. After the reboot is complete, shut down the server by clicking **Start > Shutdown** and **OK**.

d. After the server shuts down, remove the AC power cord.

Next steps

- If you removed the board because it was faulty, set the board aside to be returned.
- If you removed the board to move it to another server, verify that the jumper settings on the board are correct and then follow procedures for installing a new board.

Note:

Port boards from the S8730 server use the PCI-e form factor and cannot be moved to an S3400 or S3500 server. Also, be sure that the port board you are moving is the same switch-integration type as the board in the target MAS.

- The power budgeting jumper must be set to disabled on all Dialogic boards used in the S8730 server. If necessary, verify that the jumper is set correctly on all boards in the server.

Installing a new port board

Preparing the port board

Prerequisites

Verify that you are observing all ESD safety precautions before unwrapping the new port board.

Caution:

Do not remove the board from the anti-static packaging until you are ready to work with it.

Note:

For each type of port board, you must set certain jumpers and switches. Use the Dialogic documentation to locate required items on the boards or to verify cable connections.

The Dialogic documentation describes more setups than the ones used for Modular Messaging. If information in the Dialogic documentation conflicts with this document, follow the steps in the Avaya documentation.

The power budgeting jumper must be set to disabled on all Dialogic cards.
1. Remove the port board from its protective packaging and set it on an antistatic mat. Handle the board by the edges and avoid touching the board's components.

2. Remove the card retainer bracket that is attached to the board opposite the faceplate. You can discard the bracket and screws.

3. Set the jumpers and switches required for the type of board you are installing.

Setting the D/480JCT-T1–EW and D/600JCT-E1120–EW boards

Prerequisites

Determine in which slot in the PCI cage you will be installing the board. Slots in the PCI cage are number 3 (bottom slot), 4 (middle slot) and 5 (top slot). If a system has one board, install it in slot 3 (bottom). If it has two boards install them in slots 3 (bottom) and 4 (middle). If it has three boards install them in slots 3 (bottom), 4 (middle) and 5 (top).

For the D/480JCT-T1–EW and D/600JCT-E1120–EW boards, set the board ID and turn off power budgeting.

1. Turn the SW100 rotary switch located on the top of the board to set the board ID according to the number of the slot in which the board is installed.

<table>
<thead>
<tr>
<th>PCI slot number</th>
<th>Board ID number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

2. Move the P3 jumper on the top of the board on to pins 1–2 to disable power budgeting.

Setting the D/82JCT-U–EW board

If a system has one board, install it in slot 3 (bottom). If it has two boards install them in slots 3 (bottom) and 4 (middle). If it has three boards install them in slots 3 (bottom), 4 (middle) and 5 (top). For the D/82JCT-U-EW board, set Computer Telephony (CT) bus termination and turn
off power budgeting on all boards. CT bus termination is set by adjusting the P8 jumper on the side of the board. Set bus termination based on the following conditions:

<table>
<thead>
<tr>
<th>Number of boards</th>
<th>P8 jumper</th>
<th>CT bus termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OFF</td>
<td>Do not terminate bus.</td>
</tr>
</tbody>
</table>
| 2 | Board 1: ON pins 1 and 2
 | Board 2: ON pins 1 and 2 | Terminate bus on both boards |
| 3 | Board 1: ON pins 1 and 2
 | Board 2: ON pins 1 and 2
 | Board 3: ON pins 1 and 2 | Terminate bus on all boards |

1. Set the P8 jumper to the appropriate position for the system configuration:
 - For a system with three boards, move the P8 jumper on to pins 1 and 2.
 - For a system with two boards, move the P8 jumper on to pins 1 and 2.
 - For a system with one board, verify that the P8 jumper is only on pin 1.

In the following graphic, the setting on the left with pins 1 and 2 jumpered shows bus termination set to on. The settings on the right show bus termination set to off.

![Bus Termination Settings](image)

2. Move the P11 jumper on the top of the board on to pins 1–2 to disable power budgeting.

Setting the D/120JCT-LS–EW board

Prerequisites

Determine in which slot in the PCI cage you will be installing the board. Slots in the PCI cage are number 3 (bottom slot), 4 (middle slot) and 5 (top slot). If a system has one board, install it in slot 3 (bottom). If it has two boards install them in slots 3 (bottom) and 4 (middle). If it has three boards install them in slots 3 (bottom), 4 (middle) and 5 (top).

For the D/120JCT-LS-EW board, set the board ID, the hook-switch state and turn off power budgeting.
1. Turn the SW100 rotary switch located on the top of the board to set the board ID according to the number of the slot in which the board is installed.

<table>
<thead>
<tr>
<th>PCI slot number</th>
<th>Board ID number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

2. Set the SW1 slide switch located on top of the board to the OFF-hook position by moving the switch toward the bracket of the board.

 This switch position sets the hook-switch state so callers hear a busy signal when the board is not initialized.

3. Move the P3 jumper on the top of the board on to pins 1–2 to disable power budgeting.

Setting the D/41JCT-LS–EW board

Prerequisites

Determine in which slot in the PCI cage you will be installing the board. Slots in the PCI cage are number 3 (bottom slot), 4 (middle slot) and 5 (top slot). If a system has one board, install it in slot 3 (bottom). If it has two boards install them in slots 3 (bottom) and 4 (middle). If it has three boards install them in slots 3 (bottom), 4 (middle) and 5 (top).

For the D/41JCT-LS-EW board, set the board ID, the hook-switch state and Computer Telephony (CT) bus termination. CT bus termination is set by adjusting the JP2 jumper on the side of the board. Set bus termination based on the following conditions:

<table>
<thead>
<tr>
<th>Number of boards</th>
<th>JP2 jumper</th>
<th>CT bus termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OFF</td>
<td>Do not terminate bus.</td>
</tr>
<tr>
<td>2</td>
<td>Board 1: ON pins 1 and 2, Board 2: ON pins 1 and 2</td>
<td>Terminate bus on both boards</td>
</tr>
<tr>
<td>3</td>
<td>Board 1: ON pins 1 and 2, Board 2: ON pins 1 and 2, Board 3: ON pins 1 and 2</td>
<td>Terminate bus on all boards</td>
</tr>
</tbody>
</table>
1. Turn the SW30 rotary switch located on the top of the board to set the board ID according to the number of the slot in which the board is installed.

<table>
<thead>
<tr>
<th>PCI slot number</th>
<th>Board ID number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

2. Move the SW4 switch located near the top of the board to the OFF-Hook position by moving the switch toward the bracket of the board. This switch position sets the hook-switch state so callers hear a busy signal when the board is not initialized.

3. Set the JP2 jumper to the appropriate position for the system configuration:
 • For a system with three boards, move the JP2 jumper on to pins 1 and 2.
 • For a system with two boards, move the JP2 jumper on to pins 1 and 2.
 • For a system with one board, verify that the JP2 jumper is only on pin 1.

In the following graphic, the setting on the left with pins 1 and 2 jumpered shows bus termination set to on. The settings on the right show bus termination set to off.
Installing the board

1. While holding the PCI riser cage steady with one hand, align the board with the slot and seat the board into the slot.

2. Replace the mounting screw that secures the board.

3. Turn the screw clockwise and tighten to secure the board in the slot.

4. If the MAS has multiple port boards, attach the Computer Telephony (CT) bus cable to connect the port boards.
a. Attach the middle connector on the CT bus cable to the CT bus edge connector at the top of the board located in slot 4 (middle slot).

b. Attach the beginning connector to the CT bus edge connector of the second board.

c. Attach the end connector to the CT bus edge connector of the third board.

5. If the MAS has a single port board, attach the CT bus cable to that board so that it will be available if a board is added later.
Replacing the PCI riser cage

1. Align the two tabs of the riser cage with the guides on the server chassis and slide the riser cage in the slots until it rests on the base of the chassis and is aligned with the two thumbscrew holes.

2. Tighten the thumbscrews with the Torx screwdriver.
Tip:
To start the thumbscrew use one hand to push the spring-loaded screw down into the threaded hole, then turn the screw with the other hand.

3. Replace the Torx screwdriver in the clip at the rear of the server.

Next steps

1. Replace the cover on the server.
2. Replace the server in the rack.
3. Restore power to the server.

Related topics:
Replacing the server cover on page 17
Replacing the server in the rack on page 18
Shutting down the MAS on page 14

Connecting Dialogic port boards

Use the type of cable appropriate to the switch integration to connect the Dialogic port board to the corporate telephone switching system. The organization responsible for maintaining the corporate switch must make the connection to the telecommunications system.

Related topics:
Supported port board connections on page 35
Port board connections on page 36

Supported port board connections

The server supports the following port board connections:

• Analog using a standard RJ-11 tip/ring cord or individual tip/ring cables and a 12–port harmonica.
• E1–QSIG and T1–QSIG using an RJ-48C Ethernet cable.
• Dialogic Set Emulation (DSE) boards using a D/82U cable.
Port board connections

The graphic illustrates two E1–QSIG or T1–QSIG connections from MAS port boards to the corporate telephone switching system. DSE and analog boards connect at the same location on the back of the server.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Port board connection to corporate switch</td>
</tr>
<tr>
<td>2</td>
<td>Port board connection to corporate switch</td>
</tr>
</tbody>
</table>

Configuring and testing the port board

After the port board hardware installation is complete, you must configure and test the new Dialogic board.

Note:
The following procedures apply only to an MAS that was already in service. If you installed port boards in a new MAS, you must configure the MAS using the procedures described in *Avaya Modular Messaging Installation and Upgrades*.

1. After the server boots, log on to the server using any valid Modular Messaging account that has local administration privileges.
2. Use the Dialogic Configuration Manager to configure the new port board.
 For detailed procedures, see the port board appendix of *Avaya Modular Messaging Installation and Upgrades*.
3. Use the Dialogic Configuration Manager to verify the settings for all Dialogic port boards as you previously recorded them.
4. If the switch administrator previously busied out the MAS ports on the switch, the administrator must now bring the MAS ports back into service.
5. Test the Dialogic port board using the Dialogic Line Test application.
a. Access the Dialogic Line Test application by clicking \textit{Start} > \textit{Programs} > \textit{Avaya Modular Messaging} > \textit{Dialogic Line Tester}.

b. In the \textit{Dialogic QSIG — Line Test Application} (or DL Test) window, verify that all port numbers and channel designations are listed. The name of the window varies, depending on the type of port board that is installed.

c. Test the incoming call connectivity of all ports by dialing each port individually from the same PBX. For QSIG boards, repeatedly dial the number for that group of ports. The switch connects to the next port in the list for each new call. For analog and DSE boards, dial individual port extensions.

d. Check the \textit{Status} column to verify that each port shows \textit{Received call} followed by \textit{Connected}.

 The system should answer each connected call with a standard welcome message.

e. Test the outcalling capability of all ports by first selecting a port in the \textit{Dialogic Line Test Application} window under \textit{Port Number}.

f. Type the number of an extension on the PBX in the \textit{Dial Number} field and click \textit{Dial Number}.

g. When the dialed extension rings, answer the call and hang up.

h. Select the next port number and click \textit{Dial Number} again.

i. Repeat dialing until all ports are tested.

j. After testing is complete, close the \textit{Dialogic Line Test Application} window.

For additional information and a list of Dialogic Line Test Status Messages, see the port board appendix of \textit{Avaya Modular Messaging Installation and Upgrades}.

6. Verify that all port board alarms are resolved.
Adding and replacing an MAS port board
Chapter 5: Replacing a DVD drive

Prerequisites
Shut down the server.

1. Press the release button to the left of the DVD drive bay.
2. Slip the faulty DVD drive out of the drive bay.
3. Slide the replacement DVD drive into the bay until it is fully seated.

Next steps
Restore power to the server.
Replacing a DVD drive
Chapter 6: Adding and replacing a hard drive

Overview

Hard drives in the Avaya S8730 server are hot swappable. It is not necessary to take the server out of service or to turn it off when replacing a hard drive.

The S8730 uses a Redundant Array of Independent Disks (RAID) controller to protect against customer data loss. Models 03 and 04, used for the MAS and MSS-S, provide RAID level 1 redundancy. Model 05, used for the MSS-H, provides RAID level 5 redundancy.

Failed hard drive identification

Hard drives are numbered from left to right starting with number one. There are several ways to identify the hard drive that has failed:

• A major alarm is generated when a hard drive fails. The alarm includes the number of the failed drive. For more information about displaying active and resolved alarms, see the maintenance section of Avaya Modular Messaging Help.

• For an MAS, when a hard drive fails, error event 1216 displays in the Windows Event Viewer System Event Log. The description of the event gives the number of the failed drive.

• The two LEDs on the front of each hard drive in combination give the drive status.

Related topics:

Hard drive LEDs on page 41

Hard drive LEDs

Use the following information from the LEDs located on the front of a drive to diagnose its status.
<table>
<thead>
<tr>
<th>Online/activity LED (green)</th>
<th>Fault/UID LED (amber/blue)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On, off, or flashing</td>
<td>Alternating amber and blue</td>
<td>The drive has failed or a predictive failure alert has been received for this drive.</td>
</tr>
<tr>
<td>On, off, or flashing</td>
<td>Steadily blue</td>
<td>The drive is operating normally.</td>
</tr>
<tr>
<td>On</td>
<td>Amber, flashing regularly (1 Hz)</td>
<td>A predictive failure alert has been received for this drive; replace the drive as soon as possible.</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>The drive is online, but is not currently active.</td>
</tr>
<tr>
<td>Flashing regularly (1 Hz)</td>
<td>Amber, flashing regularly (1 Hz)</td>
<td>Caution: Do not remove the drive; removing a drive might terminate the current operation and/or cause data loss. The drive is part of an array that is undergoing capacity expansion or stripe mitigation, but a predictive failure alert has been received for this drive. To minimize the risk of data loss, do not replace the drive until the expansion or migration is complete.</td>
</tr>
<tr>
<td>Flashing regularly (1 Hz)</td>
<td>Off</td>
<td>Caution: Do not remove the drive; removing a drive might terminate the current operation and/or cause data loss. The drive is rebuilding or is part of an array that is undergoing capacity expansion or stripe mitigation.</td>
</tr>
<tr>
<td>Flashing irregularly</td>
<td>Amber flashing regularly (1 Hz)</td>
<td>The drive is active, but a predictive failure alert has been received for this drive; replace the drive as soon as possible.</td>
</tr>
<tr>
<td>Flashing irregularly</td>
<td>Off</td>
<td>The drive is active and is operating normally.</td>
</tr>
<tr>
<td>Off</td>
<td>Steadily amber</td>
<td>A critical fault condition has been identified for this drive and the controller has placed it offline. Replace the drive as soon as possible.</td>
</tr>
</tbody>
</table>
Removing the defective hard drive

1. Press down on the locking tab.
2. Lift the release lever.
3. Slide the hard drive out of the bay.
Installing the replacement hard drive

Prerequisites

Verify that you are observing all ESD safety precautions before unwrapping the new hard drive.

1. Lift the release lever and insert the new hard drive into the bay until the locking tab engages.
2. Close the release lever to securely seat the hard drive in the bay.
3. Monitor the RAID rebuild of the new hard drive.
 • For an MSS, on the Messaging Administration menu, under Server Information, select Rebuild RAID Status. The RAID Rebuild Status page shows the percent complete of the disk drive recovery.
 • For an MAS, information event 1216 displays in the Windows Event Viewer System Event Log when the failed drive is replaced. The MAS major alarm is resolved, and a minor alarm is raised. When the RAID rebuild is complete, information event 1200 displays in the Windows Event Viewer System Event Log. The event description should give a status of 2 indicating that the drive is OK. The MAS minor alarm is resolved when event 1200 displays.
4. Verify that the hard drive failure alarm has resolved. For more information about displaying active and resolved alarms, see the maintenance section of Avaya Modular Messaging Help.
Chapter 7: Replacing a fan

Prerequisites

- Shut down the server.
- Remove the server from the rack.
- Remove the server cover.

When a fan fails, its LED lights amber on the system insight display. The position of the LED on the display corresponds to the position of the fan in the server. Four fans are located at the front of the server and two are located in front of the PCI riser cage.

Refer to the following graphic for steps to replace a fan in any location within the chassis.
1. Press the release tabs located on top of the fan.
2. Pull the faulty fan directly up and out of the bracket.
3. Push the replacement fan into the bracket until it is fully seated.
Next steps

1. Replace the cover on the server.
2. Replace the server in the rack.
3. Restore power to the server.
Replacing a fan
Chapter 8: Replacing a power supply

Overview

The S8730 comes equipped with either a single or redundant power supply. Models 03 and 04, used for the MAS and MSS-S have a single power supply. Model 05, used for the MSS-H, has redundant power supplies. Use the replacement procedure that apply to the model you are servicing.

When a power supply fails, its LED lights amber on the system insight display. The position of the LED on the display corresponds to the position of the power supply on the back of the server.
Replacing a single power supply

Prerequisites
Shut down the server, if it has not already shut down.

⚠️ Warning:
To reduce the risk of personal injury from hot surfaces, allow the power supply to cool before touching it.

To reduce the risk of personal injury, electric shock, or damage to the equipment, remove the power cord to remove power from the server. The front panel Power On/Standby button does not completely shut off system power. Portions of the power supply and some internal circuitry remain active until you remove AC power.

⚠️ Caution:
To prevent improper cooling and thermal damage, do not operate the server unless all bays are populated with either a component or a blank.

1. Remove the power cord from the defective power supply.
2. Press the release tab on the power supply with your thumb.
3. Grasp the handle.
4. Pull the defective power supply out of the bay.
5. Slide the replacement power supply into the power supply bay.
6. Ensure that the tab is locked into place and that the power supply is securely seated in the bay.
7. Restore power to the server.
8. Verify that the power supply LED is green.
9. Verify that the front panel external health LED is green.

Related topics:
- Shutting down the MAS on page 14
- Shutting down the MSS on page 15
- Restoring power to the server on page 19

Replacing a duplicate power supply

It is not necessary to power down the server to replace a power supply in a server with a duplicate power supply.

⚠️ Warning:
To reduce the risk of personal injury from hot surfaces, allow the power supply to cool before touching it.

⚠️ Caution:
To prevent improper cooling and thermal damage, do not operate the server unless all bays are populated with either a component or a blank.

1. Remove the power cord from the defective power supply.
2. Press the release tab on the power supply with your thumb.
3. Grasp the handle.
4. Pull the defective power supply out of the bay.
5. Slide the replacement power supply into the power supply bay.

⚠️ **Warning:**

To reduce the risk of electric shock or damage to the equipment do not connect the power cord to the power supply until you install the power supply.

6. Ensure that the tab is locked into place and that the power supply is securely seated in the bay.

7. Restore power to the server.

8. Verify that the power supply LED is green.

9. Verify that the front panel external health LED is green.

Related topics:

[Restoring power to the server](#) on page 19
LED Overview

The server has LEDs in the following locations:

- Front panel
- Rear panel
- Insight display, located on the front of the server
- Hard drive
- PCI riser cage
- Battery pack

Front panel LEDs

![Front panel LEDs diagram](image)
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UID LED button</td>
<td>Blue — Activated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing — System being remotely managed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off — Deactivated</td>
</tr>
<tr>
<td>2</td>
<td>Internal health LED</td>
<td>Green — Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber — System degraded. To identify component in degraded state, see</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systems Insight Display LEDs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red — System critical. To identify component in critical state, see</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systems Insight Display LEDs.</td>
</tr>
<tr>
<td>3</td>
<td>External health LED</td>
<td>Green — Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber — Power redundancy failure. To identify component in degraded state,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see Systems Insight Display LEDs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red — Critical power supply failure. To identify component in critical state,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see Systems Insight Display LEDs.</td>
</tr>
<tr>
<td>4</td>
<td>NIC 1 link/activity LED (Corporate Network)</td>
<td>Green — Network link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing — Network link and activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off — No link to network</td>
</tr>
<tr>
<td>5</td>
<td>NIC 2 link/activity LED (Private Network)</td>
<td>Green — Network link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing — Network link and activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off — No link to network</td>
</tr>
<tr>
<td>6</td>
<td>Power On/Standby button/system power LED</td>
<td>Green — System on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amber — System shut down, but power still applied</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off — Power cord not attached or power supply failure</td>
</tr>
<tr>
<td>7</td>
<td>Hard drive LEDs</td>
<td>Left-hand LED — Online LED (green)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right-hand LED — Fault/UID LED (amber/blue)</td>
</tr>
</tbody>
</table>
Back panel LEDs

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Status and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power supply LED</td>
<td>Green — Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off — System is off power or power supply has failed</td>
</tr>
<tr>
<td>2</td>
<td>UID LED button</td>
<td>Blue — Activated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing — System being remotely managed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off — Deactivated</td>
</tr>
<tr>
<td>3</td>
<td>NIC/iLO 2 activity LED</td>
<td>Green — Network activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing — Network activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off — No network activity</td>
</tr>
<tr>
<td>4</td>
<td>NIC/iLO 2 link LED</td>
<td>Green — Network link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off — No network link</td>
</tr>
</tbody>
</table>
Systems Insight Display LEDs

<table>
<thead>
<tr>
<th>Indication</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amber</td>
<td>Failure</td>
</tr>
<tr>
<td>Off</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Related topics:
Systems Insight Display Interpretation on page 56

Systems Insight Display Interpretation

The Systems Insight Display LEDs in combination with the internal health LED provide information about the status of the server.

<table>
<thead>
<tr>
<th>System Insight Display LED and color</th>
<th>Internal Health LED color</th>
<th>Status</th>
</tr>
</thead>
</table>
| Processor failure, socket X (amber) | Red | One or more of the following conditions may exist:
 • Processor in socket X has failed.
 • Processor X is not installed in the socket. |
<table>
<thead>
<tr>
<th>System Insight Display LED and color</th>
<th>Internal Health LED color</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor X is unsupported.</td>
<td>Amber</td>
<td></td>
</tr>
<tr>
<td>ROM detects a failed processor during POST.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor in socket X is in a pre-failure condition.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPM failure (amber)</td>
<td>Red</td>
<td>One or more of the following conditions may exist:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PPM for processor 2 has failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PPM is not installed, but processor 2 is installed.</td>
</tr>
<tr>
<td>I-PPM failure</td>
<td>Red</td>
<td>Embedded I-PPM for processor 1 has failed.</td>
</tr>
<tr>
<td>DIM failure, slot X (amber)</td>
<td>Red</td>
<td>One or more of the following conditions may exist:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DIMM in slot X has failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Memory group is populated with different DIMM types (all DIMMs are mismatched).</td>
</tr>
<tr>
<td>DIMM failure, all slots in one bank (amber)</td>
<td>Red</td>
<td>One or more of the following conditions may exist:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DIMM in slot X is in a pre-failure condition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Memory group is populated with different DIMM types (at least one DIMM is good).</td>
</tr>
<tr>
<td>DIMM failure, all slots in all banks (amber)</td>
<td>Red</td>
<td>One or more DIMMS has failed.</td>
</tr>
<tr>
<td>Overtemperature (amber)</td>
<td>Red</td>
<td>The server has detected a hardware critical temperature level.</td>
</tr>
<tr>
<td>Fan (amber)</td>
<td>Amber</td>
<td>One fan has failed in redundant mode.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>One or more of the following conditions may exist:</td>
</tr>
</tbody>
</table>
LED indications

<table>
<thead>
<tr>
<th>System Insight Display LED and color</th>
<th>Internal Health LED color</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• One fan has failed in a non-redundant mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The minimum fan requirements are not being met. Two or more fans have failed or are missing.</td>
</tr>
<tr>
<td>Power supply X (amber)</td>
<td>Red</td>
<td>Power supply X has failed.</td>
</tr>
<tr>
<td>PCI riser cage interlock (amber)</td>
<td></td>
<td>PCI riser cage is unseated.</td>
</tr>
</tbody>
</table>

Hard drive LEDs

Use the following information from the LEDs located on the front of a drive to diagnose its status.

<table>
<thead>
<tr>
<th>Online/activity LED (green)</th>
<th>Fault/UID LED (amber/blue)</th>
<th>Description</th>
<th>Caution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>On, off, or flashing</td>
<td>Alternating amber and blue</td>
<td>The drive has failed or a predictive failure alert has been received for this drive.</td>
<td>Do not remove the drive; removing a drive might terminate the current operation and/or cause data loss.</td>
</tr>
<tr>
<td>On, off, or flashing</td>
<td>Steadily blue</td>
<td>The drive is operating normally.</td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>Amber, flashing regularly (1 Hz)</td>
<td>A predictive failure alert has been received for this drive; replace the drive as soon as possible.</td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>The drive is online, but is not currently active.</td>
<td></td>
</tr>
<tr>
<td>Flashing regularly (1 Hz)</td>
<td>Amber, flashing regularly (1 Hz)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Caution: Do not remove the drive; removing a drive might terminate the current operation and/or cause data loss. The drive is part of an array that is undergoing capacity expansion or stripe mitigation, but a predictive failure alert has been received for this drive. To minimize the risk of data loss, do not
<table>
<thead>
<tr>
<th>Online/activity LED (green)</th>
<th>Fault/UID LED (amber/blue)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>replace the drive until the expansion or migration is complete.</td>
</tr>
<tr>
<td>Flashing regularly (1 Hz)</td>
<td>Off</td>
<td>Caution: Do not remove the drive; removing a drive might terminate the current operation and/or cause data loss. The drive is rebuilding or is part of an array that is undergoing capacity expansion or stripe mitigation.</td>
</tr>
<tr>
<td>Flashing irregularly</td>
<td>Amber flashing regularly (1 Hz)</td>
<td>The drive is active, but a predictive failure alert has been received for this drive; replace the drive as soon as possible.</td>
</tr>
<tr>
<td>Flashing irregularly</td>
<td>Off</td>
<td>The drive is active and is operating normally.</td>
</tr>
<tr>
<td>Off</td>
<td>Steadily amber</td>
<td>A critical fault condition has been identified for this drive and the controller has placed it offline. Replace the drive as soon as possible.</td>
</tr>
<tr>
<td>Off</td>
<td>Amber flashing regularly (1 Hz)</td>
<td>A predictive failure alert has been received for this drive; replace the drive as soon as possible.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>The drive is offline.</td>
</tr>
</tbody>
</table>

Battery pack LEDs

The battery pack has four LEDs that combine to give information about the status of the battery pack and of the data in the cache.
LED indications

<table>
<thead>
<tr>
<th>Number</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Green</td>
<td>System power LED. This LED glows steadily when the system is powered up and 12 V system power is available. This power supply is used to maintain the battery charge and provide supplementary power to the cache microcontroller.</td>
</tr>
<tr>
<td>2</td>
<td>Green</td>
<td>Auxiliary power LED. This LED glows steadily when 3.3V auxiliary voltage is detected. The auxiliary voltage is used to preserve Battery-Backed Write Cache (BBWC) data and is available any time that the system power cords are connected to a power supply.</td>
</tr>
<tr>
<td>3</td>
<td>Amber</td>
<td>Battery health LED.</td>
</tr>
<tr>
<td>4</td>
<td>Green</td>
<td>BBWC status LED.</td>
</tr>
</tbody>
</table>

Related topics:
- [Battery pack LED patterns](#) on page 60

Battery pack LED patterns

The battery health LED and Battery-Backed Write Cache (BBWC) status LED in combination provide information about the status of the battery and information in cache.
The system is powered down and the cache contains data that has not yet been written to the drives. Restore system power as soon as possible to prevent data loss. Data preservation time is extended when 3.3 V auxiliary power is available — as indicated when the auxiliary power LED is lit. In the absence of auxiliary power, battery power alone preserves the data. A fully charged battery can normally preserve data for at least two days.

The cache microcontroller is waiting for the host controller to communicate.

The battery pack is below the minimum charge level and is being charged. Features that require a battery (such as write cache) are temporarily unavailable until charging is complete.

The battery pack is fully charged and posted write data is stored in the cache.

The battery pack is fully charged and there is no posted write data in the cache.

An alternating green and amber blink pattern indicates that the cache microcontroller is executing from within its boot loader and receiving new flash code from the host controller.

There is a short circuit across the battery terminals or within the battery pack. BBWC features are disabled until the battery pack is replaced.

There is an open circuit across the battery terminals or within the battery pack. BBWC features are disabled until the battery pack is replaced.

PCI riser cage LED

The PCI riser cage LED is located on the top right of the PCI riser cage.
LED indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>AC power connected</td>
</tr>
<tr>
<td>Off</td>
<td>AC power disconnected</td>
</tr>
</tbody>
</table>
Index

B
back panel LEDs .. 55
battery health LED ... 60
battery pack LEDs .. 59, 60
BBWC status LED .. 60
board ID
 D/120JCT-LS-EW .. 29
 D/41JCT-LS-EW .. 30
 D/480JCT-T1–EW .. 28
 D/600JCT-E1120–EW .. 28
busy out ports .. 22

C
CT bus termination
 D/41JCT-LS-EW .. 30
 D/82JCT-U-EW .. 28

D
Dialogic board settings
 D/120JCT-LS-EW .. 29
 D/41JCT-LS-EW .. 30
 D/480JCT-T1–EW .. 28
 D/600JCT-E1120–EW .. 28
 D/82JCT-U-EW .. 28
Dialogic boards .. 35, 36
 connecting .. 35
Dialogic port boards ... 21
Dialogic settings
 recording .. 22
DVD drive
 replacing .. 39

F
fan
 replacing .. 45
front panel LEDs .. 53

H
hard drive
 installing replacement .. 44
 RAID rebuild status .. 44
 removing .. 43
hook-switch state
 D/120JCT-LS-EW .. 29

J
jumpers
 setting dialogic .. 27

L
LEDs ... 41, 53, 55, 56, 58–61
 back panel .. 55
 battery health .. 60
 battery pack ... 59, 60
 BBWC status .. 60
 front panel .. 53
 hard drive ... 41, 58
 PCI riser cage ... 61
 Systems Insight Display 56
legal notices .. 2

M
MAS
 shutting down .. 14
MSS
 shutting down .. 15

N
notices, legal .. 2

P
PCI riser cage
 LEDs .. 61
 recording .. 22
PCI riser cage
 removing .. 24
 replacing ... 34
port board
 configuring .. 36
 installing ... 32
 preparing to set jumpers 27
 removing .. 26
 reseating ... 25
testing .. 36
port boards .. 21, 35, 36
 connecting ... 35
Index

power budgeting
- D/120JCT-LS-EW .. 29
- D/480JCT-T1–EW .. 28
- D/600JCT-E1120–EW ... 28
- D/82JCT-U-EW ... 28

power supply
- replacing duplicate .. 51
- replacing single ... 50

R

recommended test equipment 11
recommended tools .. 11

removing
- PCI riser cage .. 24
- server cover .. 17
- server from rack .. 16

replacing
- duplicate power supply .. 51
- DVD drive .. 39
- fan ... 45
- PCI riser cage .. 34
- server cover .. 17
- server in rack ... 18
- single power supply .. 50
- reseating port boards ... 25

restoring power ... 19

S

- safety ... 5, 6, 8, 9
- battery ... 9
- electrical ... 6
- ESD .. 8
- inspection .. 6

server back view ... 14
server cover
- removing .. 17
- replacing .. 17

server front view .. 13
starting server ... 19

switches
- setting dialogic .. 27
- Systems Insight Display LEDs 56

T

- test equipment .. 11
- turning off MAS .. 14
- turning off MSS .. 15