Static local configuration of the IP DECT base station .. 33
802.1Q Support .. 35
Avaya DECT Mobility Manager Requirements .. 35
 ADMM running on an IP DECT base station ... 35
 ADMM running on a Linux Server ... 36
Principles and Parameter .. 36
Why not VLAN ID 0 .. 36
VLAN and the Boot Phase of a IP DECT base station ... 36
 DHCP ... 36
 Local configuration of the IP DECT base stations ... 37
Configuring the Avaya DECT Mobility Manager ... 37
 Service Login procedure ... 38
Licensing .. 40
 Definition of the License IP DECT base stations .. 40
 Get and add the License Key and PARK number ... 41
System ... 42
 System settings ... 42
 Rebooting the ADMM ... 44
 User Account. .. 44
 Time zones .. 45
 SNMP .. 46
 Backup .. 48
IP Regions ... 49
IP DECT base station Configuration .. 50
 DECT configuration ... 51
 States of an IP DECT base station .. 52
IP Trunks ... 53
Configuration of IP DECT handsets ... 55
System Features .. 59
 Voice Mail ... 59
 Media Server System Features ... 60
 Digit Treatment .. 61
 Corporate Directory ... 61
 TFTP based Corporate Directory ... 64
 WML ... 65
Chapter 4: Avaya Communication Manager .. 67
 Usage and Important Notes .. 67
 ACM system administration. .. 67
Chapter 1: Overview

Purpose

This document describes the installation and administration of the Avaya IP DECT solution using Avaya DECT Mobility Manager version 1.x.x.

Abbreviations and Definitions

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Authentication Code</td>
</tr>
<tr>
<td>ACM</td>
<td>Avaya Communication Manager</td>
</tr>
<tr>
<td>ADMM</td>
<td>Avaya IP DECT Mobility Manager</td>
</tr>
<tr>
<td>ADPCM</td>
<td>Adaptive Differential Pulse Code Modulation</td>
</tr>
<tr>
<td>CM</td>
<td>Communication Manager</td>
</tr>
<tr>
<td>DECT</td>
<td>Digital Enhanced Cordless Telecommunication</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processor</td>
</tr>
<tr>
<td>GAP</td>
<td>Generic Access Profile</td>
</tr>
<tr>
<td>IPEI</td>
<td>International Portable Equipment Identity</td>
</tr>
<tr>
<td>IP Base Station</td>
<td>IP DECT Base Station</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hyper Text Transfer Protocol</td>
</tr>
<tr>
<td>MSSF</td>
<td>Media Server System Features</td>
</tr>
<tr>
<td>OMM</td>
<td>Open Mobility Manager (same as ADMM)</td>
</tr>
<tr>
<td>PARK</td>
<td>Portable Access Rights Key</td>
</tr>
<tr>
<td>PP</td>
<td>Portable Part (same as IP DECT handset)</td>
</tr>
<tr>
<td>RFP</td>
<td>Radio Fixed Part (same as IP Base Station)</td>
</tr>
<tr>
<td>RTCP</td>
<td>Real Time Control Protocol</td>
</tr>
</tbody>
</table>
Overview

Definitions

RTP Real Time Protocol

TFTP Trivial File Transfer Protocol

VLAN Virtual Local Area Network

DECT

Digital Enhanced Cordless Telecommunication

- The standard (ETS 300 175) essentially specifies the air interface, known as the radio interface. Voice and data can both be transmitted via this interface.
- Its key technical characteristics are:
 - Frequency range: approx. 1,880 – 1,900 GHz (approx. 20 MHz bandwidth)
 - 10 carrier frequencies (1,728 MHz spacing) with 12 time slots each (*)
 - Doubling the number of time slots (to 24) using the TDMA process
 - Net data rate per channel of 32 kbit/s (for voice transmission using ADPCM)
 - Voice coding using the ADPCM method
 - Maximum transmission power of 10 mW

GAP

Generic Access Profile

- GAP is the abbreviation for Generic Access Profile
- The GAP standard (ETS 300 444) is based on the same technology as DECT, but is limited to the most important basic features. This standard was created in order to allow telephones of different vendors to be used on any type of DECT system. It thus represents the smallest common denominator of all manufacturer-specific variants of the DECT standard.
- An important limitation in the GAP standard is that external handover is not possible. For this reason connection handover is used, which is supported by GAP terminals.
- The operation of GAP-capable telephones is comparable to that of analogue terminals. For example, features can be called up via ‘*’ and ‘#’ procedures.

Handover

Handover

A handover is similar to roaming, but occurs during an ongoing call. A handover normally takes place “in the background,” without disrupting the call (seamless handover).
IPEI

International Portable Equipment Identity
- 13-digit identification code for telephones
- Example: 00019 0592015 3 (the final digit is the checksum).
- The code is represented in decimal form.
- This code is globally unique.

PARK

Portable Access Rights Key
Access code for the handset. This code determines whether a telephone can access a particular DECT system. Used for unique selection of the system at enrolment.

Handover

DECT base station networking
While in motion, the telephone performs ongoing measurements to determine which base station is best received. The one that can be best received is defined as the active base station. To prevent the telephone from rapidly switching back and forth between two base stations that can be almost equally well received, certain threshold values are in effect. (similar to a Schmitt trigger circuit)

References

1. The TFTP Protocol (Revision 2), RFC 1350, July 1992
2. Avaya – Open Mobility configuration settings; KI CTB006259
3. Product Requirements and System Architecture; Integrating DeTeWe IP DECT wireless into Avaya Multi Vantage Solution utilising an IP infrastructure
4. Product Requirements and System Architecture; Integrating DeTeWe IP DECT wireless into Avaya IP Office utilising an IP infrastructure
5. RFC 1156, Management Information Base for Network Management of TCP/IP-based internets, May 1990
7. RFC 1450, Management Information Base for version 2 of the Simple Network Management Protocol (SNMPv2), April 1993
9. Avaya 3711 User Guide
10. Avaya 3701 User Guide
11. Avaya IP Telephone LAN Administrators Guide
Overview
Chapter 2: Introduction

About the Avaya IP DECT Solution

The DECT over IP system comprises the following components:

- IP DECT Base Stations distributed over an IP network and offering DECT as a wireless interface.
- ACM Media Server/Media Gateway as telephony system platforms
- DECT telephone: Avaya 3701 and Avaya 3711 wireless phones
- Avaya DECT Mobility Manager (ADMM): management interface for IP DECT Solution, which runs on either one of the IP DECT Base stations or on a dedicated LINUX server

The following pictures give a graphical overview of the architecture of the Avaya IP DECT solution:

The Media Server, Media Gateway, ADMM and the IP DECT base stations communicate through the IP infrastructure. The IP DECT base stations and the IP DECT handsets communicate over air, where the DECT GAP protocol is used or DECT GAP with proprietary enhancements.
About the IP DECT base stations

All IP DECT base stations have the same hardware and software capabilities.

One of the IP DECT base stations within an IP DECT installation may be chosen to operate not in the IP DECT base station only mode but in the Avaya DECT Mobility Manager (ADMM) mode. During installation, you will set one of the IP DECT base stations to ADMM mode, or you will use a dedicated LINUX server running as an ADMM. The others are in the IP DECT base station only mode.

IP DECT base station only mode:

Within that mode, the IP DECT base station converts IP protocol to DECT protocol and then transmits the traffic to and from the Handsets over a DECT timeslot. On air the IP DECT base station has 12 time slots, eight can have associated DSP resources for media streams, the remaining four time slots are used for example for control signalling between IP DECT base stations and the Handsets or for bearer handover.

Groups of IP DECT base stations have to be built which are named Cluster. Within a Cluster IP DECT base stations are synchronised to enable a seamless hand over when a user crosses from one IP DECT base station’s zone of coverage to another. For synchronisation it is not necessary for an IP DECT base station to communicate directly with all other IP DECT base stations in the system. Each IP DECT base station only needs to be able to communicate with the next IP DECT base station in the chain. But it is preferable for an IP DECT base station to see more than one IP DECT base station to guarantee synchronisation in the event that one of the IP DECT base stations fails.

The four control signalling channels are also used to carry bearer signals that signal the Handset to start the hand over process. If the radio signal of another IP DECT base station is stronger than that of the current IP DECT base station, then the Handset starts the hand over process to the IP DECT base station that has the stronger signal as the user moves around the site.

Avaya IP DECT Mobility Manager (ADMM) mode:

In this mode, an IP DECT base station functions as a regular IP DECT base station. Additionally it is responsible for H.323 signalling between the IP DECT system and the telephony or media server. Further on it takes management part of the IP-DECT solution. You designate an IP DECT base station as the ADMM by assigning an IP address to the IP DECT base station in the DHCP scope (see Mandatory options on page 29) or by setting the data via OM Configurator (see Static local configuration of the IP DECT base station on page 33). After an IP DECT base station is designated as the ADMM, it starts the extra services on board (for example, the Web Service that supports the management interface).
Note:

It is possible to deactivate the DECT part of a IP DECT base station. If the DECT Interface is deactivated then the resources (CPU and memory) are available for the ADMM.

Avaya DECT Mobility Manager

The Avaya DECT Mobility Manager (ADMM) performs the following tasks:

- signalling gateway (H.323 <-> DECT GAP)
- media stream management
- manages synch over air functions between IP DECT base stations
- facilitates system configuration modifications
- provides additional services e.g.
 - Corporate Directory (LDAP or TFTP based)
 - WML browser

The Avaya DECT Mobility Manager (ADMM) may run on one of the IP DECT base station or on a dedicated Linux Server.
IP signalling and media stream

To establish a call between an IP Phone and an DECT handset, the following IP streams must be established:

- a signalling channel to and from the IP phone
- a signalling channel to and from the ADMM
- a control interface between the ADMM and the IP DECT base station that has a connection to the DECT handset (known as the primary IP DECT base station)
- a Real Time Protocol (RTP) / Real Time Control Protocol (RTCP) connection between the IP Phone and the Media Gateway and then a RTP/RTCP connection between the Media Gateway and the IP DECT base station. The following figure illustrates this scenario.
To establish a call between two DECT handsets the same IP streams must be established like in the scenario before, except the IP phone is not involved. The following figure illustrates this scenario.

A call from one DECT handset to another that resides on the same IP DECT base station will loop back within the IP DECT base station, if no Media gateway is involved. So the call will not pass through to the local area network (LAN). Although the voice packets will not impact LAN traffic, signal packets will.

It is also be possible to direct the media stream to connect directly the IP phone and the IP DECT base station, as shown in the following figures.
If the DECT handset user is moving, the handset detects that another IP DECT base station has a better signal strength and, therefore, it starts the hand over process. The media stream from the IP Phone cannot move to the secondary IP DECT base station, so the primary IP DECT base station uses the LAN to direct the voice to the secondary IP DECT base station, as shown in the following figure.
As the DECT set user moves into the next IP DECT base station zone of coverage, the DECT set detects that the IP DECT base station has a better signal strength. Again, the media stream from the IP phone cannot move to the secondary IP DECT base station, so the primary IP DECT base station uses the LAN to direct the voice to the new secondary IP DECT base station.

To guarantee a seamless hand over if a caller moves from one IP DECT base station zone of coverage to another IP DECT base station zone of coverage, an accurate synchronisation of the IP DECT base stations is necessary.

The IP DECT base stations are synchronised over the air interface. During start-up, one IP DECT base station will be the first, which transmits a signal on the air. The other IP DECT base stations only receiving the signal until their are synchronous. If a IP DECT base station gets in synch then it will transmit a signal on the air and will be the synch source for the next IP DECT base stations. Only IP DECT base stations which can receive each other will be synchronised.

For the IP DECT base station to sync to another IP DECT base station the signal strength cannot drop below –70 dBm. You must consider this requirement during the site survey.
Introduction

The first active IP DECT base station will be chosen by the ADMM as the Master for the synchronisation. If a specific IP DECT base station shall be used, for example to speed-up the synchronisation phase, then a IP DECT base station can be marked with ‘Act as Master during startup’ on the IP DECT base station Web page.

As long as a IP DECT base station is not in synch, no calls can be established using this IP DECT base station.

If a IP DECT base station loses the synchronisation the IP DECT base station does not accept new calls ("Busy-Bit"). There is a delay of max. 3 minutes until the active calls on this IP DECT base station are finished. Then it tries to get synchronised again.
An IP DECT installation is more reliable if a IP DECT base station can receive the signal from more than only one IP DECT base station, because the other signals are also used for synchronisation.

The synch-over-air solution is very reliable, because all existing redundant paths are used for synchronisation. Thus, hardware tolerances have only very little influence. No IP DECT base station has a key position. Example: If the Initial Master does not start up, another IP DECT base station will be chosen by the ADMM.

Only unfavourable setups without redundant synchronisation paths can cause problems.

Sometimes IP DECT base stations do not need to be synchronized, e.g. if they are in different buildings. These IP DECT base stations can be put into different clusters. IP DECT base stations in different clusters will not be synchronised with each other. Different cluster start up independent at the same time.
IP DECT base station channel capacity

The IP DECT base station has 12 available airtime slots:

- eight can have associated DSP resource for media streams
- the remaining four time slots are used for example for control signalling between IP DECT base stations and the Handsets or for bearer handover

If all eight Media Stream channels are used IP DECT announces a ‘Busy Bit’. In that case the DECT sets determine whether another IP DECT base station has an appropriate signal strength. If so, the DECT set will hand over to that IP DECT base station. Once the hand over has been completed, the IP DECT base station will then lower its Busy Bit.

Whenever the busy state is announced a log entry is made to the system logs. If the announcement of Busy raises in a specific area, a further IP DECT base station should be installed to double the number of media streams available for calls.

About the Handsets

There are two models of Handsets: the Avaya 3711 and the Avaya 3701. A detailed description of the two phones and their local features is available with Avaya 3711 User Guide and Avaya 3701 User Guide.

Also Avaya Kirk DECT phones (WT9620 and DT20) and standard 3rd party DECT GAP phones function on the IP DECT solution. But the functionality may be limited by the characteristics of the 3rd party DECT phone. The 3rd party DECT phones need to provide the IPEI for administration.
About Licensing

The ADMM needs to be enabled with a license key, which depends on the MAC address of some IP DECT base stations in the DECT system. The license key needs to be entered / administered via the ADMM web administration interface.

There are a sets of licenses with additional upgrade licenses:

- License for 1 IP DECT base station
- License for 2 IP DECT base stations
- License for 3 to 5 IP DECT base stations
- License for more than 5 IP DECT base stations

As mentioned above the license key depends on the MAC addresses of some IP DECT base stations of the DECT system (License-IP DECT base stations). Each IP DECT base station can be an License-IP DECT base station independently where the IP DECT base station is located. The number of IP DECT base station MAC addresses encoded in the license depends on the size of the DECT installation.

<table>
<thead>
<tr>
<th>System size (# of IP DECT base stations)</th>
<th>Number of IP DECT base station MAC addresses encoded in the license (License-IP DECT base stations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3 to 5</td>
<td>3</td>
</tr>
<tr>
<td>6 or more (6+)</td>
<td>3</td>
</tr>
</tbody>
</table>

Additionally to the MAC addresses the PARK (Portable Access Rights Key), which identifies the DECT installation, is also by part of the license. Because a DECT system can only be operated with a valid PARK, a DECT installation without a license will be inactive on the DECT site.

An IP DECT system is operational, if it set up with a license and the IP DECT base stations, which are encoded in the license are part of the system so that the ADMM can communicate with these License-IP DECT base stations.
Depending on the size of the IP DECT system, it will still work if some License-IP DECT base stations are out of service.

<table>
<thead>
<tr>
<th>System size (# of IP DECT base stations)</th>
<th>Number of License-IP DECT base stations</th>
<th>Number of License-IP DECT base stations available at minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3 to 5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6 or more (6+)</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

If the minimum number of License-IP DECT base stations can not be reached by the ADMM or more IP DECT base stations are administered than licensed the DECT system will block the voice streams.

System Capacities

There is only one Avaya DECT Mobility Manager (ADMM) in the system. The capacities are depending on the platform, the ADMM is running on.

ADMM running on a IP DECT base station:
- up to 256 IP DECT base stations can be controlled
- up to 400 handsets are handled
- up to 100 handsets can be active simultaneously

It is possible to deactivate the DECT part of a IP DECT base station. If the DECT Interface is deactivated then the resources (CPU and memory) are available for the ADMM only.

ADMM running on a Linux Server:
- up to 256 IP DECT base stations can be controlled
- up to 16,320 handsets are handled
- up to 1,500 handsets can be active simultaneously (theoretical maximum is 2048 but this is not practical because of handovers)
Chapter 3: Installation and Configuration

To establish and maintain an IP DECT installation, a network infrastructure is assumed, which comprises at least the following components:

- IP DECT base stations, IP DECT handsets and ACM Media Server
- a Redhat Enterprise 4.0 ES Linux Server, if it is decided not to run the Avaya DECT Mobility Manager on an IP DECT base station
- a TFTP Server

Depending on the operational modes the following services should be provided:

- DHCP
- SNTP
- DNS
- WML/HTTP
- LDAP
- Syslog daemon

Avaya IP DECT system start up

Startup of the IP DECT base stations

For booting an IP DECT base station there must at least a TFTP-Server on the attached network to load the application software.

The essential network settings can be given alternatively

- given by a DHCP Server at startup time.
- can be configured on the IP DECT base station with the tool OM-Configurator. The settings made by OM-Configurator will be saved permanently in the internal flash memory.

The IP DECT base station gets the boot image file from a TFTP server. The used TFTP server needs to support RFC 1350, The TFTP Protocol (Revision 2), July 1992.

The used DHCP server needs to support RFC 2131, Dynamic Host Configuration Protocol, March 1997.

The TFTP and DHCP server need not to reside on the same host.
Booting Overview

Booting can be in two steps:

- Starting the boot process
- Starting the application

Booter:

The IP DECT base station has only a little standalone application built into the flash. This software realises the so called NETBOOT process.

On start up each IP DECT base station try to determine its own IP address and other settings of the IP interface from the configuration settings in the internal flash memory. When no settings are available or these settings are disabled, the IP DECT base station try to determine this settings via DHCP.

The IP DECT base station gets the application image file from the TFTP server.

Application:

After starting the application image the IP DECT base station checks the local network settings in his internal flash memory once again. When no settings are available or they are disabled it starts a DHCP client to determine the IP address of the ADMM and other start up settings.

Startup of Avaya IP DECT Mobility Manager

ADMM in IP DECT base station mode

There is no difference in booting that IP DECT base station, which is chosen to be running in ADMM mode from those which are in the IP DECT base station only mode.

The decision is driven by the ADMM IP address, which is read:

- within the local network settings, if active.
- via DHCP request.

That IP DECT base station which has the same IP address as the ADMM IP address, is running as the ADMM.

ADMM in Host-Mode

In this case the ADMM Software has to be installed on PC running with Linux Red Hat. The essential network settings the ADMM is working with are depending on the configuration of the PC Kernel.
Once started, the ADMM is running permanently while not stopped and when ever the PC is running. In case of fatal errors or PC reboot, the OM recovers automatically.

⚠️ **CAUTION:**

Be sure that the versions of the ADMM and the IP DECT base station software within your IP DECT installation are the same.

Installing the ADMM software

The ADMM software is available as a Red Hat Package File (RPM). You have to login as root user, if you are going to install the ADMM.

- For first installation of the ADMM type: `rpm -i
omm_avaya-<version-date>.i586.rpm`
- To upgrade the ADMM by a new version type: `rpm -U
omm_avaya-<version-date>.i586.rpm`
- To delete the ADMM installation type: `rpm -e omm_avaya`
- If you like to verify the installation type `rpm -qi omm_avaya`

After the install procedure you can start the ADMM with the command:

```
/etc/init.d/omm_avaya start
```

Configure Start Parameter

Some basic data for initializing the ADMM are stored in the file "/etc/sysconfig/omm_avaya". It has to be edited, if you like to change the interface of the ADMM:

```
# OMM configuration file

# if you use a different interface for omm_avaya activate parameter below
#OMM_IF="eth0"
OMM_CONFIG_FILE="/etc/omm_conf.txt"
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMM-IF</td>
<td>Interface for communication with IP DECT base station’s (default:eth0)</td>
</tr>
<tr>
<td>OMM_CONFIG_FILE</td>
<td>Configuration file for ADMM (default: /etc/omm_conf.txt)</td>
</tr>
</tbody>
</table>
To maintain the running ADMM on PC

The ADMM is installed as a daemon and runs automatically at system start. You can start and stop the ADMM on a shell as user root with the command:

```
/etc/init.d/omm_avaya [start|stop|restart]
```

You can log to the ADMM command line interface via telnet on port 8107.

Troubleshooting:
- To verify if the ADMM is running look at process table (`ps -e`) for the process omm_avaya.
- If the ADMM does not start, delete the lock file: "/var/lock/subsys/omm_avaya".
- To delete ADMM configuration remove the OMM_CONFIG_FILE (default: `/etc/omm_conf.txt`).

Booter

Booter versions

This documentation referring to IP DECT for Avaya is written for the Booter SW 3.2.x. But note, in test installations there may be some different versions of the booter SW in use:

- Booter version 2.1.y
 This software is using BOOTP instead of DHCP.
- Booter version 3.0.x
 Replacement of the BOOTP client by a DHCP client.
- Booter version 3.1.x
 Added support for VLAN.
- Booter version 3.2.x
 added support for OpenMobility Configuration tool.

See [Booster update](#) on page 29 for details on the booter update mechanism.

DHCP client

Within the initial boot process the DHCP client supports the following parameters:

- IP Address mandatory
- Netmask mandatory
- Gateway mandatory
- Boot file name mandatory
Avaya IP DECT system start up

- TFTP server mandatory
- Public Option 224: "OpenMobility" mandatory
- Public Option 225: VLAN ID optional

Note:
If local configuration via OM Configurator is set, these information will be read from internal flash memory instead.

DHCP REQUEST

Vendor class identifier (code 60)
The DHCP client sends the vendor class identifier "OpenMobility".

Parameter request list (code 55)
The DHCP client in the booter requests the following options in the parameter request list:
- Subnet mask option (code 1)
- Router option (code 3)
- Public option 224 (code 224)
- Public option 225 (code 225)
- Public option 226 (code 226)

DHCP OFFER

Mandatory options
The DHCP client selects the DHCP server according to the following rules:
- One of the public options (code 224 up to code 254) has a value equal to the string "OpenMobility". It is recommended to use public option 224 for this, because the DHCP client in the application checks for this option.
 OR
- the file field in the DHCP message has a sub string equal to "ip_rfp.cnt"

If none of the two rules above match the DHCP offer is ignored.

Information retrieved from the DHCP OFFER:
- the IP address to use is taken from the yiaddr field in the DHCP message
- the IP netmask is taken from the subnet mask option (code 1)
- the default gateway is taken from the router option (code 3)
Installation and Configuration

- the TFTP server IP address is taken from the \texttt{siaddr} field in the DHCP message
- the boot image filename is taken from the \texttt{file} field in the DHCP message, if this field is empty the default filename "iprfp.bin" is used.

Optional options

- **Public option 225 (code 225)** with a length of 2 byte is interpreted as VLAN ID. If this option is present the booter will start over with releasing the current lease and issuing a new DHCP REQUEST, now using VLAN.

Retries

If the DHCP client does not get an appropriate DHCP OFFER a new DHCP REQUEST is send after 1 second. After 3 DHCP REQUESTS are send the DHCP client will sleep for 60 seconds. During this time the booter will accept local configuration from the OpenMobility Configurator tool.

TFTP client

The TFTP client will download the application image from the TFTP server. Both TFTP server and the name of the application image are supplied via the DHCP client. The application image is checksum protected.

Application

After successfully downloading and starting the application the IP DECT base station will determine the IP-address of the ADMM from DHCP.

The DHCP client is capable to receive broadcast and unicast DHCP replies. The flags field is therefore \texttt{0x0000}.

The DHCP request contains the well-known magic cookie (\texttt{0x63825363}) and the End Option (\texttt{0xFF}).

The following parameters will be supported within this step:

- Public Option 226: ADMM IP Address \hspace{1cm} mandatory
- Public Option 227: Syslog server IP Address \hspace{1cm} optional
- Public Option 228: Syslog server port \hspace{1cm} optional
- DHCP Option 6: Domain Name Server \hspace{1cm} optional
- DHCP Option 15: Domain Name \hspace{1cm} optional
- DHCP Option 42: Network Time Protocol Server \hspace{1cm} optional
Note:
If local configuration via OM Configurator is set, these information will be read from internal flash memory instead.

Booter update

Automatic booter update

Each application SW comes with the latest released booter SW. The application SW will update the booter automatically as long as the major release number of the booter SW has not changed, e.g booter SW 2.1.2 will not be automatically updated by booter SW 3.x.y, but booter SW 3.0.0 will be automatically updated by booter SW 3.1.0.

Details on how to check the booter SW version, see Booter on page 26.
Details on how to update the booter manually, see Manual Update of the IP DECT base station Booter on page 80.

Automatic booter update for major release changes

The booter update of booters with major release number change will be performed automatically when the DHCP client in the application receives an DHCP OFFER with the public option 254 with a value "UPDATE".

Selecting the right DHCP Server

The DHCP client request its own IP address using code 50. The DHCP client will selects the DHCP server that offers the currently used IP address. Additionally the mandatory options must be offered otherwise the DHCP OFFER is ignored by the DHCP client.

If no matching reply was received the DHCP client resends the request for 2 times after 1 second. Then the DHCP client will wait for 1 minute before resending 3 requests again.

If the DHCP client cannot accept an DHCP offer within 3 minutes the IP DECT base station is rebooted.

Mandatory options

Magic string
- Public option 224
The value of this option must be "OpenMobility"

ADMM IP address
- Public option 226
The value is interpreted as ADMM IP address, the length must be 4 byte.
Optional options

Syslog server IP address and port

- Public option 227
 The value is interpreted as the IP address of the syslog server, the length must be 4 byte.

- Public option 228
 The value is interpreted as the port the syslog server is listening. The length must be 2 byte.

DHCP Option 6: Domain Name Server

The domain name server option specifies a list of Domain Name System name servers available to the client.

Servers SHOULD be listed in order of preference. The code for the domain name server option is 6.

The minimum length for this option is 4 octets, and the length MUST always be a multiple of 4.

- Code Len Address 1 Address 2
 +-----+-----+-----+-----+-----+-----+-----+-----+--
 | 6 | n | a1 | a2 | a3 | a4 | a1 | a2 | ...
 +-----+-----+-----+-----+-----+-----+-----+-----+--

DHCP Option 15: Domain Name

This option specifies the domain name that client should use when resolving hostnames via the Domain Name System.

The code for this option is 15. Its minimum length is 1.

- Code Len Domain Name
 +-----+-----+-----+-----+-----+-----+-----+-----+--
 | 15 | n | d1 | d2 | d3 | d4 | ...
 +-----+-----+-----+-----+-----+-----+-----+-----+--

DHCP Option 42: Network Time Protocol Servers

This option specifies a list of IP addresses indicating NTP servers available to the client.

Servers SHOULD be listed in order of preference.

The code for this option is 42. Its minimum length is 4, and the length MUST be a multiple of 4.

- Code Len Address 1 Address 2
 +-----+-----+-----+-----+-----+-----+-----+-----+--
 | 42 | n | a1 | a2 | a3 | a4 | a1 | a2 | ...
 +-----+-----+-----+-----+-----+-----+-----+-----+--
IP DECT base station LED Status

The following diagram shows the led status of the IP DECT base station according to the different states during start-up.

<table>
<thead>
<tr>
<th>State</th>
<th>LED state</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Booter (Start-up)</td>
<td>RED on</td>
<td>Wait for link up</td>
</tr>
<tr>
<td>Booter DHCP</td>
<td>RED flashing 0.5 Hz</td>
<td>Launch a DHCP request and wait for an DHCP offer</td>
</tr>
<tr>
<td>Booter (TFTP)</td>
<td>RED flashing 2.5 Hz</td>
<td>Download the application image</td>
</tr>
<tr>
<td>Application (DHCP)</td>
<td>ORANGE on</td>
<td>Launch DHCP request and wait for DHCP reply</td>
</tr>
<tr>
<td>Application (init)</td>
<td>GREEN flashing 0.5 Hz</td>
<td>IP DECT base station initialise its internal components</td>
</tr>
<tr>
<td>Application (init)</td>
<td>GREEN flashing 1 Hz</td>
<td>IP DECT base station tries to connect to ADMM</td>
</tr>
<tr>
<td>Application (init)</td>
<td>GREEN flashing (2 sec on, 0.5 sec off)</td>
<td>The DECT part of IP DECT base station does not work (either not configured or not synchronised with other IP DECT base station’s)</td>
</tr>
<tr>
<td>Application (init)</td>
<td>GREEN</td>
<td>IP DECT base station is up and running</td>
</tr>
</tbody>
</table>
State graph of the start up phases

BOOTER

- **LED RED ON**
 - Start-up
 - wait for link up
 - Wait for 6 seconds; listen for local configuration
 - yes
 - Local configuration
 - no
 - DHCP
 - wait for reply
 - LED red flashing 0.5 Hz
 - DHCP no answer / offer not o.k.
 - retry
 - Wait for 60 seconds; listen for local configuration
 - VLAN
 - yes
 - DHCP
 - wait for reply
 - LED red flashing 0.5 Hz
 - DHCP no answer / offer not o.k.
 - retry
 - Wait for 60 seconds; listen for local configuration
 - no
 - TFTP
 - LED red flashing 0.5 Hz
 - File download
 - TFTP failed

KERNEL

- LED orange
 - Local conf. Start-up
 - yes
 - Local configuration
 - no
 - DHCP
 - wait for reply
 - LED orange
 - DHCP no answer / offer not o.k.
 - (by 3 minutes)
 - Application
 - Init
 - LED green flashing 0.5 Hz
 - LED green flashing 1 Hz
 - Application
 - Connect to OMM
 - LED green flashing 2 seconds on / 50ms off
 - Application
 - Synchronize DECT
 - LED green
 - Application
 - Up & running
 - Change of the local configuration
Static local configuration of the IP DECT base station

For static local configuration you must use the Java configuration tool: OpenMobility Configurator (need Java Runtime Environment version 1.4 or higher).

The settings, which are configured on the IP DECT base station with the tool OM-Configurator, will be saved permanently in the internal flash memory of a IP DECT base station.

The parameters configurable via the OM Configurator comply with the DHCP option, please see section Avaya IP DECT system start up on page 23 for details.

If local static configuration has been done, DHCP is not used anymore.

The following figure shows the OM Configurator.

![OpenMobility Configurator](image)

To configure an IP DECT base station, set at least the MAC adress and all mandatory options (see table below). If the IP DECT base station has a IP adress use this adress in the IP DECT base station Address field. In this case you can reach a IP DECT base station outside the local LAN segment.

To set additional parameter, press add button and choose the parameter name.
Press send Button to transmit parameters into a IP DECT base station.

The configuration can only set after power up or at retry phase (led flashing 0,25 Hz) or in kernel mode, please see section State graph of the start up phases on page 32 for details. The Configurator Tool waits 2 s and retry transmitting data 3 times.

If you want to read the configuration parameters from IP DECT base station set MAC address and additionally the IP address and press the list button. All parameters will list in OM Configurator tool.

Press reset button to clean all input fields and additional parameters.

Boot Parameters (comply with DCHP option)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>use_local_cfg</td>
<td>mandatory</td>
<td>the local configuration settings should be used at booting or not.</td>
</tr>
<tr>
<td>ip</td>
<td>mandatory</td>
<td>ip address</td>
</tr>
<tr>
<td>subnet</td>
<td>mandatory</td>
<td>subnet mask</td>
</tr>
<tr>
<td>siaddr</td>
<td>mandatory</td>
<td>ip address of tftp server</td>
</tr>
<tr>
<td>boot_file</td>
<td>mandatory</td>
<td>the boot file reading from the tftp server at startup</td>
</tr>
<tr>
<td>ommip1</td>
<td>mandatory</td>
<td>ADMM ip address</td>
</tr>
<tr>
<td>router</td>
<td>optional</td>
<td>default gateway</td>
</tr>
<tr>
<td>dns</td>
<td>optional</td>
<td>dns server</td>
</tr>
<tr>
<td>domain</td>
<td>optional</td>
<td>domain name of the network</td>
</tr>
<tr>
<td>broadcast</td>
<td>optional</td>
<td>the broadcast address for that network</td>
</tr>
<tr>
<td>ntpsrv</td>
<td>optional</td>
<td>ntp server IP address</td>
</tr>
<tr>
<td>syslogip</td>
<td>optional</td>
<td>Syslog IP address</td>
</tr>
<tr>
<td>syslogport</td>
<td>optional</td>
<td>Syslog port</td>
</tr>
<tr>
<td>vlanid</td>
<td>optional</td>
<td>VLAN Identifier</td>
</tr>
</tbody>
</table>

The configuration can be verified at the IP DECT base station using the telnet interface, please see section Static local configuration on page 80. It is also be possible to reset all data at the IP DECT base station, please see section Removing the local configuration on page 81.
802.1Q Support

The IP DECT base stations support VLANs according to IEEE 802.1Q.

VLAN can be administered:

1. on a per port basis of the LAN switch assuming that the IP DECT base stations are connected to a single port of a switched Ethernet environment
2. or by advising a VLAN ID to the IP DECT base station respective to the VLAN they should operating in.

VLAN tagging has only to set to IP DECT base station in case (b). The whole chapter refers to that case.

The benefit of VLAN tagging by IP DECT base station is to set 802.1p priority within Ethernet frames (how to set Quality of Service, see IP Regions on page 49).

The scope of the following description is only the VLAN tagging and obtaining the VLAN ID. Quality of Service mechanisms like 802.1p priority and DiffServe are not in the scope of this section.

VLAN implementation notes referring to IP DECT base stations:

- IP DECT base stations are not be able to support VLAN ID 0 as described later in this section (see Why not VLAN ID 0 on page 36). Any other valid VLAN ID can be configured.
- If 802.1Q tagging is enabled and a VLAN ID is configured all traffic from an IP DECT base station will be tagged with this VLAN ID.
- Once a VLAN ID is set to the IP DECT base station, incoming frames are only accepted if they are tagged as well. Therefore the switch port has to be configured as tagged trunk for this VLAN.
- The VLAN configurations can be done using DHCP or the interface for the local static configuration via OM Configurator.
- The usage of VLAN does influence the boot up process of the IP DECT base station because the VLAN configuration takes place during the boot up phase (referring to start up with VLAN see VLAN and the Boot Phase of a IP DECT base station on page 36).

Avaya DECT Mobility Manager Requirements

ADMM running on an IP DECT base station

If the ADMM is running on an IP DECT base station the VLAN ID configured for the IP DECT base station is used for the ADMM.
ADMM running on a Linux Server

The ADMM running on a dedicated LINUX server requires IP 802.1p support of the server or will use static QoS administration in the Ethernet switch, so that the ADMM signalling traffic is in the voice VLAN.

Principles and Parameter

The default is not to tag the traffic. 802.1Q tagging is enabled if the VLAN ID is set. The configuration of the VLAN ID can be done using

- DHCP Public option 225
- by local static configuration of the IP DECT base station via OM Configurator.

If no VLAN ID is set 802.1Q is disabled.

Why not VLAN ID 0

VLAN ID 0 means that the IP DECT base station's traffic belongs on the port/native VLAN. The Ethernet switch port to which the IP DECT base station is connected must be configured to accept 802.1Q tagging for this to work, and the switch must interpret VLAN ID 0 as the port/native VLAN ID, per the IEEE 802.1Q standard.

The packets from the IP DECT base station are tagged with VLAN ID 0 and the packets send to the IP DECT base station are tagged with the port/native VLAN ID. This scenario does not work, because the IP DECT base station supports only one VLAN ID in both directions. That means the VLAN ID in receive direction has to be the same like in send direction.

VLAN and the Boot Phase of a IP DECT base station

DHCP

Because the base station does not know any VLAN during the beginning of the start up two DHCP scopes are required (This procedure applies regardless of the Ethernet switch being used):

The following scenario with arbitrary VLAN IDs details the steps a IP DECT base station would go through in a typical dual-VLAN implementation.
Step A. DHCP scope within the naive VLAN:

1. IP DECT base station boots up and obtains an address on the native VLAN.
2. The data VLAN DHCP Public option 225 directs the IP DECT base station to go to voice VLAN.

Step B. DHCP scope within the voice VLAN:

1. IP DECT base station releases the data VLAN address and obtains an address on the voice VLAN and all other parameters.
2. The voice VLAN does not have the DHCP Public option 225, because a IP DECT base station already on the voice VLAN doesn’t need to be directed to go there.
3. IP DECT base station is operational on the voice VLAN.

If a reboot or power cycle occurs, the IP DECT base station returns to step A.

If an IP DECT base station cannot obtain an address on the voice VLAN, due to network or DHCP problems. In this case the IP DECT base station falls back automatically to untagged frames (native VLAN).

Local configuration of the IP DECT base stations

The OM Configurator has to be member of the native VAN for the 1st configuration, later on within the set VLAN.

Configuring the Avaya DECT Mobility Manager

The ADMM can be configured via HTTP. The ADMM acts as a HTTP server. The HTTP server binds to port 80 by default. If executed in host mode the port can be configured via command line interface.

The configuration data will be either read from the internal flash memory or from a local file. A local file is only used if specified on the command line on a PC host.

The configuration file is a human readable ASCII file. Changing the configuration file outside the ADMM is not permitted.

The configuration file can be downloaded and uploaded via the web interface.

The service access is restricted to one active session at a time and is password protected.

The browser used for service access has to be at least Microsoft Internet Explorer 6.0 or Mozilla Firefox 1.0 and must have frame support, java script and cookies enabled.
Service Login procedure

The ADMM allows only one user at a time to configure the system. A user must authenticate with a user name and a password. Both strings are checked case sensitive. The default username is `craft` and the default password is `crftpw`.

The connection will automatically be dropped if the maintainer/installer stays connected for 5 minutes without any activity.

After login there are the following options available:

- Configuration of general IP DECT system parameters,
- Administration of IP Regions,
- Administration of the attached IP DECT base stations,
- Administration of IP Trunks,
- Administration of the IP DECT handsets,
- Configuration of the System Features and
- Administration of the License options.

If no user action takes place the ADMM logs out the user after 5 minutes.
To logout from the system click at ‘Logout’.

Note:
If the browser is closed without logging out first the service access will be blocked for 5 minutes for other clients.
Installation and Configuration

Licensing

Within the initial configuration of the IP DECT system, the license is missing and a warning occurs.

![License Setting](Image)

Definition of the License IP DECT base stations

The License IP DECT base stations have to be defined in that manner as described in About Licensing on page 21.

Press New button and add the MAC addresses of the License IP DECT base stations:

![New License](Image)
If that has been done please wait for the green mark as shown by the next picture.

Get and add the License Key and PARK number

The second step is to go to the DeTeWe Website and enter the serial number generated by the first step along with a TAN from your documentation. This will generate a license key that is to be entered in the 3rd step.

If the License is valid, the warning "Missing License" disappears.
System settings

The system settings cover global settings of the Avaya DECT Mobility Manager like the system name.

For monitoring the DECT system behaviour of the Avaya DECT Mobility Manager a separate application will be delivered. This tool needs an access to the Avaya DECT Mobility Manager which is disabled by default and can be enabled on the system page.

The Avaya DECT Mobility Manager and the IP DECT base stations are capable of propagating syslog messages conforming to RFC 3164. This feature together with the IP address of a host collecting these messages can be configured.

If the ADMM is running on an IP DECT base station and SNTP is not used, date and time can be configured at the ADMM. This has to be done to provide date and time to the Avaya 3711.

The time zone, which is shown on this Web page, has been configured at the IP region section of the Web service.

Please note, that date and time has to be configured after every restart of the IP DECT base station, where the ADMM is running.
The date and time will be provided by the ADMM to the Avaya 3711 if the Avaya 3711 initiates a DECT location registration. This will be done in the following cases:

- Subscribing at the ADMM
- Entering the network again after the DECT signal was lost
- Power on
- Silent Charging feature is active at the phone and the phone is taken out of the charger
- After a specific time to update date and time

The DECT location registration can be forced with the ‘Update’ button at the ‘IP DECT handset’ section of the Web service.
Rebooting the ADMM

To reboot the ADMM select ‘System Settings’ from the navigation menu and then select ‘Reboot’. There is also the option to reset the configuration.

User Account

Initially the Avaya IP DECT Mobility Manager service is accessible via a build-in user account only. After initial installation or after removing the configuration file the user account is set to the user ‘craft’ with the password ‘crftpw’.

This check is case sensitive.
Time zones

The local time and date displayed on Avaya 3711 DECT handset devices depend on the IP region the handsets are located in. Each IP region is configured to a certain time zone (see also Backup on page 48). Based on this the local time can be calculated individually depending on the current date and the daylight savings time rule. A time and date resynchronisation of the Avaya 3711 devices is described in Licensing on page 40.

In the time zone section the Avaya DECT Mobility Manager provides all available time zones. They are set per default with their known daylight savings time rules adjusted to the Universal Coordinated Time (UTC). The difference to the UTC time is shown in the "UTC Difference" column. In case of a daylight savings time rule this is also marked for each time zone.

There is a possibility to change the time zone rules for maximal five time zones. Changed rules are marked with a bold time zone name in the table. The changes are saved in the configuration file and are restored after each Avaya DECT Mobility Manager boot up. The default button sets all time zones back to the default values and deletes the changed time zone rules in the configuration file.
With the configure time zone mask the standard time and the daylight savings time (DST) of a time zone can be changed. If the time zone has no DST only the UTC difference can be configured. For the DST both points of time (begin of standard time and begin of daylight savings time) have to be specified exactly. A certain day in the month or a certain week day in a month can be used (see the following screen shots as an example).

SNMP

In order to manage a large network of IP DECT base stations offer a SNMP agent in each IP DECT base station. This will give alarm information and allow a SNMP management system (such as HP Open View) to manage this network.

All agents are configured in a central place. IP DECT base station dependent parameters like sysLocation and sysName are generated. sysLocation corresponds to the location configured via web service. If this location is not configured sysLocation is set to "Location". sysName is composed of MAC address and "IP DECT base station" or "ADMM IP DECT base station" if the ADMM is running on this IP DECT base station.

How long an IP DECT base station is in operational state can be requested by reading sysUpTime. This value indicates the running time of the IP DECT base station application software. It does not indicate the running time of the operating system which does not correspond to the operational IP DECT base station state. This value does not make a statement about the DECT network.
The SNMP agent responds to SNMPv1 and SNMPv2c read requests for the standard MIB-II objects. The MIB-II contains 11 object groups, which are described in MIB-II on page 104.

The agent supports both SNMPv1 and SNMPv2c traps. It sends a 'coldStart' trap when it first starts up, and an enterprise-specific trap 'nsNotifyShutdown' when it stops. When it receives a SNMP request using an unknown community name it sends an 'authenticationFailure' trap. The agent generates an enterprise-specific trap 'nsNotifyRestart' (rather than the standard 'coldStart' or 'warmStart' traps) after being re-configured.

Decoding SNMP messages with your network management system or MIB browser always requires the publicly available IETF MIB definitions which can be downloaded from http://www.simpleweb.org/ietf/mibs/index.html?sel=IETF. These are the MIB-II definitions published in RFC 1156, Management Information Base for Network Management of TCP/IP-based internets, May 1990 and RFC 1213, Management Information Base for Network Management of TCP/IP-based internets: MIB-II, March 1991

- RFC1213-MIB
- RFC1212-MIB
- RFC1155-SMI

- SNMPv2-MIB
- SNMPv2-CONF
- SNMPv2-TC
- SNMPv2-SMI.

Enterprise-specific traps can be decoded using the definitions in

- NET-SNMP-MIB
- NET-SNMP-AGENT-MIB.
Installation and Configuration

The following parameters can be configured using the ADMM web service:

- Read-only Community
- System Contact
- Activate Trap Handling
- Trap Community
- Trap Host IP Address

The community names are used for both SNMPv1 and SNMPv2c.

The IP DECT base station needs an initial ADMM connection to receive its SNMP configuration. After that this data is persistent against resets. Changing the SNMP configuration forces all agents to be reconfigured.

The agent does not support MIB-II write access, SNMPv2-MIB read/write access, NET-SNMP-MIB read/write access, NET-SNMP-AGENT-MIB read/write access and SNMPv3.

Backup

The web service interface allows to save a copy of the current configuration on the local host (host where the browser application is executed) as well as to restore an older configuration. The configuration file is a checksum protected, compressed and readable file.

Restoring a previously saved configuration will lead to a reset of the ADMM to take effect.
IP Regions

An IP Region is used to define a relation between a IP DECT base station and the IP Trunks which have to be used to communicate with the Avaya communication server. At least one region has to be administered before an IP DECT base station or IP trunk can be added.

IP Regions can be added to the system by pressing the ‘New’ button. A popup window appears providing the configuration of a new Region:

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>RTP Port Range</th>
<th>DiffServ/TOS Call Control</th>
<th>VLAN Priority Call Control</th>
<th>Time Zone</th>
<th>ARS Prefix</th>
<th>ADMN IP Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Guildford</td>
<td>1024 - 1095</td>
<td>34</td>
<td>46</td>
<td>7</td>
<td>6</td>
<td>WET 9</td>
</tr>
<tr>
<td>11</td>
<td>Guildford Troy</td>
<td>1024 - 1095</td>
<td>34</td>
<td>46</td>
<td>7</td>
<td>6</td>
<td>WET 9</td>
</tr>
<tr>
<td>12</td>
<td>Budapest Troy</td>
<td>1096 - 1167</td>
<td>34</td>
<td>46</td>
<td>7</td>
<td>6</td>
<td>CET 9</td>
</tr>
<tr>
<td>30</td>
<td>Budapest</td>
<td>1096 - 1167</td>
<td>34</td>
<td>46</td>
<td>7</td>
<td>6</td>
<td>CET 9</td>
</tr>
</tbody>
</table>

New IP Region

<table>
<thead>
<tr>
<th>IP Region Settings</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTP Port Base</td>
<td>1024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiffServ/TOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Call Control</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLAN Priority</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Call Control</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Zone</td>
<td>European Central (CET UTC+1 DST)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARS Prefix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[OK] [Cancel]
The same popup window could be opened for an existing IP Region by pressing the tool icon of the appropriate Region.

The checkbox ‘ADMM Region’ is only available if the ADMM is running on a PC. Otherwise the system will detect the ADMM Region by itself.

An IP Region could be deleted by pressing the trash can icon . A similar popup window asks for confirmation showing the current configuration of this IP Region.

Note: Deleting an IP Region from the system requires all related IP Trunks and IP DECT base stations to be deleted first. This is indicated with a crossed out trash can icon .

IP DECT base station Configuration

All configured IP DECT base stations are listed in tables grouped to clusters by its topographic relations. The IP DECT base stations are sorted by their ethernet addresses.

To ensure correct hand over of a telephone during a call, all involved IP DECT base stations must deliver the same clock signal to the telephone. This is achieved by placing the IP DECT base stations so close to each other, that every IP DECT base station recognises at least one other IP DECT base station through its air interface.

There are conditions where this is not possible, for instance with IP DECT base stations at remote locations. In this case the IP DECT base stations shall be grouped to different clusters. The Avaya DECT Mobility Manager will not try to synchronise IP DECT base stations over cluster borders.

All not empty clusters are displayed in the navigation bar on the left side.
One IP DECT base station per cluster can be configured as master. The master is displayed in bold font.

Each IP DECT base station is identified by its ethernet address (6 byte hex format, colon separated). The ethernet address is unique and can be found on the back of the chassis.

For easier administration each IP DECT base station can be associated with a location string. The location string can hold up to 20 characters.

New IP DECT base stations can be added to the system by pressing the ‘New’ button. A popup window appears providing the configuration of a new IP DECT base station. Before a IP DECT base station can be added the associated IP region has to be already configured.

Note:
Adding a new IP Trunk to the system requires an IP Region to be configured first.

The same popup window could be opened for an existing IP DECT base station by pressing the tool icon of the appropriate IP DECT base station.

An IP DECT base station could be deleted by pressing the trash can icon. A similar popup window asks for confirmation showing the current configuration of this IP DECT base station.

DECT configuration

The DECT functionality for each IP DECT base station can be switched on / off. If DECT is active the IP DECT base station can be added to a cluster and the master option can be set. Since there is only one master per cluster allowed setting the master checkbox may remove this option on another IP DECT base station in this cluster.
States of an IP DECT base station

For each IP DECT base station the state of the DECT subsystem is displayed. The states are:

- **Synchronous**

 The IP DECT base station is up and running. The IP DECT base station recognizes and is recognized by other IP DECT base stations in its cluster through its air interface and delivers a synchronous clock signal to the telephones.

- **Asynchronous but active**

 The IP DECT base station has not been able to synchronize to its neighbours yet. No DECT communication is possible. But nevertheless the IP DECT base station has already been able to connect to the ADMM. This phase should usually last only for a few seconds after starting up the IP DECT base station or the ADMM. If this state lasts longer this is an indication for a hardware or network failure.

- **Searching**

 The IP DECT base station has lost synchronisation to its neighbours. No DECT communication is possible. This phase should usually last only for a few seconds after starting up the IP DECT base station or the ADMM. If this state lasts longer or is re-entered after being in a synchronous state this is an indication for a bad location of the IP DECT base station.

- **Inactive**

 The IP DECT base station has connected to the ADMM but the air interface has not been switched on yet. For any IP DECT base station with activated DECT functionality this phase should last only for a few seconds after starting up the IP DECT base station. If this state lasts longer this may indicate an hardware failure.
Not connected

The IP DECT base station was configured but has not connected to the ADMM yet.

The IP address column displays the current IP address of an IP DECT base station.

IP Trunks

An IP Trunk defines a communication relation between an ADMM and an Avaya communication server for H.323 signaling.

IP Trunks can be added to the system by pressing the ‘New’ button. A popup window appears providing the configuration of a new Trunk. Before a trunk can be added the associated IP region has to be already configured.
Here the following parameters have to be set:

- ADMM Signalling Port
- Communication Server Signalling IP Address
- Communication Server Signalling Port

Note:
Adding a new IP Trunk to the system requires an IP Region to be configured first.

The same popup window could be opened for an existing IP Trunk by pressing the tool icon 👤 of the appropriate Trunk.

An IP Trunk could be deleted by pressing the trash can icon ⚑. A similar popup window asks for confirmation showing the current configuration of this IP Trunk.
Configuration of IP DECT handsets

At the IP DECT handsets web page all configured DECT handsets are sorted by their number. To keep the list concise, the complete list is split up into sub-lists containing up to 100 handsets. The user can move back and forth in steps of 100 handsets. Because the browser function cannot be used to search for a certain handset in all sub-lists, a search function is available, which allows to find a handset by a given number or IPEI.

A new telephone can be added to the system by pressing the ‘New’ button. The following popup window appears allowing the configuration of a new telephone.
The type of the phone will be automatically detected in case of the Avaya 3701 and Avaya 3711. If the type of a phone can not be detected the type will be set to WT9620 automatically. If the type (WT9620, 20DT, GAP) of the phone is configured before subscription and the type can not be detected then the configured type will be used.

The Name and Authentication Code fields are optional settings. The Number is displayed in the DECT Monitor program and the Name allows to identify its user. The Authentication Code is used during initial subscription as a security option.

A similar popup window appears when configuring an existing telephone by pressing the tool icon 📈. The only difference is the delete subscription checkbox. If this option is selected, the telephone will be unsubscribed.

Note:

The Authentication Code can only be changed if the telephone is not subscribed. The telephone Name can be changed, but this will not take effect until the telephone is subscribed again.

Deleting of a telephone can be done by pressing the trash can icon 🗑️. A popup window appears and asks for confirmation.

After adding a telephone to the ADMM the telephone must be subscribed. This is done by pressing the ‘Subscribe’ button. The ADMM will allow a subscription of configured but not subscribed telephones during the next hour (how to subscribe the see Registration of Avaya 3701 and Avaya 3711 on page 73).

During the subscription process the system wide PARK and the Authentication Code either configured for the telephone or system wide must be entered in the telephone form fields. The PARK is displayed at the telephone configuration page in the top right corner.
If the user wants to find a certain handset then the search function can be used. A click on the ‘Search’ button provides the following pop-up window.

The user can enter the handsets’s number or IPEI. At least one parameter has to be set.
Installation and Configuration

The entered number or IPEI has to match exactly with a handset’s number or IPEI. If number and IPEI are given then a handset has to exist in the ADMM’s database whose number and IPEI match both otherwise the search fails.

If a handset with the specified number and/or IPEI was found then a list is displayed which has the found handset as the first entry.

The search function can also be used to get to the right sub-list in one step.

To force an update of date/time, voice mail number or the (de)activation of MSSF items immediately at the Avaya 3711 press the ‘Update’ button.
System Features

Voice Mail

The Voice Mail number can be administered on ADMM which will be common for all subscribed DECT users. In case the Voice Mail number should be different for the DECT users it should be left blank on ADMM and have it set on the DECT sets.
By pressing the "Menu" soft key in idle state or "Option" soft key in active state, the telephone will show a collection of menu items on its display. This collection of menu items can be configured by the ADMM.

For each menu item to be presented to the user set the active flag.

For each menu item NOT to be presented to the user clear the active flag.

The active flag can only be set if the Feature Access Code field is assigned with appropriate digits and characters (0-9, *, #).

To mute the telephone during the execution of some system feature set the corresponding mute flag.

The menu items appear on the telephone display in the user selected language. By changing the language the menu items will be updated.
Digit Treatment

The Digit Treatment replaces, deletes or inserts digits for numbers received by the LDAP based Corporate Directory or WML. This function is region dependent.

The digits are treated in two steps:

- At first all invalid characters like space or hyphens are removed from the number (e.g. "+49 (30) 6104 4492" will be substituted by +493061044492).
- In second step the best match is searched within the configured prefix list which is valid for the region the IP DECT handset is located. The prefix will be substituted (e.g. the best match for the number "+493061044492" is the prefix "+49306104" with the substitute ":"; the result is "4492").

The digit treatment takes place before the number will be transmitted to the handset menu.

Value ranges and limits:

- Up to 128 entries if ADMM is running on a IP DECT base station and 750 entries if ADMM is running on a Linux server are possible.
- Each prefix may be composed of the digits (0-9) and the characters ‘#’ and ‘*’. In conformance to LDAP standards the first character may be ‘+’. Up to 15 digits per sequence are possible. Spaces are not allowed.
- Each substitute may be composed of the digit (0-9) and the characters ‘#’ and ‘*’.

Entries may be valid for several regions. The region numbers have to be separated by ‘,’ (e.g. 1,2,3) or may be defined as range by ‘-‘ (e.g. 1-3).

Corporate Directory

The administrator can choose between a LDAP based corporate directory and a TFTP based corporate directory.

- **Corporate Directory Type** (values: LDAP based, TFTP based, None; default: None)
In case of “none” the feature is inactive and no item for the corporate directory is displayed in the telephone menu.

LDAP based Corporate Directory

The fields for TFTP based Corporate Directory can be edited, if the Corporate Directory Type = LDAP is set:
Field description:

- **Server Name and Server Port** (mandatory)
 - Server Name or Server IP Address
 - Server Port (default: 389)

 Please note: SSL (default port 689) is not supported

- **Root Directory**

 The search base has to be edited (e.g. "ou=people,o=avaya.com" or "o=detewe group").

- **User Name and User Password**

 User name or password may be filled, if requested by the LDAP Server. Otherwise an anonymous bind takes place.

 Please note: the ADMM supports LDAP simple bind

- **Search Attribute**

 Searches will be done for one of the following attributes
 - Name¹ (sn)-> (default²)
 - Full name (cn)

- **Display Attributes**

 Selection between the following two alternatives is possible:
 - Surname (sn), first name (givenname) ->default
 - Full name (cn)

- **Server Search Timeout**

 (value range: 1 - 99 sec)

 The search results will be accepted within search time.

1 surname

2 The default search string support the functionality in such a way that the corporate phone book looks like the local phone book.
TFTP based Corporate Directory

The fields for TFTP based Corporate Directory can be edited, if the Corporate Directory Type =TFTP is set:

Field description :

- **Server Name** (mandatory)
 - Server Name or Server IP Address
 - Server Port (default: 69)

- **Internal List**
 Path and file; sequence of up to 127 characters, default: "nasystem/user_list2"
 The entries in the file look like: "Percy,201,Percy Sudden". This is the User Name, Extension Number and User Full Name.

- **External List**
 Path and file; sequence of up to 127 characters, default: "nasystem/dir_list"
 The entries in the file look like: "John Smith,01983 562335", without ",", and entries are separated by '\n'. The first element is the name and the second is the telephone number.
Configuring the Avaya DECT Mobility Manager

- **Update Interval** (mandatory)
 The Corporate Directory is updated within the time interval (hours) by reading the lists automatically from the TFTP server. If zero is typed, no update will be done.

- **Update** (Button on top)
 A click to that button enforce an immediate reading from the TFTP server.

WML

The ADMM supports a menu with up to 9 pre-configured URLs and one menu item which allows the user to enter an URL.

WML is enabled by:

- **WML Active flag** (to activate / deactivate the feature and the item in the telephone menu; default: inactive)

Each pre-configured URLs is administered by filling the following fields (press the **New** button)

- **Name** (Alias for the menu item be shown in telephone menu)
- **URL** (e.g. http://172.17.4.64/waptest)
- **Active Flag** (to activate / deactivate the item in the telephone menu; default: inactive)

Please see also the following sections:

- Functional Description of WML usage, **WML** on page 73
- WML: Supported Tags an Attributes, **WML Tags and Attributes supported** on page 121
Installation and Configuration
Chapter 4: Avaya Communication Manager

Usage and Important Notes

S8300, S8500 and S87x0 systems are supported where Avaya Communication Manager (ACM) should be CM3.1.2 load 632.1 or later with appropriate update file.

One or more fixed IP trunk connection is required between ADMM and ACM. The IP DECT base stations are controlled by the ADMM, they do not register to ACM system. In case the IP network is down between the ADMM and the IP DECT base station the DECT operation is not controlled for the base station.

The ADMM does not support survivability as ACM does with LSP and ESS capabilities for Media Gateways. Several ADMM can be connected to the same ACM system where DECT users can do roaming between these systems with subscribing to the proper IP DECT system. Separate ADMM could be configured for such site which has survivability for the ACM system and has CLAN for the IP trunk connection at that site and the DECT operation is required when ACM system is in survivable mode. DECT operation is not available for such ACM site where LSP takes over the control (no CLAN available for the IP trunk connectivity for such site).

For IP DECT users the same features are available as for DECT R2 users. The available features and feature operation is the same as for analog station users, but interactions with Multiple Locations feature set is limited and depending on the configuration of the ACM and IP DECT system.

The Avaya 3711 user should use the ADMM’s AVAYA Menu for activating/deactivating ACM features if the station's COS has the Console Permission turned off (set to `n`).

ACM system administration

- SA8567 needs to be enabled in the license file:

```plaintext
display system-parameters special-applications

SPECIAL APPLICATIONS
(SA8481) - Replace Calling Party Number with ASAI ANI? n
(SA8500) - Expanded UUI Display Information? n
(SA8506) - Altura Interoperability (FIPN)? n
(SA8507) - H245 Support With Other Vendors? n
(SA8508) - Multiple Emergency Access Codes? n
(SA8510) - NTT Mapping of ISDN Called-Party Subaddress IE? n
(SA8517) - Authorization Code By COR? n
(SA8518) - Automatic Callback with Called Party Queuing? n
(SA8520) - Hoteling Application for IP Terminals? n
```
Avaya Communication Manager

(SA8558) - Increase Automatic MWI & VuStats (S8700 only)? n
(SA8567) - PHS X-Station Mobility over IP? y
(SA8569) - No Service Observing Tone Heard by Agent? n
(SA8573) - Call xfer via ASAI on CAS Main? n
(SA8582) - PSA Location and Display Enhancements? n
(SA8587) - Networked PSA via QSIG Diversion? n
(SA8589) - Background BSR Polling? n
(SA8608) - Increase Crisis Alert Buttons (S8700 only)? n
(SA8621) - SCH Feature Enhancements? n

- The IP trunk’s signaling group needs to have the ADMM as Far-end Node Name and the X-Mobility/Wireless Type should be DECT:

```
display signaling-group 100
```

SIGNALLING GROUP

<table>
<thead>
<tr>
<th>Group Number:</th>
<th>100</th>
<th>Group Type:</th>
<th>h.323</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Office?</td>
<td>n</td>
<td>Max number of NCA TSC:</td>
<td>0</td>
</tr>
<tr>
<td>SBS?</td>
<td>n</td>
<td>Max number of CA TSC:</td>
<td>0</td>
</tr>
<tr>
<td>IP Video?</td>
<td>n</td>
<td>Trunk Group for NCA TSC:</td>
<td>100</td>
</tr>
<tr>
<td>Trunk Group for Channel Selection:</td>
<td>100</td>
<td>X-Mobility/Wireless Type:</td>
<td>DECT</td>
</tr>
<tr>
<td>Supplementary Service Protocol:</td>
<td>a</td>
<td>Network Call Transfer?</td>
<td>n</td>
</tr>
<tr>
<td>T303 Timer(sec):</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Near-end Node Name: aled-CLAN_01
- Far-end Node Name: IP_DECT_01
- Near-end Listen Port: 1720
- Far-end Listen Port: 1720
- Near-end Network Region: 2
- Calls Share IP Signaling Connection? n
- LRQ Required? n
- Calls Share IP Signaling Connection? n
- RRQ Required? n
- Bypass If IP Threshold Exceeded? n
- Media Encryption? n
- H.235 Annex H Required? n
- DTMF over IP: out-of-band
- Direct IP-IP Audio Connections? y
- Interworking Message: PROGress
- Media Encryption? n
- DCP/Analog Bearer Capability: 3.1kHz

- The Incoming Digit Handling for the IP trunk should support overlap:

```
display trunk-group 100
```

TRUNK GROUP

<table>
<thead>
<tr>
<th>Group Number:</th>
<th>100</th>
<th>Group Type:</th>
<th>isdn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Name:</td>
<td>IP DECT 01_01</td>
<td>CDR Reports:</td>
<td>y</td>
</tr>
<tr>
<td>COR:</td>
<td>1</td>
<td>TN: 1</td>
<td>TAC: 710</td>
</tr>
<tr>
<td>Direction:</td>
<td>two-way</td>
<td>Outgoing Display?</td>
<td>y</td>
</tr>
<tr>
<td>Dial Access?</td>
<td>y</td>
<td>Busy Threshold:</td>
<td>255</td>
</tr>
<tr>
<td>Queue Length:</td>
<td>0</td>
<td>Night Service:</td>
<td></td>
</tr>
<tr>
<td>Service Type:</td>
<td>tie</td>
<td>Auth Code?</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Member Assignment Method:</td>
<td>manual</td>
</tr>
</tbody>
</table>

- Service Type: tie
- Auth Code? n
- Member Assignment Method: manual

```
TRUNK PARAMETERS
```

68 Avaya IP DECT Installation, Administration, and Maintenance
Codeset to Send Display: 0
Codeset to Send National IEs: 6
Charge Advice: none
Supplementary Service Protocol: a
Digit Handling (in/out): overlap/enbloc
Digit Treatment: insertion
QSIG Value-Added? n
Digital Loss Group: 18
Incoming Calling Number - Delete: Insert:
Answer Supervision Timeout: 0

Disconnect Supervision - In? y Out? y
_display trunk-group 100
TRUNK FEATURES
ACA Assignment? n
Internal Alert? n
Maintenance Tests? y
Data Restriction? n
NCA-TSC Trunk Member: 1
Send Name: y
Send Calling Number: y
Send EMU Visitor CPN? n
Used for DCS? n
Suppress # Outpulsing? y
Format: private
Suppress # Outpulsing? y
Format: private
UIU IE Treatment: service-provider
Replace Restricted Numbers? y
Replace Unavailable Numbers? y
Send Connected Number? y
Hold/Unhold Notifications? y
Modify Tandem Calling Number? n
Network Call Redirection: none
Send UUI IE? y
Send UCID? n
Send Codeset 6/7 LAI IE? y

(display trunk-group 100)
QSIG TRUNK GROUP OPTIONS
SBS? n

(display trunk-group 100)
TRUNK GROUP
Administered Members (min/max): 1/4
Total Administered Members: 4
GROUP MEMBER ASSIGNMENTS
Port Name Night Sig Grp
The DECT station administration should be XMOBILE Type and the Configuration set should be blank. The Avaya 37x1 DECT sets support ICON Message Waiting Type and 16x2 Length of Display.
STATION

 Headset? n
 Speaker? n
 Mounting: d
 Cord Length: 0
 Set Color:

 Floor:
 Building:

ABBREVIATED DIALING

 List1: List2: List3:

HOT LINE DESTINATION

 Abbreviated Dialing List Number (From above 1, 2 or 3):

 Dial Code:

 Line Appearance: call-appr
Chapter 5: Functional description

Registration of Avaya 3701 and Avaya 3711

If a IP DECT handset is configured via WEB Service, the user has to subscribe it before using it. For the registration procedure please see the following document:

- Avaya 3701 User Guide
- Avaya 3711 User Guide

If the registration was successful the name and the number occurs.

WML

WML is only available for the Avaya 3711. You can access a WML site with few key strokes:

1. Long press of the "Menu" soft key
2. Select WML Portal.
3. Press OK.

Now you can navigate within the pre-configured URLs (see Digit Treatment on page 61) or select the user input to type your URL.

Please note:

- You can leave all levels within your navigation by pressing short the ESC soft key, which brings you up to the prior menu level. With a long press of the ESC soft key you can leave the corporate with one step.
- Edit fields are marked by "()"
- Links are enclosed by "[...]."

Pre-configured URL

1. Select WML Portal.
2. Press OK.

Now you can navigate within the WML pages if the URL is a valid link to a WML server.
Functional description

User Input of URLs

1. Select User Input.
2. Press OK.
3. Press OK to open the edit field
4. Type the complete URL
5. Press OK.
6. Select the URL within the three alternatives which are offered: your original typed string being unchanged, or one of those which are added by "wap." or "www."
7. Press OK.

Now you can navigate within the WML pages if the URL is a valid link to a WML server.

Corporate Directory

The corporate directory is only available for the Avaya 3711. You can access the Corporate Directory with few key strokes:

1. Long press of the "Menu" soft key
2. Select Directory.
3. Press OK.

Or, you can use the key, if the phone is in the idle state. Just press the (down) part of the key. (With the (up) part you have access to the local phone book.)

Now you can navigate within the phonebook. It may be LDAP or TFTP based depending on the settings done by the administrator of the ADMM (see Corporate Directory on page 61).

Please note: you can leave all levels within your navigation by pressing short the ESC soft key, which brings you up to the prior menu level. With a long press of the ESC soft key you can leave the corporate with one step.

LDAP based Corporate Directory

The single source of the phonebook search is a LDAP server. The results are displayed in an alphabetical order.

The digits of the selected numbers may be substituted, if a corresponding prefix entry is found by the Digit Treatment algorithm for the region, where the IP DECT handset is located (see also Voice Mail on page 59).

1 Please note: you must not type "http://"; you need not type the prefixes "wap." or "www."
Searches are enabled by:

1. Long press of the "Menu" soft key
2. Select Directory.
3. Press OK.
(Or use the \ key as mentioned above.)
4. Enter a partly qualified string of that name, you are looking for.
5. Press OK.
6. Select a user.

If you like to call the user immediately:
7. Press off hook key.
 -> the party will be called

If you like to see the corresponding number before calling the selected user
8. Press OK

If you are sure about the user number
9. Press OK or off hook key.
 -> the party will be called

Otherwise press ESC to return to the next lower menu level to select another entry.

TFTP based Corporate Directory

The usage is similar to the LDAP based Corporate Directory, but you have to select between two phonebooks which distinguish between internal and external numbers.

1. Long press of the "Menu" soft key
2. Select Directory.
3. Press OK.
(Or use the \ key as mentioned above.)
4. Select internal dir or external dir
5. Press OK.
6. Enter a partly qualified string of that name, you are looking for.
7. Press OK.
8. Select a user.
If you like to call the user immediately:
9. Press **off hook** key.
 -> the party will be called
If you like to see the corresponding number before calling the selected user
10. Press **OK**
If you are sure about the user number
11. Press **OK** or **off hook** key.
 -> the party will be called
Otherwise press **ESC** to return to the next lower menu level to select another entry.

Message Waiting Indication for the 20DT Handset

Because the 20DT and the WT9620 handset do not support the DECT model-ID it is not known what kind of GAP phone is used. That is the reason why the type of the phone has be to configured by an administrator. Using this configuration of phone types different handsets can be handled in different ways.

Looking to the 20DT handsets the Avaya’s Message Waiting Indication feature can not be handled on those GAP phones. But typical GAP functions in combination with local functions provided by the phone should be used to find a workaround. The idea for the Message Waiting Indication feature for 20DT handsets is to map the Avaya systems message indication to a call indication from the voice mail to generate a call log entry, so the user can retrieve this message by calling the voice mail entry.

The Message Waiting Indication feature is managed in the Avaya DECT Mobility Manager. Herein the message waiting indication state is controlled for each 20DT handset until the voice message is retrieved from the voice box and the Avaya system switched of this state.

Avaya system

Updating the 20DT handsets message waiting indication state e. g. when switching off and on the handset or leaving and entering DECT areas, will be covered by the Avaya DECT Mobility Manager. Therefore the Avaya system does not repeat or refresh the MWI-on/off messages.

The Avaya system always notifies the change of the message waiting indication state for each handset.
Avaya DECT Mobility Manager

For each 20DT handset the Avaya DECT Mobility Manager handles the message waiting indication states transiently (is not saved over system reset). If the Avaya system sends an "MWI-on" message to a 20DT handset, the Avaya DECT Mobility Manager has to map this message into a normal "SETUP" using the voice mail number as calling party number. This call will be released immediately after it was established. It results to short incoming call indication from the voice mail party and a new call log entry. The user is able to call back to the voice mail for retrieving the voice message. This is done by the ADMM when the handset is not in a call state. Every time a call is released or a DECT location registration happens the scenario above is repeated until the Avaya system switches off the message indication state.

An entry in the call log can not be removed by the Avaya DECT Mobility Manager. This may confuse the user in certain situations like the voice mail was already retrieved if using another phone.

Further on the 20DT handset will be refreshed with the MWI on state after a certain time interval. This can be administrated for each handset optional.
Configuration

The following administration must be done in the Avaya DECT Mobility Manager for the Message Waiting Indication feature (please refer also to IP Trunks on page 53):

- Terminal type of 20DT telephone handset
- Call number of the voice mail equipment to fill up the SETUP message
- Administration state for any 20DT telephone handset to switch on and off the Message Waiting Indication feature
- Optional value for the refreshing cycle (0 – 60 minutes, default 0) for each 20DT telephone handset to refresh the message waiting indication state on the handset.
Chapter 6: Maintenance

Booter

Booter update may be handled via DHCP Option 254 "UPDATE" (see Booter update on page 29) automatically. In any case you may have direct control to booter SW, if you use a telnet user session.

Checking the IP DECT base station Booter Version

You can display the version information of the IP DECT base station booter using the telnet interface of an IP DECT base station. Check the booter version to determine whether an update is required to overcome any user issues or to enhance the functionality.

1. Start a telnet session using the IP address of the IP DECT base station
2. Enter login: iprfp and password: crftpw
3. Enter "flash"

The display will show the software and the hardware level of the IP DECT base station.

```
> flash
version of initial booter : 2.0.12
Version of booter 1       : 3.2.8
Version of booter 2       : 3.2.8
Hardware Revision        : 51
MAC address              : 00:30:42:08:31:A4
>
```
Manual Update of the IP DECT base station Booter

You can update the IP DECT base station Booter manually if there is no opportunity to have an autonomic update. Please check the booter version to determine whether an update is required to overcome any user issues or to enhance the functionality.

1. Start a telnet session using the IP address of the IP DECT base station
2. Enter login: iprfp and password: crftpw
3. Enter "flash_update"
4. Enter "flash_update" a second time because of the two booter images.

Static local configuration

Checking the local configuration

You can display the local configuration settings of the IP DECT base station using the telnet interface of an IP DECT base station.

1. Start a telnet session using the IP address of the IP DECT base station
2. Enter login: root and password: avaya12
3. Enter "local_db"

The display will show the local configuration settings of the IP DECT base station.

> local_db
use_local_cfg=1
ip=172.30.111.234
subnet=255.255.0.0
siaddr=172.30.206.20
boot_file=/omm_avaya.tftp
ommip=172.30.111.234

>
Removing the local configuration

You can remove the local configuration settings of the IP DECT base station using the telnet interface of an IP DECT base station.

1. Start a telnet session using the IP address of the IP DECT base station
2. Enter login: root and password: avaya12
3. Enter "local_db -c"

All local network settings are removed.

> local_db -c
> local_db
>

Avaya 3701 Firmware

Checking the Avaya 3701 Firmware Version

You can display the version information of the Avaya 3701 with few keystrokes. Check the firmware version to determine whether an update is required to overcome any user issues.

1. Short press the "Menu" soft key
2. Enter the following key sequence: R***76#
3. Select Version Number
4. Press OK. The display will show the software and the hardware level of the Avaya 3701
Upgrading the Avaya 3701 Firmware

The Avaya 3701 download adapter has to be used to upgrade the Avaya 3701 firmware. Please observe the instruction for use which comes with your adapter.

Connect the download adapter directly to a serial port on your PC and connect the plug-in power supply unit to the download adapter. Then connect the unit to the mains.

The download apertures in the handset are in the battery compartment underneath the middle battery. If the apertures are covered by the device label, prepare the handset for downloading by perforating the label with the wooden pierce supplied.

Position the handset so that its battery compartment faces the download adapter and press it down until the compartment clicks securely into place.

Run the ‘update...exe’ file on your computer.

The update tool will update the mobile firmware to version: 22.4.3.

Please click ‘Continue’ to start.
Select the COM port to which you have connected the download adapter.
Specify whether or not the update procedure should be logged.

![Update Avaya 3701 (OP26) dialog box](image)

- **Logging**
 - Activate logging and select logfile

 - **Log update procedure** selected

 - **Logfile:** `C:\Documents and Settings\balaksza\My D`
Then just follow the instruction on the screen.

After the update was finished you can remove the handset and continue to update another handset just by putting the prepared handset on the download adapter.

Avaya 3711 maintenance and diagnostic

All of the following features can be enabled by pressing "Menu" and typing "R * * 76 #".

Avaya 3711 Auto Call Test Mode

You can put the Avaya 3711 in the "auto call test mode" with few keystrokes. In this mode the phone will call a specified number cyclically. You can use this feature to generate traffic for test purposes. This mode is also active if the phone is on the charger.

1. Short press the "Menu" soft key
2. Enter the following key sequence: R***76#
3. Select Auto Call Test
4. Press OK.
5. Enter the phone number to call.
6. Press OK.
7. Enter a number of seconds between two calls.
8. Press OK.
9. Enter a number of seconds a call shall be active.
10. Press OK. The test will be started automatically.

To stop the test, switch the phone off and on again.

Avaya 3711 Auto Answer Test Mode

You can put the Avaya 3711 in the “auto answer test mode” with few keystrokes. In this mode the phone will answer incoming calls automatically. You can use this feature together this phones in the “auto call test mode” for test purposes. This mode is also active if the phone is an the charger.

1. Short press the "Menu" soft key
2. Enter the following key sequence: R***76#
3. Select Auto Answer
4. Press OK.
5. Enter a number of seconds the phone shall ring before it will answer the call.
6. Press OK.
7. Enter a number of seconds a call shall be active.
8. Press OK. The test will be started automatically.

To stop the test, switch the phone off and on again.
Avaya 3711 Site Survey Mode

You can put the Avaya 3711 in the "site survey mode" with few keystrokes. In this mode the phone will display the IP DECT base stations and the actual field strength of the receiving signal in dBM.

1. Short press the "Menu" soft key
2. Enter the following key sequence: \texttt{R***76#}
3. Select Site Survey
4. Press OK.

To leave the site survey mode switch the phone off and on again.

The following display is shown on the Avaya 3711:

```
  RFPI     10FFF21 02
Frame error  FE    PP:  FP:
Field        -dBm 50  57  50
RFP          RPN  02  01  00
Menu         Phonebook
```

The telephone is actually connected to IP DECT base station with the number 02. Also visible IP DECT base stations are the 01 and 00. The number 10FFF221 02 on the upper right side refers to the PARK 1F-10-F2-FF-21 of the IP DECT system and the number 02 refers to the IP DECT base station where the telephone is locked to.

Avaya 3711 Master Reset

You can reset the Avaya 3711 settings to default with few keystrokes.

1. Short press the "Menu" soft key
2. Enter the following key sequence: \texttt{R***76#}
3. Select Master Reset
4. Press OK.
5. Press OK again.
Change the Avaya 3711 Security PIN

You can change the Avaya 3711 Security PIN (e.g. to default (0000)) with few keystrokes.

1. Short press the "Menu" soft key
2. Enter the following key sequence: R***76#
3. Select Change PIN
4. Press OK.
5. Enter the new PIN.
6. Press OK
7. Enter the new PIN again.
8. Press OK.

Avaya 3711 Firmware

Checking the Avaya 3711 Firmware Version

You can display the version information of the Avaya 3711 with few keystrokes. Check the firmware version to determine whether an update is required to overcome any user issues.

1. Short press the "Menu" soft key
2. Enter the following key sequence: R***76#
3. Select Version Number
4. Press OK. The display will show the software and the hardware level of the Avaya 3711
Upgrading the Avaya 3711 Firmware

Connect Avaya 3711 to your PC’s serial interface via a specific download cable and start the installer program from your PC.

Welcome

The wizard supports updating the software of your DECT handset.

Make sure that your device is powered up and connected with the computer.

Please close all other applications on your PC.

Then select ‘Next’.

70.24.6
If the Avaya 3711 is connected, the following mask appears:

Configuration found

The wizard found a device with following configuration:

- **Interface:** COM7
- **Device:** Avaya 3711 [DP27 Version 3]
- **Version:** 70.24.5

If you press 'Next', the update procedure will start. Follow the instructions of the wizard.
If the connected Avaya 3711 is identified by the Installer, the Avaya 3711 is switched off.

Prepare update

Please wait until the device is completely powered off. Then press the arrow-up key and the key to power up the device. Keep the keys pressed for 10 seconds.
Press C-key and the up part of the key

If the update has been finished you can leave the program or start the upgrade of the next IP DECT handset.

Site Survey Measurement Equipment

If an IP DECT installation has to be planned, a sufficient distribution of the IP DECT base stations is necessary, which fulfill the requirement of a reliable synchronization and connectivity to the IP DECT handsets. The Site Survey Kit may help you. It comprises:

- Scaled layout diagram of building/premises
- One measuring base station with its own power supply
- One stand and mains adapter/battery for the base stations
- One reference telephone with special software
- Battery chargers, if necessary
- Spectrum analyser
The spectrum analyzer is not always required. It is needed as verification if it is suspected that interference sources exist, that could affect the DECT frequency range (approx. 1.9 GHz)

Diagnostic

Syslog

The Avaya DECT Mobility Manager and the IP DECT base stations are capable of propagating syslog messages conforming to RFC 3164. This feature together with the IP address of a host collecting these messages can be configured.

Syslog has to be enabled by:

- DHCP using public option 227 and 228 (see [Syslog server IP address and port](#) on page 30)
- local configuration via OM Configurator (see [Static local configuration of the IP DECT base station](#) on page 33)
- setting syslog daemon server and port via WEB interface (see [System settings](#) on page 42)
Maintenance

To set Syslog via DHCP or OM Configurator has the advantage, that syslogs are available in earlier states of IP DECT base station start up.

The level of syslog messages in the default state allows the user, to have control about the general state of the system and major failures. If it is wished to increase the level for diagnostic reasons, it can be done via telnet user shell by increasing the SPY level of subsystems (see Telnet user shell on page 94). This should be only used by the support organization because it can harm the system operation.

You can also read syslogs if you type the command "logread" within telnet user shell.

Telnet user shell

Each IP DECT base station (ADMM included) offers a lot of command within the telnet shell. Most of them are useful for diagnostic and may help experts, to resolve failures. Some commands can harm the system operation.
Login

The procedure is:

- Open telnet session to the IP DECT base station
- Username is 'iprfp'
- Password is 'crftpw'

Welcome to IP RFP OpenMobility Avaya Version x.y.z
Fri Apr 29 12:34:06 CEST 2005
Release

(BUILD 0)
172.30.111.232 login: iprfp
Password:

Welcome to the system usershell!

172.030.111.232 > help

Command overview

Type help to get a command overview:

```
arp   - show arp table
console_off - disable console on local terminal
console_on   - enable console on local terminal
dmesg   - print the kernel ring buffer
flash   - show flash info
flash_update - update the booter
interface - show interface configuration
ip_rfpconsole- console to the rfp application
link   - show link state
logread - show message log
mem    - show memory usage
ommconsole - console to the omm application
ps     - show process table
ping   - ping <ipaddress>
reboot - restarts the system
route  - show routing table
uptime - show system uptime
exit   - exit shell
```
IP DECT base station console commands

If you type "ip_rfpconsole" you are able to use the following commands on each IP DECT base station:

IP RFP console commands:
heap - shows heap buffer statistics
help - Displays Command Help Table
lec - adjust linear echo canceler parameters
media - display state of media channels
mutex - lists all created MXP mutexes
queues - lists all created MXP queues
reset - resets the IPRFP application
rsx - allows RSX connection to BMC via TCP
sem - lists all created MXP semaphores
spy - set/display spy levels: [<key #> <level #>]
tasks - lists all running MXP tasks
voice - displays the state of voice handling
exit - leave the IP-RFP console

Please note the "spy" command, which enables you to increase the level of syslog messages. This should be only used by the support organization because it can harm the system operation.
ADMM console commands

If you type "ommconsole" and you have opened the session on the ADMM IP DECT base station you are able to use the following ADMM related commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Displays Command Help Table</td>
</tr>
<tr>
<td>cni</td>
<td>cni commands</td>
</tr>
<tr>
<td>cnf</td>
<td>show configuration parameters</td>
</tr>
<tr>
<td>heartbeat</td>
<td>configure heartbeat mechanism for IP-RFP's</td>
</tr>
<tr>
<td>help</td>
<td>Displays Command Help Table</td>
</tr>
<tr>
<td>ipl</td>
<td>displays configured RFP's</td>
</tr>
<tr>
<td>ki</td>
<td>KT Monitor</td>
</tr>
<tr>
<td>mon</td>
<td>toggle monitor functionality</td>
</tr>
<tr>
<td>msm</td>
<td>display states within MediaStreamManagement</td>
</tr>
<tr>
<td>mutex</td>
<td>lists all created MXM mutexes</td>
</tr>
<tr>
<td>queues</td>
<td>lists all created MXM queues</td>
</tr>
<tr>
<td>sem</td>
<td>lists all created MXM semaphores</td>
</tr>
<tr>
<td>spy</td>
<td>set/display spy levels: [<key #> <level #>]</td>
</tr>
<tr>
<td>standby</td>
<td>displays redundant OMM's</td>
</tr>
<tr>
<td>sync</td>
<td>commands for RFP synchronisation</td>
</tr>
<tr>
<td>tasks</td>
<td>lists all running MXM tasks</td>
</tr>
<tr>
<td>uptime</td>
<td>displays system uptime</td>
</tr>
<tr>
<td>OMM#</td>
<td>OMM console commands</td>
</tr>
</tbody>
</table>

Please note the "spy" command, which enables you to increase the level of syslog messages especially for subsystems of the ADMM. This should be only used by the support organization because it can harm the system operation.

SNMP

- In order to manage a large network of IP DECT base stations offers a SNMP agent in each IP DECT base station.
- The SNMP agent responds to SNMPv1 and SNMPv2c read requests for the standard MIB-II objects.
- The agent supports both SNMPv1 and SNMPv2c traps (‘coldStart’, 'nsNotifyShutdown', 'authenticationFailure' and 'nsNotifyRestart')
- Decoding SNMP messages with your network management system or MIB browser always requires the publicly available IETF MIB definitions which can be downloaded.

Please see SNMP on page 46 for configuration of SNMP and MIB-II on page 104 to get an overview about the MIB II objects.
DECT Monitor of the Avaya IP DECT System

For a better error detection in the Avaya IP DECT system the DECT Monitor can be used. The DECT Monitor is an MS Windows based stand alone program. It provides the possibility to give a real time overview of the current IP DECT base station and telephone states in the Avaya IP DECT system.

The following features are provided by the DECT Monitor:

● Reading out of the DECT configuration of a Avaya IP DECT system
● Configuration can be stored in an ASCII file.
● Display of DECT transactions IP DECT base station-telephone in clear tabular form, with highlighting of hand over situations. Real-time display.
● Display of further events concerning the status or actions of IP DECT base stations and telephones of the Avaya IP DECT system.
● All events can also be recorded in a log file
● Display of the synchronization relations between the IP DECT base station
● Monitoring of systems with up to 256 IP DECT base stations and 1023 telephones
● Reading out and display of IP DECT base station statistics data, either for a single IP DECT base station or for all IP DECT base stations.
● Display of DECT central data of the Avaya IP DECT system.

The DECT Monitor program can only be used when the DECT Monitor flag in the ADMM system configuration is enabled.

The DECT monitor program is used together with the Avaya IP DECT system.

When the program is started, the user is requested to enter the IP address of the IP DECT base station or server running the Avaya DECT Mobility Manager (ADMM) software. This address is different from the IP address of the PABX the ADMM is connected to!

There can be several reasons for non successful link establishment:

● Operation of DECT Monitor is not enabled inside the ADMM. Use the Web-Service to enable DECT Monitor operation.
● IP address is not correct. It has to be the address of the IP DECT base station or Server the ADMM is running on, not the address of the PABX!
● A link routed through the PABX is not supported. In case of remote service on a PABX via dial in the ADMM can not be accessed from DECT Monitor.

The program displays the IP address which was used last time.

When the program is started a link to the Avaya IP DECT system is automatically established and program window shows all user configured child windows and tables.
When all links have been established, the DECT data of the system are automatically read out and entered in the tables "RFP-Table" and "PP-Table". This procedure is called "Config Request".

Next, the defined trace options (Event Mask) are sent to the ADMM. The options which are sent to the ADMM are always those which were active the last time the program was exited.

If the trace option "Transaction establish/release" is activated, the ADMM will deliver all existing transactions.

Following this, the ADMM system delivers the desired trace data. The user can either communicate with the program interactively (see below) or he can simply activate a log file in which to record the data.

Following this initialisation, the user can carry out the following modifications:

- The trace settings can be modified using the menu item Options-Event Mask. Transmission to the ADMM takes place after confirmation of the settings with <OK>.
- A Config Request can be sent again to the ADMM.
- A log file can be activated.

- By means of various dialogues, the configuration data of the telephones, IP DECT base stations and control modules can be displayed and stored in ASCII files.

The following information is displayed dynamically in the tables:

- Transactions between telephone and PABX system. These are displayed in both tables. Simple transactions are displayed in black on a white background; during handover, both transactions involved are displayed in white on a red background.

- The Location Registration and Detach events are displayed in the tables for approx. 1-2s after their occurrence (light green background), if possible. There is no display in the FP table if there is no column free for display. If the event has already been displayed, it can be overwritten at any time. The events are not displayed if they occur during an on-going transaction. Irrelevant of whether the events are displayed in the tables, they are always entered in the "FP/PP-events" window and in the log file (provided that this is open).

The following colour scheme is used for display of the IP DECT base station in the RFP table:

 - RFP grey-blue: IP DECT base station is not active (not connected or disturbance)
 - RFP black: IP DECT base station is active

The data of an IP DECT base station are displayed in a dialogue box after clicking on the respective IP DECT base station field in the RFP table. The statistics data of the IP DECT base station can be called up from this dialogue box.

The following colour scheme is used for display of the telephone in the PP table:

 - PP black: Telephone is enrolled. It is assumed that the telephone can be reached.
 - PP blue: Telephone can presumably not be reached. Detach was received, or when an attempt was made to reach a telephone, the telephone did not answer.
 - PP grey-blue: Telephone not enrolled.

The data of an telephone are displayed in a dialogue box after clicking on the respective telephone field in the FP table.

The Sync Info child window contains all IP DECT base stations and shows their synchronization and relation states to each other. Selecting the IP DECT base stations with the right mouse button the user can change visibility views and can even force a resynchronization of an IP DECT base station.
There are several optional child windows selectable. They are all listed below and give some more information about the Avaya IP DECT systems. Mostly they are statistics and for internal use only.
Supported Codecs and Codec negotiation

Like the CM the ADMM support silence suppression for G.711A and G.711MU, what isn't standard conform, but the ADMM doesn't support this feature for G.279 or G.729A. Here the G.729B/G.729AB codecs should be used to decrease the bandwidth. It isn't possible to differ between G.723.1 5.3K and G.723.1 6.3K codecs in the openLogicalChannel signal. Currently the Mobility Manager supports G.723.1 6.3K.

Currently the ADMM supports the following codecs (in capability set sent in the following order): G.711A, G.711MU, G.723.1(SilenceSuppression=TRUE), G.729AB, G.729A, G.729B, G.729

The ADMM waits until it receives openLogicalChannel from the CM before sending it's own openLogicalChannel signal with the same codec and SilenceSuppression bit (H.245/H.225.0 LogicalChannelParameters) received from the CM.

OpenLogicalChannel (CM===>ADMM) ===> openLogicalChannel (ADMM===>CM)
G.711A H.225.0-SS = FALSE G.711A H.225.0-SS = FALSE
G.711A H.225.0-SS = TRUE G.711A H.225.0-SS = TRUE
G.711MU H.225.0-SS = FALSE G.711MU H.225.0-SS = FALSE
G.711MU H.225.0-SS = TRUE G.711MU H.225.0-SS = TRUE
G.729A H.225.0-SS = FALSE G.729A H.225.0-SS = FALSE
G.729A H.225.0-SS = TRUE G.729A H.225.0-SS = TRUE
G.729B H.225.0-SS = FALSE G.729B H.225.0-SS = FALSE
G.729B H.225.0-SS = TRUE G.729B H.225.0-SS = TRUE
G.729AB H.225.0-SS = FALSE G.729AB H.225.0-SS = FALSE
G.723.1 SS=FALSE H.225.0-SS = FALSE G.723.1 SS=FALSE H.225.0-SS = FALSE
G.723.1 SS=TRUE H.225.0-SS = TRUE G.723.1 SS=TRUE H.225.0-SS = TRUE

Supported codecs in combination with silence suppression and Voice Activity Detection respectively:

<table>
<thead>
<tr>
<th></th>
<th>CM</th>
<th>IP-Office</th>
<th>IP DECT</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.711A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>G.711A SS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>G.711MU</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>G.711MU SS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>G.729</td>
<td>(X)==G.729A</td>
<td>(X)==G.729A</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>G.729 SS</td>
<td>(X)==G.729A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.729A</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
MIB-II

The following chapters describe the 11 object groups published in 5 and 6. The OID part is added in brackets.

system (1)

The vendor's authoritative identification of the network management subsystem contained in the entity. Implementation of the system group is mandatory for all systems.

sysDescr (1)

A textual description of the entity. This value should include the full name and version identification of the system's hardware type, software operating-system, and networking software. It is mandatory that this only contain printable ASCII characters.

sysObjectID (2)

The vendor's authoritative identification of the network management subsystem contained in the entity.

sysUpTime (3)

The time (in hundredths of a second) since the network management portion of the system was last re-initialized.

sysContact (4)

The textual identification of the contact person for this managed node, together with information on how to contact this person.
sysName (5)
An administratively-assigned name for this managed node. By convention, this is the node’s fully-qualified domain name.

sysLocation (6)
The physical location of this node (e.g., "telephone closet, 3rd floor").

sysServices (7)
A value which indicates the set of services that this entity potentially offers. The value is a sum. This sum initially takes the value zero, then, for each layer, L, in the range 1 through 7, that this node performs transactions for, 2 raised to (L - 1) is added to the sum. For example, a node which performs only routing functions would have a value of 4 (2^(3-1)). In contrast, a node which is a host offering application services would have a value of 72 (2^(4-1) + 2^(7-1)). Note that in the context of the Internet suite of protocols, values should be calculated accordingly:

<table>
<thead>
<tr>
<th>layer</th>
<th>functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>physical (e.g., repeaters)</td>
</tr>
<tr>
<td>2</td>
<td>data link/sub network (e.g., bridges)</td>
</tr>
<tr>
<td>3</td>
<td>internet (e.g., supports the IP)</td>
</tr>
<tr>
<td>4</td>
<td>end-to-end (e.g., supports the TCP)</td>
</tr>
<tr>
<td>7</td>
<td>applications (e.g., supports the SMTP)</td>
</tr>
</tbody>
</table>

For systems including OSI protocols, layers 5 and 6 may also be counted.

interfaces (2)

Implementation of the interfaces group is mandatory for all systems.

ifNumber (1)
The number of network interfaces (regardless of their current state) present on this system.

ifTable (2)
The Interfaces table contains information on the entity’s interfaces. Each interface is thought of as being attached to a "subnetwork". Note that this term should not be confused with "subnet" which refers to an addressing partitioning scheme used in the Internet suite of protocols.
A list of interface entries:

ifEntry (1)
An interface entry containing objects at the sub network layer and below for a particular interface.

ifIndex (1)
A unique value for each interface. Its value ranges between 1 and the value of ifNumber. The value for each interface must remain constant at least from one re-initialisation of the entity’s network management system to the next re-initialisation.
ifDescr (2)
A text string containing information about the interface. This string should include the name of
the manufacturer, the product name and the version of the hardware interface. The string is
intended for presentation to a human; it must not contain anything but printable ASCII
characters

ifType (3)
The type of interface, distinguished according to the physical/link/network protocol(s)
immediately "below" IP in the protocol stack.

other(1), regular1822(2)
hdh1822(3)
ddn-x25(4)
rfc877-x25(5)
eternet-csmacd(6)
iso88023-csmacd(7)
iso88024-tokenBus(8)
iso88025-tokenRing(9)
iso88026-man(10)
starLan(11)
proteon-10MBit(12)
proteon-80MBit(13)
hyperchannel(14)
fdi(15)
lapb(16)
sd(17)
t1-carrier(18)
ce(19) -- european equivalent of T-1
basicIsdn(20)
primaryIsdn(21) -- proprietary serial
propPointToPointSerial(22)
ppp(23)
softwareLoopback(24)
eon(25) -- CLNP over IP [12]
eternet-3Mbit(26)
nsip(27) -- XNS over IP
slip(28) -- generic SLIP
utra(29) -- ULTRA technologies
ds3(30) -- T-3
sip(31) -- SMDS
frame-relay(32)

ifMtu (4)
The size of the largest IP datagram which can be sent/received on the interface, specified in
octets.
ifSpeed (5)
An estimate of the interface's current bandwidth in bits per second. For interfaces which do not
vary in bandwidth or for those where no accurate estimation can be made, this object should
contain the nominal bandwidth.

ifPhysAddress (6)
The interface's address at the protocol layer immediately "below" IP in the protocol stack. For
interfaces which do not have such an address (e.g., a serial line), this object should contain an
octet string of zero length.

ifAdminStatus (7)
The desired state of the interface. The testing(3) state indicates that no operational packets can
be passed.

ifOperStatus (8)
The current operational state of the interface.
up(1)-- ready to pass packets
down(2)
testing(3)-- in some test mode
The testing(3) state indicates that no operational packets can be passed.

ifLastChange (9)
The value of sysUpTime at the time the interface entered its current operational state. If the
current state was entered prior to the last re-initialisation of the local network management
subsystem, then this object contains a zero value.

ifInOctets (10)
The total number of octets received on the interface, including framing characters.

ifInUcastPkts (11)
The number of (subnet) unicast packets delivered to a higher-layer protocol.

ifInNUcastPkts (12)
The number of non-unicast (i.e., subnet broadcast or subnet multicast) packets delivered to a
higher-layer protocol.

ifInDiscards (13)
The number of inbound packets which were chosen to be discarded even though no errors had
been detected to prevent their being deliverable to a higher-layer protocol. One possible reason
for discarding such a packet could be to free up buffer space.

ifInErrors (14)
The number of inbound packets that contained errors preventing them from being deliverable to
a higher-layer protocol.

ifInUnknownProtos (15)
The number of packets received via the interface which were discarded because of an unknown
or unsupported protocol.

ifOutOctets (16)
The total number of octets transmitted out of the interface, including framing characters.
Appendix

ifOutUcastPkt (17)
The total number of packets that higher-level protocols requested be transmitted to a
subnet-unicast address, including those that were discarded or not sent.

ifOutNUcastPkt (18)
The total number of packets that higher-level protocols requested be transmitted to a
non-unicast (i.e., a subnet broadcast or subnet multicast) address, including those that were
discarded or not sent.

ifOutDiscards (19)
The number of outbound packets which were chosen to be discarded even though no errors
had been detected to prevent their being transmitted. One possible reason for discarding such a
packet could be to free up buffer space.

ifOutErrors (20)
The number of outbound packets that could not be transmitted because of errors.

ifOutQLen (21)
The length of the output packet queue (in packets).

ifSpecific (22)
A reference to MIB definitions specific to the particular media being used to realise the interface.
For example, if the interface is realized by an ethernet, then the value of this object refers to a
document defining objects specific to ethernet. If an agent is not configured to have a value for
any of these variables, the object identifier

nullSpecific OBJECT IDENTIFIER ::= { 0 0 }

is returned. Note that “nullSpecific” is a syntactically valid object identifier, and any conformant
implementation of ASN.1 and BER must be able to generate and recognise this value.

at (3)
Address Translation, deprecated.

ip (4)
Implementation of the ip group is mandatory for all systems.

ipForwarding (1)
The indication of whether this entity is acting as an IP gateway in respect to the forwarding of
datagrams received by, but not addressed to, this entity. IP gateways forward datagrams; Hosts
do not (except those Source-Routed via the host).

gateway(1) -- entity forwards datagrams
host(2) -- entity does NOT forward datagrams
ipDefaultTTL (2)
The default value inserted into the Time-To-Live field of the IP header of datagrams originated at this entity, whenever a TTL value is not supplied by the transport layer protocol.

ipInReceives (3)
The total number of input datagrams received from interfaces, including those received in error.

ipInHdrErrors (4)
The number of input datagrams discarded due to errors in their IP headers, including bad checksums, version number mismatch, other format errors, time-to-live exceeded, errors discovered in processing their IP options, etc.

ipInAddrErrors (5)
The number of input datagrams discarded because the IP address in their IP header's destination field was not a valid address to be received at this entity. This count includes invalid addresses (e.g., 0.0.0.0) and addresses of unsupported Classes (e.g., Class E). For entities which are not IP Gateways and therefore do not forward datagrams, this counter includes datagrams discarded because the destination address was not a local address.

ipForwDatagrams (6)
The number of input datagrams for which this entity was not their final IP destination, as a result of which an attempt was made to find a route to forward them to that final destination. In entities which do not act as IP Gateways, this counter will include only those packets which were Source-Routed via this entity, and the Source-Route option processing was successful.

ipInUnknownProtos (7)
The number of locally-addressed datagrams received successfully but discarded because of an unknown or unsupported protocol.

ipInDiscards (8)
The number of input IP datagrams for which no problems were encountered to prevent their continued processing, but which were discarded (e.g. for lack of buffer space). Note that this counter does not include any datagrams discarded while awaiting re-assembly.

ipInDelivers (9)
The total number of input datagrams successfully delivered to IP user-protocols (including ICMP).

ipOutRequests (10)
The total number of IP datagrams which local IP user-protocols (including ICMP) supplied to IP in requests for transmission. Note that this counter does not include any datagrams counted in ipForwDatagrams.

ipOutDiscards (11)
The number of output IP datagrams for which no problem was encountered to prevent their transmission to their destination, but which were discarded (e.g., for lack of buffer space). Note that this counter would include datagrams counted in ipForwDatagrams if any such packets met this (discretionary) discard criterion.
Appendix

ipOutNoRoutes (12)
The number of IP datagrams discarded because no route could be found to transmit them to their destination. Note that this counter includes any packets counted in ipForwDatagrams which meet this "no-route" criterion.

ipReasmTimeout (13)
The maximum number of seconds which received fragments are held while they are awaiting reassembly at this entity.

ipReasmReqds (14)
The number of IP fragments received which needed to be reassembled at this entity.

ipReasmOKs (15)
The number of IP datagrams successfully re-assembled.

ipReasmFails (16)
The number of failures detected by the IP re-assembly algorithm (for whatever reason: timed out, errors, etc). Note that this is not necessarily a count of discarded IP fragments since some algorithms (notably RFC 815's) can lose track of the number of fragments by combining them as they are received.

ipFragOKs (17)
The number of IP datagrams that have been successfully fragmented at this entity.

ipFragFails (18)
The number of IP datagrams that have been discarded because they needed to be fragmented at this entity but could not be, e.g., because their "Don't Fragment" flag was set.

ipFragCreates (19)
The number of IP datagram fragments that have been generated as a result of fragmentation at this entity.

ipAddrTable (20)
The table of addressing information relevant to this entity's IP addresses.

ipAddrEntry (1)
The addressing information for one of this entity's IP addresses.

ipAdEntAddr (1)
The IP address to which this entry's addressing information pertains.

ipAdEntIfIndex (2)
The index value which uniquely identifies the interface to which this entry is applicable. The interface identified by a particular value of this index is the same interface as identified by the same value of ifIndex.

ipAdEntNetMask (3)
The sub net mask associated with the IP address of this entry. The value of the mask is an IP address with all the network bits set to 1 and all the hosts bits set to 0.

ipAdEntBcastAddr (4)
The value of the least-significant bit in the IP broadcast address used for sending datagrams on the (logical) interface associated with the IP address of this entry. For example, when the Internet standard all-ones broadcast address is used, the value will be 1.
ipAdEntReasmMaxSize (5)
The size of the largest IP datagram which this entity can re-assemble from incoming IP fragmented datagrams received on this interface.

ipRouteTable (21)
The IP Route Table contains an entry for each route presently known to this entity. Note that the action to be taken in response to a request to read a non-existent entry, is specific to the network management protocol being used.

ipRouteEntry (1)
A route to a particular destination.

ipRouteDest (1)
The destination IP address of this route. An entry with a value of 0.0.0.0 is considered a default route. Multiple such default routes can appear in the table, but access to such multiple entries is dependent on the table-access mechanisms defined by the network management protocol in use.

ipRouteIfIndex (2)
The index value which uniquely identifies the local interface through which the next hop of this route should be reached. The interface identified by a particular value of this index is the same interface as identified by the same value of ifIndex.

ipRouteMetric1 (3)
The primary routing metric for this route. The semantics of this metric are determined by the routing-protocol specified in the route's ipRouteProto value. If this metric is not used, its value should be set to -1.

ipRouteMetric2 (4)
An alternate routing metric for this route. The semantics of this metric are determined by the routing-protocol specified in the route's ipRouteProto value. If this metric is not used, its value should be set to -1.

ipRouteMetric3 (5)
An alternate routing metric for this route. The semantics of this metric are determined by the routing-protocol specified in the route's ipRouteProto value. If this metric is not used, its value should be set to -1.

ipRouteMetric4 (6)
An alternate routing metric for this route. The semantics of this metric are determined by the routing-protocol specified in the route's ipRouteProto value. If this metric is not used, its value should be set to -1.

ipRouteNextHop (7)
The IP address of the next hop of this route.
Appendix

ipRouteType (8)
The type of route:

- other(1) -- none of the following
- invalid(2) -- an invalidated route
- direct(3) -- route to directly
- remote(4) -- route to a non-local

ipRouteProto (9)
The routing mechanism via which this route was learned. Inclusion of values for gateway routing protocols is not intended to imply that hosts should support those protocols.

- other(1) -- none of the following
- local(2) -- e.g., manually configured entries
- netmgmt(3) -- set via a network management protocol
- icmp(4) -- obtained via ICMP e.g., Redirect
- egp(5) -- the remaining values are
- ggp(6) -- all gateway routing protocols
- hello(7)
- rip(8)
- is-is(9)
- es-is(10)
- ciscolgrp(11)
- bbnSpfIgp(12)
- oigp(13)

ipRouteAge (10)
The number of seconds since this route was last updated or otherwise determined to be correct. Note that no semantics of "too old" can be implied except through knowledge of the routing protocol by which the route was learned.

ipRouteMask (11)
Indicate the mask to be logical-ANDed with the destination address before being compared to the value in the ipRouteDest field. For those systems that do not support arbitrary sub net masks, an agent constructs the value of the ipRouteMask by determining whether the value of the correspondent ipRouteDest field belong to a class-A, B, or C network, and then using one of: mask network 255.0.0.0 class-A 255.255.0.0 class-B 255.255.255.0 class-C If the value of the ipRouteDest is 0.0.0.0 (a default route), then the mask value is also 0.0.0.0. It should be noted that all IP routing subsystems implicitly use this mechanism.

ipRouteMetric5 (12)
An alternate routing metric for this route. The semantics of this metric are determined by the routing-protocol specified in the route's ipRouteProto value. If this metric is not used, its value should be set to -1.
ipRouteInfo (13)
A reference to MIB definitions specific to the particular routing protocol which is responsible for this route, as determined by the value specified in the route's ipRouteProto value. If this information is not present, its value should be set to the OBJECT IDENTIFIER { 0 0 }, which is a syntactically valid object identifier, and any conformant implementation of ASN.1 and BER must be able to generate and recognise this value.

ipNetToMediaTable (22)
The IP Address Translation table used for mapping from IP addresses to physical addresses.

IpNetToMediaEntry (1)
Each entry contains one IP address to "physical" address equivalence.

ipNetToMediaIfIndex (1)
The interface on which this entry's equivalence is effective. The interface identified by a particular value of this index is the same interface as identified by the same value of ifIndex.

ipNetToMediaPhysAddress (2)
The media-dependent "physical" address.

ipNetToMediaNetAddress (3)
The IPAddress corresponding to the media-dependent "physical" address.

ipNetToMediaType (4)
The type of mapping.

- other(1) -- none of the following
- invalid(2) -- an invalidated mapping
- dynamic(3)
- static(4)

Setting this object to the value invalid(2) has the effect of invalidating the corresponding entry in the ipNetToMediaTable. That is, it effectively disassociates the interface identified with said entry from the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive tabular information from agents that corresponds to entries not currently in use. Proper interpretation of such entries requires examination of the relevant ipNetToMediaType object.

ipRoutingDiscards (23)
The number of routing entries which were chosen to be discarded even though they are valid. One possible reason for discarding such an entry could be to free-up buffer space for other entries.

icmp (5)
Implementation of the icmp group is mandatory for all systems.
The icmp group contains the ICMP input and output statistics.
Note that individual counters for ICMP message (sub-)codes have been omitted from this (version of the) MIB for simplicity.
Appendix

icmpInMsgs (1)
The total number of ICMP messages which the entity received. Note that this counter includes all those counted by icmpInErrors.

icmpInErrors (2)
The number of ICMP messages which the entity received but determined as having errors (bad ICMP checksums, bad length, etc.).

icmpInDestUnreachs (3)
The number of ICMP Destination Unreachable messages received.

icmpInTimeExcds (4)
The number of ICMP Time Exceeded messages received.

icmpInParmProbs (5)
The number of ICMP Parameter Problem messages received.

icmpInSrcQuenchs (6)
The number of ICMP Source Quench messages received.

icmpInRedirects (7)
The number of ICMP Redirect messages received.

icmpInEchos (8)
The number of ICMP Echo (request) messages received.

icmpInEchoReps (9)
The number of ICMP Echo Reply messages received.

icmpInTimestamps (10)
The number of ICMP Timestamp (request) messages received.

icmpInTimestampReps (11)
The number of ICMP Timestamp Reply messages received.

icmpInAddrMasks (12)
The number of ICMP Address Mask Request messages received.

icmpInAddrMaskReps (13)
The number of ICMP Address Mask Reply messages received.

icmpOutMsgs (14)
The total number of ICMP messages which this entity attempted to send. Note that this counter includes all those counted by icmpOutErrors.

icmpOutErrors (15)
The number of ICMP messages which this entity did not send due to problems discovered within ICMP such as a lack of buffers. This value should not include errors discovered outside the ICMP layer such as the inability of IP to route the resultant datagram. In some implementations there may be no types of error which contribute to this counter's value.

icmpOutDestUnreachs (16)
The number of ICMP Destination Unreachable messages sent.
icmpOutTimeExcds (17)
The number of ICMP Time Exceeded messages sent.

icmpOutParmProbs (18)
The number of ICMP Parameter Problem messages sent.

icmpOutSrcQuenches (19)
The number of ICMP Source Quench messages sent.

icmpOutRedirects (20)
The number of ICMP Redirect messages sent.

icmpOutEchos (21)
The number of ICMP Echo (request) messages sent.

icmpOutEchoReps (22)
The number of ICMP Echo Reply messages sent.

icmpOutTimestamps (23)
The number of ICMP Timestamp (request) messages sent.

icmpOutTimestampReps (24)
The number of ICMP Timestamp Reply messages sent.

icmpOutAddrMasks (25)
The number of ICMP Address Mask Request messages sent.

icmpOutAddrMaskReps (26)
The number of ICMP Address Mask Reply messages sent.

--

tcp (6)

Implementation of the TCP group is mandatory for all systems that implement the TCP protocol. Note that instances of object types that represent information about a particular TCP connection are transient; they persist only as long as the connection in question.

tcpRtoAlgorithm (1)
The algorithm used to determine the timeout value used for retransmitting unacknowledged octets.

- other(1) -- none of the following
- constant(2) -- a constant Rto
- rsre(3) -- MIL-STD-1778, Appendix B
- vanj(4) -- Van Jacobson’s algorithm [15]

tcpRtoMin (2)
The minimum value permitted by a TCP implementation for the retransmission timeout, measured in milliseconds. More refined semantics for objects of this type depend upon the algorithm used to determine the retransmission timeout. In particular, when the timeout algorithm is rsre(3), an object of this type has the semantics of the LBOUND quantity described in RFC 793.
tcpRtoMax (3)
The maximum value permitted by a TCP implementation for the retransmission timeout, measured in milliseconds. More refined semantics for objects of this type depend upon the algorithm used to determine the retransmission timeout. In particular, when the timeout algorithm is rsre(3), an object of this type has the semantics of the UBOUND quantity described in RFC 793.

tcpMaxConn (4)
The limit on the total number of TCP connections the entity can support. In entities where the maximum number of connections is dynamic, this object should contain the value "-1".

tcpActiveOpens (5)
The number of times TCP connections have made a direct transition to the SYN-SENT state from the CLOSED state.

tcpPassiveOpens (6)
The number of times TCP connections have made a direct transition to the SYN-RCVD state from the LISTEN state.

tcpAttemptFails (7)
The number of times TCP connections have made a direct transition to the CLOSED state from either the SYN-SENT state or the SYN-RCVD state, plus the number of times TCP connections have made a direct transition to the LISTEN state from the SYN-RCVD state.

tcpEstabResets (8)
The number of times TCP connections have made a direct transition to the CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state.

tcpCurrEstab (9)
The number of TCP connections for which the current state is either ESTABLISHED or CLOSE-WAIT.

tcpInSegs (10)
The total number of segments received, including those received in error. This count includes segments received on currently established connections.

tcpOutSegs (11)
The total number of segments sent, including those on current connections but excluding those containing only retransmitted octets.

tcpRetransSegs (12)
The total number of segments retransmitted - that is, the number of TCP segments transmitted containing one or more previously transmitted octets.

tcpConnTable (13)
A table containing TCP connection-specific information.

tcpConnEntry (1)
Information about a particular current TCP connection. An object of this type is transient, in that it ceases to exist when (or soon after) the connection makes the transition to the CLOSED state.
tcpConnState (1)
The state of this TCP connection.
 closed(1)
 listen(2)
 synSent(3)
 synReceived(4)
 established(5)
 finWait1(6)
 finWait2(7)
 closeWait(8)
 lastAck(9)
 closing(10)
 timeWait(11)

tcpConnLocalAddress (2)
The local IP address for this TCP connection.

tcpConnLocalPort (3)
The local port number for this TCP connection.

tcpConnRemAddress (4)
The remote IP address for this TCP connection.

tcpConnRemPort (5)
The remote port number for this TCP connection.

tcpInErrs (14)
The total number of segments received in error (e.g., bad TCP checksums).

tcpOutRsts (15)
The number of TCP segments sent containing the RST flag.

udp (7)
Implementation of the UDP group is mandatory for all systems which implement the UDP protocol.

udpInDatagrams (1)
The total number of UDP datagrams delivered to UDP users.

udpNoPorts (2)
The total number of received UDP datagrams for which there was no application at the destination port.

udpInErrors (3)
The number of received UDP datagrams that could not be delivered for reasons other than the lack of an application at the destination port.

udpOutDatagrams (4)
The total number of UDP datagrams sent from this entity.
udpTable (5)
A table containing UDP listener information.

udpEntry (1)
Information about a particular current UDP listener.

udpLocalAddress (1)
The local IP address for this UDP listener. In the case of a UDP listener which is willing to accept datagrams for any IP interface associated with the node, the value 0.0.0.0 is used.

udpLocalPort (2)
The local port number for this UDP listener.

egp (8)
Exterior Gateway Protocol, historical.

cmot (9)
Common Management Information Services and Protocol over TCP/IP, deprecated.

transmission (10)
Based on the transmission media underlying each interface on a system, the corresponding portion of the Transmission group is mandatory for that system. When Internet-standard definitions for managing transmission media are defined, the transmission group is used to provide a prefix for the names of those objects. Typically, such definitions reside in the experimental portion of the MIB until they are "proven", then as a part of the Internet standardisation process, the definitions are accordingly elevated and a new object identifier, under the transmission group is defined. By convention, the name assigned is:

type OBJECT IDENTIFIER ::= { transmission number }

where "type" is the symbolic value used for the media in the ifType column of the ifTable object, and "number" is the actual integer value corresponding to the symbol.

No object defined in this group today.
Implementation of the snmp group is mandatory for all systems which support an SNMP protocol entity. Some of the objects defined below will be zero-valued in those SNMP implementations that are optimised to support only those functions specific to either a management agent or a management client.

snmpInPkts (1)
The total number of PDUs delivered to the SNMP entity from the transport service.

snmpOutPkts (2)
The total number of SNMP PDUs which were passed from the SNMP protocol entity to the transport service.

snmpInBadVersions (3)
The total number of syntactically correct SNMP PDUs which were delivered to the SNMP protocol entity and were for an unsupported SNMP version.

snmpInBadCommunityNames (4)
The total number of SNMP PDUs delivered to the SNMP protocol entity which used a SNMP community name not known to said entity.

snmpInBadCommunityUses (5)
The total number of SNMP PDUs delivered to the SNMP protocol entity which represented an SNMP operation which was not allowed by the SNMP community named in the PDU.

snmpInASNParseErrs (6)
The total number of ASN.1 parsing errors (either in encoding or syntax) encountered by the SNMP protocol entity when decoding received SNMP PDUs.

snmpInBadTypes (7)
The total number of SNMP PDUs delivered to the SNMP protocol entity which had an unknown PDU type.

snmpInTooBigs (8)
The total number valid SNMP PDUs which were delivered to the SNMP protocol entity and for which the value of the "ErrorStatus" component is "tooBig."

snmpInNoSuchNames (9)
The total number valid SNMP PDUs which were delivered to the SNMP protocol entity and for which the value of the "ErrorStatus" component is "noSuchName."

snmpInBadValues (10)
The total number valid SNMP PDUs which were delivered to the SNMP protocol entity and for which the value of the "ErrorStatus" component is "badValue."

snmpInReadOnlys (11)
The total number valid SNMP PDUs which were delivered to the SNMP protocol entity and for which the value of the "ErrorStatus" component is "readOnly."
snmpInGenErrs (12)
The total number valid SNMP PDUs which were delivered to the SNMP protocol entity and for which the value of the "ErrorStatus" component is "genErr."

snmpInTotalReqVars (13)
The total number of MIB objects which have been retrieved successfully by the SNMP protocol entity as the result of receiving valid SNMP Get-Request and Get-Next PDUs.

snmpInTotalSetVars (14)
The total number of MIB objects which have been altered successfully by the SNMP protocol entity as the result of receiving valid SNMP Set-Request PDUs.

snmpInGetRequests (15)
The total number of SNMP Get-Request PDUs which have been accepted and processed by the SNMP protocol entity.

snmpInGetNexts (16)
The total number of SNMP Get-Next PDUs which have been accepted and processed by the SNMP protocol entity.

snmpInSetRequests (17)
The total number of SNMP Set-Request PDUs which have been accepted and processed by the SNMP protocol entity.

snmpInGetResponses (18)
The total number of SNMP Get-Response PDUs which have been accepted and processed by the SNMP protocol entity.

snmpInTraps (19)
The total number of SNMP Trap PDUs which have been accepted and processed by the SNMP protocol entity.

snmpOutTooBigs (20)
The total number valid SNMP PDUs which were generated by the SNMP protocol entity and for which the value of the "ErrorStatus" component is "tooBig."

snmpOutNoSuchNames (21)
The total number valid SNMP PDUs which were generated by the SNMP protocol entity and for which the value of the "ErrorStatus" component is "noSuchName."

snmpOutBadValues (22)
The total number valid SNMP PDUs which were generated by the SNMP protocol entity and for which the value of the "ErrorStatus" component is "badValue."

snmpOutReadOnlys (23)
The total number valid SNMP PDUs which were generated by the SNMP protocol entity and for which the value of the "ErrorStatus" component is "readOnly."

snmpOutGenErrs (24)
The total number valid SNMP PDUs which were generated by the SNMP protocol entity and for which the value of the "ErrorStatus" component is "genErr."
WML Tags and Attributes supported

snmpOutGetRequests (25)
The total number of SNMP Get-Request PDUs which have been generated by the SNMP protocol entity.

snmpOutGetNests (26)
The total number of SNMP Get-Next PDUs which have been generated by the SNMP protocol entity.

snmpOutSetRequests (27)
The total number of SNMP Set-Request PDUs which have been generated by the SNMP protocol entity.

snmpOutGetResponses (28)
The total number of SNMP Get-Response PDUs which have been generated by the SNMP protocol entity.

snmpOutTraps (29)
The total number of SNMP Trap PDUs which have been generated by the SNMP protocol entity.

snmpEnableAuthTraps (30)
Indicates whether the SNMP agent process is configured to generate authentication-failure traps.

WML Tags and Attributes supported

The ADMM/Avaya 3711 WML browser support WML version 1.1. The WML tags supported by the ADMM/Avaya 3711 browser compared to the 4610/4620 browser are detailed in the following table. It needs to be noted that the ADMM/Avaya 3711 WML browser will not support the following:

- WML images
- The "multiple" attribute for the <select> tag
- Softkeys given the small display of the Avaya 3711

Click to dial applications are supported using the <a>, <anchor>, <onevent> and <do> tags as detailed in Appendix C "Creating Web sites for the 4610 and 4620 IP Telephones" of the “Avaya IP Telephone LAN Administrators Guide” (Reference 11)
Detailed overview:
Avaya IP Phones and the ADMM/Avaya 3711

Full details concerning the use of WML can be found in the "4600 Avaya IP Phone LAN Administrators Guide" (Reference 11).

<table>
<thead>
<tr>
<th>Tag</th>
<th>Attribute</th>
<th>Supported by the 4610/4620</th>
<th>Supported by ADMM/Avaya 3711</th>
</tr>
</thead>
<tbody>
<tr>
<td><a></td>
<td>accesskey</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>href</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>title</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><access></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><anchor></td>
<td>Title</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><big></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>
</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><card></td>
<td>newcontext</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>onenterbackward</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>onenterforward</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>ontimer</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>ordered</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>title</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><do></td>
<td>label</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>name</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>optional</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>type</td>
<td>Yes, except x-*</td>
<td>Yes, except x-*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><fieldset></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><go></td>
<td>accept-charset</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>href</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>method</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>sendreferer</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1 of 3
<table>
<thead>
<tr>
<th>Tag</th>
<th>Attribute</th>
<th>Supported by the 4610/4620</th>
<th>Supported by ADMM/Avaya 3711</th>
</tr>
</thead>
<tbody>
<tr>
<td><head></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><i></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>align</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>alt</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>height</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>hspace</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>localsrc</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>src</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>vspace</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>width</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><input></td>
<td>emptyok</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>format</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>maxlength</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>name</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>size</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>tabindex</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>title</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>type</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>value</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><meta></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><noop></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td><onevent></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><optgroup></td>
<td>Title</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td><option></td>
<td>onpick</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>title</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>value</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><p></td>
<td>align</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>mode</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><postfield></td>
<td>name</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>value</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td><prev></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Tag</td>
<td>Attribute</td>
<td>Supported by the 4610/4620</td>
<td>Supported by ADMM/Avaya 3711</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td><code><refresh></code></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td><code><select></code></td>
<td>ivalue</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>multiple</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>name</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>tabindex</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>title</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>value</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><code><setvar></code></td>
<td>name</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>value</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><code><small></code></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><code></code></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><code><table></code></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><code><td></code></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><code><template></code></td>
<td>onenterbackward</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>onenterforward</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>ontimer</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><code><timer></code></td>
<td>name</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>value</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><code><tr></code></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><code><u></code></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><code><wml></code></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><code>{Universal Attributes}</code></td>
<td>xml:lang</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>class</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>id</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

3 of 3
Protocols and Ports used by Avaya IP DECT System

<table>
<thead>
<tr>
<th>Protocol</th>
<th>IP DECT base station send</th>
<th>IP DECT base station receive</th>
<th>ADMM send</th>
<th>ADMM receive</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SRC port</td>
<td>DST port</td>
<td>SRC port</td>
<td>DST port</td>
<td>SRC port</td>
</tr>
<tr>
<td>DHCP</td>
<td>68</td>
<td>67</td>
<td>67</td>
<td>68</td>
<td>-</td>
</tr>
<tr>
<td>TFTP</td>
<td>random</td>
<td>69</td>
<td>random</td>
<td>random</td>
<td>-</td>
</tr>
<tr>
<td>OMCFG</td>
<td>64000</td>
<td>64000</td>
<td>64000</td>
<td>64000</td>
<td>-</td>
</tr>
<tr>
<td>NTP</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>-</td>
</tr>
<tr>
<td>syslog</td>
<td>514</td>
<td>like configured</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TFTP</td>
<td>> 64000</td>
<td>69</td>
<td>random</td>
<td>> 64000</td>
<td>-</td>
</tr>
<tr>
<td>ADMM-RFP-protocol</td>
<td>> 64000</td>
<td>16321</td>
<td>16321</td>
<td>>64000</td>
<td>16321</td>
</tr>
<tr>
<td>H323 based XMobile (ADMM initiated)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>>64000</td>
</tr>
<tr>
<td>H323 based XMobile (IPO/ACM initiated)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>configured ADMM port</td>
</tr>
<tr>
<td>RTP / RTCP</td>
<td>range of configured RTP port base + 72 even ports for RTP, odd ports for RTCP</td>
<td>depends on IPO/ACM</td>
<td>range of configured RTP port based + 72 even ports for RTP, odd ports for RTCP</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Appendix

<table>
<thead>
<tr>
<th>Protocol</th>
<th>IP DECT base station send</th>
<th>IP DECT base station receive</th>
<th>ADMM send</th>
<th>ADMM receive</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SRC port</td>
<td>DST port</td>
<td>SRC port</td>
<td>DST port</td>
<td>SRC port</td>
</tr>
<tr>
<td>Web-IF / HTTP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>80</td>
</tr>
<tr>
<td>LDAP telephone book</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>> 64000</td>
</tr>
<tr>
<td>WAP / HTTP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>> 64000</td>
</tr>
<tr>
<td>TFTP telephone book</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>> 64000</td>
</tr>
<tr>
<td>DNS</td>
<td>> 64000</td>
<td>53</td>
<td>53</td>
<td>>64000</td>
<td>-</td>
</tr>
<tr>
<td>telnet</td>
<td>23</td>
<td>client port</td>
<td>client port</td>
<td>23</td>
<td>localhost 8107 (Linux server based ADMM only)</td>
</tr>
<tr>
<td>SNMP (GET)</td>
<td>161</td>
<td>client port</td>
<td>client port</td>
<td>161</td>
<td>-</td>
</tr>
<tr>
<td>SNMP (Traps)</td>
<td>> 64000</td>
<td>162</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DECTnetMonitor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8106</td>
</tr>
<tr>
<td>RSXport (debug tool)</td>
<td>38477</td>
<td>client port</td>
<td>client port</td>
<td>38477</td>
<td>-</td>
</tr>
<tr>
<td>Additional protocols</td>
<td>ARP</td>
<td>ICMP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 of 2
Performance figures and data quoted in this document are typical, and must be specifically confirmed in writing by Avaya before they become applicable to any particular order or contract. The company reserves the right to make alterations or amendments to the detailed specifications at its discretion. The publication of information in this document does not imply freedom from patent or other protective rights of Avaya or others.

Intellectual property related to this product (including trademarks) and registered to Lucent Technologies have been transferred or licensed to Avaya.

All trademarks identified by the ® or ™ are registered trademarks or trademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective owners.

This document contains proprietary information of Avaya and is not to be disclosed or used except in accordance with applicable agreements.

Any comments or suggestions regarding this document should be sent to support@Avaya.com.

© 2006 Avaya Inc. All rights reserved.

Avaya Inc.
1300 W. 120th Ave.
Westminster, CO 80234
Web: http://www.avaya.com