Preventing toll fraud

“Toll fraud” is the unauthorized use of your telecommunications system by an unauthorized party (for example, anyone who is not a corporate employee, agent, subcontractor, or person working on your company’s behalf). Be aware that there may be a risk of toll fraud associated with your system and that, if toll fraud occurs, it can result in substantial additional charges for your telecommunications services.

Avaya fraud intervention

If you suspect that you are being victimized by toll fraud and you need technical assistance or support, call Technical Service Center Toll Fraud Intervention Hotline at 1-800-643-2353 for the United States and Canada. For additional support telephone numbers, see the Avaya Web site: http://www.avaya.com

Select Support, then select Escalation Lists. This Web site includes telephone numbers for escalation within the United States. For escalation telephone numbers outside the United States, select Global Escalation List.

Providing telecommunications security

Telecommunications security (of voice, data, and video communications) is the prevention of any type of intrusion to (that is, either unauthorized or malicious access to or use of) your company’s telecommunications equipment by some party.

Your company’s “telecommunications equipment” includes both this Avaya product and any other voice/data/video equipment that could be accessed via this Avaya product (that is, “networked equipment”).

An “outside party” is anyone who is not a corporate employee, agent, subcontractor, or person working on your company’s behalf. Whereas, a “malicious party” is anyone (including someone who may be otherwise authorized) who accesses your telecommunications equipment with either malicious or mischievous intent.

Such intrusions may be either to/through synchronous (time-multiplexed and/or circuit-based) or asynchronous (character-, message-, or packet-based) equipment or interfaces for reasons of:

- Use (of capabilities special to the accessed equipment)
- Theft (such as, of intellectual property, financial assets, or toll-facility access)
- Eavesdropping (privacy invasions to humans)
- Mischief (troubling, but apparently innocuous, tampering)
- Harm (such as harmful tampering, data loss or alteration, regardless of motive or intent)

Be aware that there may be a risk of unauthorized intrusions associated with your system and/or its networked equipment. Also realize that, if such an intrusion should occur, it could result in a variety of losses to your company (including, but not limited to, human and data privacy, intellectual property, material assets, financial resources, labor costs, and legal costs).

Your responsibility for your company’s telecommunications security

The final responsibility for securing both this system and its networked equipment rests with you – an Avaya customer’s system administrator, your telecommunications peers, and your managers. Base the fulfillment of your responsibility on acquired knowledge and resources from a variety of sources, including, but not limited to:

- Installation documents
- System administration documents
- Security documents
- Hardware-software-based security tools
- Shared information between you and your peers
- Telecommunications security experts

To prevent intrusions to your telecommunications equipment, you and your peers should carefully program and configure:

- Your Avaya-provided telecommunications systems and their interfaces
- Your Avaya-provided software applications, as well as their underlying hardware/software platforms and interfaces
- Any other equipment networked to your Avaya products.

Providing telecommunications security

Telecommunications security (of voice, data, and video communications) is the prevention of any type of intrusion to (that is, either unauthorized or malicious access to or use of) your company’s telecommunications equipment by some party.

Your company’s “telecommunications equipment” includes both this Avaya product and any other voice/data/video equipment that could be accessed via this Avaya product (that is, “networked equipment”).

An “outside party” is anyone who is not a corporate employee, agent, subcontractor, or person working on your company’s behalf. Whereas, a “malicious party” is anyone (including someone who may be otherwise authorized) who accesses your telecommunications equipment with either malicious or mischievous intent.

Such intrusions may be either to/through synchronous (time-multiplexed and/or circuit-based) or asynchronous (character-, message-, or packet-based) equipment or interfaces for reasons of:

- Use (of capabilities special to the accessed equipment)
- Theft (such as, of intellectual property, financial assets, or toll-facility access)
- Eavesdropping (privacy invasions to humans)
- Mischief (troubling, but apparently innocuous, tampering)
- Harm (such as harmful tampering, data loss or alteration, regardless of motive or intent)

Be aware that there may be a risk of unauthorized intrusions associated with your system and/or its networked equipment. Also realize that, if such an intrusion should occur, it could result in a variety of losses to your company (including, but not limited to, human and data privacy, intellectual property, material assets, financial resources, labor costs, and legal costs).

Your responsibility for your company’s telecommunications security

The final responsibility for securing both this system and its networked equipment rests with you – an Avaya customer’s system administrator, your telecommunications peers, and your managers. Base the fulfillment of your responsibility on acquired knowledge and resources from a variety of sources, including, but not limited to:

- Installation documents
- System administration documents
- Security documents
- Hardware-software-based security tools
- Shared information between you and your peers
- Telecommunications security experts

To prevent intrusions to your telecommunications equipment, you and your peers should carefully program and configure:

- Your Avaya-provided telecommunications systems and their interfaces
- Your Avaya-provided software applications, as well as their underlying hardware/software platforms and interfaces
- Any other equipment networked to your Avaya products.

Providing telecommunications security

Telecommunications security (of voice, data, and video communications) is the prevention of any type of intrusion to (that is, either unauthorized or malicious access to or use of) your company’s telecommunications equipment by some party.

Your company’s “telecommunications equipment” includes both this Avaya product and any other voice/data/video equipment that could be accessed via this Avaya product (that is, “networked equipment”).

An “outside party” is anyone who is not a corporate employee, agent, subcontractor, or person working on your company’s behalf. Whereas, a “malicious party” is anyone (including someone who may be otherwise authorized) who accesses your telecommunications equipment with either malicious or mischievous intent.

Such intrusions may be either to/through synchronous (time-multiplexed and/or circuit-based) or asynchronous (character-, message-, or packet-based) equipment or interfaces for reasons of:

- Use (of capabilities special to the accessed equipment)
- Theft (such as, of intellectual property, financial assets, or toll-facility access)
- Eavesdropping (privacy invasions to humans)
- Mischief (troubling, but apparently innocuous, tampering)
- Harm (such as harmful tampering, data loss or alteration, regardless of motive or intent)

Be aware that there may be a risk of unauthorized intrusions associated with your system and/or its networked equipment. Also realize that, if such an intrusion should occur, it could result in a variety of losses to your company (including, but not limited to, human and data privacy, intellectual property, material assets, financial resources, labor costs, and legal costs).

Your responsibility for your company’s telecommunications security

The final responsibility for securing both this system and its networked equipment rests with you – an Avaya customer’s system administrator, your telecommunications peers, and your managers. Base the fulfillment of your responsibility on acquired knowledge and resources from a variety of sources, including, but not limited to:

- Installation documents
- System administration documents
- Security documents
- Hardware-software-based security tools
- Shared information between you and your peers
- Telecommunications security experts

To prevent intrusions to your telecommunications equipment, you and your peers should carefully program and configure:

- Your Avaya-provided telecommunications systems and their interfaces
- Your Avaya-provided software applications, as well as their underlying hardware/software platforms and interfaces
- Any other equipment networked to your Avaya products.

Providing telecommunications security

Telecommunications security (of voice, data, and video communications) is the prevention of any type of intrusion to (that is, either unauthorized or malicious access to or use of) your company’s telecommunications equipment by some party.

Your company’s “telecommunications equipment” includes both this Avaya product and any other voice/data/video equipment that could be accessed via this Avaya product (that is, “networked equipment”).

An “outside party” is anyone who is not a corporate employee, agent, subcontractor, or person working on your company’s behalf. Whereas, a “malicious party” is anyone (including someone who may be otherwise authorized) who accesses your telecommunications equipment with either malicious or mischievous intent.

Such intrusions may be either to/through synchronous (time-multiplexed and/or circuit-based) or asynchronous (character-, message-, or packet-based) equipment or interfaces for reasons of:

- Use (of capabilities special to the accessed equipment)
- Theft (such as, of intellectual property, financial assets, or toll-facility access)
- Eavesdropping (privacy invasions to humans)
- Mischief (troubling, but apparently innocuous, tampering)
- Harm (such as harmful tampering, data loss or alteration, regardless of motive or intent)

Be aware that there may be a risk of unauthorized intrusions associated with your system and/or its networked equipment. Also realize that, if such an intrusion should occur, it could result in a variety of losses to your company (including, but not limited to, human and data privacy, intellectual property, material assets, financial resources, labor costs, and legal costs).

Your responsibility for your company’s telecommunications security

The final responsibility for securing both this system and its networked equipment rests with you – an Avaya customer’s system administrator, your telecommunications peers, and your managers. Base the fulfillment of your responsibility on acquired knowledge and resources from a variety of sources, including, but not limited to:

- Installation documents
- System administration documents
- Security documents
- Hardware-software-based security tools
- Shared information between you and your peers
- Telecommunications security experts

To prevent intrusions to your telecommunications equipment, you and your peers should carefully program and configure:

- Your Avaya-provided telecommunications systems and their interfaces
- Your Avaya-provided software applications, as well as their underlying hardware/software platforms and interfaces
- Any other equipment networked to your Avaya products.
For the G700 Media Gateway:
This is a Class B product based on the standard of the Voluntary Control Council for Interference by Information Technology Equipment (VCCI). If this equipment is used in a domestic environment, radio disturbance may occur, in which case, the user may be required to take corrective actions.

Part 15: Personal Computer Statement
This equipment has been certified to comply with the limits for a Class B computing device, pursuant to Subpart J of Part 15 of FCC Rules. Only peripherals (computing input/output devices, terminals, printers, etc.) certified to comply with the Class B limits may be attached to this computer. Operation with noncertified peripherals is likely to result in interference to radio and television reception.

Part 68: Answer-Supervision Signaling
Allowing this equipment to be operated in a manner that does not provide proper answer-supervision signaling is in violation of Part 68 rules. This equipment returns answer-supervision signals to the public switched network when:
- answered by the called station,
- answered by the attendant, or
- routed to a recorded announcement that can be administered by the CPE user.

This equipment returns answer-supervision signals on all direct inward dialed (DID) calls forwarded back to the public switched telephone network.
Permissible exceptions are:
- A call is unanswered.
- A busy tone is received.
- A reorder tone is received.

DECLARATIONS OF CONFORMITY
US FCC Part 68 Supplier’s Declaration of Conformity (SDoc)
Avaya Inc. in the United States of America hereby certifies that the Avaya switch equipment described in this document and bearing a TIA TSB-168 label identification number complies with the Federal Communications Commission’s (FCC) Rules and Regulations 47 CFR Part 68, and the Administrative Council on Terminal Attachments (ACTA) adopted technical criteria.
Avaya further asserts that Avaya handset equipped terminal equipment described in this document complies with Paragraph 68.316 of the FCC Rules and Regulations defining Hearing Aid Compatibility and is deemed compatible with hearing aids.
Copies of SDoCs signed by the Responsible Party in the US can be obtained by contacting your local sales representative and are available on the following Web site:
http://www.avaya.com/support

Avaya Inc. declares that the equipment specified in this document bearing the “CE” (Conformité Européenne) mark conforms to the European Union Radio and Telecommunications Terminal Equipment Directive (1999/5/EC), including the Electromagnetic Compatibility Directive (89/336/EEC) and Low Voltage Directive (73/23/EEC). This equipment has been certified to meet CTR3 Basic Rate Interface (BRI) and CTR4 Primary Rate Interface (PRI) and subsets thereof in CTR12 and CTR13, as applicable.
Copies of these Declarations of Conformity (DoCs) signed by the Vice President of R&D, Avaya Inc., can be obtained by contacting your local sales representative and are available on the following Web site:
http://www.avaya.com/support

European Union Declarations of Conformity

TCP/IP facilities
Customers may experience differences in product performance, reliability, and security, depending upon network configurations/design and topologies, even when the product performs as warranted.

Warranty
Avaya Inc. provides a limited warranty on this product. Refer to your sales agreement to establish the terms of the limited warranty. In addition, Avaya’s standard warranty language, as well as information regarding support for this product, while under warranty, is available through the following Web site:
http://www.avaya.com/support

Link disclaimer
Avaya Inc. is not responsible for the contents or reliability of any linked Web sites and does not necessarily endorse the products, services, or information described or offered within them. We cannot guarantee that these links will work all of the time and we have no control over the availability of the linked pages.

Trademarks
- Avaya, MultiVantage, and Callmaster are trademarks of Avaya Inc.
- NICE Analyzer is a trademark of Centerpoint Solutions, Inc.

All trademarks identified by the ® or ™ are registered trademarks or trademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective owners.

Ordering information: Avaya Publications Center
Voice: +1-207-866-6701
1-800-457-1764 (Toll-free, U.S. and Canada only)
Fax: +1-207-626-7269
1-800-457-1764 (Toll-free, U.S. and Canada only)
Write: Globalware Solutions
200 Ward Hill Avenue
Haverhill, MA 01835 USA
Attention: Avaya Account Manager
Web: http://www.avayadocs.com
E-mail: totalware@gwsmail.com
Order: Document No. 555-230-516, Issue 1.0
May 2003

Avaya support
Avaya provides a telephone number for you to use to report problems or to ask questions about your contact center. The support telephone number is 1-800-242-2121 in the United States. For additional support telephone numbers, see the Avaya Web site:
http://www.avaya.com

Select Support, then select Escalation Lists. This Web site includes telephone numbers for escalation within the United States. For escalation telephone numbers outside the United States, select Global Escalation List.

Comments
To comment on this document, send e-mail to crminfodev@avaya.com.

Acknowledgment
This document was written by the CRM Information Development group.
Contents

About this document
- Contents and organization ... 13
- Intended audience ... 14
- Related documents ... 14
 - Administration documents ... 14
 - Contact center documents ... 15
- How to get help .. 16

Chapter 1: Automatic Call Distribution (ACD) basics
- Category A versus Category B ... 17
- ACD terminology .. 18
- Communication server features .. 22
 - What a communication server does .. 22
 - Trunks, trunk groups, and extensions .. 22
 - Automatic-in processing ... 23
 - Communication server attendant ... 23
 - Direct inward dialing processing ... 24
 - DID processing example ... 24
- What the ACD does ... 25
- Things to know before you start ... 25
 - Automatic-in processing of ACD calls .. 25
 - DID processing of ACD calls ... 26
- Split queues ... 26
 - Split queue call processing .. 26
 - Things to know before you start ... 26
 - Priority and normal split queues ... 27
 - Split queue size .. 27
- Announcements for calls in a split queue .. 27
- Answer supervision and abandoned calls .. 29
 - Abandoned calls ... 29
 - Abandoned call search ... 29
- Intraflow and interflow .. 30
 - Things to know before you start ... 30
 - Description ... 30
 - Setting up splits ... 30
 - Assigning queue status .. 31
 - Types of calls for a split .. 31
 - Setting up intraflow/interflow ... 31
Chapter 2: ACD contact center features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Night Service</td>
<td>32</td>
</tr>
<tr>
<td>Hunt Group Night Service</td>
<td>32</td>
</tr>
<tr>
<td>Trunk Group Night Service</td>
<td>33</td>
</tr>
<tr>
<td>System Night Service</td>
<td>33</td>
</tr>
<tr>
<td>Distributing and handling calls</td>
<td>34</td>
</tr>
<tr>
<td>Call distribution methods without EAS</td>
<td>34</td>
</tr>
<tr>
<td>Call distribution methods with EAS</td>
<td>36</td>
</tr>
<tr>
<td>How agents handle calls</td>
<td>37</td>
</tr>
<tr>
<td>ACD and call management systems — BCMS and Avaya CMS</td>
<td>46</td>
</tr>
<tr>
<td>Basic Call Management System (BCMS)</td>
<td>46</td>
</tr>
<tr>
<td>Avaya Call Management System (CMS) (Category A only)</td>
<td>46</td>
</tr>
<tr>
<td>Related feature or form</td>
<td>54</td>
</tr>
<tr>
<td>Abandoned call search</td>
<td>55</td>
</tr>
<tr>
<td>Administering abandoned call search</td>
<td>55</td>
</tr>
<tr>
<td>Considerations</td>
<td>56</td>
</tr>
<tr>
<td>Add/Remove Skills (Category A only)</td>
<td>57</td>
</tr>
<tr>
<td>Administering Add/Remove Skills</td>
<td>57</td>
</tr>
<tr>
<td>Considerations</td>
<td>58</td>
</tr>
<tr>
<td>Interactions</td>
<td>58</td>
</tr>
<tr>
<td>Agent Call Handling</td>
<td>59</td>
</tr>
<tr>
<td>Administering Agent Call Handling</td>
<td>59</td>
</tr>
<tr>
<td>Detailed description</td>
<td>60</td>
</tr>
<tr>
<td>Expanded technical information</td>
<td>67</td>
</tr>
<tr>
<td>Considerations</td>
<td>69</td>
</tr>
<tr>
<td>Interactions</td>
<td>70</td>
</tr>
<tr>
<td>Auto-Available Split/Skill</td>
<td>74</td>
</tr>
<tr>
<td>Administering AAS</td>
<td>74</td>
</tr>
<tr>
<td>Detailed description</td>
<td>74</td>
</tr>
<tr>
<td>Considerations</td>
<td>75</td>
</tr>
<tr>
<td>Interactions</td>
<td>75</td>
</tr>
<tr>
<td>Automatic Call Distribution</td>
<td>77</td>
</tr>
<tr>
<td>Administering ACD</td>
<td>79</td>
</tr>
<tr>
<td>Detailed description</td>
<td>80</td>
</tr>
<tr>
<td>Considerations</td>
<td>86</td>
</tr>
<tr>
<td>Interactions</td>
<td>89</td>
</tr>
<tr>
<td>Basic Call Management System</td>
<td>91</td>
</tr>
<tr>
<td>Administering BCMS</td>
<td>92</td>
</tr>
<tr>
<td>Interactions</td>
<td>92</td>
</tr>
<tr>
<td>Best Service Routing (Category A only)</td>
<td>94</td>
</tr>
<tr>
<td>Benefits of BSR</td>
<td>94</td>
</tr>
<tr>
<td>Before you start using BSR</td>
<td>95</td>
</tr>
<tr>
<td>Communication server requirements for BSR</td>
<td>96</td>
</tr>
<tr>
<td>Network requirements for BSR.</td>
<td>97</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>Administering BSR polling over IP without B-Channel.</td>
<td>100</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>100</td>
</tr>
<tr>
<td>Administration forms for BSR polling over IP without B-channel.</td>
<td>101</td>
</tr>
<tr>
<td>Operation</td>
<td>106</td>
</tr>
<tr>
<td>Interactions</td>
<td>107</td>
</tr>
<tr>
<td>BSR Detailed description</td>
<td>108</td>
</tr>
<tr>
<td>Considerations</td>
<td>113</td>
</tr>
<tr>
<td>Interactions</td>
<td>114</td>
</tr>
<tr>
<td>Call Management System (Category A only).</td>
<td>119</td>
</tr>
<tr>
<td>Administering the communication server-to-CMS interface</td>
<td>119</td>
</tr>
<tr>
<td>Enabling CMS measurements</td>
<td>119</td>
</tr>
<tr>
<td>Measured extensions and multiple splits</td>
<td>119</td>
</tr>
<tr>
<td>When assignments exceed capacity</td>
<td>120</td>
</tr>
<tr>
<td>Assignments are not logins</td>
<td>120</td>
</tr>
<tr>
<td>Measured trunks versus unmeasured facilities</td>
<td>120</td>
</tr>
<tr>
<td>Determining allocation of measured trunks and unmeasured facilities</td>
<td>121</td>
</tr>
<tr>
<td>Considerations for administering the communication server-to-CMS interface</td>
<td>121</td>
</tr>
<tr>
<td>CMS measurements</td>
<td>121</td>
</tr>
<tr>
<td>IP Trunk Groups and ATM Trunk Groups</td>
<td>121</td>
</tr>
<tr>
<td>CMS representation of IP trunk member port-ids</td>
<td>121</td>
</tr>
<tr>
<td>Display of physical (non-IP) member port-IDs on Avaya CMS and CMS Supervisor</td>
<td>122</td>
</tr>
<tr>
<td>Call Prompting</td>
<td>125</td>
</tr>
<tr>
<td>Administering call prompting</td>
<td>125</td>
</tr>
<tr>
<td>Considerations</td>
<td>126</td>
</tr>
<tr>
<td>Interactions</td>
<td>126</td>
</tr>
<tr>
<td>Call Vectoring</td>
<td>128</td>
</tr>
<tr>
<td>Administering Call Vectoring</td>
<td>128</td>
</tr>
<tr>
<td>Interactions</td>
<td>131</td>
</tr>
<tr>
<td>Avaya Business Advocate (Category A only)</td>
<td>138</td>
</tr>
<tr>
<td>Administering Advocate</td>
<td>139</td>
</tr>
<tr>
<td>Call and agent selection</td>
<td>141</td>
</tr>
<tr>
<td>Expert Agent Selection (Category A only)</td>
<td>147</td>
</tr>
<tr>
<td>Administering EAS</td>
<td>147</td>
</tr>
<tr>
<td>Administering Direct Agent Announcement</td>
<td>148</td>
</tr>
<tr>
<td>Detailed administration for EAS</td>
<td>149</td>
</tr>
<tr>
<td>Call handling preference administration</td>
<td>150</td>
</tr>
<tr>
<td>Considerations</td>
<td>152</td>
</tr>
<tr>
<td>Interactions</td>
<td>152</td>
</tr>
<tr>
<td>Inbound Call Management</td>
<td>156</td>
</tr>
<tr>
<td>Administering ICM</td>
<td>156</td>
</tr>
<tr>
<td>Detailed description</td>
<td>158</td>
</tr>
<tr>
<td>Considerations</td>
<td>161</td>
</tr>
<tr>
<td>Interactions</td>
<td>162</td>
</tr>
<tr>
<td>Information Forwarding (Category A only)</td>
<td>163</td>
</tr>
<tr>
<td>Administering User-to-User Information transport</td>
<td>163</td>
</tr>
<tr>
<td>Detailed description</td>
<td>165</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Considerations</td>
<td>166</td>
</tr>
<tr>
<td>Interactions</td>
<td>167</td>
</tr>
<tr>
<td>Intraflow</td>
<td>168</td>
</tr>
<tr>
<td>Interflow</td>
<td>168</td>
</tr>
<tr>
<td>Administering Intraflow and Interflow</td>
<td>168</td>
</tr>
<tr>
<td>Detailed description</td>
<td>169</td>
</tr>
<tr>
<td>Considerations</td>
<td>169</td>
</tr>
<tr>
<td>Interactions</td>
<td>170</td>
</tr>
<tr>
<td>Look-Ahead Interflow (Category A only)</td>
<td>171</td>
</tr>
<tr>
<td>Administering LAI</td>
<td>171</td>
</tr>
<tr>
<td>Considerations</td>
<td>172</td>
</tr>
<tr>
<td>Multiple Call Handling</td>
<td>177</td>
</tr>
<tr>
<td>Administering MCH</td>
<td>177</td>
</tr>
<tr>
<td>Detailed description</td>
<td>177</td>
</tr>
<tr>
<td>MCH settings</td>
<td>178</td>
</tr>
<tr>
<td>Considerations</td>
<td>180</td>
</tr>
<tr>
<td>Interactions</td>
<td>180</td>
</tr>
<tr>
<td>Network Call Redirection (NCR) (Category A only)</td>
<td>183</td>
</tr>
<tr>
<td>Administering NCR</td>
<td>183</td>
</tr>
<tr>
<td>Administration for support of AT&T In-band Transfer and Connect</td>
<td>191</td>
</tr>
<tr>
<td>Detailed description</td>
<td>191</td>
</tr>
<tr>
<td>Network Call Transfer</td>
<td>192</td>
</tr>
<tr>
<td>Network Call Deflection</td>
<td>192</td>
</tr>
<tr>
<td>Information Forwarding support for AT&T In-band Transfer and Connect</td>
<td>193</td>
</tr>
<tr>
<td>Considerations</td>
<td>194</td>
</tr>
<tr>
<td>Interactions</td>
<td>194</td>
</tr>
<tr>
<td>Interactions</td>
<td>196</td>
</tr>
<tr>
<td>Queue Status Indications</td>
<td>199</td>
</tr>
<tr>
<td>Administering Queue Status Indications</td>
<td>199</td>
</tr>
<tr>
<td>Detailed description</td>
<td>200</td>
</tr>
<tr>
<td>Interactions</td>
<td>200</td>
</tr>
<tr>
<td>Reason Codes (Category A only)</td>
<td>201</td>
</tr>
<tr>
<td>Administering Reason Codes</td>
<td>201</td>
</tr>
<tr>
<td>Detailed description</td>
<td>202</td>
</tr>
<tr>
<td>Considerations</td>
<td>203</td>
</tr>
<tr>
<td>Interactions</td>
<td>204</td>
</tr>
<tr>
<td>Redirection on No Answer</td>
<td>205</td>
</tr>
<tr>
<td>Administering RONA</td>
<td>205</td>
</tr>
<tr>
<td>Detailed description</td>
<td>206</td>
</tr>
<tr>
<td>RONA application examples</td>
<td>206</td>
</tr>
<tr>
<td>Considerations</td>
<td>206</td>
</tr>
<tr>
<td>Interactions</td>
<td>206</td>
</tr>
<tr>
<td>Interactions with other ringing call timers</td>
<td>216</td>
</tr>
<tr>
<td>Remote Logout of Agent</td>
<td>218</td>
</tr>
<tr>
<td>Administering Remote Logout of Agent</td>
<td>218</td>
</tr>
<tr>
<td>Detailed description</td>
<td>218</td>
</tr>
<tr>
<td>Considerations</td>
<td>222</td>
</tr>
<tr>
<td>Interactions</td>
<td>222</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Observing</td>
<td>223</td>
</tr>
<tr>
<td>Administering Service Observing</td>
<td>223</td>
</tr>
<tr>
<td>Detailed description</td>
<td>224</td>
</tr>
<tr>
<td>Service Observing indicators</td>
<td>226</td>
</tr>
<tr>
<td>Considerations</td>
<td>231</td>
</tr>
<tr>
<td>Interactions</td>
<td>233</td>
</tr>
<tr>
<td>Universal Call ID</td>
<td>238</td>
</tr>
<tr>
<td>What is UCID’s purpose?</td>
<td>238</td>
</tr>
<tr>
<td>What does UCID look like?</td>
<td>238</td>
</tr>
<tr>
<td>How are UCIDs tracked?</td>
<td>239</td>
</tr>
<tr>
<td>Interactions</td>
<td>245</td>
</tr>
<tr>
<td>Before you start</td>
<td>246</td>
</tr>
<tr>
<td>Administering UCID</td>
<td>247</td>
</tr>
<tr>
<td>Considerations</td>
<td>249</td>
</tr>
<tr>
<td>VDN in a Coverage Path</td>
<td>251</td>
</tr>
<tr>
<td>Administering VICP</td>
<td>251</td>
</tr>
<tr>
<td>Considerations</td>
<td>251</td>
</tr>
<tr>
<td>Interactions</td>
<td>251</td>
</tr>
<tr>
<td>VDN of Origin Announcement (Category A only)</td>
<td>256</td>
</tr>
<tr>
<td>Administering VOA</td>
<td>256</td>
</tr>
<tr>
<td>Detailed description</td>
<td>257</td>
</tr>
<tr>
<td>Considerations</td>
<td>258</td>
</tr>
<tr>
<td>Interactions</td>
<td>259</td>
</tr>
<tr>
<td>Voice Response Integration (Category A only)</td>
<td>262</td>
</tr>
<tr>
<td>Administering VRI</td>
<td>263</td>
</tr>
<tr>
<td>Detailed description</td>
<td>263</td>
</tr>
<tr>
<td>Interactions</td>
<td>265</td>
</tr>
<tr>
<td>VuStats (Category A only)</td>
<td>271</td>
</tr>
<tr>
<td>Administering VuStats</td>
<td>272</td>
</tr>
<tr>
<td>Detailed description</td>
<td>275</td>
</tr>
<tr>
<td>Considerations</td>
<td>278</td>
</tr>
<tr>
<td>Interactions</td>
<td>278</td>
</tr>
<tr>
<td>Chapter 3: ACD contact center switch forms</td>
<td>281</td>
</tr>
<tr>
<td>List of contact center forms</td>
<td>281</td>
</tr>
<tr>
<td>Agent LoginID (Category A only)</td>
<td>282</td>
</tr>
<tr>
<td>Agent LoginID administration commands</td>
<td>282</td>
</tr>
<tr>
<td>Agent LoginID form instructions</td>
<td>283</td>
</tr>
<tr>
<td>Agent LoginID field descriptions</td>
<td>283</td>
</tr>
<tr>
<td>Example List Agent-LoginID form</td>
<td>287</td>
</tr>
<tr>
<td>Best Service Routing (BSR) Application Plan (Category A only)</td>
<td>288</td>
</tr>
<tr>
<td>BSR Administration commands</td>
<td>288</td>
</tr>
<tr>
<td>Form instructions</td>
<td>288</td>
</tr>
<tr>
<td>BSR Application field descriptions</td>
<td>289</td>
</tr>
<tr>
<td>BCMS/VuStats Login ID (Category A only).</td>
<td>291</td>
</tr>
<tr>
<td>Administration commands</td>
<td>291</td>
</tr>
<tr>
<td>BCMS/VuStats form instructions</td>
<td>291</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>BCMS/VuStats field Descriptions</td>
<td>292</td>
</tr>
<tr>
<td>Implementation notes</td>
<td>293</td>
</tr>
<tr>
<td>Contact Center System Parameters</td>
<td>293</td>
</tr>
<tr>
<td>Administration commands</td>
<td>293</td>
</tr>
<tr>
<td>Field Descriptions for Feature-Related System Parameters (“EAS” page)</td>
<td>294</td>
</tr>
<tr>
<td>Field Descriptions</td>
<td>294</td>
</tr>
<tr>
<td>Field Descriptions - Feature-Related System Parameters</td>
<td>297</td>
</tr>
<tr>
<td>(AGENT AND CALL SELECTION page)</td>
<td></td>
</tr>
<tr>
<td>Call Vector</td>
<td>300</td>
</tr>
<tr>
<td>Call Vector administration commands</td>
<td>300</td>
</tr>
<tr>
<td>Call Vector form instructions</td>
<td>301</td>
</tr>
<tr>
<td>Call Vector form field descriptions</td>
<td>301</td>
</tr>
<tr>
<td>Holiday Table</td>
<td>304</td>
</tr>
<tr>
<td>Holiday table administration commands</td>
<td>304</td>
</tr>
<tr>
<td>Holiday Table form instructions</td>
<td>304</td>
</tr>
<tr>
<td>Holiday Table form field descriptions</td>
<td>305</td>
</tr>
<tr>
<td>Hunt Group</td>
<td>307</td>
</tr>
<tr>
<td>Hunt Group administration commands</td>
<td>307</td>
</tr>
<tr>
<td>Hunt Group form instructions</td>
<td>307</td>
</tr>
<tr>
<td>Reason Code Names (Category A only)</td>
<td>310</td>
</tr>
<tr>
<td>Administration commands</td>
<td>310</td>
</tr>
<tr>
<td>Reason Code Names (Category A only) form instructions</td>
<td>310</td>
</tr>
<tr>
<td>Reason Code Names field descriptions</td>
<td>310</td>
</tr>
<tr>
<td>SIT Treatment for Call Classification (Category A only)</td>
<td>311</td>
</tr>
<tr>
<td>SIT Treatment for Call Classification (Category A only) administration commands</td>
<td>312</td>
</tr>
<tr>
<td>SIT Treatment for Call Classification form instructions</td>
<td>312</td>
</tr>
<tr>
<td>SIT Treatment for Call Classification field descriptions</td>
<td>312</td>
</tr>
<tr>
<td>Vector Directory Number (VDN)</td>
<td>314</td>
</tr>
<tr>
<td>VDN Administration commands</td>
<td>314</td>
</tr>
<tr>
<td>VDN form instructions</td>
<td>314</td>
</tr>
<tr>
<td>VDN field descriptions</td>
<td>316</td>
</tr>
<tr>
<td>Extension</td>
<td>316</td>
</tr>
<tr>
<td>Name</td>
<td>316</td>
</tr>
<tr>
<td>Vector Number</td>
<td>316</td>
</tr>
<tr>
<td>Attendant Vectoring</td>
<td>316</td>
</tr>
<tr>
<td>Allow VDN Override</td>
<td>316</td>
</tr>
<tr>
<td>COR</td>
<td>317</td>
</tr>
<tr>
<td>TN</td>
<td>317</td>
</tr>
<tr>
<td>Measured</td>
<td>317</td>
</tr>
<tr>
<td>Implementation notes</td>
<td>319</td>
</tr>
<tr>
<td>Vector Routing Table (Category A only)</td>
<td>320</td>
</tr>
<tr>
<td>Vector Routing Table (Category A only) administration commands</td>
<td>320</td>
</tr>
<tr>
<td>Vector Routing Table (Category A only) form instructions</td>
<td>321</td>
</tr>
<tr>
<td>Vector Routing Table field descriptions</td>
<td>321</td>
</tr>
<tr>
<td>VuStats Display Format (Category A only)</td>
<td>323</td>
</tr>
<tr>
<td>VuStats Display Format (Category A only) administration commands</td>
<td>323</td>
</tr>
</tbody>
</table>

10 Communication Manager Guide to ACD Call Centers
About this document

This document describes the Automatic Call Distribution (ACD) feature of Avaya communication servers.

Avaya communication servers are a family of cost-effective digital communication systems. These systems:

- Route voice and data information between various endpoints (telephones, terminals, computers)
- Provide highly robust networking capabilities
- Include an extensive set of standard features: attendant consoles, voice processing interface, call coverage, DS1 (T1 and E1) connectivity, hospitality support, recorded announcement, and trunk-to-trunk transfer
- Provide flexibility and allow for the addition of optional features and/or upgrades to the system as business needs change

This document explains the features that comprise the Communication Manager ACD. It provides an introduction to each contact center feature and presents required forms for administration, detailed descriptions, considerations, and interactions between contact center features. This document provides an overall reference for planning, operating, and administering your ACD contact center.

Contents and organization

This document is organized into chapters by subject. Features are in alphabetical order within each chapter. Pertinent forms follow the features. Major topics include:

- **Chapter 1: Automatic Call Distribution (ACD) basics** on page 17 – Gives an overview of the ACD feature.
- **Chapter 2: ACD contact center features** on page 53 – Contains information about the contact center features available on the Avaya communication server.
- **Chapter 3: ACD contact center switch forms** on page 281 – Contains all of the forms required to administer basic contact center features on the communication server, descriptions of the fields on each form, and special notes about usage.
About this document

- **Chapter 4: Implementing the Time of Day Clock Synchronization feature** on page 351 – Describes requirements, setup procedures, and operations associated with the Time of Day Clock synchronization feature.

- **Appendix A: Recorded announcements** on page 369 – Describes the use and requirements around using recorded announcements in a contact center environment.

- **Appendix B: Administering VRUs/IVRs as station ports** on page 383 – Provides information on how to administer VRUs and IVRs as station ports on the communication server.

Intended audience

This document is intended for communication server system administrators and managers, end-users interested in information about specific features, and Avaya support personnel responsible for planning, designing, configuring, selling, and supporting the system.

Related documents

The following documents may include information related to the ACD feature.

Administration documents

The primary audience for these documents consists of communication server administrators who work for external customers and for Avaya’s dealers. The satisfaction and needs of our external customers is the primary focus for the documentation.

- **Administrator Guide for Avaya Communication Manager, 555-233-506** – Provides complete step-by-step procedures for administering the communication server, plus feature descriptions and reference information for administration screens and commands.

- **Avaya MultiVantage Little Instruction Book for Basic Administration, 555-233-756** – Provides step-by-step procedures for performing basic communication server administration tasks. Includes managing phones, managing features, and routing outgoing calls.

- **Avaya Communication Manager Little Instruction Book for Advanced Administration, 555-233-757** – Provides step-by-step procedures for adding trunks, adding hunt groups, writing vectors and recording announcements.
Related documents

- *Avaya Communication Manager Little Instruction Book for Basic Diagnostics*, 555-233-758 – Provides step-by-step procedures for baselining your system, solving common problems, reading alarms and errors, using features to troubleshoot your system, and contacting Avaya.

- *Overview for Avaya Communication Manager*, 555-233-767 – Provides a brief description of Avaya communication server features.

- *Reports for Avaya Communication Manager*, 555-233-505 – Provides detailed descriptions of the measurement, status, security, and recent change history reports available in the system and is intended for administrators who validate traffic reports and evaluate system performance. Includes corrective actions for potential problems.

- *Hardware Guide for Avaya Communication Manager*, 555-233-200 – Provides hardware descriptions, system parameters, lists of hardware required to use features, system configurations, and environmental requirements.

Contact center documents

These documents are issued for Avaya contact center applications. The intended audience is contact center administrators.

- *Avaya Communication Manager Contact Center – Call Vectoring and EAS Guide*, 555-233-517 – Provides information on how to write, use, and troubleshoot vectors, which are command sequences that process telephone calls in an Automatic Call Distribution (ACD) environment.

- *Avaya Communication Manager Contact Center – Guide to ACD Contact Center*, 555-233-516 – Provides feature descriptions and some implementation guidance for contact center features.

- *Avaya CMS Switch Connections, Administration and Troubleshooting*, 585-215-876 – Contains communication server-to-CMS hardware connection diagrams and procedures to administer the communication server-to-CMS link on the communication server. It does not contain the administration of the CMS.

Avaya MultiVantage Call Center Software Basic Call Management System (BCMS) Operations, 555-230-706 – Provides information on the use of the BCMS feature for ACD reporting.

Avaya MultiVantage Call Center – Call Vectoring Guide for BCS and Guestworks, 555-233-518 – Provides information on how to write, use, and troubleshoot vectors on the BCS and Guestworks systems.
How to get help

For those times when you need additional help, the following help services are available. You may need to purchase an extended service agreement to use some of these help services. See your Avaya representative for more information.

- Avaya Centers of Excellence
 - Asia/Pacific
 65-872-8686
 - Western Europe/Middle East/South Africa
 441-252-391-889
 - Central/Eastern Europe
 361-270-5160
 - Central/Latin America/Caribbean
 1-303-538-4666
 - North America
 1-800-248-1111

- Communication Manager Helpline
 1-800-225-7585

- Avaya Toll Fraud Intervention
 1-800-643-2353

- Avaya National Customer Care Center Support Line
 1-800-242-2121

- Avaya Corporate Security
 1-800-822-9009
Chapter 1: Automatic Call Distribution (ACD) basics

This chapter gives an overview of the Automatic Call Distribution (ACD) feature, and addresses ACD terminology, communication server features, how the ACD processes calls, split queues, distributing and handling calls, and the ACD and call management systems.

- ACD terminology defines common terms that are used throughout this book.
- The Communication server features section defines ACDs and explains how the following features work: trunks, trunk groups, and extensions; automatic-in processing; communication server attendant; and Direct Inward Dialing (DID) processing.
- The What the ACD does section discusses how the ACD uses Automatic-in and Direct Inward Dialing (DID) to process calls.
- Split Queues defines a split queue and explains how to set up call processing to a split, including announcements for calls in a split queue; answer supervision and abandoned calls, intraflow and interflow, and night service for the ECS and Generic 3.
- Distributing and Handling Calls describes how calls are distributed to agents and how agents handle the calls. It also defines the split supervisor telephone buttons.
- ACD and call management systems — CMS and BCMS describes how CMS collects measured data on splits/skills, extensions, trunks, trunk groups, VDNs, and vectors. This section also includes communication server features that affect CMS data, such as Hold, Conference, Transfer, Multiple Call Handling, and so forth.

Category A versus Category B

The ACD feature is available with communication servers that are sized differently and allow for different features to be implemented. These differences fall into two categories:

- Category A — allows for all ACD-related features to be implemented, according to what the customer purchases. Category A supports the CMS and CAS adjuncts.
- Category B — includes Avaya BCS and GuestWorks. Category B allows for all basic ACD-related features to be implemented, excluding EAS, Avaya Business Advocate, and Avaya CMS Supervisor. Category B does not support the CMS and CAS adjuncts.
ACD terminology

The following terms provide general familiarity with the ACD environment.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent</td>
<td>An agent is a person assigned to one or more splits/skills and handles calls to/from an extension in those splits/skills.</td>
</tr>
<tr>
<td>Agent In Multiple Splits/Skills</td>
<td>Depending on the ACD software, an agent can be a member of multiple splits/skills.</td>
</tr>
<tr>
<td>Agent State</td>
<td>Agent state is a term or code that represents the current availability status of an agent. The term agent state also represents a user ability to change an agent’s availability within the system.</td>
</tr>
<tr>
<td>Announcements</td>
<td>An announcement is a pre-recorded message delivered to a caller in queue requesting the caller to remain on-line, prompting the caller for information or directing the caller to another destination. When a call is in queue, depending on the length of time in queue, an automatic recording can encourage the caller to hang on, call back later, call another number, leave a message or can be used with call prompting to direct the caller to specific destinations. These announcements can be scheduled to occur periodically.</td>
</tr>
<tr>
<td>CAS</td>
<td>Centralized Attendant Service. CAS is a system feature used when more than one communication server is employed. CAS is an attendant or group of attendants that handles the calls for all servers in that particular network. Available only with Category A.</td>
</tr>
<tr>
<td>CMS</td>
<td>Call Management System. CMS is an adjunct (basic software package or optional enhanced software package) that collects call data from a communication server resident ACD. CMS provides call management performance recording and reporting. It can also be used to perform some ACD administration. CMS allows users to determine how well their customers are being served and how efficient their call management operation is. Available only with Category A.</td>
</tr>
<tr>
<td>contact center</td>
<td>A contact center provides a centralized location where a group of agents or company representatives communicate with customers via incoming or outgoing calls.</td>
</tr>
</tbody>
</table>
| Call Distribution Methods | The ACD can distribute calls to agents in a split/skill in the following ways:
 — Direct (linear) Hunting
 — EAD-LOA (Expert Agent Distribution-Least Occupied Agent)
 — EAD-MIA (Expert Agent Distribution-Most Idle Agent)
 — UCD-LOA (Uniform Call Distribution-Least Occupied Agent)
 — UCD-MIA (Uniform Call Distribution-Most Idle Agent) |
| **Call Prompting** | Call Prompting is a call management method that uses specialized call vector commands to provide flexible handling of incoming calls based on information collected from the caller. One example would be where the caller receives an announcement and is then prompted to select (via dialed number selection) a department or an option that was listed in the announcement. |
| **Call Vectoring** | Call Vectoring is an optional software package that allows processing of incoming calls according to a programmed set of commands. Call Vectoring provides a flexible service allowing direct calls to specific and/or unique call treatments. |
| **Avaya Business Advocate** | Avaya Business Advocate is a collection of ECS features that provide new flexibility in the way a call is selected for an agent in a call surplus situation and in the way that an agent is selected for a call in an agent surplus situation. Advocate also includes methods for automating staffing adjustments. Available only with Category A. |
| **DID** | Direct Inward Dialing. DID is a process involving calls coming into the communication server from the CO. The communication server than routes the calls directly to the appropriate extension (as identified by the last four digits). |
| **DNIS** |Dialed Number Identification Service. DNIS is a feature of the 800 number service that sends the dialed digits to the called destination. This can be used with a display telephone to indicate the type of call to an agent. For example, the call by its destination can be classified as a certain type of call or caller (e.g., a Gold Card caller) depending on a product or service the destination number is associated with. |
| **EAS** | Expert Agent Selection. An optional feature available with G2.2 and newer servers that uses Call Vectoring and ACD in the communication server to route incoming calls to the correct agent on the first try based on skills. Available only with Category A. |
| **Extensions** | Telephones connected to a PBX/communication server via telephone lines are referred as extensions. Extensions is also the term used to define the numbers used to identify the telephone to the PBX/communication server software for call routing purposes. |
| **Hunt Groups** | A group of trunks/agents selected to work together to provide specific routing of special purpose calls. |
| **Interflow** | Interflow is used when a split's/skill's queue is heavily loaded or when a call arrives after normal work hours. Interflow redirects a call to a destination outside the local communication server network (a different communication server system). |
| **Intraflow** | Intraflow is used when a split's/skill's queue is heavily loaded or when a call arrives after normal work hours. Intraflow involves redirecting a call to a destination within the local communication server network (the same communication server system). |
Automatic Call Distribution (ACD) basics

<table>
<thead>
<tr>
<th>LAI</th>
<th>Look Ahead Interflow. LAI allows users to balance the call work load between multiple contact centers on separate communication servers. LAI uses ISDN to allow multiple servers to communicate and interflow when appropriate. Available only with Category A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leave Word Calling</td>
<td>Leave Word Calling is a system feature that allows messages to be stored for any ACD split/skill and allows for retrieval by a covering user of that split/skill or a system wide message retriever.</td>
</tr>
<tr>
<td>MCT</td>
<td>Malicious Call Trace. MCT allows an agent to notify a predefined party a malicious caller is on the line. It also involves enabling a recording device to record the call.</td>
</tr>
</tbody>
</table>
| **Night Service** | Night Service is used when a call arrives after normal work hours. The call can be redirected to another destination such as another split/skill, an extension, the attendant, an announcement with forced disconnect, or a message center. Night Service can take one of three forms:
 — Hunt Group (Split/Skill) Night Service
 — Trunk Group Night Service
 — System Night Service |
<p>| Priority Queue | The priority queue is a segment of a split's/skill's queue from which calls are taken first. |
| QDN | Queue Directory Number. QDN is an associated extension number of a split. It is not normally dialed to reach a split. The split can be accessed by dialing the QDN. The QDN is also referred to as a split group extension. |
| Queues (split/skill and/or attendant) | If calls cannot be answered immediately, they are routed to a call collection point (split/skill queue or attendant queue) where calls are held until a split/skill agent or attendant can answer them. Calls are ordered as they arrive and they are served in that order. Depending on the time delay in answering the call, announcements, music, or prepared messages may be employed until the call is answered. |
| Service Observing | Service observing is a feature used to train new agents and observe in-progress calls. The observer (split/skill supervisor) can toggle between a listen-only mode or a listen/talk mode during calls in progress. |
| Skill | An ability given to an agent to meet a specific customer requirement or a contact center business requirement. Available only with Category A and EAS active. |
| Split | A group of extensions/agents that can receive standard calls and/or special purpose calls from one or more trunk groups. |
| Split/Skill Administration | Split/Skill administration is the ability to assign, monitor, or move agents to specific splits/skills. It also involves changing reporting parameters within the system. |</p>
<table>
<thead>
<tr>
<th>Split/Skill Supervisor</th>
<th>A split/skill supervisor is assigned to monitor/manage each split/skill and split/skill queue to accomplish specific split/skill objectives. A supervisor can assist agents on ACD calls, be involved in agent training, and control call intra/interflow.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>A threshold is a point in time or criteria that determines a certain action by the system. For example, the number of calls in queue or the time calls spend in queue determines specific call treatments, or you can set the number of rings prior to announcements or call answers.</td>
</tr>
<tr>
<td>Trunk/Trunk Group</td>
<td>Trunks are communication channels between two communication server or offices. Trunks grouped together to provide identical communications characteristics are called trunk groups. Trunks within trunk groups can be used interchangeably between two communications systems or central offices in order to provide multi-access capability.</td>
</tr>
<tr>
<td>Trunk state</td>
<td>A term or code that represents the current status of a particular trunk.</td>
</tr>
</tbody>
</table>
Communication server features

This section defines ACDs and explains how they work. The section contains the following topics:

- Trunks, trunk groups, and extensions
- Automatic-in processing definition
- The attendant
- Communication server with attendant and extensions
- Direct Inward Dialing processing with an example
- Automatic-in processing of ACD calls
- DID processing of ACD calls
- Call processing on an ACD communication server.

What a communication server does

A communication server is an electronic device that processes incoming, outgoing, and internal calls and connects them to the proper destinations. The telephone company communication server in your local area is called a Central Office (CO). A communication server owned by a company or organization processes incoming, outgoing, and internal calls. Throughout this chapter, the term communication server is used to refer to a company or organization’s communication server.

Trunks, trunk groups, and extensions

Incoming calls to a company first pass through the CO. The CO sends calls to the company communication server over trunks (telephone lines that carry calls between two servers, between a CO and a server, or between a CO and a phone).

The CO receives dialed digits from the caller, processes the digits, and seizes a trunk that is assigned those digits. After the CO seizes a trunk, it sends a continuing transmission to the destination phone or communication server, and no other calls can be sent over that trunk until the current call disconnects.

Since a trunk can carry only one call at a time, trunk groups are usually created. A trunk group is a group of trunks that are assigned to the same digits. With a trunk group, the CO receives the digits of a dialed phone number and checks the trunk group assigned to that number to see if any of the trunks are available. The CO then seizes an available trunk. As many simultaneous calls can be made over a trunk group as there are trunks in that trunk group. A trunk group, therefore, can carry multiple calls for the same phone number. When
a trunk group carries incoming calls (that is, calls made outside the company’s communication server location) to the communication server, the communication server then connects the calls to their proper destinations within the company.

The communication servers previously listed, in addition to connecting incoming calls to the proper destinations, are also like private COs for company employees. Employee phones are connected to a communication server by telephone lines called extensions. Extensions are then assigned numbers, and these numbers become the employee phone numbers for internal (intra-company) calls.

Automatic-in processing

Automatic-in processing is one type of call processing. With automatic-in processing, the CO processes all of the digits of an incoming call. The CO then seizes a trunk from the trunk group, but since processing is complete, the call connects directly to a destination identified in the communication server software. That destination can be a phone, a queue (in which callers wait to be answered in the order in which their call was received), or special treatment like an announcement.

Communication server attendant

Incoming calls can also go to a communication server attendant. A communication server attendant is a person who manually routes calls to their proper destinations using an attendant console. Normally an attendant serves as an internal operator who transfers calls to the proper extensions. Often, a communication server will have more than one attendant, and all of the communication server’s attendants will answer calls directed to the attendant queue, which holds calls until an attendant is available. The attendant queue receives internal calls made from employee extensions, and also receives incoming calls through DID processing and automatic-in processing. Attendant call handling varies, depending on the company’s needs. However, if the attendant has an automatic-in number, it will normally be the number published in the phone book, and the DID number will most likely be used by off-site employees who know only the attendant’s extension number.

Centralized Attendant Service (CAS) is a communication server feature that enables attendants to be consolidated at one private-network location. The attended location is called the CAS main and each unattended location is called a CAS branch. At branch locations, calls requiring attendant services route by way of Release Link Trunks to the main location.
Automatic Call Distribution (ACD) basics

Direct inward dialing processing

With Direct Inward Dialing (DID) processing, incoming trunks do not connect the CO directly to an employee’s phone; instead, the incoming trunks are pooled by the communication server, and this pool of trunks is then shared by employee phones. Extension numbers may serve as the final digits of employee phone numbers for incoming calls. That is, the CO may assign a 2- 3- or 4- digit prefix to a trunk group. Then, when a 7-digit employee phone number is dialed, the call is processed as follows:

1. The CO processes the prefix of the dialed number, and then seizes a trunk in the trunk group that is assigned that prefix.
2. The CO passes the remaining digits of the dialed number to the communication server.
3. The communication server recognizes the remaining digits as an employee extension number and sends the call to that extension.

DID processing example

As an example of DID processing, say that Employee A has the external phone number 538-1000 and the extension number 1000. Employee B has the phone number 538-9999 and the extension number 9999.

The steps in completing calls to Employees A and B might be as follows:

1. Employee A’s client dials 538-1000.
2. The CO serving Employee A’s company identifies the digits 538 (the common prefix for all phone numbers to that company) and seizes Trunk 1 in the trunk group assigned the digits 538.
3. The CO passes the digits 1000 to the communication server at Employee A’s company.
4. The communication server identifies the digits 1000 as Employee A’s extension number and sends the call to Employee A’s extension.
5. Employee A’s phone rings and Employee A answers.
7. The CO identifies the digits 538 and seizes Trunk 2 in the trunk group assigned the digits 538.
8. The CO passes the digits 9999 to the communication server.
9. The communication server identifies the digits 9999 as Employee B’s extension number and sends the call to Employee B’s extension.
10. Employee B’s phone rings and Employee B answers.

While Employees A and B continue to talk, Trunks 1 and 2 in the 538 trunk group will not accept any more calls, so another call beginning with the digits 538 will seize yet another trunk in the trunk group.
What the ACD does

Automatic Call Distribution (ACD) is a communication server software feature that processes high-volume incoming, outgoing, and internal calls and distributes them to groups of extensions called hunt groups or splits. The communication server also sends information about the operation of the ACD to the CMS which stores and formats the data and produces real-time and historical reports on ACD activity. For more detailed information about ACD, read the feature description in the product documentation that came with your communication server.

ACD is used by a contact center to route incoming calls to specifically assigned splits/skills and agents. ACD allows a system administrator to create an efficient call management environment. This administrator can add or remove splits/skills from the system, add or remove announcements, add or remove agents, add trunk groups and route calls to the appropriate splits/skills. The administrator can also specify ACD measurement criteria and use an optional CMS package to provide reports on ACD efficiency.

Things to know before you start

A voice response port or a person who answers ACD calls is called an agent. Companies that operate high-volume call-answering centers, for example, a catalogue sales center, a reservations center, or a customer service center, use the ACD feature to process incoming calls and distribute them to agents. In addition to agents, each ACD split can be assigned a split supervisor. The split supervisor uses various communication server and CMS features to monitor split and agent performance and to provide assistance if necessary. Maintaining trunks from the CO to the communication server and hiring agents to answer calls costs money. However, if customers who call to purchase goods or services have difficulty reaching an agent and, therefore, stop trying to get through, the contact center loses revenue. Contact center management needs, therefore, to determine how many trunks and agents are necessary to minimize costs and maximize the ability of customers to purchase goods or services. Management can then set up and maintain the ACD accordingly.

Automatic-in processing of ACD calls

Through communication server administration, each automatic-in trunk group is assigned to an ACD split. All calls that come in on an automatic-in trunk group are directed to the assigned split. Then the ACD software distributes the calls to the agent extensions assigned to the split according to the assigned call distribution method (described later).
Automatic Call Distribution (ACD) basics

DID processing of ACD calls

The communication server enables you to dial directly to various extensions such as a VDN, a hunt group, an agent, or a login ID. Each extension can be assigned to a split as a DID extension.

For DID processing, trunk groups are not assigned to the split. The creation of associated extensions is sufficient to send calls arriving over DID trunk groups to the appropriate split. Each split can receive incoming calls through DID processing, automatic-in processing, or both. Automatic-in trunk groups carry calls only to the split, whereas DID trunk groups carry calls to any extension identified in the communication server software, not just a split.

Split queues

This section defines a split queue and explains how to up call processing to a split. The section contains the following topics:

- Split queue call processing on page 26
- Announcements for calls in a split queue on page 27
- Answer supervision and abandoned calls on page 29
- Intraflow and interflow on page 30
- Night Service on page 32

Split queue call processing

A split queue is a holding area for calls waiting to be answered, usually in the order in which they were received. When a call is put into queue, the caller may hear one or more delay announcements, music, and/or silence, depending on the treatment assigned for the split. (Treatment of calls in queue is assigned through communication server administration.)

Things to know before you start

Calls enter the queue at the bottom and move toward the top or head of the queue. After a call reaches the head of the queue, it connects to the next available agent.

For communication servers with the Call Vectoring feature, all call treatment including routing, queuing, announcements, and music is specified by call vectors. When a call arrives at a split, the ACD software checks to see if an agent is available to handle the call. If an agent is not available (that is, all agents are busy), the call enters the split's queue.
Split queues

Calls queue only if no agents are available, a queue is assigned to the split, and the queue is not full. If the queue is full, the caller hears a busy tone or the call goes to coverage. If the split is vector controlled, then this step will fail. Furthermore, if no agents are logged into the split or if all agents are in AUX work mode (described later), calls do not queue.

Priority and normal split queues

Each split can have two queues: a normal queue and a priority queue. A split always has a normal queue and can also be assigned a priority queue. The ACD distributes all calls in the priority queue before it distributes any calls in the normal queue. Therefore, the priority queue, if one exists, must be empty before the ACD distributes calls in the normal queue.

Priority queuing may be assigned in the Class of Restriction (COR) associated with the split extension number. A split may also be assigned Priority Queuing on Intraflow, which means that calls to that split, if rerouted to another local split, will enter the destination split’s priority queue.

Split queue size

Queue size is established through communication server administration. Calls arriving after the administered queue limit is reached receive a busy signal or go to the split’s busy coverage if administered. (If the split is vector controlled, then this step will fail.) Or, calls can be redirected to a local or remote destination. See the Intraflow and Interflow for more information.

Announcements for calls in a split queue

When a call enters a split queue, the caller hears ringing until the call is connected to an agent or an announcement. Depending on the treatment assigned to a split, the caller may hear one or two announcements, music, or silence. An announcement is a recorded message that provides information such as the destination the call has reached or a company’s business hours, or it tries to persuade the caller to stay on the line.

Things to know before you start

Announcements and delay time are assigned to splits through communication server administration. Delay time is the amount of time a call will wait in queue before receiving an announcement. If a call connects to an agent before the delay time expires, the caller does not hear the announcement. If a call connects to an agent while an announcement is playing, the announcement stops. After the first announcement plays, the caller hears music or silence until the second announcement plays or the call connects to an agent. The type of caller feedback (music or silence) is also assigned to a split through communication server administration.
Automatic Call Distribution (ACD) basics

For communication servers with the Call Vectoring feature, announcement capabilities are more flexible than those described in this section. See Call Vectoring on page 128.

Related features

The communication server supports both internal and external announcement devices.

The announcement delay time can be from 0 to 99 seconds. A 0-second delay time causes a forced announcement, which means callers always hear the entire first announcement, whether an agent is available or not. A second announcement can be administered to recur each time the announcement delay time expires.

Rules for announcements

The announcement is played from beginning to end unless an agent becomes available. In such a case, the announcement is interrupted and (if manual answering operation is assigned to the agent, or if calls are delivered to the agent on a manual answering basis) ringback is provided. If the call is queued, the call remains as such while the announcement is played. Any feedback that is provided before an announcement (for example, a wait with music or ringback) continues until the announcement is played.

Without vectoring — If an announcement queue is full, the system continues to try to connect the call to the proper announcement until the call connects to an agent, connects to an announcement, or enters the announcement queue. The following rules apply to announcements without vectoring implemented:

- Calls directly entering a split queue always receive a forced first announcement if assigned. The caller also hears first and second delay announcements if administered and delay intervals are met.

- Calls that reach a split by way of Call Coverage from another split (Intraflow) or a station do not receive a forced or delay first announcement at the destination split. The caller hears a second delay announcement if administered and the delay interval is met.

- Calls that reach a split by way of Call Forwarding from another split (Interflow) or station do receive delay first and second announcements if administered and the delay intervals are met.

With vectoring — If the announcement’s queue is full, the call retries the announcement step for an indefinite period of time before any new vector steps are processed. If an announcement command follows a failed adjunct routing command, the announcement is interrupted. If the adjunct routing command succeeds (that is, the communication server receives a destination from the ASAI adjunct), the announcement terminates immediately. The announcement command step is skipped, and vector processing continues at the next vector step, whenever any of the following conditions exist:

- Requested announcement is busied out, not available, or not administered.

- Integrated board is not installed.

- External aux trunk or analog equipment is not attached.
Announcement queuing

External and internal announcement units are available. The number of calls that can be queued to an announcement depends on the size of the communication server you have. The capacity tables in the System Description have details for each communication server model. Queuing for internal announcements is quite different. Internal announcements are delivered by a 16-channel announcement board, and a call receives an announcement only when it connects to one of the 16 announcement channels. Therefore, all calls wait in a single queue to access a channel on the announcement board regardless of the split announcement they are waiting to receive. The same announcement can be delivered over multiple channels. Announcements are delivered on demand, so a call that connects to a channel receives an announcement immediately and does not have to wait for the announcement to finish and start again.

Answer supervision and abandoned calls

Answer supervision is a signal sent by the communication server to the serving Central Office (CO). This signal tells the CO that an incoming call has been answered and that the CO should begin tracking toll charges for the call (if they apply). Answer supervision is sent immediately before a call connects to an agent's telephone, to music, or to an announcement.

Abandoned calls

An abandoned call is a call that reaches a contact center, but does not connect to an agent because the caller hangs up. A call can abandon while in queue or while ringing at an agent position. Abandoned calls represent lost sales or lost good will. Adequate split staffing and effective use of announcements can reduce the number of abandoned calls. Splits should be staffed so that calls do not have to wait in queue for an unreasonable amount of time, and announcements can be used to persuade the caller to wait until someone answers the call.

Abandoned call search

If answer supervision is sent before a caller abandons, ghost calls can occur. A ghost call is a call that is sent to an agent after the caller hangs up. Ghost calls occur because, after a caller hangs up, some COs wait 2 to 25 seconds before sending a disconnect signal to the communication server. Ghost calls are a problem because they waste agents' time, and they can delay or prevent other calls from connecting to an agent. To minimize this problem, Abandoned Call Search can be assigned to specific trunk groups for the communication server.

With Abandoned Call Search, the communication server checks the incoming trunk before delivering an ACD call to an agent. If the trunk is on-hook at the CO (the call has been abandoned), the communication server releases the trunk and does not deliver the call. If a call is still in progress on the trunk, the communication server delivers the call to an agent.
Intraflow and interflow

Intraflow and interflow allows you to redirect ACD calls to another split or other local or remote destinations. Redirecting calls to a local destination is called intraflow. Redirecting calls to a destination outside the communication server is called interflow.

Things to know before you start

Intraflow and interflow are set up differently on the Generic 3 and newer communication servers. If Call Vectoring is active on the communication server, redirection of calls differs significantly from the following intraflow/interflow descriptions.

Description

As many as three intraflow destinations OR one interflow destination can be established for a split through communication server administration. Intraflow uses the Call Coverage feature to redirect ACD calls to a coverage path that contains one, two, or three of the following internal destinations:

- An extension
- An ACD split (including AUDIX® and Message Center splits) or Hunt Group. The term “Hunt Group” refers to groups of extensions that receive distributed calls. The term “split” refers to a hunt group that is measured by CMS.
- An attendant group
- An announcement followed by a forced disconnect.

Call Forwarding and ACD splits can be set up to intraflow calls unconditionally. Interflow destinations are the same as those listed above for intraflow (plus the CAS attendant), except interflow sends calls to destinations outside the communication server.

Setting up splits

If a split is assigned more than one intraflow destination, the communication server tries each destination in the order in which it was assigned. If no destination can accept the call, the communication server leaves the call in the original split’s queue. If an interflow destination is specified and activated, the communication server tries only that destination. If the interflow destination cannot accept the call, the caller hears a busy signal. ACD splits can be set up to intraflow calls unconditionally. Unconditional intraflow redirects all calls to the specified destination. Unconditional intraflow is normally used to redirect calls when a split is not staffed.
Splits can also be set up to intraflow calls when one or all of the following criteria are met:

- Don’t Answer – Calls redirect if not answered within the assigned Don’t Answer Interval (1 to 99 ringing cycles).
- Busy – Calls redirect when the split’s queue is full; that is, when the number of calls in queue equals the administered queue length.
- No Agents Staffed or All Agents in AUX Mode – Call redirect if there are no agents staffed or if all agents are in the AUX work mode.

Assigning queue status

If an intraflow destination has a queue, that queue may be assigned an inflow threshold. The inflow threshold, which is established through communication server administration, is the length of time the oldest call in queue has waited. Once the inflow threshold is reached, that queue does not accept intraflowed calls and the communication server tries the next administered destination.

Through communication server administration, a split can be assigned Priority Queuing on Intraflow which allows intraflowed calls to enter the priority queue at the destination split.

Types of calls for a split

The following types of intraflow/interflow can be used for a split:

- Don’t Answer Time Interval intraflow (using the Call Coverage feature)
- Busy intraflow (using the Call Coverage feature)
- Unconditional intraflow (using the Call Forwarding-All feature).

When calls are intraflowed using the Call Coverage feature, CMS only reports inflowed and outflowed calls if the call queues to the original split. For example, a call that covers using the busy criterion will not be recorded as in/outflowed since it could not queue to the original split. Calls that queue before covering using the Don’t Answer criteria are recorded as in/outflowed calls.

Setting up intraflow/interflow

A split can have either intraflow or interflow active, but not both. However, both conditional (Call Coverage) and unconditional (Call Forwarding) intraflow can be active for a split at the same time. In this case, unconditional intraflow is first invoked for the split’s incoming calls. Then, after the communication server forwards a call to the unconditional destination, the communication server uses the conditional intraflow criteria to determine whether to redirect the call to the next destination. Thus, when unconditional and conditional intraflow are used together, the conditional intraflow criteria are applied to the forwarded-to destination, not to the original split.
Automatic Call Distribution (ACD) basics

This combination of unconditional and conditional intraflow allows Dialed Number Identification Service (DNIS) numbers to appear on agent display telephones. In this case, the DNIS number is actually a dummy split extension (that is, the split extension has no assigned agent extensions). The intraflow destinations are the real splits (with staffed agents). With such a configuration, CMS will count incoming calls for the DNIS number (that redirected via unconditional intraflow to real splits) as outflows. CMS will also count the calls to the destination splits as ACD calls and inflowed calls. And regardless of the split where calls actually connect to agents, the agents will see the DNIS (dummy split) number on their display terminals.

The intraflow criteria and destinations are assigned through communication server administration. Console permissions and the Call Forwarding dial access code are also assigned through communication server administration. Unconditional intraflow or interflow can be activated by entering the Call Forwarding dial access code from a station with console permission, the split's extension, and the interflow or intraflow destination number.

The split supervisor cannot establish conditional intraflow from a telephone. Furthermore, CMS cannot be used to set up or activate intraflow/interflow.

Night Service

Night Service redirects all calls to one of the following internal destinations:

- An ACD split
- An extension
- An attendant group
- An announcement with forced disconnect.

Night service is available for a hunt group, a trunk group, or a system. These types of night service are explained below.

Hunt Group Night Service

Hunt Group Night Service redirects all calls arriving at a split to an internal destination. The Night Service destination for the split and the telephone button used to activate the feature are assigned through communication server administration.
Trunk Group Night Service

Trunk Group Night Service redirects all calls arriving over a split’s assigned trunk groups to an internal destination. The Night Service destination for the trunk group and the telephone button used to activate the feature are assigned through communication server administration.

Trunk Group Night Service by itself does not guarantee that all calls to a split will be redirected. Calls from local extensions and DID calls will still connect to the split.

Trunk Group Night Service and Hunt Group Night Service can both be active at the same time. If the Trunk Group Night Service is active, its destination will be used for calls that come in over the trunk group even if they go to a split that has a Hunt Group Night Service destination assigned.

System Night Service

System Night Service redirects all calls arriving over all trunk groups to the Night Service destination. System Night Service overrides any Hunt Group Night Service set up for an individual split. If Trunk Group Night Service is active for a particular trunk group, System Night Service does not affect that trunk group. When any type of Night Service becomes effective, calls already in a split’s queue are not redirected. To avoid dissatisfied callers, agents should continue to staff the split until the queue is empty.
Distributing and handling calls

This section describes how calls are distributed to agents and how agents handle the calls. The section contains the following topics:
- Call distribution methods without EAS
- Call distribution methods with EAS
- How agents handle calls
- Split supervisor telephone buttons.

ACD calls are delivered to agents according to the type of call distribution (also known as hunting) that is assigned to the split/skill. This section explains the different types of call distribution.

When the ACD and Queue field on the Hunt Group form are set to y, queues for agents and queues for calls are established in the communication server. These queues are used to handle incoming calls based on the type of call distribution that is implemented. The types of call distribution available for use depend on whether or not EAS is used by the contact center.

Call distribution methods without EAS

Without EAS, the following call distribution methods are available:
- Direct Department Calling
- Uniform Call Distribution-Most Idle Agent (UCD-MIA)

Note:
The following descriptions of ACD call distribution assume that the Multiple Call Handling (MCH) feature is not assigned. Agent availability is different for splits assigned the MCH feature.

Direct

ACD software searches for an available agent in the order that extensions were assigned to the split (through communication server administration), starting with the first extension assigned to the split. This type of call distribution is most useful when management wants the most effective or most experienced agents to handle more calls. Agents are rank-ordered from most to least effective and then are assigned to the split in that order. Direct call distribution is called Direct Department Calling (DDC).

If you administer a split for DDC, an incoming call is routed to the first available agent extension in the administered sequence. If the agent is not available, the call routes to the next available agent, and so on. Incoming calls are always routed to the first agent in the sequence, so calls are not evenly distributed among agents.
UCD-MIA

When the UCD-MIA call distribution method is used, the communication server searches for the agent extension that has been idle (waiting) the longest and delivers the call to that extension if the agent is available to handle an ACD call. This type of call distribution ensures a high degree of equity in agent workloads even when call-handling times vary.

The ACD software determines which agent extension has been idle the longest by maintaining an ordered list (queue) of agents who are eligible to receive the next ACD call. Eligible agents enter the queue at the bottom and move toward the top of the queue. The agent who has been in queue the longest receives the next ACD call unless the agent is not available at the time the call is to be distributed. If the agent at the top of the queue is not available, the ACD software checks the availability of the next agent in queue until an available agent is found.

When an agent completes an ACD call, the agent is added to the bottom of the eligible-agent queue for the split/skill associated with the call. The “MIA across splits/skills” option is used to put an agent at the bottom of all split/skill queues that the agent is logged in to when the agent completes any ACD call. Agents move toward the top of the eligible-agent queue as long as they remain staffed and available or on AUXIN or AUXOUT extension calls from the available state, or on an ACD call for another split (unless the “MIA across splits/skills” option is turned on). Agents in ACW are in eligible agent queues on Generic 3 communication servers. You can choose whether these agents are or are not in the eligible-agent queues for the communication server.

An agent is marked as unavailable to take an ACD call if the agent:

- is in ACW,
- is on an AUXIN or AUXOUT extension call from the available state, or
- is on an ACD call for another split or skill.

The agent remains in queue moving toward the top of the queue. Agents in multiple splits enter multiple eligible-agent queues. The agents’ progress in each queue is independent of any activity in other queues. Agents in the AUX state are not in the eligible-agent queue.

You can set the communication server to maintain a separate queue for available agents in each split/skill, or you can create one combined queue for agents in all splits/skills. If the MIA Across Splits/Skills? field on the Feature-Related System Parameters form is set to n, the communication server maintains available agent queues for each split/skill. When agents answer a call, they are only removed from the available agent queue for the split/skill at which that call arrived. If the field is set to y, then the agent is removed from all split/skill queues that the agent is logged in to whenever they answer a call for any of their assigned splits/skills.

The agent is returned to the agent queues, based on how you administer the following:

- If forced Multiple Call Handling applies, the agent is placed in the queue when the call stops alerting.
- If the ACW Agents Considered Idle? on the Feature-Related System Parameters form is y, the agent is queued when the call completes.
Automatic Call Distribution (ACD) basics

- If ACW Agents Considered Idle? is \(n \), the agent is queued when ACW completes.

 Note:

 If you are using an Expert Agent Distribution method (EAD-MIA or EAD-LOA), then the agent is put back in queue(s) after completing an ACD call based on skill level.

 If you are not using an EAD call distribution method, then the agent is put at the bottom of the queue(s) after completing an ACD call.

Call distribution methods with EAS

With EAS, the following call distribution methods are available:

- Uniform Call Distribution-Most Idle Agent (UCD-MIA)
- Expert Agent Distribution-Most Idle Agent (EAD-MIA)
- Uniform Call Distribution-Least Occupied Agent (UCD-LOA)
- Expert Agent Distribution-Least Occupied Agent (EAD-LOA)

The following table summarizes the different call distribution methods, which are further defined in the sections below.

<table>
<thead>
<tr>
<th>Agents available, call arrives, and agent selection method is:</th>
<th>THEN the communication server selects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAD-MIA</td>
<td>the highest skill level, most idle agent.</td>
</tr>
<tr>
<td>UCD-MIA</td>
<td>the most idle agent, without regard to skill level.</td>
</tr>
<tr>
<td>EAD-LOA</td>
<td>the highest skill level agent with the lowest occupancy.</td>
</tr>
<tr>
<td>UCD-LOA</td>
<td>the least occupied agent, without regard to skill level.</td>
</tr>
</tbody>
</table>

UCD-MIA

UCD-MIA works the same in the EAS environment as it does without EAS, except that the communication server searches for the most idle agent with the required skill.

UCD-MIA does not select an agent based on skill level. Therefore, if an agent is the most idle agent with the required skill, even if the skill is assigned a secondary skill level for that agent, the call is delivered to that agent.
EAD-MIA

The EAD-MIA call distribution method selects the most idle agent with the required skill to handle the call and the highest skill level.

This method of call distribution adds a layer of processing on top of the Most Idle Agent distribution call processing. EAD-MIA sorts the agents in the eligible-agent queue into multiple queues based on skill level. Agents with the skill assigned at higher-priority levels appear in the eligible-agent queue ahead of agents with the skill assigned at lower-priority levels. The call is delivered to the most idle, most expert agent available.

When you are using EAS Preference Handling Distribution (EAS-PHD), the agent can enter the MIA queue at one of 16 levels. The lower the level, the higher the level of expertise; so an agent with skill level 1 is the most qualified to answer a call to that skill. Without EAS-PHD, agents enter the MIA queue as either level 1 or level 2 agents. When agents with a lower skill level become idle, they enter the MIA queue in front of agents with a higher skill level. See Expert Agent Selection (Category A only) on page 147 for more information about EAS Call Distribution.

UCD-LOA

When the UCD-LOA call distribution method is in use, the communication server delivers the call to the least occupied agent, without regard to skill level.

The least occupied agent is the agent who has spent the lowest percentage of their time on ACD calls since logging in. The agent’s place in the queue of available agents is determined by this percentage. The agent occupancy (the percentage of time on calls) is always calculated separately for each skill an agent is logged into, so there is an available agent queue for each skill.

EAD-LOA

When the EAD-LOA call distribution method is in use, the communication server delivers the call to the least occupied agent with the highest skill level.

The agent occupancy is calculated as described in the UCD-LOA section.

How agents handle calls

An agent can receive split calls and, in most cases, personal calls that are not related to a split. Calls distributed to an agent's telephone by the ACD feature on the communication server are considered ACD calls. Calls dialed directly to an individual agent using the agent’s extension number (such as internal calls and DID extension calls) are called extension-in (EXT-IN) calls. Outgoing calls the agent makes are called extension-out (EXT-OUT) calls. EXT-IN and EXT-OUT calls are considered non-ACD calls.
Things to know before you start

The capability of a telephone to receive EXT-IN calls or to make EXT-OUT calls can be restricted through communication server administration. The following descriptions of agent call handling assume that the Multiple Call Handling (MCH) feature is not assigned. Agent availability and call handling are different for splits assigned the MCH feature.

ACD calls are distributed only to available agent extensions. To be considered available, an agent must first staff an agent extension and then select a call-answering mode (automatic in or manual in).

Staffing agent extensions without EAS

To staff an agent extension on the communication server without the EAS feature, an agent must dial a login access code or press the LOGIN button on the agent’s telephone. The agent must then dial a split number and a login ID. The login ID length, the login dial access code, and, if desired, the LOGIN button are assigned through communication server administration. The split number may also be assigned to the LOGIN button or to another telephone button.

Staffing multiple splits

An agent can log in from any extension assigned to a split. An agent can log into as many as four splits. To the communication server and CMS, each login counts toward the maximum number of agent members that can be measured. That is, if four agents are each logged into three splits, the agent member count is 12.

Agent login

Agent login lets ACD (and CMS) know an extension is active and logged into the system (AUX work mode). Pressing the login button and then following the appropriate system login procedure makes the extension staffed in AUXWORK. This procedure varies with the type system you have.

Agent logout

Agent logout lets ACD (and CMS) know an extension is no longer active.

Agent request for supervisor assistance

When supervisor assistance is needed, an agent can press the ASSIST button or dial the ASSIST feature access code and the split/skill group number brings the designated person on line. On G2 the agent must place the current call on hold before pressing ASSIST. On G3 pressing ASSIST automatically places the current call on hold.
Agent states and call answering modes

Agent State is the current status of an agent. Work modes are the work function(s) the agent is performing at a given time.

When the agent is engaged in an ACD call, the agent is in the ACD agent state.

After staffing an extension, the agent is in the auxiliary work (AUX-WORK) mode, which is considered non-ACD work.

AUTO-IN versus MANUAL-IN

In AUX-WORK mode, the agent is not yet available to receive ACD calls. To become available for ACD calls, the agent must press the MANUAL-IN or AUTO-IN button to select a call answering mode.

Auto-In versus Manual-In

<table>
<thead>
<tr>
<th>AUTO-IN</th>
<th>Like the MANUAL-IN button, the AUTO-IN button tells the ACD that the agent is available for an ACD call. However, when the call ends, the agent is immediately available for another ACD call according to the established call distribution method. The agent does not have to press any buttons to receive another ACD call. This type of call answering increases the number of calls that agents can answer in a given period of time and is most effective if agents have little or no call-related work to do after finishing each ACD call. The communication server has a timed ACW feature for AUTO-IN operation. This option automatically puts the agent into ACW for a preset length of time at the end of an AUTO-IN call. When the time is up, the agent automatically becomes available to take an ACD call. MANUAL-IN and AUTO-IN dial access codes and telephone buttons are assigned through communication server administration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANUAL-IN</td>
<td>The MANUAL-IN button tells the ACD that the agent extension is available for an ACD call. The ACD then distributes a call to the agent according to the established call distribution method. When the call ends, the agent automatically enters the After-Call-Work (ACW) state. While in ACW, the agent is not available to receive ACD calls. When ACW ends, the agent presses MANUAL-IN to receive another ACD call. The manual-in mode is most effective if an agent must perform call-related tasks after finishing each ACD call. MANUAL-IN dial access codes and telephone buttons are assigned through communication server administration.</td>
</tr>
</tbody>
</table>

Ringing versus zip tone for incoming calls

When a call arrives at a telephone, the agent may hear ringing or zip tone (beeping), depending on how the telephone is administered. Ringing is recommended when an agent answers calls using the handset. When a call connects to the agent's telephone, the telephone rings, and the agent picks up the handset to answer the call.

Zip tone is recommended when the agent uses a headset to answer calls. (Zip tone can also be used with a handset, but the agent must hold the handset and listen for the zip tone.) When a call connects to an agent's telephone, the agent hears one burst of zip tone for calls dialed directly to the split (or agent extension on the communication server) and, without pushing any buttons, the agent greets the caller.
Automatic Call Distribution (ACD) basics

Ringing (called “manual answer” in communication server administration) or zip tone (called “automatic answer” in communication server administration) is established on a per-telephone basis through communication server administration.

Auxiliary Work (AUXWORK) and After-Call-Work (ACW)

To temporarily stop ACD calls from arriving at an agent’s telephone, an agent can press the Auxiliary Work (AUXWORK) or After-Call-Work (ACW) button.

AUXWORK - The agent is involved in non-ACD work, is on break, in a meeting or at lunch. CMS recognizes the extension as staffed but does not want ACD to route calls there for an extended time. AUX-IN implies that the extension received an extension-in call while in AUX. AUX-OUT implies that the agent placed an outgoing call while in AUX.

The AUXWORK button temporarily stops ACD calls from arriving at the agent's telephone. The agent normally presses this button before doing non-ACD-related work such as taking a break or doing personal business. Instead of unstaffing the extension or logging off, an agent can press this button which places the agent in the auxiliary-work state. To receive ACD calls again, the agent presses the MANUAL-IN or AUTO-IN button.

The AUXWORK button (or the dial access code, if no button is available) is assigned through communication server administration. If an agent is normally logged into more than one split, an AUXWORK button for each split may be assigned. Then, when the agent presses the AUXWORK button for a particular split, the agent will not receive calls from that split. However, the agent will still be available for calls from the other splits the agent is logged into.

Also, if an agent is logged into more than one split/skill and receives an ACD call for one split/skill, the agent is unavailable for calls for other splits/skills.

ACW - The agent is engaged in work associated with a call, but not on a call. ACW-IN implies that the station received a call while in ACW. ACW-OUT implies that the agent made an outgoing call while in ACW.

The ACW (After Call Work) button temporarily stops ACD calls from arriving at the agent’s telephone. An agent who is in Auto-In mode presses this button during a call so that when the call is finished, the agent will not receive another ACD call and can, instead, do ACD call-related work such as filling out a form, completing data entry, or making an outgoing call. The lamp indicator next to the ACW button lights when the agent is in after-call-work. When in the manual-in mode, an agent automatically enters ACW when the call ends. However, if the agent needs to get out of Auto-In mode or the auxiliary work state to do additional call-related work, the agent can press the ACW button (or dial the appropriate access code). An agent can press the MANUAL-IN button (or dial the appropriate access code) while on an ACD call to automatically enter ACW when the call ends. If an agent is logged into more than one split, pressing the ACW button makes the agent unavailable for calls in all splits. CMS considers the agent to be in the OTHER state for all splits other than the split in which the agent is currently in ACW. Additional agent state/work modes
The following table lists additional agent states/work modes that may display.

<table>
<thead>
<tr>
<th>Agent state/ work mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNSTAF</td>
<td>Unstaffed (Agent State). The agent is not logged in and being tracked by CMS.</td>
</tr>
<tr>
<td>DACD</td>
<td>The agent is on a direct agent ACD call.</td>
</tr>
<tr>
<td>DACW</td>
<td>The agent is in the after call work state for a direct agent ACD call.</td>
</tr>
<tr>
<td>OTHER</td>
<td>The agent is doing other work. If an agent is working in three splits/skills and receives a call from one, the ACD puts the agent in OTHER for the other two.</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>CMS does not recognize the current state. Unknown remains until the condition is cleared, and/or the agent completes the current ACD call and any current ACW, or a current agent state message is sent to CMS from the communication server.</td>
</tr>
<tr>
<td>RING</td>
<td>The time a call rings at an agent’s telephone after leaving the queue and before the agent answers.</td>
</tr>
</tbody>
</table>

Trunk states

Trunk State indicates the current status of a specific trunk, or the ability to change that state. Trunk states are:

<table>
<thead>
<tr>
<th>Trunk State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle</td>
<td>The trunk is waiting for a call.</td>
</tr>
<tr>
<td>Seized</td>
<td>The trunk is seized by an incoming or outgoing call.</td>
</tr>
<tr>
<td>Queued</td>
<td>An ACD caller has the trunk and is waiting for the agent to answer.</td>
</tr>
<tr>
<td>Conn</td>
<td>The agent and caller are connected in an ACD call.</td>
</tr>
<tr>
<td>Abandoned</td>
<td>The queued caller has just abandoned the call.</td>
</tr>
<tr>
<td>Fwrd</td>
<td>A queued call has been intraflowed outside the ACD or has been interflowed to another PBX/communication server.</td>
</tr>
<tr>
<td>Mbussy</td>
<td>Maintenance Busy, or out of service for maintenance purposes.</td>
</tr>
<tr>
<td>Hold</td>
<td>The agent has put the call on hold.</td>
</tr>
</tbody>
</table>
Other telephone buttons

This section describes other buttons that can be assigned to an agent’s telephone.

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALL APPEARANCE</td>
<td>These buttons are used to place (originate) and answer calls. Two status lamps (red and green) are next to each call appearance button. The red lamp lights when an agent presses an appearance button to make or answer a call. The green lamp flashes to indicate an incoming call. Except with Multiple Call Handling, incoming ACD calls always arrive at the first call appearance. However, telephones may be assigned more appearances to provide additional call-handling capabilities. For example, an agent can use a second call appearance to transfer or place calls since the line will be free of ACD calls. On a two-appearance telephone, the second appearance can only be used to originate calls.</td>
</tr>
<tr>
<td>ADD SKILL</td>
<td>For communication serveres with EAS, logged-in agents or telephone users with console permissions can press this button to add a skill.</td>
</tr>
<tr>
<td>ALERT CHANGE</td>
<td>The lamp associated with this telephone button flashes when another user changes an agent’s assigned skills or moves an agent from his or her current split to a different split. The lamp does not flash when an agent changes his or her own skills from the telephone.</td>
</tr>
<tr>
<td>ASSIST</td>
<td>Press this button to request help from the split supervisor. The ASSIST button automatically dials the split supervisor’s extension and connects the agent to the supervisor. Pressing the ASSIST button automatically puts the current call on hold.</td>
</tr>
<tr>
<td>AUDIO TROUBLE</td>
<td>Agents press this button to report a call with poor transmission quality to CMS. The message the communication server sends CMS includes the agent’s extension, the trunk being used, and the time of day the trouble occurred. This information is reported in CMS exception reports and is useful for trouble-shooting trunk and extension problems. For more information, see, Avaya CMS Administration, 585-215-515. Stroke count button 0 is used for reporting audio difficulty.</td>
</tr>
<tr>
<td>CONFERENCE</td>
<td>Press this button to add another person to a two-person call. An agent with a multi-appearance telephone can add up to four additional people to a 2-person call. For single-appearance telephones, only one person can be added. Single appearance telephones do not have a CONFERENCE button. Agents must use the RECALL button to conference a call. If an agent adds another agent into a conference call, the resulting conference is not considered an ACD call for the added agent. The ACD considers the added agent to be on an extension-in call.</td>
</tr>
<tr>
<td>CALL WORK CODE</td>
<td>Agents press this button and enter up to 16 digits to record the occurrence of a customer-defined event. Call Work Codes are stored on CMS, not on the communication server.</td>
</tr>
<tr>
<td>CALLER-INFO</td>
<td>With the Call Prompting feature, agents press this button to display the digits collected by the last collect digits vector command.</td>
</tr>
<tr>
<td>EMERGENCY</td>
<td>Press this button to report a malicious call to the controller. The controller can then trace the call.</td>
</tr>
</tbody>
</table>
HOLD
Press this button to put a call on hold. The ACD will not send any more calls to an agent who has a call on hold. For communication server with Multiple Call Handling, an agent can put an ACD or non-ACD call on hold and receive an ACD call by pressing the AUTO-IN or MANUAL-IN button. With Multiple Call Handling, multiple ACD calls can be delivered automatically to an agent in Auto-In or Manual-In work mode, provided that an unrestricted line appearance is available on the telephone.

Single appearance telephones do not have a HOLD button. Agents must use the RECALL button or the terminal’s communication server-hook to put a call on hold. A single appearance telephone cannot be used to handle multiple ACD calls.

LOGOUT
Press this button to unstaff the extension and end CMS collection of agent data. If an agent pressed STAFFED to staff a telephone, pressing STAFFED again unstaffs the telephone.

RECALL
Agents using single-appearance telephones press the RECALL button to put calls on hold, transfer calls, and create conference calls.

RELEASE
Press this button to disconnect a call.

REMOVE SKILL
With EAS, logged-in agents or telephone users with console permissions can press this button to remove a skill.

STROKE COUNT
As many as nine STROKE COUNT buttons can be assigned. Agents press these buttons to record call events of interest. CMS records and reports stroke-count information. Stroke count button 0 is reserved for audio difficulty.

TRANSFER
Agents normally press the TRANSFER button to transfer calls to other agents or the split supervisor. This button is only available on multi-appearance telephones. Single-appearance terminal users must use the button or the terminal’s communication server-hook.

Agents can also use the TRANSFER button to transfer calls to external destinations. External transfer must be assigned to a telephone as a feature over and above the normal transfer feature. If an agent transfers a call to another agent, the call is not considered an ACD call for the agent receiving the call unless the transferring agent dialed a split extension, VDN, or agent login ID (an EAS capability known as Direct Agent calling). The ACD considers the agent receiving the transfer to be on an extension-in call. For the agent transferring a call, the call is counted as an EXT-OUT call.

VUSTATS
Agents with display telephones press this button to display agent, split/skill, VDN, or trunk group data similar to that reported by CMS.
Automatic Call Distribution (ACD) basics

Queue status lamps

The lamps associated with the queue status buttons provide the following information:

<table>
<thead>
<tr>
<th>Lamp</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQC</td>
<td>The lamp associated with the NQC (Number of Queued Calls) button tells the agent that calls are in queue and when the number of calls in queue has met or exceeded the assigned queue threshold for the split. If no calls are in the split’s queue, the status lamp associated with the button is dark. When one or more calls are in queue, the lamp lights steadily. When the number of calls in queue reaches the assigned queue threshold, the lamp flashes on and off.</td>
</tr>
<tr>
<td>OQT</td>
<td>The lamp associated with the OQT (Oldest Queued Time) button tells the agent that calls are in queue and when the oldest call in queue has been waiting longer than the assigned wait time threshold (0 to 999 seconds) for the split. If no calls are in the split’s queue, the status lamp is dark. When calls are in queue, the lamp lights steadily. When the assigned wait time threshold has been met or exceeded by the oldest call in queue, the lamp flashes on and off. A flashing queue status lamp tells agents they need to handle calls more quickly. The thresholds that cause the lamps to flash and the telephone buttons are assigned through communication server administration.</td>
</tr>
<tr>
<td>Auxiliary queue status lamps</td>
<td>An auxiliary queue status lamp indicates that either the Number of Queued Calls threshold or the Oldest Queued Time threshold has been reached. The lamp lights when the assigned threshold is met or exceeded. Unlike the lamps on a telephone, the auxiliary queue status lamp does not indicate when calls queue to the split.</td>
</tr>
</tbody>
</table>

Display buttons

The following telephone buttons control the information that appears on the display:

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMAL</td>
<td>Press this button to display information about the active call appearance. Press this button to display incoming call information (either an extension-in call or an intraflowed/interflowed call) for a different call appearance.</td>
</tr>
</tbody>
</table>

Split supervisor telephone buttons

A split supervisor is normally assigned to each split. The capabilities that allow monitoring of agent performance, adding and removing agents, and performing other split-related activities must be assigned with separate communication server administration procedures.
Telephone button definitions

The following telephone buttons are available only to the split supervisor’s extension:

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIGHT SERVICE</td>
<td>The split supervisor presses this button to send all calls to night service. The Night Service may be Trunk Group Night Service or Split Night Service. Also, a separate button for each type of night service may be available.</td>
</tr>
<tr>
<td>RECORD ANNCT</td>
<td>The supervisor presses this button to either listen to or to record an announcement for the split.</td>
</tr>
<tr>
<td>SERVICE OBSERVE</td>
<td>The supervisor presses this button and dials an agent extension number to listen to conversations on the telephone. The Service Observe feature permits the supervisor to check an agent’s call-handling technique. An agent’s telephone may also be assigned the SERVICE OBSERVE button so that the agent can listen to another agent’s conversations. This capability is especially useful for agent training. Service observing can be set up for listening only or for both listening and talking. For communication servers with EAS, a logical agent ID, which is associated with an agent, not the telephone the agent is currently using, can be service observed. For communication servers with Call Vectoring, VDNs can be service observed. Feature Access Codes which allow service observing from an external location or from a telephone that does not have feature buttons can be assigned through communication server administration.</td>
</tr>
<tr>
<td>VU STATS</td>
<td>Split supervisors and agents with display telephones press this button to display agent, split/skill, VDN, or trunk group data similar to that reported by CMS.</td>
</tr>
</tbody>
</table>
ACD and call management systems — BCMS and Avaya CMS

This section does the following:
- Describes BCMS (Basic Call Management System)
- Describes the Avaya Call Management System
- Lists items that CMS records and reports
- Describes the four main ACD reporting databases.

Basic Call Management System (BCMS)

BCMS is an optional software package (residing on the PBX/communication server) used to provide real-time and historical reports to assist in managing ACD splits/skills, agents (extensions), trunk groups and VDNs (G3 only). These reports, provided by the system, are a subset of those reports available with the CMS adjunct.

Avaya Call Management System (CMS) (Category A only)

The CMS is an adjunct that collects specific ACD data on measured splits/skills, measured agents, measured extensions, measured trunks and measured trunk groups for reporting purposes. If Call Vectoring is purchased, ACD will report on measured VDNs and Vectors. CMS provides call management performance recording and reporting. It can also be used to perform some ACD administration. CMS is used by customers to determine how well their customers are being served (i.e., speed of call answers, number of calls) and how efficient their call management operation is (i.e., agents versus traffic requirements).

How CMS works with ACD

To collect information on ACD, CMS must be able to communicate with the ACD resident in the communication server. The communication server to CMS Platform communication consists of electronic messages sent back and forth between the ACD communication server and the CMS Platform via a data link. There are two types of messages:
- Translations – Translations tell CMS the configuration of the ACD. This includes what data is measured (to be collected) and the ACD assignments.
- Status Changes – Status Changes tell CMS when the states of agents or trunks change due to call activity. Occurrences are counted and durations are tracked.

Note:
CMS can also be used to change configurations within the ACD. Therefore, CMS can at times send translations back to the PBX.
Data measured by CMS

CMS measures data on ACD splits, agents, extensions, trunks and trunk groups. If Call Vectoring is purchased, ACD will report on VDNs and Vectors. The following table summarizes the types of data generated by the ACD and measured by the CMS.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agents</td>
<td>Agent States</td>
</tr>
<tr>
<td>Splits/Skills</td>
<td>Events</td>
</tr>
<tr>
<td></td>
<td>Workload</td>
</tr>
<tr>
<td></td>
<td>Distribution</td>
</tr>
<tr>
<td></td>
<td>Split/Skill call totals</td>
</tr>
<tr>
<td>Trunks</td>
<td>Trunk states</td>
</tr>
<tr>
<td>Trunk Groups</td>
<td>Events</td>
</tr>
<tr>
<td></td>
<td>Workload</td>
</tr>
<tr>
<td></td>
<td>Distribution</td>
</tr>
<tr>
<td></td>
<td>Trunk call totals</td>
</tr>
</tbody>
</table>

Assigning CMS measurement of the ACD

CMS collects data on splits/skills, agents, extensions, trunks, trunk groups, VDNs, and vectors. However, for CMS to collect data, the appropriate items (splits/skills, extensions, and so on) must be identified as measured on the communication server.

Individual splits and trunk groups are assigned to CMS measurement through communication server administration. Extensions are measured by virtue of their assignment to measured splits. Trunks are measured by virtue of their assignment to measured trunk groups. The number of measured splits cannot be changed using the CMS ACD Status screen.

Measured splits need not be numbered sequentially. VDNs are measured individually. All vectors are measured.

Things to know before you start

The CMS ACD Status window lists the total number of measured splits/skills, extensions (Agent Positions), trunks, and trunk groups established in an ACD. For more information, see Avaya CMS Administration, 585-215-515.

You can add, delete, or change measured trunks, trunk groups, agent extensions, agent login IDs, VDN extensions, splits, and skills without busying out the link to CMS and losing CMS data.
Communication server features that affect CMS data

There are several communication server features that affect CMS data, such as Conference, Transfer, Multiple Call Handling, Call Pickup, Intraflow, Interflow, Redirection on No Answer, Phantom Abandon Call Timer, Move Agent While Staffed, Expanded Agent Capabilities, Best Service Routing, and Universal Call ID. These features are explained below.

Hold, Conference, and Transfer

CMS tracks any type of call an agent puts on hold by pressing the Hold button, dialing the hold access code, pressing the Conference or Transfer button, or flashing the switchhook. Information on all calls (split/skill ACD, direct agent ACD, and extension calls) and the time spent on hold is stored in agent database tables. Information on split/skill calls only and the time spent on hold is stored in split/skill tables.

Multiple Call Handling (MCH)

Avaya communication servers have options to the Multiple Call Handling feature that can force agents to receive one or more ACD calls with other ACD calls or extension (non-ACD) calls on hold or active. For these forced options, talk time (and not ringing time) accumulates until the agent puts the current call on hold or releases it.

With Multiple Call Handling, an agent can put a call on hold and press the MANUAL-IN or AUTO-IN button to receive another ACD call. When multiple calls are on hold at the same time, hold time accumulates for each call on hold, and the total hold time can exceed clock time. For example, if two calls are on hold for 5 minutes each, 10 minutes of hold time accumulates.

Call Pickup

When an agent uses the Call Pickup feature to pick up an ACD call that rings at another agent’s extension, CMS tracks the call as an AUX-IN call for the agent picking up the call. The split/skill of the agent originally called is credited with an outflow call, even if the agent who picked up the call is in the same split/skill. If an agent is logged into more than one split/skill, the call is counted for the split/skill the agent has been logged into the longest. Thus, when Call Pickup is used, CMS does not count the call as an ACD call, even though the call queued to a split/skill and was answered. Various other types of data associated with ACD calls (for example, “Percent Answered Within Service Level” and “Average Speed of Answer”) will also not include data on calls answered using the Call Pickup feature. Because the split/skill of the agent originally called is credited with an outflow call, the call counts against the “Percent Answered Within Service Level” for that split/skill.
Intraflow and interflow

When a call is intraflowed or interflowed from a split/skill, CMS counts the call as an outflow call for the split/skill. If a call is intraflowed into a split/skill, CMS counts the call as an inflow call for the split/skill. CMS counts interflowed calls as ordinary incoming calls for the split/skill. However, because calls can be intraflowed/interflowed to destinations that are not splits/skills or are not measured by CMS, an outflow call from a split/skill will not always show a corresponding inflow call for another split/skill. Conversely, because calls can be intraflowed/interflowed into a split/skill from originating locations that are not measured by CMS, an inflow call to a split/skill may not show a corresponding outflow from another split/skill.

If an intraflowed/interflowed call connects to an agent in the destination split/skill, that call is counted as an ACD call for the split/skill.

A dummy split/skill may be established which intraflows calls to another split/skill. For CMS to count outflow calls for dummy splits/skills, intraflow should be established using the Call Forwarding feature. If Call Coverage is used to intraflow calls, at least one agent must log into the dummy split/skill and go into ACW, and the call must queue to the dummy split/skill for at least one ring cycle for an outflow call to be counted.

For communication servers with the Call Vectoring feature, intraflow and interflow work differently, and CMS data related to intraflow and interflow are recorded differently.

Redirection on No Answer (RONA)

When a ringing call times out and is requeued to the same split/skill by the Redirection On No Answer feature, Avaya CMS counts an outflow and an inflow for the split/skill. That is, the redirected call appears as two offered calls to the split/skill. If the call redirects from ringing to a VDN, there is outflow from the initial VDN and from the split/skill. If the call was in another VDN prior to redirection to another VDN, there is inflow to that VDN.

Also, NOANSREDIR is incremented for the split/skill and the VDN. For CMS R3V2 and newer, the database item NOANSREDIR is also incremented for split/skill and for VDN, if the call is in a VDN. If a split/skill is set up so that split/skill calls do not redirect back to the split/skill except by way of the Redirection On No Answer feature, the unique calls offered to the split/skill can be calculated by subtracting the value of NOANSREDIR from CALLSOFFERED.

If a call redirects from ringing to a VDN, there is outflow from the split/skill and, if the call was in another VDN, there also is inflow to the new VDN and outflow from the initial VDN. The NOANSREDIR is incremented for split/skill and VDN.

Phantom abandon call timer

CMS can collect information about phantom abandon calls. When this capability is enabled, calls with a talk time (duration) shorter than the administered value (1 - 10 seconds) are counted as phantom abandon calls. Setting the timer to zero disables it. CMS uses the PHANTOMABNS database item to store the number of phantom abandon calls.
Automatic Call Distribution (ACD) basics

This capability is important in areas where the public network communication servers do not provide disconnect supervision. Without this capability, short-duration calls that queue to a split/skill and are answered by an ACD agent or other answering position are counted as ACD calls, even if the calling party hangs up before the call is answered. This type of call is called a phantom or ghost call.

Move agent while staffed

A staffed agent can be moved between splits or changing the skill assignments for staffed agents. If the agent has any call on the telephone or is in ACW, then the move cannot take place immediately, but is pending the agent telephone going idle (all calls have been terminated), or the agent changing out of the ACW mode.

CMS provides two real-time database items in the agent data, MOVEPENDING and PENDINGSPLIT, that can be accessed by using custom reports to provide information about whether agent has moves pending and, if so, the split or skill to which they are being moved. Note that in the case that the agent’s skills are being changed and the change adds more than one skill, the PENDINGSPLIT item will show the first skill that is being added. It is also possible for MOVEPENDING to be set, but for PENDINGSAPLIT to be blank (or 0). This can happen, for example, when the link to the communication server comes up and a move is pending for an agent. CMS will be notified by the communication server that the move is pending, but PENDINGSPLIT will not be set.

Expanded agent capabilities (Category A only)

Expanded Agent Capabilities allow EAS agents to have up to 20 skills assigned. Each skill may be assigned a level from 1 to 16, where Reserve 1 and Reserve 2 are the highest levels and 16 is the lowest. (The numeric level replaces the skill type p or s used in earlier G3 EAS releases.) Agents may have a call handling preference based either on the skill level, meaning that the agent will serve calls waiting for his or her highest level skill before serving calls waiting for any lower level skills; or based on greatest need, meaning that the agent will serve the highest-priority, oldest call waiting for any of his or her skills, or percent allocation, based on the percent distribution of calls among the agent’s skills.

The expanded agent capabilities feature also allows the specification of the skill to be used for the agent’s direct calls. This also allows specification of the level for the direct agent skill, which, in conjunction with the agent’s call handling preference, may affect the order in which a direct agent call is delivered to an agent. That is, direct agent calls need to be delivered for all skill ACD calls. A concept introduced in R3V5 CMS, that of the top skill, can be useful in EAS implementations that use skill level call handling preference for agents. An agent’s first administered, highest level skill is the agent’s top skill, since it is for this skill that the agent is most likely to handle calls. This is the skill that can count on the agent.

Database items track the number of top agents in skills, as well as the time top agents spent available and in AUX.
The expanded agent capabilities on the communication server include an increased number of measured splits/skills to 600 and an increase in the number of measured agent/split or agent/skill pairs to 10,000 for the G3r processor, as well as new options for Most Idle Agent (MIA) call distribution. The new options allow selection of MIA distribution across skills, rather than for each skill, and selection of whether agents in ACW are or are not included in the agent free list. These options have no direct impact on CMS, since CMS does not keep track of the most idle agent.

Best Service Routing (BSR) (Category A only)

Best Service Routing (BSR) allows calls to be balanced at a single site or between multiple sites. BSR is enhanced multi-site routing that provides new call vectoring functions that build upon the Look-Ahead Interflow feature to route a call to the “best” split/skill on a single ECS or to the best split/skill in a network of Avaya communication servers.

The “best” split/skill is defined as the local split/skill or remote ECS that offers the shortest waiting time for the call in a call surplus (calls queued) situation for the application. The waiting time is calculated using the Expected Wait Time (EWT) predictor, and can be adjusted by the user. In an agents available situation, the “best” split/skill is determined based on the assigned available agent strategy. BSR data is tracked in the vector, VDN, and call history tables.

Universal Call ID

Universal Call ID (UCID) is a unique tag that is assigned to a call. The tag allows call-related data to be collected and aggregated from multiple sources and multiple sites. The UCID may then be used to group all the data from various sources about a particular call.

CMS will receive the UCID assigned to calls by a communication server when this feature is enabled. The UCID is then stored, along with data about the call itself, by the call history feature (which includes both internal and external call history). The data will be available to both Custom Reports and the Report Designer. UCID data is stored in the call history and agent trace tables.

Avaya Business Advocate (Category A only)

Avaya Business Advocate is a collection of features that provide flexibility in the way a call is selected for an agent in a call surplus situation and in the way that an agent is selected for a call in an agent surplus situation. Advocate also includes methods for automating staffing adjustments.
Chapter 2: ACD contact center features

This chapter describes Avaya contact center features that are administered on the Avaya communication server.

Features that apply only to Category A are identified when applicable. These features cannot be used with Category B (Avaya BCS and GuestWorks).

List of contact center features

Administered contact center features described herein include:

- Abandoned call search on page 55
- Add/Remove Skills (Category A only) on page 57
- Agent Call Handling on page 59
- Auto-Available Split/Skill on page 74
- Automatic Call Distribution on page 77
- Basic Call Management System on page 91
- Best Service Routing (Category A only) on page 94
- Call Management System (Category A only) on page 119
- Call Prompting on page 125
- Call Vectoring on page 128
- Avaya Business Advocate (Category A only) on page 138
- Expert Agent Selection (Category A only) on page 147
- Inbound Call Management on page 156
- Information Forwarding (Category A only) on page 163
- Look-Ahead Interflow (Category A only) on page 171
- Multiple Call Handling on page 177
- Network Call Redirection (NCR) (Category A only) on page 183
ACD contact center features

- Queue Status Indications on page 199
- Reason Codes (Category A only) on page 201
- Redirection on No Answer on page 205
- Remote Logout of Agent on page 218
- Service Observing on page 223
- Universal Call ID on page 238
- VDN in a Coverage Path on page 251
- VDN of Origin Announcement (Category A only) on page 256
- Voice Response Integration (Category A only) on page 262
- VuStats (Category A only) on page 271

Related feature or form

Refer to the Administrator Guide for Avaya Communication Manager, 555-233-506, for more information about the following related features or forms:

- Announcements/Audio Sources
- Calling Party/Billing Number.
- CallVisor Adjunct-Switch Application Interface.
- Class of Restriction.
- Hunt Groups.
- Malicious Call Trace.
- Recorded Announcements (additional information also available in the “Recorded Announcements” appendix of this book).
- Service Observing.
- Callmaster™ phones.
Abandoned call search

Abandoned Call Search allows the communication server to identify abandoned calls if the central office (CO) does not provide timely disconnect supervision. An abandoned call is one in which the calling party hangs up before the call is answered. Note that Abandoned Call Search is suitable only for older COs that do not provide timely disconnect supervision. Most COs provide timely disconnect supervision and do not require Abandoned Call Search.

Before an incoming Automatic Call Distribution (ACD) call rings a hunt group member or agent, the system checks to make sure that the calling party has not abandoned the call. If the calling party has abandoned the call, the call does not ring the hunt group member or agent.

If a call has been abandoned, the system determines if the calling party is still connected to the ground-start trunk at the CO. To do this, the system flashes (that is, opens the tip-ring loop for 150 to 200 ms) the CO end of the trunk. If the calling party is still connected, the CO does not respond. If the calling party has abandoned the call, the CO sends the system a disconnect signal within 800 ms. The system interprets this as an abandoned call, releases the trunk, and the call does not ring the hunt group member or agent.

Outside of the U.S., a flash of this duration may be handled differently. For more information about trunk flash Administrator Guide for Avaya Communication Manager, 555-233-506.

Administering abandoned call search

The following forms and fields are required to administer the Abandoned Call Search feature.

Required forms – Abandoned Call Search

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunk Group</td>
<td>Abandoned Call Search</td>
</tr>
<tr>
<td>— CO</td>
<td></td>
</tr>
<tr>
<td>— FX</td>
<td></td>
</tr>
<tr>
<td>— WATS</td>
<td></td>
</tr>
</tbody>
</table>

You administer Abandoned Call Search on a per-trunk-group basis. Administer each ground-start CO, FX, and WATS trunk group either having Abandoned Call Search or not having it. Abandoned Call Search is not supported for tie trunks.
Considerations

- Abandoned Call Search works with ground-start analog trunks that do not provide disconnect supervision and that do react to a 500-ms break.

- Some older COs can take as long as two minutes to notify the communication server of a disconnect. Thus, the communication server must determine within one second whether the call has been abandoned, before extending the call. Even with Abandoned Call Search or disconnect supervision, there is a small probability that a call will be extended to the destination hunt group after the caller has hung up. Abandoned Call Search and disconnect supervision significantly reduce that probability.

- Abandoned Call Search allows agents and hunt group members to answer more calls because time is not wasted on abandoned calls. In addition, call-handling statistics that the Call Management System (CMS) generates are more accurate because it is clear when a call is abandoned.

- Abandoned Call Search adds an overhead of up to one second to each call delivered to an agent.
Add/Remove Skills (Category A only)

Add/Remove Skills allows an agent using Expert Agent Selection (EAS) to add or remove skills. A skill is a numeric identifier in the communication server that refers to an agent’s specific ability. For example, an agent who is able to speak English and Spanish could be assigned a Spanish-speaking skill with an identifier of 20. The agent then adds skill 20 to his or her set of working skills. If a customer needs a Spanish-speaking agent, the system routes the call to an agent with that skill.

Each agent can have up to 20 skills active at any one time. Agents can dial feature access codes (FACs) to add or remove a skill. Or a supervisor with console permission can enter an agent’s login ID and add or remove an agent’s skill. If a supervisor adds or removes a skill for an agent, the agent receives a change notification.

To determine if they need to add or remove a skill, agents and supervisors can use:

- Queue-status indications
- Avaya Basic Call Management System Reporting Desktop VuStats
- Avaya Call Management System (CMS) or Basic Call Management System (BCMS) information

When adding a skill, the agent must specify the skill priority level (1 — 16).

On phones with displays, the system prompts the agent through the process of adding or removing a skill and displays the updated set of skills.

Administering Add/Remove Skills

The following forms and fields are required to administer the Add/Remove Skills feature.

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class of Restriction (COR)</td>
<td>Add/Remove Agent Skills</td>
</tr>
<tr>
<td>Feature Access Code (FAC)</td>
<td>Add Agent Skills</td>
</tr>
<tr>
<td></td>
<td>Remove Agent Skills</td>
</tr>
<tr>
<td>Language Translations</td>
<td>41-44 on Page 5</td>
</tr>
<tr>
<td>Hunt Group</td>
<td>Skill</td>
</tr>
<tr>
<td>Class of Service</td>
<td>Administer console permissions for supervisors</td>
</tr>
</tbody>
</table>
ACD contact center features

Considerations

- A skill cannot be removed from an agent’s skill set if the agent is on a call for that skill or in the After-Call-Work (ACW) state for that skill.
- With EAS, agents cannot remove their Direct Agent Skill.

Interactions

- Auto-Available Skills (AAS) – If an agent adds a skill that is administered as Auto-Available, on the Agent Login ID form, you must set the AAS field to y for that agent’s login ID.
- BCMS – BCMS begins tracking a new skill as soon as it is added. When an agent removes a skill, the real-time agent information specific to that skill is removed from the real-time reports, but it still appears on the historical reports.
- EAS-PHD – When EAS-PHD is set as an option, agents cannot remove their Direct Agent Skill. In an EAS environment, agents must have at least one skill assigned to them during a login session. With EAS-PHD, agents can specify up to 20 skills.

 Note:

 If EAS-PHD is not enabled, agents can specify only 4 skills.

- VuStats – Because VuStats displays information gathered by BCMS whether BCMS is enabled or not, the BCMS interaction above applies to VuStats.
Agent Call Handling

Agent Call Handling allows you to administer functions that Automatic Call Distribution (ACD) agents use to answer and process ACD calls.

You define the following agent capabilities:

- Agent login and logout
- Agent answering options: Automatic Answer (zip tone) or Manual Answer
- ACD work modes: Auxiliary Work (AUX Work), Auto-In, Manual-In, or After Call Work (ACW)
- Timed ACW
- Agent request for supervisor assistance
- ACD call disconnect (Release button)
- Stroke counts
- Call work codes
- Forced entry of stroke counts and call work codes

Agent capacity and related limits on page 67 describes agent-capacity planning.

Note:

All of these agent capabilities are also supported through the CallVisor Adjunct/Switch Applications Interface (ASAI). For more information about the CallVisor Adjunct-Switch Application Interface, see Administrator Guide for Avaya Communication Manager, 555-233-506.

Administering Agent Call Handling

The following forms and fields are required to administer the Agent Call Handling feature.

Required forms – Agent Call Handling

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Access Code (FAC)</td>
<td>Feature Access Codes for ACD features</td>
</tr>
<tr>
<td>Hunt Group</td>
<td>Forced Stroke Count or Call Work Code</td>
</tr>
<tr>
<td></td>
<td>Timed ACW Interval</td>
</tr>
<tr>
<td>Vector Directory Number</td>
<td>VDN Timed ACW Interval</td>
</tr>
</tbody>
</table>
Required forms – Agent Call Handling (continued)

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station (multi-appearance)</td>
<td>Button/Feature Button Assignments</td>
</tr>
<tr>
<td></td>
<td>— manual-in</td>
</tr>
<tr>
<td></td>
<td>— auto-in</td>
</tr>
<tr>
<td></td>
<td>— aux-work</td>
</tr>
<tr>
<td></td>
<td>— after-call</td>
</tr>
<tr>
<td></td>
<td>— assist</td>
</tr>
<tr>
<td></td>
<td>— release</td>
</tr>
<tr>
<td></td>
<td>— work-code</td>
</tr>
<tr>
<td></td>
<td>— stroke-cnt</td>
</tr>
<tr>
<td></td>
<td>Active Station Ringing (DCP, Hybrid)</td>
</tr>
<tr>
<td></td>
<td>Idle/Active Ringing (Callmaster)</td>
</tr>
<tr>
<td></td>
<td>VuStats</td>
</tr>
<tr>
<td>Stations (all)</td>
<td>Auto Answer</td>
</tr>
<tr>
<td>Attendant Console</td>
<td>Feature Button Assignments</td>
</tr>
<tr>
<td></td>
<td>— after-call</td>
</tr>
<tr>
<td></td>
<td>— assist</td>
</tr>
<tr>
<td></td>
<td>— auto-in</td>
</tr>
<tr>
<td></td>
<td>— aux-work</td>
</tr>
<tr>
<td></td>
<td>— manual-in</td>
</tr>
<tr>
<td></td>
<td>— release</td>
</tr>
<tr>
<td></td>
<td>— work-code</td>
</tr>
<tr>
<td></td>
<td>— stroke-cnt</td>
</tr>
<tr>
<td></td>
<td>Auto Answer</td>
</tr>
<tr>
<td>Agent LoginID (EAS only)</td>
<td>All</td>
</tr>
</tbody>
</table>

Detailed description

This section describes how the communication server controls agent work.

Note:

This information applies generally to ACD; see "Expert Agent Selection (Category A only)" on page 147 for more information on EAS.
Agent login and logout

To receive ACD calls, an agent must log into the system. An agent can be logged into multiple splits/skills. If a hunt group is measured by Call Management System (CMS) or Basic Call Management System (BCMS) or is a skill, an agent must enter a login ID; otherwise, the login ID is optional.

Login

To log in, an agent goes off-hook and dials the login feature access code (FAC), followed by the split/skill number and the login ID, if required. If login is successful, the agent automatically enters Auxiliary Work mode for that split/skill. The Auxiliary Work button lamp for that split/skill, lights steadily and the agent hears the confirmation tone.

If the split/skill is measured, the system sends messages to CMS or BCMS that the agent (identified by login ID) has logged in and has entered Auxiliary Work mode.

Login is canceled and the agent receives intercept tone if any of the following occur during login:

- The agent dials an invalid login FAC or split/skill number (that is, the number of a split/skill that does not exist or to which the agent is not assigned).
- The agent is already logged into the maximum number of splits/skills.
- The agent dials a split/skill number for a split/skill that he or she is already logged into.

Logout

The agent should log out when he or she leaves for an extended period of time and is unavailable for ACD calls. If the split/skill is measured by CMS or BCMS and an agent logs out, a message is sent to the CMS or BCMS so that the agent’s status is no longer measured. In a non-EAS environment, if an agent is logged into multiple splits, the agent should log out of each split.

When temporarily unavailable for calls, an agent should use Auxiliary work mode, rather than logging out. CMS or BCMS can continue tracking the agent’s auxiliary work time.

To log out of a split, an agent goes off-hook and dials the logout FAC followed by the split number. If logout is successful, the agent hears confirmation tone and work-mode button lamps darken. The logout is canceled and the agent receives an intercept if any of the following occur during logout:

- The agent dials an invalid logout FAC or split number.
- The agent dials a split number for a split that he or she is not logged into.

If an agent is using a handset in Automatic Answer mode, the agent can log out simply by hanging up or turning off the headset. (This does not mean pressing the release button on a Callmaster phone.) This does not apply to quick-disconnect. If the agent pulls the handset to log out, the agent is automatically logged out of all splits that he or she has logged into.
Agent answering options

An agent can answer ACD calls by using either a headset, handset, or speakerphone. You can assign an agent as either Automatic Answer or Manual Answer.

Note:
Use Automatic Answer with a headset. See Agents with Automatic Answer on page 70 for more information.

Automatic Answer

The information in this section applies to ACD and EAS environments.

An agent assigned to Automatic Answer hears zip tone and connects directly to incoming calls without ringing.

Note:
You can administer Automatic Answer to apply only to ACD calls or to apply to all calls terminating to the agent’s set. If all calls are Automatic Answer and the agent receives direct-extension calls, he or she should always activate Call Forwarding, or Send All Calls when leaving temporarily or for an extended period, so that calls do not terminate to an unstaffed station.

Manual Answer

An agent assigned to Manual Answer hears ringing, and then goes off-hook to answer the incoming call.

ACD work modes

At any given time, an agent can be in one of four work modes:

- Auxiliary Work (AUX)
- Auto-In
- Manual-In
- After Call Work (ACW)

An agent can change work modes at any time.

To enter any work mode, an agent presses the button or dials the FAC for that mode, depending on what you have administered. If the agent has no active or held calls, the work-mode button lamp lights steadily and CMS or BCMS is informed of the agent’s mode change. If the agent has active or held calls, the lamp flashes until all calls are dropped, then the new work mode’s lamp lights steadily and CMS or BCMS is informed of the agent’s mode change.
The attempt is cancelled and the agent receives an intercept if the agent:

- Tries to enter a work mode for an invalid split/skill
- Tries to enter the work mode for a split/skill of which he or she is not a member
- Dials an invalid FAC

Auxiliary Work mode

An agent should enter Auxiliary Work mode whenever taking a temporary break. This makes the agent unavailable for ACD calls and removes them from the most-idle-agent queue. CMS and BCMS can continue to track the agent.

In a non-EAS environment, when an agent is in AUX Work mode for a particular split, the agent may be available for ACD calls to other splits that the agent is logged into, depending on the agent’s state in those splits. Even in AUX, the agent is still available for non-ACD calls. CMS/BCMS is notified whenever an agent in AUX Work mode receives an incoming non-ACD call or makes an outgoing call. When an agent logs into a split, he or she automatically enters AUX Work mode for that split.

Note:

Agents in vector-controlled splits/skills can go into AUX Work mode even if they are the last agent and calls are queued to that split/skill.

Auto-In mode

In Auto-In mode, the agent automatically becomes available for answering new ACD calls upon disconnecting from an ACD call.

Manual-In mode

In Manual-In mode, the agent automatically enters ACW mode for the split/skill upon disconnecting from an ACD call and is not available for any ACD calls. To become available for ACD calls, the agent must manually reenter either Auto-In mode or Manual-In mode.

After Call Work mode

An agent should enter ACW mode when he or she needs to perform ACD-related activities, such as filling out a form as a result of an ACD call. The agent is unavailable for ACD calls to all splits/skills while in ACW mode. Communication server administration determines whether the agent remains in the Most Idle Agent queue while in ACW.

When an agent is in the Manual-In mode and disconnects from an ACD call, he or she automatically enters ACW mode. Although no longer available for ACD calls, the agent is still available for non-ACD calls. CMS or BCMS is notified whenever an agent in ACW mode receives an incoming non-ACD call or makes an outgoing call.
Timed After Call Work

With Timed ACW administered, an Auto-In agent is immediately placed in ACW mode for a specific length of time after completing the currently-active ACD call. When the Timed ACW interval expires, the agent automatically returns to the Auto-In work mode. If the agent activates ACW while not on a call, the agent is placed in ACW (not timed) mode regardless of whether the agent is in Auto-In or Manual-In mode.

Use Timed ACW to allow agents to rest between incoming ACD calls, or to pace agents when they have to complete work from the previous call within an allotted time. In addition, if you have Home Agent, use Timed ACW to allow agents additional time to dial a FAC to place themselves in a different work mode after the current ACD call is completed.

Timed ACW and VDN

You can administer Timed ACW for all calls to a split/skill and/or to a VDN. Any completed calls to the split/skill or to the VDN, including direct agent calls, are followed by a timed ACW when the answering agent is in Auto-In work mode. If a VDN call routes to a split/skill, the Timed ACW interval for the VDN overrides the Timed ACW interval for the hunt group. VDN override applies to VDN-Timed ACW.

Cancelling Timed ACW

Timed ACW is cancelled under the following conditions:

- **Agent activates Auto-In or Manual-In mode** – When an agent activates Auto-In or Manual-In mode during Timed ACW, the agent becomes available and timed ACW is cancelled. An agent can change to Manual-In mode before or during a call. The system cancels Timed ACW and applies ACW (not timed) mode when the call is released. The agent remains in ACW until he or she requests another mode. When the agent releases an ACD call, the ACW lamp (if provided) lights. At the end of the administered Timed ACW interval, the ACW lamp goes dark and the Auto-In lamp lights.

- **Agent activates ACW** – Timed ACW is canceled when an agent presses the ACW button or dials the ACW FAC.

- **Agent activates Auxiliary Work mode** – If an agent activates Auxiliary Work mode during Timed ACW, the agent is placed in that mode and Timed ACW is cancelled.

- **Ringing or held ACD call is dropped by the caller** – If a ringing or held ACD call to an Auto-In agent is dropped by the caller, Timed ACW is not activated.

Agent request for supervisor assistance

To request assistance from the split/skill supervisor, an agent, with or without an active ACD call, presses the Assist button or puts the call on hold and dials the Assist FAC plus the split/skill number. The agent must be logged into the split/skill. Assist generates 3-burst ringing at the supervisor’s station. If a split/skill supervisor is not assigned, the agent receives intercept tone.
Attendants should press the Start button before pressing the Assist button. This allows them to later transfer the call. This rings like a priority call at the supervisor’s set.

When the agent presses the Assist button, the following happens:

1. If the agent is active on an ACD call, the ACD call is automatically placed on hold and a call is placed to the split/skill supervisor. If the agent is not active on an ACD call, a call is automatically placed to the supervisor.

2. CMS or BCMS is notified of the request and the supervisor’s display shows that the call is a request for assistance. This rings like a priority call at the supervisor’s set.

3. The caller hears silence or music on hold.

4. After the agent has talked to the supervisor, the agent can drop the assist call and return to the ACD call, set up a conference call with the supervisor and the calling party, or transfer the call to the supervisor.

When the agent puts the call on hold and dials the Assist FAC plus the split/skill number, the system handles the request as if the agent pressed the Assist button, except that the Assist call does not follow the supervisor’s coverage path.

Stroke counts

Stroke counts allow you to record in CMS the number of times that a particular customer-related event occurs. For example, agents could press a button each time a customer requests information on a certain item.

Stroke counts are reported to CMS in real time. The system does not store stroke counts. Use stroke counts only when CMS is connected and you have defined ACD splits/skills to be measured by CMS.

Stroke counts allow agents to record up to nine administrator-defined events on a per-call basis. You can assign 10 Stroke Count button types. Stroke Count 0 is reserved for tracking Audio Difficulty or poor transmission quality.

For troubleshooting purposes, CMS records the equipment location of the trunk that the agent was using when he or she pressed the Audio Difficulty button. Make sure that agents are aware that pressing this does not improve audio transmission quality.

To enter a stroke count, an ACD agent presses a Stroke Count button while off-hook. The system validates that the agent is either active on an ACD call or in the ACW mode for an ACD split/skill. If yes, the feature lamp lights steadily for two seconds to indicate activation and the stroke count is sent to CMS. If not, the feature lamp flutters and no message is sent.
Call work codes (Category A only)

Call work codes are up to 16-digit sequences that ACD agents enter to record such customer-related information as account codes, social security numbers, or phone numbers. You define the codes for your site. Codes that agents enter are sent to CMS for storage for splits/skills measured by CMS and only when the link to the CMS is up. Agents must have multiappearance phones (for example, Callmaster) to enter call work codes.

To enter call work codes, the agent must be off-hook and either:

- On an ACD call
- In ACW mode after disconnecting from a call while in Manual-In mode
- In Timed ACW after disconnecting from a call while in Auto-In mode
- In Auto-In mode and pending for ACW mode

The sequence of event is as follows:

1. The agent select Call Work Code (CWC) button.
2. The CWC lamp lights steadily and a C: prompt appears on the agent’s display. The agent must wait for the ready indication before entering the call work code or the caller hears the touch-tone digits being dialed.
3. Agent enters up to 16 digits on the dial pad. The agent can press * to erase digits.
4. The agent presses # to send the code entry to CMS.
5. The Call Work Code lamp goes dark and the display returns to normal.
6. If the agent presses any feature button or hangs up during digit collection, the code entry is cancelled and data is sent to CMS. The CWC lamp goes dark and the display is cleared.

Call work codes may be used by as many as 100 agents simultaneously. If 100 agents are simultaneously using this function, and another agent attempts to enter a call work code, the agent receives a display message to try again later.

Forced entry of stroke counts and call work codes

You can administer a split/skill so that agents must enter a stroke count and/or a call work code before becoming available for another call using Manual-In mode.

Note:
Multi-appearance phones or an attendant console are required for agents to enter stroke counts or call work codes.

To enter a stroke count and/or call work code, the agent must be on a call, or in ACW mode after releasing a call in Manual-In mode.
After releasing a call, the agent automatically enters ACW mode and cannot return to Manual-In mode until entering a stroke count or call work code. If the agent presses the Manual-In button or FAC before entering a stroke count or a call work code, the Manual-In lamp flutters or intercept tone is given.

Once the agent enters a stroke count or call work code and presses the Manual-In button or FAC, he or she returns to Manual-In mode and the Manual-In lamp lights.

Any of the agent's splits/skills can have Forced Entry assigned. If the agent goes into Auxiliary Work mode in any split/skill, the Forced Entry requirement for all other splits/skills is removed.

Expanded technical information

Agent capacity and related limits

Agent Sizing adds an overriding capacity limit to the number of logged-in ACD agents. It can be used to limit the number of logged-in ACD agents to a number less than (or equal to) the maximum supported by the system configuration.

The logged-in ACD agents limit applies to ACD agents in traditional (or non-EAS) ACD splits or in Expert Agent Selection (EAS) skills. Auto-Available Split/Skill (AAS) agent ports are logged in and counted when they are first assigned, while the non-AAS agents are counted when they actually log in. Each logged-in agent is counted as a single agent independent of the number of splits/skills logged in to for the Logged-in ACD agents limit. AAS and non-AAS agents are counted towards this limit whether they are BCMS/CMS measured or not.

The Logged-in Advocate Agent Count feature counts the number of Advocate agents who are logged in at the contact center. The feature bases the count on whether or not a logged-in agent has any Advocate feature(s), except Predicted Wait Time, assigned or associated with the agent. With this feature, Advocate counted agents are still counted as ACD agents.

The agent sizing limit is administered by authorized Avaya personnel via the Logged-in ACD Agents option (and Logged-in Advocate Agent Count) on the System-Parameters Customer-Options form. The maximum number of allowed logged-in ACD agents is set to correspond to the configuration you purchase.

For agent sizing, if you have agents working in shifts, you should purchase enough agent capacity to allow for a smooth shift change. If agents on a subsequent shift are logging in before agents in the previous shift have logged out, agents could be denied login because too many agents are currently logged in. Additionally, the non-ACD and/or non-agent (AAS/VRU) use of Hunt Group resources must be considered. Contact center managers need to be aware of their logged-in ACD agent and other related limits when adding agents to handle a traffic peak or when planning a special campaign. Some of the resource utilization is displayed dynamically on the Display Capacities form.
ACD contact center features

In addition to the logged-in ACD agents limit, the number of agents supported is dependent on the upper limits that the system platform supports. The following limits must also be considered.

● Maximum Hunt Group members
 — Non-ACD members include hunting groups with or without queues, Message Center Service groups, INTUITY/AUDIX groups and Remote AUDIX groups. Each line or port in a group is counted once when assigned.
 — ACD members (also called agent-split pairs or agent-skill pairs with EAS). For agents in multiple splits/skills, each combination (pair) is counted as a member (e.g., an EAS agent logged into 4 skills or a non-EAS agent assigned to 4 splits counts as 4 members). Non-EAS ACD members are counted when assigned (note that many more splits can be assigned to an agent than can be logged into but each agent-split pair is still counted towards the limit). EAS ACD members are counted when they log in.
 — Advocate Agents – Each logged-in Advocate agent is counted as both an ACD member and as a Advocate agent.

● Hunt Group members per group — Count of non-ACD or ACD members within a split/skill. Counting is done as above for maximum Hunt Group members.

● Additional traditional ACD (non-EAS) agents limits:
 — Maximum logged-in agents system limit
 — Maximum splits an agent can log into

● Additional EAS limits:
 — **ACD members (skill pairs) administered** — Limits skill assignments to agents (each AAS port is counted as one skill pair)
 — **Agent Login IDs Administered** — Limits number of AAS ports and EAS agents that can be pre-assigned
 — **Agent Login IDs Logged-In (staffed) system limit** — Upper limit on the number of EAS agents (and AAS ports) that can be logged-in simultaneously
 — **Skills per Agent** — The maximum number of skills a particular agent can be assigned

● Call Management System (CMS) logged in ACD members (agent-split/skill pairs) limits assigned. Both a Avaya setup and customer-administered limit is assigned in CMS. These limits are related to the CMS memory/hardware configuration equipped and are passed over the link to the communication server to reduce/set the externally measured logged-in ACD member component of the Hunt Group member limit to that supported by CMS.

● BCMS internally measured ACD agents system limit. Non-EAS ACD agents counted when assigned while EAS agents are counted when logged in.
When the maximum number of ACD agents are logged in or any of the other above limits are reached, an agent who attempts to log in hears reorder tone or is otherwise denied log in. Also with EAS, an agent logging in may not have all the assigned skills logged in if the ACD member limit is reached.

The administrator of a non-EAS system can be blocked from adding agents to splits via the Hunt Group form.

The administrator of an EAS system can be blocked from assigning additional Login IDs or skills to an agent via the Login ID form if the relevant system limits are reached.

Considerations

Release button

Agents using Automatic Answer are logged out of all splits/skills when they disconnect from an ACD call by hanging up. Therefore, agents should use the Release button, if provided. This button is in addition to the fixed Release button on the attendant console.

Timed ACW

To prevent agents from canceling Timed ACW by pressing the Manual-In or ACW buttons, do not assign these buttons to the agents’ phones. Timed ACW cannot be assigned to AAS, adjunct-controlled, AUDIX, Remote AUDIX, or Message Center splits/skills. In addition, VDN-Timed ACW does not apply to calls routed to a converse split/skill by way of the **converse-on** vector command. Timed ACW assigned to a converse hunt group applies.

BCMS and CMS track Timed ACW as standard ACW work states. Time spent in Timed ACW is not specifically identified.

Nonvector-controlled splits/skills

For nonvector-controlled splits/skills, the last available agent in a split/skill cannot enter Auxiliary Work mode if any calls remain in the queue. (However, the agent can log out.) When the last available agent tries to enter Auxiliary Work mode, the following occurs:

- The Auxiliary Work button flashes indicating the change is pending.
- New calls on the ACD split/skill either receive busy tone or redirect to coverage. Calls in the queue continue to route to the last available agent until the queue is empty.
- At the last available phone or console, the Auxiliary Work button lamp flashes until the queue is empty. The telephone then enters Auxiliary Work mode and the associated lamp lights steadily.
Agents logged into multiple splits/skills

If an agent is logged into multiple splits/skills, the agent may become unavailable for calls to one split/skill because of activity at another split/skill. For example, if an agent enters After Call Work mode for one split/skill, the agent becomes unavailable for calls to other splits/skills.

An agent should not log into a split/skill while a call is on hold at the extension.

Agents with Automatic Answer

Agents who use Automatic Answer should use a headset. The agent hears zip tone through the headset and automatically connects to a call.

If either the incoming trunk group or the agent’s extension is data-restricted, the agent does not hear zip tone. Therefore, do not assign data-restriction to a headset user’s extension.

It is not recommended that you use Automatic Answer with a handset or speakerphone. The handset or speakerphone must be off-hook (handset lifted or speakerphone turned on) all the time for the agent to hear zip tone.

If automatic answer is assigned for all calls, when a non-ACD call arrives, non-ACD Auto-Answer agents hear Incoming Call ID tone, not ringing.

Callmaster telephones

Calls for Callmaster digital phones and attendant stations are announced by double tones. The tones that are doubled are zip (Auto-Answer ACD agent calls) and Incoming Call ID (for End of VDN of Origin announcements and all other Auto-Answer calls). The user hears part of the first tone and all of the second tone.

Agents assigned to hunt-group and ACD calls

Do not use agents for hunt-group calls and ACD split/skill calls simultaneously. Otherwise, all of the calls from one split/skill (either ACD or hunt-group) are answered first.

The oldest call-waiting termination is supported only for agents who are servicing ACD calls only.

Interactions

Abbreviated Dialing

Assign Abbreviated Dialing buttons to make agent login easier. You can program an Abbreviated Dialing button to dial access code, split number, and/or agent login ID. You can use Autodial feature buttons to assign login and logout feature buttons.
Auto-Available Split/Skill (AAS)

An AAS cannot be administered for Timed ACW.

Bridging

ACD split/skill calls are not bridged.

Station calls are bridged and agents are able to bridge onto them. If an agent bridges onto a call, the call is considered a non-ACD extension-in call. The agent is not available for an ACD call unless the agent is a member of a many-forced, one-forced, or one-per-skill MCH split/skill. The agent can put the call on hold and become available to receive ACD calls even in non-MCH splits/skills if only bridged appearances are active.

Call Coverage

If an ACD call routes to an agent as a result of covering to a VDN (where the VDN is the last coverage point in the coverage path), Timed ACW applies as administered for the VDN or split/skill.

Call Forwarding

If an ACD call routes to an agent after being call-forwarded to a VDN, Timed ACW applies as administered for the VDN or split/skill.

Call Pickup

When an ACD agent answers a call via Call Pickup, the call is treated as an incoming non-ACD call. The agent can put the call on hold and become available for additional calls.

Call Work Codes

The CWC 100-agent limit is shared with Reason Codes. Therefore, no more than 100 agents can simultaneously enter either a call work code or reason code.

CallVisor ASAI Adjunct

If a split/skill hunt group has CallVisor ASAI as the controlling adjunct, you cannot administer Timed ACW for the split/skill. Additionally, if an ACD call is routed to an agent in an adjunct-controlled split/skill, the agent is not placed in Timed ACW when the call ends.

Avaya CMS

Timed ACW is reported on CMS reports in the same way as any other ACW. CMS gives exception notification only on ACW intervals that are longer than the defined threshold.
Conference

If an agent receives an ACD call through a VDN and then conferences in other agents, the agents added to the call use the Timed ACW interval associated with the number dialed to conference them. An ACD agent on conference with more than three parties may cause inaccurate CMS measurements.

Expert Agent Selection

When EAS is active, all ACD hunt groups are assigned as vector-controlled skills. Agents log in using Logical Agent IDs. Skills can be preassigned to login IDs, however, assignment on the Login ID form does not actually assign a non-AAS login ID to the skills until the ID is logged in. When the login ID is logged in, each skill is counted as a hunt-group member towards the system hunt-group member limit, the per-group member limit, and each agent is counted as a logged-in ACD agent.

Multiple Call Handling

If MCH calls are on hold at an agent's telephone and the agent completes a call that normally is followed by Timed ACW, the agent is not placed in ACW. If no MCH calls are on hold, but one is alerting at the station when the Timed ACW call completes, the agent is placed in ACW.

MCH affects when agents can enter different work modes and when calls are delivered to agents in Manual-In or Auto-In work modes. See Multiple Call Handling on page 177 for detailed information.

Transfer

If an agent receives an ACD call through a VDN and then transfers the call to another agent, the second agent uses the Timed ACW interval assigned to the number that was dialed to transfer the call.

For an EAS agent, this is the Timed ACW interval associated with his or her Direct Agent skill. For an agent receiving a call transferred to a second VDN, this is the VDN Timed ACW interval of the second VDN. The agent who originally transferred the call uses the ACW associated with the VDN or split/skill that first received the call.

VDN Override

If a VDN has VDN Override set to no and the vector routes a call to a second VDN, the first VDN's Timed ACW interval is used for Timed ACW. If VDN Override is set to yes, the second VDN's Timed ACW interval is used.

If no interval is set for the second VDN, no Timed ACW is associated with the call.
Voice Response Integration

If an ACD call routes on a *converse* vector command, any VDN-Timed ACW associated with the call is ignored for agents in the converse split/skill. However, if the converse split/skill has an administered Timed ACW interval, the answering agent associated with the split/skill is placed in Timed ACW when *converse* vector command processing completes.
Auto-Available Split/Skill

Auto-Available Split/Skill (AAS) allows members of an ACD split/skill to be in Auto-In work mode continuously. An agent in Auto-In work mode becomes available for another ACD call immediately after disconnecting from an ACD call.

Use AAS to bring ACD agents back into Auto-In work mode after a system restart. Although not restricted to such, this feature is intended to be used for splits/skills containing only nonhuman members — for example, recorders or voice response units (VRUs).

Administering AAS

The following forms and fields are required to administer the AAS feature.

<table>
<thead>
<tr>
<th>Form Field</th>
<th>Required forms – AAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunt Group</td>
<td>AAS</td>
</tr>
<tr>
<td>Agent LoginID (EAS only)</td>
<td>AAS</td>
</tr>
</tbody>
</table>

Verify that the ACD field is set to y on the System Parameters Customer-Options screen. If this field is not set to y, contact your Avaya Services representative.

Verify that the ACD field form is set to y on the Hunt Group.

Detailed description

Agent login with AAS

With AAS, ACD splits/skills generally operate as usual. The major difference is in how work modes are handled.

For splits/skills with AAS, agents are automatically logged in under the following circumstances:

- Call Management System (CMS) completes an Agent Move request into an Auto-Available split/skill.
- A maintenance-busied-out port, which is defined as an agent in an Auto-Available split/skill, is released.
- The system reinitializes and requires agents to log in again.
- You administer a split/skill on the Hunt Group form as AAS = y.
- You administer an agent into an existing AAS split/skill.
Once an agent is logged into an Auto-Available split/skill, it is immediately moved to the Auto-In work mode and subsequent requests to change out of that mode are denied.

Agent logout with AAS

For splits/skills with AAS, agents are automatically logged out under the following circumstances:

- CMS completes an Agent Move request out of an Auto-Available split/skill.
- The Auto-Available agent's port is unavailable because maintenance is being performed.
- You administer a split/skill as AAS = n.
- You remove an agent from an existing AAS split/skill.
- Redirection on No Answer (RONA) redirects a call that the agent has not answered after an administered number of rings.

Considerations

- AAS is intended primarily for non-BX.25 and non-ASAI PBX adjuncts such as Conversant VIS, that require extra help in getting PBX ports back online after a restart. AUDIX is incompatible with AAS because it uses BX.25 messages to automatically activate its ACD agent ports after a PBX restart.
- Because AAS is intended for nonhuman agents, do not administer an Auto-Answer telephone as a member of an AAS.
- AAS is not intended for any agent port hardware that can change its work mode state since a request to move to any state other than AUTO-IN is denied; however, administration of such telephones is not blocked.

Interactions

Auto-Answer

Do not administer an Auto-Answer telephone as a member of an AAS.

Auto-Answer was originally implemented for human agents. If a nonanalog telephone is administered as Auto-Answer and that telephone is logged into a split/skill, when the telephone goes on-hook, it is logged out.

Agents at analog telephones defined as Auto-Answer who are logged into a split/skill must dial a log-out FAC to log out. If a telephone is a member of an AAS, a log-out FAC is denied. To log the agent out, you must either remove the agent from the split/skill when not active on a call or busy-out the physical extension.
ACD contact center features

If an agent in an AAS with an Auto-Answer telephone goes off-hook, the telephone is logged into any Auto-Available splits of which it is a member. To log out of the AAS splits/skills, the agent goes on-hook, is placed in AUX work mode, and then presses the RELEASE button on nonanalog sets or disconnects on analog sets. Because agents are not placed immediately in Auto-In work mode, they may place personal or emergency calls rather than answering ACD calls that may be in queue.

CMS

For each agent, AAS notifies CMS of any login, logout, or change into the Auto-In work mode. In a non-EAS environment, an AAS agent is identified to CMS with a login ID equivalent to the agent's administered extension. With EAS, the AAS login ID and port are assigned on the Login ID form.

With CMS Move Agent, you can move a member from one AAS split/skill to another while that member is logged in.
Automatic Call Distribution (ACD) allows incoming calls to connect automatically to specific splits/skills. An ACD split/skill is simply a hunt group that is designed to receive a high volume of similar calls. Calls to a specific split/skill are automatically distributed among the agents, or hunt group members, assigned to that split/skill. Calls queue to the split/skill until an agent is available.

An ACD agent can be a physical telephone extension, an individual attendant extension, or, in an Expert Agent Selection (EAS) environment, an agent login ID. An agent can be logged into multiple splits/skills. However, in a non-EAS environment, agents can be logged into only one split if that split is administered for Multiple Call Handling (MCH).

You can assign a supervisor to each split/skill. The split/skill supervisor can listen in on agent calls, monitor the split/skill queue status, and assist agents on ACD calls. Although supervisors can assist agents on ACD calls, the supervisors do not normally receive ACD calls unless they are also members of the split/skill.

If you have Call Management System (CMS) or Basic Call Management System (BCMS), you can measure and create reports on the status of ACD agents, splits/skills, and trunks. See Agent Call Handling on page 59 and Call Management System (Category A only) on page 119 or Basic Call Management System on page 91 before setting up your ACD splits. See Agent Call Handling on page 59 for detail on administering agent functions and operations.

The following figure depicts a typical ACD arrangement.
ACD contact center features

Typical ACD Arrangement

1. Incoming calls
2. ACD switch
3. Trunk group 1
4. Trunk group 2
5. Trunk group 3
6. Trunk group 4
7. Split 1 Business Travel (10 agents)
8. Split 2 Personal Travel (8 agents)
9. Split 3 Group Travel (5 agents)
10. Split 4 General Information (15 agents)
11. Queues
12. Announcement 1
13. Announcement 2
14. Intraflow (Call Coverage)
15. Split 2 Personal Travel (3rd choice)
16. Split 3 Group Travel (2nd choice)
17. Split 4 General Information (1st choice)
18. Supervisor (with Service Observing)
19. Announcement
20. Disconnect
21. Call Management System (CMS)
22. Terminal
23. Printer
Administering ACD

The following forms and fields are required to administer the ACD feature.

Required forms – ACD feature

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunk Groups</td>
<td>Incoming Destination</td>
</tr>
<tr>
<td>CO</td>
<td></td>
</tr>
<tr>
<td>FX</td>
<td></td>
</tr>
<tr>
<td>Tie</td>
<td></td>
</tr>
<tr>
<td>WATS</td>
<td></td>
</tr>
<tr>
<td>Class of Restriction</td>
<td>Can Be Service Observer? (optional)</td>
</tr>
<tr>
<td></td>
<td>Can Be Service Observed? (optional)</td>
</tr>
<tr>
<td>Attendant Console</td>
<td>Headset, Auto Answer</td>
</tr>
<tr>
<td>Station</td>
<td>Headset, Auto Answer</td>
</tr>
<tr>
<td></td>
<td>Button Assignments - Work-Mode, Queue Status, Call Info</td>
</tr>
<tr>
<td>Hunt Group</td>
<td>All</td>
</tr>
<tr>
<td>Feature-Related System-Parameters</td>
<td>Service Observing (optional)</td>
</tr>
<tr>
<td></td>
<td>— Service Observing Warning Tone</td>
</tr>
<tr>
<td></td>
<td>— Service Observing by FAC</td>
</tr>
<tr>
<td>Most Idle Agent</td>
<td>MIA Across Splits/Skills</td>
</tr>
<tr>
<td></td>
<td>ACW Agents on MIA List</td>
</tr>
<tr>
<td>Call Management System</td>
<td>ACD Login Identification Length</td>
</tr>
<tr>
<td>Feature Access Code (FAC)</td>
<td>Automatic Call Distribution page</td>
</tr>
<tr>
<td></td>
<td>Announcement Access Code</td>
</tr>
<tr>
<td></td>
<td>Service Observing Listen Only or Listen/Talk Access Code</td>
</tr>
<tr>
<td></td>
<td>(optional)</td>
</tr>
<tr>
<td>Announcements/</td>
<td>All</td>
</tr>
<tr>
<td>Audio Sources</td>
<td></td>
</tr>
</tbody>
</table>

- **Trunk Group forms** — In the Group Number field, assign consecutive Group Numbers to trunk groups when you are using two or more trunk groups to support ACD applications.

- **Hunt Group form** — When the ACD field is set to y, complete the fields that apply. In the AAS field, enter y to enable Auto-Available Split/Skill. See [Auto-Available Split/Skill](#) on page 74 for more information.
ACD contact center features

Detailed description

For a detailed description of call distribution methods, see Chapter 1: Automatic Call Distribution (ACD) basics on page 17.

The following table summarizes the different call distribution methods.

<table>
<thead>
<tr>
<th>WHEN agents are available, a call arrives, and the agent selection method is:</th>
<th>THEN the communication server selects:</th>
<th>This distribution method is available with:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Department Calling</td>
<td>the first available agent found in the hunt sequence.</td>
<td>Non-EAS</td>
</tr>
<tr>
<td>UCD-MIA</td>
<td>the most idle agent, without regard to skill level.</td>
<td>Non-EAS, EAS, Advocate</td>
</tr>
<tr>
<td>EAD-MIA</td>
<td>the highest skill level, most idle agent.</td>
<td>EAS, Advocate</td>
</tr>
<tr>
<td>UCD-LOA</td>
<td>the least occupied agent, without regard to skill level.</td>
<td>EAS, Advocate</td>
</tr>
<tr>
<td>EAD-LOA</td>
<td>the highest skill level agent with the lowest occupancy.</td>
<td>EAS, Advocate</td>
</tr>
<tr>
<td>PAD</td>
<td>the agent with the lowest ratio of adjusted work time and target allocation for the skill.</td>
<td>Advocate</td>
</tr>
</tbody>
</table>

Queuing and announcements

You create a queue for an ACD split/skill by setting Queue to y on the Hunt Group form. When all agents are active on calls or in After-Call Work mode, the queue allows incoming calls to wait for an idle agent. The next available agent is automatically connected to the call in the queue.

For non-vector-controlled splits/skills, calls do not queue in the following cases:

- No agents are logged in
- All logged-in agents are in Auxiliary Work mode
- No queue slots are available

The caller gets a busy signal (or busy coverage, if administered) unless a call comes in via an automatic-in central office (CO) facility. In this case, the caller hears ringback from the CO and the system continues trying to place the call in the queue.

You can assign two announcements to each split/skill and administer a second announcement to repeat. When an incoming call is directed to an ACD split/skill, the call is either directed to an agent or is automatically connected to the first announcement. For information on how announcements are affected by call forwarding and call coverage, see Administrator Guide for Avaya Communication Manager, 555-233-506.
First announcement

After a call enters a queue, the caller hears ringing and the first announcement delay interval begins. If an agent becomes available during the first announcement delay interval, the call is connected to the agent. Otherwise, the interval expires and the system tries to connect the incoming call to the first announcement, with one of the following results:

- If the first announcement is available, the caller hears ringing, then the first announcement.
- If the announcement is busy and has no queue, the caller hears ringing and the first announcement delay interval is reset. The system tries to access the announcement again when the interval expires.
- If the announcement is busy and has a queue, then:
 - If the queue is full, the caller hears ringing and the first announcement delay interval is reset. The system tries to access the announcement again when the interval expires.
 - If the queue is not full, the call enters the announcement queue and the caller hears ringing, then the first announcement. The system then tries to connect the call to an agent.
- If the announcement is not busy, but is still unavailable, the second-announcement delay interval begins and the system attempts to connect the call to the second announcement.

If there is no first or second announcement, the call remains in queue until answered or removed from the queue.

Forced first announcement

The first-announcement delay interval defines how long a call remains in queue before the call is connected to the first announcement. If this interval is 0 seconds, the incoming call is automatically connected to the first announcement. This is a forced first announcement — the call is not routed to an agent until after the caller hears the first announcement.

With a forced first announcement, the following occurs:

- If a first announcement is available, the caller hears ringing and then the first announcement. The system then tries to connect the call to an agent.
- If the announcement is busy and has no queue, the system waits 10 seconds and then tries to access the announcement.
- If the announcement is busy and has a queue, then:
 - If the queue is full, the system waits 10 seconds, then tries to access the announcement.
 - If the queue is not full, the call enters the announcement queue and the caller hears ringing, then the first announcement. The system then tries to connect the call to an agent.
ACD contact center features

- If the announcement is not busy but is still unavailable (for example, it may have been deleted), then the system tries to connect the call to an agent.

After a forced first announcement, the caller always hears ringback (or music-on-hold, if administered) until the call is answered or is connected to a second delay announcement. After a first or second delay announcement, the caller hears music-on-hold, if administered.

Second announcement

After the first announcement, the second-announcement delay interval begins and the caller hears ringing (if there is no forced first announcement), or music, if provided. If an agent becomes available during the interval, the call is connected. Otherwise, the interval expires and the system tries to connect the incoming call to the second announcement, resulting in one of the following:

- If the second announcement is available, the caller hears ringing or music, then the second announcement.

- If the announcement is busy and has no queue, the caller hears ringing and the second-announcement delay interval is reset. The system tries to access the announcement again when the interval expires.

- If the announcement is busy and has a queue, then:
 - If the queue is full, the caller hears ringing (only if the first announcement has not been heard) and the second-announcement delay interval is reset. The system tries to access the announcement again when the interval expires.
 - If the queue is not full, the call enters the announcement queue and the caller hears ringing (only if the first announcement has not been heard), then the second announcement. The system then connects the call to an agent.

- If the announcement is not busy but is still unavailable, the call remains in queue until answered or removed from the queue.

After the second announcement, the caller hears music, if provided, or silence and then:

- If you administered the split/skill to repeat the second announcement, the system tries to connect the call to the second announcement after the delay expires.

- If you administered the split/skill not to repeat the second announcement, the call remains in the queue until answered or removed from the queue.

Forced disconnect

You can connect an incoming call directly to an announcement and then disconnect the call after the announcement has completed in one of two ways:

- Administer an announcement extension as the incoming destination. The caller is directed to the announcement and is disconnected, without being queued for a split/skill.

- Administer an announcement extension as a point in a split/skill coverage path. Calls that have been in the queue for a long time are forced to go directly to the announcement and are disconnected.
Announcement rules

The following rules govern announcements a caller hears:

- Calls that reach a split/skill directly always hear a forced first announcement, if assigned, regardless of subsequent call coverage, call forwarding, night service, or busy signal processing. If these calls queue long enough, they hear first and second announcements.

- Calls that reach a split/skill via call coverage receive a second announcement only, if administered. The assumption is that a caller has likely heard a first announcement at the original split/skill or station before being redirected.

- Calls that reach a split/skill via call forwarding receive first and second announcements at the destination split/skill, if administered. These calls can receive a forced first announcement at the original split/skill, if administered, but not at the split/skill they are forwarded to.

Entering the queue

When a forced first announcement is not assigned, the system tries to connect an incoming call to an available agent. If an agent is available, the call is connected to the agent. If all agents are active (either on an ACD call or in ACW mode), the call enters the split/skill queue.

If no queue is assigned, or if no queue slots are available and the incoming facility is a CO trunk, the caller hears ringing. The system continues trying to queue the call until a queue slot becomes available, or until the call is abandoned or an agent becomes available.

When you have administered Intraflow and Interflow with Call Coverage and Call Forwarding All Calls, the caller hears a busy tone or the call is redirected in any of these cases:

- No split/skill queue is assigned.
- The queue is full.
- No agents are logged in.
- All logged-in agents are in AUX work mode, and the incoming facility is a digit-oriented facility (digits are sent to the communication server as in DID, incoming wink, or immediate tie trunks)

Note:

Central office trunk (non-DID) calls receive ringback from the CO, so the PBX cannot give these callers a busy signal. The system tries to put such calls into queue until successful or until the call is abandoned.
Priority queuing

Priority queuing allows priority calls to be queued ahead of calls with normal priority. You can implement priority queuing in two ways:

- Assign Priority Queuing to a calling party’s Class of Restriction (COR).
- Assign Priority on Intraflow to an ACD split/skill. This allows calls from the split/skill, when intraflowed into another split/skill, to be queued ahead of nonpriority calls. For more information, see Information Forwarding (Category A only) on page 163.

Queue status indications

You can assign queue status indications on agent or supervisor telephones or consoles for ACD calls in queue. For more information, see Queue Status Indications on page 199.

Direct agent calling (Category A only)

Note:

Direct Agent calling requires CallVisor Adjunct-Switch Application Interface (ASAI) or EAS. Both originating and called party Class of Restrictions (CORs) must be set to allow Direct Agent Dialing. See Expert Agent Selection (Category A only) on page 147 for information on Direct Agent Announcements.

Direct Agent (DA) Calling is an EAS feature that lets a caller:

- Contact a specific agent instead of a skill hunt group
- Queue for the agent if the agent is on a call
- Use Agent LoginID for callbacks and transfers
- Hear system-wide Direct Agent delay announcement while holding
- Follow the agent’s coverage path, if the call is not answered immediately.

Advantages of Direct Agent calling

DA calls have two important advantages:

- They reduce the need to transfer callers who want or need to speak with a certain agent, such as the agent spoken to on a previous call.
- They provide more accurate reporting of calls, because CMS counts DA calls as ACD calls. In this way, agents get proper credit for taking them. By comparison, calls transferred to an agent are not counted as ACD calls.
How Direct Agent calling works

Direct Agent calling works as described below:

- Callers can dial the agent's Login ID as part of a DID or from auto attendant as an extension number.
- DA calls have a special ringing sound, regardless of the agent's work state, and the current work mode button on the agent's telephone flashes.
- If the agent is on a call, he or she can use multiple call handling to decide whether to put the call on hold in order to take the DA call.
- If the agent is available, the call is delivered according to the answering and alerting options.
- If the agent is not available, or if multiple call handling is not used, call coverage or RONA routes the call to backup.
- While on DA calls, agents are unavailable for subsequent ACD calls. If the agent logs off by unplugging the headset, he or she can still answer a DA call in the queue by logging back in and becoming available. Agents who have DA calls waiting are not allowed to log off using a FAC. If the agent is in Manual In mode or pushes the After Call Work (ACW) button while on a direct-agent call, the agent goes to ACW mode.

Generally, direct-agent calls are queued and served in first-in, first-out order before other calls, including priority calls. However, if you administer a skill level for Call Handling Preference, direct-agent calls must be assigned the highest priority for them to be delivered before other ACD calls. Otherwise, calls with a higher skill level are distributed before direct-agent calls.

Note that you can use Multiple Call Handling (MCH) to allow agents to answer a direct agent call with another ACD call active.

Direct-agent calls follow the receiving agent's coverage and call forwarding paths, if these features are administered. Once a call goes to coverage or is forwarded, the call is no longer treated as a direct-agent call, and CMS is informed that the call has been forwarded.

Administering Direct Agent calling

To administer Direct Agent calling:

- On the Agent LoginID form, you enter the agent's Direct Agent Skill. It is suggested that you use the Hunt Group form to set up a skill for all DA calls. This skill will:
 — Tell the communication server how to handle calls to the skill and
 — Show report users how much time each agent has spent on DA calls.

 Note:
 Any agent who will receive direct agent calls should have at least one non-reserve skill assigned to the agent loginID.

- Add the skill to the agent's administered skills on this form.
ACD contact center features

Whenever an outside caller dials the agent’s extension, the communication server looks at the entry in that field to determine the skill for tracking call data.

On page 8 of this Feature-Related System Parameters form, you may specify:

- A Direct Agent Announcement Extension that plays an announcement to Direct Agent callers waiting in queue.
- Amount of delay, in seconds, before the announcement.

You also need to administer a Class of Restriction (COR) for DA calls. COR is covered in the next lesson. Click here to go to that topic now.

Direct Inward Dialing (DID) is administered on the Trunk Group form.

On the second page of the Hunt Group form, consider administering Multiple Call Handling On-Request for this hunt group. This feature will enable agents to see that the incoming call is a DA call and put their current call on hold to answer the DA call.

If there is no answer after a certain number of rings, you may use RONA to redirect the caller to a VDN that points to a vector. You can set up the vector to provide appropriate routing and treatment for the call.

On page 3 of the Hunt Group form, you administer messaging for the Direct Agent hunt group.

That's all. Next, you need to assign this hunt group to agents who need to receive Direct Agent calls.

Considerations

Maximum number of agents

If an agent is assigned to more than one split/skill, each assignment applies to the maximum number of agents. When computing the number of agents measured by BCMS, count one agent as one agent regardless of the number of splits/skills that the agent will be logged into. For CMS sizing, count one agent for each agent in each split/skill measured by CMS; one agent logged into three splits/skills counts as three agents.

Using the Number of Agents System Capacity screen, you can view the Used, Available, and System Limit counts.

MIA across splits/skills

MIA Across Splits/Skills distributes calls more equally to agents with multiple splits/skills. When agents handle a call for one split/skill, they go to the back of all their idle agent lists.

With MIA Across Splits/Skills, agents may not receive calls from all of their splits/skills. If, for example, split 20 has a very short average agent idle time and split 22 has a very long average agent idle time, agents with both of these skills may never become the most-idle for skill 22 because they continuously take calls for split 20.
Automated Call Distribution

Announcements
Announcements can be analog, aux trunk, DS1, or integrated. Integrated announcements use the TN750, TN2501AP, or co-resident announcement board, and queuing is based on whether one of the playback channels is available. When a channel becomes available, any announcements on the board can be accessed, including the announcement already being played. A caller may be in queue for an announcement because a channel is not available, even though that announcement is not being used.

Queues for analog and aux trunk announcements are on a per-announcement basis. You can also install multiple Integrated Announcement boards to allow for more announcements.

If a delay announcement is used, answer supervision is sent to the distant office when the caller is connected to the announcement. Charging for the call, if applicable, begins when answer supervision is returned.

Storing and retrieving messages
Leave Word Calling messages can be stored for an ACD split/skill and retrieved by a split/skill member, a covering user of the split/skill, or a system-wide message retriever. The message retriever must have a telephone display and proper authorization. You can also assign a remote Automatic Message Waiting lamp to an agent telephone to indicate when a message has been stored for the split/skill.

Class of Restriction
Each ACD split/skill and each individual agent is assigned a Class of Restriction (COR). You can use Miscellaneous Restrictions to prohibit selected users from accessing certain splits/skills. You can use Miscellaneous Restrictions or restrictions assigned through the COR to prevent agents from being accessed individually. Unless you administer such restrictions, each agent can be accessed individually as well as through the split/skill.

An agent with origination and termination restriction can receive ACD calls and use the assist function. A telephone in a COR with termination restriction can receive ACD calls.

If you are using Service Observing, administer a COR for observers and agents being observed.

Trunk groups and ACD splits
- If you assign an ACD split extension as the incoming destination of a trunk group and the split extension is later changed, you must also change the incoming destination of the trunk group to a valid extension.
- Calls incoming on a non-DID trunk group can route to an ACD split instead of to an attendant. Calls incoming on any non-DID trunk group can have only one primary destination; therefore, the trunk group must be dedicated to the ACD split or a VDN.
ACD contact center features

- For MEGACOM 800 Service with DNIS over a wink/wink-tie trunk, if all agents are logged out or in AUX work mode, incoming MEGACOM calls receive a busy signal if no coverage path is provided (unlike other automatic-in trunk groups, which receive ringback from the central office).

- CO communication servers usually drop calls that remain unanswered after two to three minutes. Therefore, if an incoming CO call queues to a split without hearing an announcement or music, and the caller hears CO ringback for two to three minutes, the CO drops the call.

Agent considerations

- Agents should not be used for hunt group calls and ACD split/skill calls simultaneously. Otherwise, all calls from one split/skill (either ACD or hunt group) are answered first. For example, if ACD calls are answered first, none of the hunt-group calls are answered until all of the ACD calls are answered.

- Agents with multiappearance phones can receive only one ACD call at a time unless Multiple Call Handling is active. Without MCH, a phone is available for an ACD call only if all call appearances are idle. The agent may, however, receive non-ACD calls while active on an ACD call.

Vector-controlled splits/skills

- You can enhance ACD by using Call Prompting, Call Vectoring and Expert Agent Selection. For detailed information on vector-controlled splits/skills, see the Call Vectoring/EAS book that applies to your system. Vector-controlled splits/skills should not be called directly via the split/skill extension (instead of via a VDN mapped to a vector that terminates the call to a vector controlled split/skill). However, if split/skill extensions are called, the calls do not receive any announcements, are not forwarded or redirected to coverage, and do no intraflow/interflow to another hunt group.

- The oldest-call-waiting termination, which is available with Call Vectoring, is supported for agents who are servicing ACD calls only.

Changing hunt groups from ACD to non-ACD

Before you change a hunt group from ACD to non-ACD, all agents in that hunt group must be logged out. When you change a hunt group from ACD to non-ACD, the system places all agents in that hunt group in busy state. If any phones in the hunt group have an Auxiliary Work button, the button lamp lights. To become available for calls, the agent presses the Auxiliary Work button or dials the Hunt Group Busy Deactivation FAC followed by the hunt-group number.
Interactions

- Attendant Call Waiting – An attendant can originate or extend a call to an ACD split. Attendant Call Waiting cannot be used on such calls. However, such calls can enter the split queue.

- Attendant Intrusion – Attendant Intrusion does not work with ACD split extensions because an ACD extension has many agent extensions. It is not possible to determine which agent extension to intrude upon.

- Automatic Callback – Automatic Callback calls cannot be activated toward an ACD split/skill.

- Call Coverage – Calls can redirect to or from an ACD split/skill. A vector-controlled split/skill cannot be assigned a coverage path.

 If the queue is not full, a call enters the queue when at least one agent is on an ACD call or in ACW mode. Queued calls remain in queue until the Coverage Don't Answer Interval expires before redirecting to coverage. If any split/skill agent becomes available, the call is directed to the agent.

 Calls that redirect on the Don't Answer coverage criterion are reported to BCMS/CMS as intraflowed calls.

 If a call is queued for an ACD split/skill and redirects via Call Coverage directly to an announcement, the call is dropped after the announcement.

 Calls to a split/skill that are directed to an agent do not follow the agent’s call coverage path. If an agent activates Send All Calls it does not affect the distribution of ACD calls. An ACD split/skill call directed to an agent station follows the split/skill call coverage path, once the agent’s Don’t Answer interval is met.

 For a call to an ACD split/skill to be redirected to call coverage on the Busy coverage criterion, one of the following conditions must exist:

 - All agents in the split/skill are active on at least one call appearance and the queue, if there is one, is full.
 - No agents are logged in.
 - All agents are in Auxiliary Work mode.

- Call Forwarding All Calls – Call Forwarding All Calls activated for an individual extension does not affect the extension’s ACD functions.

 When activated for the split/skill extension, calls directed to the split/skill are forwarded from the split/skill. Calls receive no announcements associated with that split/skill (other than a forced first announcement, if administered). The system reports to BCMS/CMS that calls are queued on the split/skill. The system reports to CMS when the call is removed from the queue and forwarded.
Calls can be forwarded to an off-premises destination to activate Intraflow and Interflow. See [Intraflow and Interflow](#) on page 135 for more information.

- **Data Call Setup** – Telephone or data terminal dialing can be used on calls to or from a member of an ACD split/skill.

- **Data Restriction** – If the trunk group used for an ACD call has data restriction activated, agents with Automatic Answer activated do not hear the usual zip tone.

- **DCS (Category A only)** – CMS cannot measure ACD splits/skills on a DCS network as if they were one communication server. Agents for a split/skill must be all on the same communication server. If a call to an ACD split/skill is forwarded to a split/skill at another DCS node, the caller does not hear the forced first announcement at the second split/skill.

If an ACD split/skill is in night service, with a split/skill at second DCS node as the night service destination, a call to the first split/skill is connected to the second split/skill’s first forced announcement.

- **Dial Intercom** – An agent with origination and termination restriction can receive ACD calls and can make and receive dial intercom calls.

- **Hold** – If an agent puts an ACD call on hold, information is reported to the CMS via Personal Call Tracking. CMS records the amount of time the agent actually talks on the call.

- **Individual Attendant Access** – Individual attendant extensions can be assigned to ACD splits. Unlike telephone users, individual attendants can answer ACD calls as long as there is an idle call appearance and no other ACD call is on the console.

- **Internal Automatic Answer (IAA)** – Internal calls directed to an ACD split/skill are eligible for IAA. You cannot administer IAA and ACD Automatic Answer simultaneously on the same station.

- **Intraflow and Interflow** – Intraflow and Interflow, when used with Call Forwarding All Calls or Call Coverage, allows splits/skills to be redirected to other destinations on and outside the system.

- **Multiappearance Preselection and Preference** – All assigned call appearances must be idle before an ACD call is directed to a phone.

- **Night Service – Hunt Group** – When Hunt Group Night Service is activated for a split/skill and the night-service destination is a hunt group, a caller hears the first forced announcement at the original split/skill. The call is redirected to the night-service destination hunt group. If all agents in the hunt group are busy, the caller hears whatever you have assigned.

- **Terminating Extension Group** – A TEG cannot be a member of an ACD split/skill.
Basic Call Management System

Basic Call Management System (BCMS) provides real-time and historical reports to assist you in managing agents, ACD splits/skills (hunt groups), VDNs, and trunk groups. You can display BCMS reports on a terminal or print a paper copy.

BCMS provides the following reports:

- **Real Time Reports**
 - Split/Skill Status
 - System Status
 - VDN Status

- **Historical Reports**
 - Agent
 - Agent Summary
 - Split/Skill
 - Split/Skill Summary
 - Trunk Group
 - Trunk Group Summary
 - VDN
 - VDN Summary

For a detailed description of BCMS and the reports it provides, see *Avaya MultiVantage Call Center Software Basic Call Management System (BCMS) Operations*, 555-230-706.
ACD contact center features

Administering BCMS

The following forms and fields are required to administer the BCMS feature.

Required forms – BCMS feature

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Parameters Customer-Options</td>
<td>Enable the following options:</td>
</tr>
<tr>
<td></td>
<td>● ACD</td>
</tr>
<tr>
<td></td>
<td>● BCMS (Basic)</td>
</tr>
<tr>
<td></td>
<td>● BCMS/Service Level</td>
</tr>
<tr>
<td></td>
<td>● VuStats</td>
</tr>
<tr>
<td>Agent LoginID</td>
<td>When BCMS is being used with EAS, complete all fields for each agent</td>
</tr>
<tr>
<td>BCMS/VuStats Login ID</td>
<td>When BCMS is being used without EAS, enter a Login ID and Name for each agent</td>
</tr>
<tr>
<td>Feature-Related System Parameters</td>
<td>Administer the following options:</td>
</tr>
<tr>
<td></td>
<td>● Minimum Agent-Login Password Length</td>
</tr>
<tr>
<td></td>
<td>● BCMS/VuStats Measurement Interval</td>
</tr>
<tr>
<td></td>
<td>● BCMS/VuStats Abandon Call Timer</td>
</tr>
<tr>
<td></td>
<td>● Validate BCMS/VuStats Login IDs</td>
</tr>
<tr>
<td></td>
<td>● Remove Inactive BCMS/VuStats</td>
</tr>
<tr>
<td></td>
<td>● System Printer Endpoint</td>
</tr>
<tr>
<td></td>
<td>● Lines Per Page</td>
</tr>
<tr>
<td></td>
<td>● EIA Device Bit Rate</td>
</tr>
<tr>
<td>Hunt Groups</td>
<td>Measured Acceptable Service Level</td>
</tr>
<tr>
<td>Trunk Groups</td>
<td>Measured Acceptable Service Level</td>
</tr>
<tr>
<td>Vector Directory Number (VDN)</td>
<td>Measured Acceptable Service Level</td>
</tr>
</tbody>
</table>

All agents should log off before any changes are made to the BCMS/VuStats Login ID form.

Measurements can be turned off for a split/skill while agents are logged in, but agents must be logged off to start measurements for a split/skill.

Interactions

Call redirection and conference calls - For information about how BCMS records redirects and conferences calls, see Avaya MultiVantage Call Center Software Basic Call Management System (BCMS) Operations, 555-230-706.
Move Agents From CMS - If agents are moved from one split/skill to another split/skill via CMS/Supervisor, measurements are stopped for the agent’s “from” split/skill and started for the agent’s “to” split/skill.

If an attempt is made to move an agent from a non-BCMS-measured split/skill to a measured BCMS split/skill via CMS/Supervisor, and the move would exceed the maximum number of measured agents, the communication server rejects the move. Otherwise, internal BCMS measurements are started for the agent. If the agent is moved from a split/skill that is measured by BCMS to a split/skill that is not measured by BCMS via CMS/Supervisor, then internal measurements for the agent stop.

Night Service - When night service is activated for a split/skill, new calls go to the alternate destination. BCMS does not record these calls as OUTFLOW. If the destination is a measured split/skill, BCMS treats the calls as new incoming calls (that is, BCMS does not record them as INFLOW).

System Measurements - The system can simultaneously produce BCMS reports, adjunct CMS reports, and communication server traffic measurements.

Although some of the CMS and BCMS report information is similar, BCMS measurements are not determined in the same way as trunk group and hunt group measurements are reported in CMS. Therefore, representation of data in the two report types is not identical.
Best Service Routing (Category A only)

Best Service Routing (BSR) allows the communication server to compare specified splits/skills, identify the split/skill that will provide the best service to a call, and deliver the call to that resource. If no agents are currently available in that split/skill, the call is queued. To respond to changing conditions and operate more efficiently, BSR monitors the status of the specified resources and adjusts call processing and routing as appropriate.

BSR is available in single and multi-site versions. Single-site BSR compares splits/skills on the local communication server to find the best resource to service a call. Multi-site BSR extends this capability across a network of communication servers, comparing local splits/skills, remote splits/skills, or both, and routing calls to the resource that will provide the best service.

Best Service Routing is summarized in this chapter. For complete information on how to get the most from BSR, see “Best Service Routing” in the *Avaya Communication Manager Contact Center – Call Vectoring and EAS Guide*, 555-233-517.

Benefits of BSR

Both single- and multi-site BSR intelligently compare specific resources to find the one that can best service a call. In addition, multi-site BSR allows you to integrate a network of contact centers for better load balancing and optimal agent utilization. Depending on your specific application, BSR can yield a variety of other benefits:

<table>
<thead>
<tr>
<th>You can benefit by…</th>
<th>As a result of…</th>
</tr>
</thead>
</table>
| Improved customer satisfaction | Lower average speed of answer (ASA), thus more calls handled¹
Greater probability that expert agents will be available for a specific call type (for centers with EAS)
Lower abandonment rate
By balancing the load between locations in a network, BSR reduces extremes in wait times between the locations. |
| Increased revenue | Lower average speed of answer (ASA), thus more calls handled
Lower abandonment rate
Lower network cost
Greater probability that high-revenue generating agents will be available for a specific call type (for centers with Expert Agent Selection) |
Before you start using BSR

For single-site BSR applications, your communication server must meet the requirements shown below (except for LAI). To use multi-site BSR applications, both the communication servers involved and the network connecting them must meet all the requirements described in this section.

<table>
<thead>
<tr>
<th>You can benefit by...</th>
<th>As a result of...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved productivity</td>
<td>Increased agent occupancy rates</td>
</tr>
<tr>
<td></td>
<td>— Improve your service without adding staff, or reduce staff while maintaining your current level of service.</td>
</tr>
<tr>
<td></td>
<td>Faster delivery of interflowed calls</td>
</tr>
<tr>
<td></td>
<td>— Agents at one location in a network are less likely to sit idle while calls wait in queue at another location.</td>
</tr>
<tr>
<td>Increased operating flexibility, easier staffing and scheduling</td>
<td>Larger pool of agents available to take calls in a split/skill</td>
</tr>
<tr>
<td></td>
<td>Spikes in call volume at a single contact center can be distributed across all centers. Temporarily understaffed centers can be supported by the other centers in the network.</td>
</tr>
<tr>
<td>Improved service levels</td>
<td>Lower average speed of answer (ASA), thus more calls handled</td>
</tr>
<tr>
<td>Increased performance</td>
<td>Less messaging and processing required per call</td>
</tr>
<tr>
<td>Operating separate sites as an integrated “virtual contact center”</td>
<td>Ability to compare resources and queue a call to the best one</td>
</tr>
<tr>
<td></td>
<td>Enhanced information forwarding capabilities</td>
</tr>
</tbody>
</table>

1. A location’s ASA may be low because the location is underutilized and agents are frequently sitting idle. When BSR is implemented at such a location, ASA may rise because of the rise in incoming call volume.
CAUTION:
To ensure your network meets the requirements for BSR support presented below, contact your Account Executive about BSR network certification.

Communication server requirements for BSR

Your communication server has to meet all of the requirements shown below to support Best Service Routing. Check the settings shown below before you try to use BSR.

Communication server setting requirements for BSR

<table>
<thead>
<tr>
<th>Form</th>
<th>Page</th>
<th>Field</th>
<th>Must be set to…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Version</td>
<td>1</td>
<td>Memory Resident</td>
<td>G3V6i.03, G3V6r.03, or higher</td>
</tr>
<tr>
<td>System-Parameters Customer-Options¹</td>
<td>1</td>
<td>G3 Version</td>
<td>V6 or higher</td>
</tr>
<tr>
<td>ISDN-BRI Trunks</td>
<td>2</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>ISDN-PRI Trunks²</td>
<td>3</td>
<td>Vectoring (G3V4 Advanced Routing)</td>
<td>Y</td>
</tr>
<tr>
<td>Vectoring (Best Service Routing)</td>
<td>3</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Lookahead Interflow (LAI)³</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Feature-Related System Parameters</td>
<td>8</td>
<td>Adjunct CMS Release</td>
<td>R3V6 or higher, or left blank</td>
</tr>
</tbody>
</table>

1. ISDN connectivity is only necessary if you want to use multi-site BSR. One or both of these fields must be set to “Y.” Multi-site BSR operates over both BRI and PRI trunks.

2. Or H.323 IP trunking. For more information, see [Administering BSR polling over IP without B-Channel](#) on page 100.

3. Look-Ahead Interflow is only necessary if you want to use multi-site BSR. For status poll and interflow calls used in multi-site BSR applications, set up trunks as you would for LAI. See [Look-Ahead Interflow (Category A only)](#) on page 171, for more information. Information Forwarding is not required for polling calls.

Note:
If you begin using BSR and then decide to turn it off, you will not be able to set Vectoring (Best Service Routing) to n until you remove all BSR commands from vectors.
Network requirements for BSR

To support BSR, networks must meet both the criteria for LAI call control operation over switched networks (see ‘Look-Ahead Interflow (Category A only)’ on page 171) and the following criteria:

- The network must support end-to-end transport of codeset 0 user data, either as a User-to-User Information Element (UUI IE) or by QSIG Manufacturer Specific Information (MSI IE), in the ISDN SETUP and DISCONNECT messages. The network must also allow User-to-User Information Elements to be transported in the first call-clearing message prior to answer, while a call is still in the “call proceeding” state. (For more information, see Information Forwarding (Category A only) on page 163.)

With BSR poll calls, the information is forwarded back in the DISCONNECT message. In this case the network must support forwarding of UUI in the first call clearing message prior to the active state (i.e., while still in the call proceeding state).

Private networks can be configured for either QSIG (transport via MSI packaged in a codeset 0 Facility IE) or non-QSIG (transport via a codeset 0 UUI IE). Currently, public networks do not support QSIG and user data can only be transported via the UUI IE when supported by the network. Future public network offerings may support QSIG, possibly by Virtual Private Network.

- The communication server must support the ISDN country protocol.

- The network byte limit for user information contents (the user data portion) must be large enough to carry the data needed for the customer application.

 Note:

 Some public network providers may require service activation and/or fees for user information transport.

 - Response time for ISDN signaling should be fast enough that an entire consider series can execute within a single ring cycle.

Enhanced information forwarding has been tested with several major carriers. To find out if these capabilities work with your carrier, check with your account team for the most current information.

If testing has not been done to verify operation over the public networks involved with the preferred specific configuration, use of private ISDN trunking between the nodes should be assumed until successful testing has been completed.
Administering Single-site BSR

The following forms and fields are required to administer the BSR feature in a single-site configuration.

Required forms – Single-site BSR

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Parameters</td>
<td>• G3 Version</td>
</tr>
<tr>
<td>Customer-Options</td>
<td>• Vectoring (G3V4 Advanced Routing)</td>
</tr>
<tr>
<td></td>
<td>• Vectoring (Best Service Routing)</td>
</tr>
<tr>
<td>Feature-Related System Parameters</td>
<td>• Adjunct CMS Release</td>
</tr>
<tr>
<td>ISDN Numbering - Public/Unknown</td>
<td>• Ext Len</td>
</tr>
<tr>
<td></td>
<td>• Ext Code</td>
</tr>
<tr>
<td></td>
<td>• CPN Prefix</td>
</tr>
<tr>
<td>VDN</td>
<td>• BSR Available Agent Strategy</td>
</tr>
<tr>
<td>Call Vector</td>
<td>• Complete a form for each vector that uses BSR commands</td>
</tr>
</tbody>
</table>

Administering Multi-site BSR

The following forms and fields are required to administer the BSR feature in a single-site configuration.

Required forms – Multisite BSR

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Parameters Customer-Options</td>
<td>G3 Version</td>
</tr>
<tr>
<td></td>
<td>Vectoring (Best Service Routing)</td>
</tr>
<tr>
<td></td>
<td>Vectoring (G3V4 Advanced Routing)</td>
</tr>
<tr>
<td></td>
<td>Lookahead Interflow (LAI)</td>
</tr>
<tr>
<td>Feature-Related System Parameters</td>
<td>Adjunct CMS Release</td>
</tr>
<tr>
<td>Trunk Group (ISDN-BRI)¹</td>
<td>Outgoing Display</td>
</tr>
<tr>
<td></td>
<td>Supplementary Service Protocol</td>
</tr>
<tr>
<td></td>
<td>UUI Treatment</td>
</tr>
<tr>
<td>Trunk Group (ISDN-PRI)</td>
<td>Outgoing Display</td>
</tr>
<tr>
<td></td>
<td>Supplementary Service Protocol</td>
</tr>
<tr>
<td></td>
<td>UUI Treatment</td>
</tr>
<tr>
<td>Best Service Routing Application Plan</td>
<td>Complete one form for each BSR application</td>
</tr>
</tbody>
</table>
Multi-site BSR requires that Look-Ahead Interflow (LAI) be enabled. See Administering LAI on page 171 for a list of required forms and fields. Since BSR can forward information such as VDN name, in-VDN time, and collected digits with interflowed calls, also see Administering User-to-User Information transport on page 163 for instructions.
Administering BSR polling over IP without B-Channel

For MultiVantage software release R11 or later, BSR Polling can be configured so that the use of a B-channel is not required when a polling signal is sent over an H.323 IP trunk. This feature offers the following advantages:

● Improved trunk efficiency – This feature uses QSIG CISC/TSCs (Call Independent Signaling Connections / Temporary Signaling Connections) that send BSR polls over D-channel without associated seizure of a B-channel. This polling strategy allows more trunk bandwidth to be available for other forms of voice or data traffic.

● Reduced hardware requirements – If Voice over IP functionality is not required for the trunk, a IP Media Processor circuit pack (TN2302) is not required. In either case, a C-LAN circuit pack (TN799) is required to support D-Channel signalling.

Note:

BSR polling over IP without B-channel uses non-call associated TSCs.

“Administering BSR polling over IP without B-channel” includes the following topics:

● Prerequisites on page 100

● Administration forms for BSR polling over IP without B-channel on page 101

● Operation on page 106

● Interactions on page 107

Prerequisites

The following prerequisite conditions must be satisfied to enable BSR polling over IP without B-channel.

Software

All locations that use the BSR polling over IP without B-channel feature must use MultiVantage R11 or later. The Call Center version must be V6 or later.

Note:

If the remote communication server does not have R11 installed, the CISC (Call Independent Signalling Connection) SETUP does not start vector processing and the poll operation ends in a timeout, logging a vector event. The next step in the vector is then executed.

IP option

To use the BSR polling over IP without B-channel feature, the IP Trunk Software RTU option must be enabled.

C-LAN connectivity

A C-LAN circuit pack (TN7990) is required for this feature.
Required form administration
To enable BSR polling over IP without B-channel, you must:

● Set up the signalling group for H.323, QSIG, and NCA-TSCs
● Set up the designated trunk group for ISDN and IP, with at least one trunk assigned.

⚠️ Important:
If an IP Media Processor circuit pack is not installed, the Trunk Group Status form indicates the trunk as out-of-service. However, status poll signaling over D-Channel is not affected.

Administration forms for BSR polling over IP without B-channel

The forms that you must administer to enable BSR polling over IP without B-channel are described in the following sections:

● Pattern form on page 101
● Signaling Group form on page 102
● Trunk Group form on page 103
● Feature-Related System Parameters form (ISDN) on page 106

Pattern form

Use the `display route-pattern xx` command (where `xx` is the route pattern used by the trunk group that supports the TSCs) to display the Pattern form. Verify that your administration settings comply with the following requirement:

● In the TSC column, set the value to `y`.

An example route-pattern form that is configured for BSR polling over IP without B-channel is shown below.
Best Service Routing form

- Use the `display best-service-routing xx` command (where `xx` is a BSR application plan number) to display the Best Service Routing form. Verify that your administration settings comply with the following requirement:

 - The **Status Poll VDN** field must specify an AAR or AAS pattern that routes over an IP trunk.

 Important:

 Do not specify a TAC in the **Status Poll VDN** field. If you do so, the poll will route through a B-channel, if one is available.

Signaling Group form

- Use the `display signaling-group xx` command (where `xx` is the signaling group number) to display the Signaling Group form. Verify that your administration settings comply with the following requirements:

 - You must specify the TSC-related fields in the upper-right corner of the field. The relevant fields include:

 - **Max number of NCA TSC:**
 - **Trunk group for NCA TSC:**

 - The **Supplementary Services Protocol** field must be set to `b`.
An example signaling-group form configured for BSR polling over IP without B-channel is shown below.

```plaintext
display signaling-group 32

SIGNALING GROUP

Group Number: 32                  Group Type: h.323
Remote Office? n

Max number of NCA TSC: 10
Max number of CA TSC: 10

Trunk Group for NCA TSC: 32
Trunk Group for Channel Selection: 32
Supplementary Service Protocol: b

Network Call Transfer? n

Near-end Node Name: clan-01D12       Far-end Node Name: cland12-loop
Near-end Listen Port: 1720           Far-end Listen Port: 1720
Far-end Network Region:

LRQ Required? n             Calls Share IP Signaling Connection? y
RRQ Required? n             Bypass If IP Threshold Exceeded? n

Direct IP-IP Audio Connections? y
IP Audio Hairpinning? y
Interworking Message: PROGress
```

Trunk Group form

Use the `display trunk-group xx` command (where `xx` is the signaling group number) to display the Trunk Group form. Verify that your administration settings comply with the requirements listed below each of the following example form pages.

Examples for the key pages in the Pattern form that must be configured for BSR polling over IP without B-channel are shown below.
In the page example shown above, the administrations settings must conform to the following requirements:

- The Group Type field must be set to isdn
- The Carrier Medium field must be set to IP
- The Supplementary Service Protocol field must be set to b
Trunk group — continued

In the page example shown above, the administrations settings must conform to the following requirements:

- The **NCA-TSC Trunk Member** field must specify a trunk group member.

Trunk group — continued

In the page shown above, the administrations settings must conform to the following requirements:

- The group member used to make the BSR status polls (which is also specified in the **NCA-TSC Trunk Member** field on page 2 of this form) must be associated with the appropriate signaling group. The signaling group is specified in the Sig Grp column.
Feature-Related System Parameters form (ISDN)

Use the `change system-parameters feature` command to display the Feature-Related System Parameters form. Verify that your administration settings comply with the following requirements:

- The **QSIG TSC Extension:** field must specify an unassigned extension number that is valid for the dial plan.

An example Feature-Related System Parameters form configured for BSR polling over IP without B-channel is shown below.

<table>
<thead>
<tr>
<th>ISDN PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send Non-ISDN Trunk Group Name as Connected Name? n</td>
</tr>
<tr>
<td>Display Connected Name/Number for ISDN DCS Calls? n</td>
</tr>
<tr>
<td>Send ISDN Trunk Group Name on Tandem Calls? n</td>
</tr>
</tbody>
</table>

QSIG TSC Extension: 3999

MWI - Number of Digits Per Voice Mail Subscriber: 5

- National CPN Prefix:
- International CPN Prefix:
- Pass Prefixed CPN to ASA? n
- Unknown Numbers Considered Internal for AUDIX? n
- USNI Calling Name for Outgoing Calls? n
- Path Replacement with Measurements? y
- Path Replace While in Queue/Vectoring? y

Operation

The BSR polling over IP without B-channel feature is associated with the following operational elements:

- The VDN for the BSR status poll contains a number (AAR/ARS access code plus the remote poll VDN address) that routes over a QSIG trunk group. A TAC can not be used for this purpose.

- When a **consider location** vector step routes a call over the IP trunk group with QSIG signalling, the following is true:
 - A TSC **SETUP** message is sent over emulated D-Channel
 - The **reply-best** data is returned via a TSC **RELEASE** message

- This feature works with tandem trunks, if all trunks in the tandem are configured to meet the requirements described in this section. However, tandem configurations are not recommended for the BSR polling over IP without B-channel feature.
Interactions

The BSR polling over IP without B-channel feature is associated with the following interactions:

- CMS records poll attempts, but not trunk measurements, since no B-Channel trunk facility is used.

- If sufficient trunks are assigned, the trunk group can also be used for H.323 IP voice calls, but an IP Media Processor must be installed.
BSR Detailed description

To use Best Service Routing on a single communication server, you simply use special commands and command elements that are part of the call vectoring language. As a result, BSR for a single location can be easily added to existing vectors without modifying other parts of the communication server.

Multi-site applications work similarly, but additional administration is required. Since steps in a multi-site BSR vector will contact one or more remote locations, you need to define these locations, tell the communication server how to contact each one, and set up VDNs and vectors to handle communications between the sending communication server and each remote communication server.

Three VDN/vector pairs must be used in every multi-site BSR application. The Primary VDN/vector pair, on the sending communication server, contacts the specified remote communication server, collects information, compares the information, and delivers or queues the call to the resource that is likely to provide the best service. Two VDN/vector pairs are needed on each remote communication server. A Status Poll VDN/vector pair provides information about the best resource at its location in response to inquiries from BSR applications on other communication servers. Finally, an Interflow VDN/vector pair is needed to receive and process the calls interflowed from BSR applications on other communication servers.

Call surplus situations

Every BSR application compares a set of predetermined resources (splits/skills) and selects the “best” resource to service the call. In a call surplus situation (no agents available), the best resource is the split/skill with the lowest Expected Wait Time (EWT). For purposes of calculating the best resource in a call surplus situation, BSR allows you to adjust the EWT figure for any split/skill. The actual EWT for calls in queue isn’t changed, of course; only the figure used in the calculations performed by the BSR feature is changed. You don’t have to enter adjustments, but the ability to adjust the EWT for splits/skills allows you to program preferences in vectors. Because of agent expertise, for example, or the availability or cost of tie trunks, you might prefer that some resources not service a call unless doing so significantly decreases the call’s time in queue.

It is possible for you to make adjustments to agent availability using the consider step.

Agent surplus situations

In an agent surplus situation (one or more agents available to take incoming calls), BSR will deliver a new call according to the BSR Available Agent Strategy specified on the VDN form. The “best” resource will be the split/skill that meets the criteria defined by the strategy you’ve chosen for that VDN.
BSR can use any of the five strategies shown in the table below to select an agent when agents are available.

BSR available agent strategies

<table>
<thead>
<tr>
<th>If BSR Available Agent Strategy is set to...</th>
<th>The call will be delivered to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st-found</td>
<td>The first available agent. BSR will not consider any other resources as soon as it finds an available agent.</td>
</tr>
<tr>
<td>ucd-mia</td>
<td>The resource with an agent who has been idle the longest. BSR will compare all the splits/skills specified in the vector before delivering the call.</td>
</tr>
<tr>
<td>ead-mia</td>
<td>The resource with an agent with the highest skill level relevant to the call who has been idle the longest. BSR will compare all the splits/skills specified in the vector before delivering the call.</td>
</tr>
<tr>
<td>ucd-loa</td>
<td>The resource with an least-occupied agent. BSR will compare all the splits/skills specified in the vector before delivering the call.</td>
</tr>
<tr>
<td>ead-loa</td>
<td>The resource with an agent with the highest skill level relevant to the call who is the least occupied. BSR will compare all the splits/skills specified in the vector before delivering the call.</td>
</tr>
</tbody>
</table>

When agents are available in one or more of the specified resources, BSR does not consider resources (local or remote) that return an EWT (call queue/call surplus situation) in selecting the best place to send the call.

Note:

The BSR Available Agent Strategy assigned to a VDN should match the agent selection method used in the splits/skills considered by a BSR application.

The BSR adjust-by value can be used in the agent surplus (agents available) situation. This adjustment provides the ability to use the **consider** step adjustment value to prioritize (handicap) agent resources when agents are available.

When the adjustment is used, the **consider** step uses the following syntax:

```
consider split/location adjust-by x
```

The communication server applies the agent adjustment in the same manner as the calls in queue/call surplus (lowest EWT) situation.

To select an adjustment, think in terms of reducing the importance of a resource/site and in relative percentage — the higher the adjustment, the less desirable it is to pick that agent/site. So, if x = 30, then the agent/site is 30% less desirable.
ACD contact center features

The available agent adjustment applies to the UCD-MIA, UCD-LOA, EAD-MIA, and EAD-LOA call distribution methods. For the most idle agent distribution methods, the adjust-by lowers the idle time value returned by the agent/site. For the least occupied agent distribution methods, the adjust-by raises the returned occupancy level of the agent/site. In either case, with EAD, the MIA or LOA is used as a tie breaker if more than one site has an agent available with the same highest skill level.

The same adjust-by value in the consider step applies to both agent surplus and call surplus situations.

Vector commands for single-site BSR

The following table shows the vector commands and command elements used in single-site BSR applications.

Vector commands and usage for single-site BSR

<table>
<thead>
<tr>
<th>Commands and command elements</th>
<th>Use this …</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commands</td>
<td>to obtain the Expected Wait Time or agent data needed to identify the best local resource. One consider step must be written for each split/skill you want to check.¹</td>
</tr>
<tr>
<td>consider split/skill</td>
<td>with the best keyword to queue calls to the best resource identified by the consider sequence.</td>
</tr>
<tr>
<td>queue-to</td>
<td>with the best keyword to queue calls to the best resource identified by the consider sequence if the resource meets certain conditions.</td>
</tr>
<tr>
<td>check</td>
<td></td>
</tr>
<tr>
<td>Key word</td>
<td>in queue-to, check, and goto commands that refer to the resource identified as best by a series of consider steps</td>
</tr>
<tr>
<td>best</td>
<td></td>
</tr>
</tbody>
</table>
Conditional

wait-improved
to prevent calls from being queued to an additional split/skill when the reduction in Expected Wait Time isn’t enough to be useful. “Wait improved” means that a call’s EWT must be improved by a specific amount (a figure you specify in seconds) over its current EWT or the communication server will not queue it to the additional split/skill.

User adjustment

adjust-by
to specify your preferences for the splits/skills that might handle the calls for a particular application, reflecting factors such as agent expertise or reducing calls to a backup split/skill. When a vector considers a local resource you can make the selection of that split/skill less desirable. The higher the setting, the less chance that resource will be selected over another with a lower setting (for example, set to 30 makes that choice 30% less desirable). With EWT returned, the setting increases the returned expected wait time for comparison with other returned EWTs. As a result, this split/skill is less likely to service the call unless its EWT is significantly less than that of any other available split/skill.

Optionally, the adjust-by setting applies in the available agent case. If you are using the UCD-MIA or EAD-MIA available agent strategy, the setting decreases the returned agent idle time, making the agent appear less idle (busier). If you are using the UCD-LOA or EAD-LOA available agent strategy, the setting increases the returned agent occupancy, making the agent appear more occupied (busier). In either case with EAD, the MIA or the LOA is used as a tie breaker if more than one site has an agent available with the same highest skill level.

1. Since the consider command is designed to compare two or more resources, consider commands are typically written in sequences of two or more with the sequence terminating in a queue-to best step. This set of consider commands and a queue-to best step is called a consider series.
Vector commands for multi-site BSR

The following table summarizes the vector commands and command elements that support multi-site BSR applications.

Vector commands and usage for multi-site BSR

<table>
<thead>
<tr>
<th>Commands and command elements</th>
<th>Use this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commands</td>
<td></td>
</tr>
<tr>
<td>consider split/skill</td>
<td>to obtain the Expected Wait Time or agent data needed to identify the best local resource. One consider step must be written for each split/skill you want to check.¹</td>
</tr>
<tr>
<td>consider location</td>
<td>to obtain the Expected Wait Time or agent data needed to identify the best resource at a remote communication server. One consider step must be written for each location you want to check. Routing information is obtained from the BSR Application plan for the active VDN.</td>
</tr>
<tr>
<td>reply-best</td>
<td>to return data to another communication server in response to a status poll</td>
</tr>
<tr>
<td>queue-to</td>
<td>with the best keyword to queue calls to the best resource identified by the consider sequence.</td>
</tr>
<tr>
<td>check</td>
<td>with the best keyword to queue calls to the best resource identified by the consider sequence if the resource meets certain conditions.</td>
</tr>
<tr>
<td>Key word</td>
<td></td>
</tr>
<tr>
<td>best</td>
<td>in queue-to, check, and goto commands that refer to the resource identified as best by a series of consider steps</td>
</tr>
</tbody>
</table>
Vector commands and usage for multi-site BSR (continued)

<table>
<thead>
<tr>
<th>Commands and command elements</th>
<th>Use this…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditional</td>
<td>wait-improved</td>
</tr>
<tr>
<td>User adjustment</td>
<td>adjust-by</td>
</tr>
</tbody>
</table>

1. Since the `consider` command is designed to compare two or more resources, `consider` commands are typically written in sequences of two or more with the sequence terminating in a `queue-to best` step. This set of `consider` commands and a `queue-to best` step is called a consider series.

Considerations

- If one or more of the resources considered have an available agent, the resources with EWT are ignored. This is the “agent surplus” situation.
- If the available agent strategy (assigned to the active VDN) is 1st-found, the adjust-by is ignored and the first `consider` with an available agent is used for the queue-to best.
- If the available agent strategy is UCD-MIA, EAD-MIA, UCD-LOA, or EAD-LOA and there is more than one `consider` step with an available agent, then adjust-by is applied as part of the algorithm to select the “best” of the possible choices.
ACD contact center features

Interactions

Agent Telephone Display
If collected digits are forwarded with an interflowed call, the forwarded digits are displayed on the answering agent’s telephone display (unless they’re overridden with newly collected digits).

Best Service Routing (BSR)/LAI
Restrictions and interactions that apply to LAI also apply to BSR status poll and interflow calls. See the Avaya Communication Manager Contact Center – Call Vectoring and EAS Guide, 555-233-517, or Look-Ahead Interflow (Category A only) on page 171 for more information.

BCMS
BCMS does not report accumulated in-VDN time. BCMS does not log LAI attempts and therefore will not log BSR status polls, which are treated as LAI attempts.

Call Vectoring
The following considerations apply to ALL vectors when BSR is enabled on your communication server.

Call Vectoring considerations when BSR is enabled.

<table>
<thead>
<tr>
<th>route-to VDN</th>
<th>If a call is routed to a new VDN, any “best” resource data defined by a series of consider steps in the previous VDN will be initialized (cleared)</th>
</tr>
</thead>
<tbody>
<tr>
<td>goto vector</td>
<td>If a goto vector command is executed, any “best” resource data produced by a series of consider steps in the original VDN will remain with the call and can be used in the subsequent vector.</td>
</tr>
</tbody>
</table>
| consider | ● Do not use other commands within a series of consider steps, since these may delay the execution of the series.
 ● Splits/skills used in consider commands must be vector controlled. |
Direct Department Calling

BSR will function when the considered splits use DDC call distribution. Once the best resource is determined, the actual call distribution will follow the split’s DDC setting regardless of the BSR Available Agent Strategy. DDC may not be used as a BSR Available Agent Strategy.

Distributed Networking via QSIG Manufacturers Specific Information (MSI)

BSR will not function with systems from other vendors (unless that vendor develops a corresponding capability that works with the Avaya communication server).

Expert Agent Selection

EAS is required to use the EAD-MIA or EAD-LOA Available Agent Strategy. EAS VDN skills (1st, 2nd, 3rd) can be used in consider skill commands.

Facility Restriction Levels

The FRL applies to status poll and interflow calls in the same way it works with the route-to number command.
ACD contact center features

ISDN

Best Service Routing and globally supported information transport are fully functional over ISDN PRI or ISDN BRI trunking facilities.

Note:

ATM trunking and IP trunking can be set up to emulate ISDN PRI. For information on setting this up, see Administration for Network Connectivity for Avaya Communication Manager, 555-233-504, and ATM Installation, Upgrades and Administration using Avaya Communication Manager, 555-233-124.

Look Ahead Routing (LAR) - BSR incompatibility

Look Ahead Routing (LAR) and BSR are incompatible. If a trunk is not available at the site being polled, an alternative route (as a secondary route via an ARS pattern) can be used to poll, assuming there is a secondary route available that supports transporting shared UUI in the DISconnect message. This does not use LAR. If no route is available for polling when a consider location step is executed, then BSR processing handles the situation and after a period of 30 seconds, subsequent calls will try to poll that location again.

The use of alternative routes for polling only works if there are alternative routes for the interflow path, regardless of whether LAR or BSR is in use.

Multi-Split/Skill Queuing

A call may be queued up to 3 times by queue-to or check commands in the same vector. One vector may therefore contain up to 3 series of consider steps. Each series must be followed by a queue-to best step. Each consider series will select the best remote resource from the options you specify and queue the call to that resource.

BSR can only queue simultaneously on the origin communication server. BSR gives up control of a call once it queues the call at a remote resource.

Network Access

BSR operates over public, private, or virtual private (for example, SDN) ISDN-BRI and -PRI networks that meet the criteria explained in Network requirements for BSR on page 97. Best Service Routing requires that the network support transport of user-to-user data via MSI or UUI as a codeset 0 Information Element. The numbers administered on the BSR Application Plan form are expected to access VDNs via ISDN trunks.

Administration or call processing will not prevent access to other types of routing numbers, but BSR is only intended to support the types of applications described in this section. Attempts to use the BSR feature for any other purposes may not work.
Operating Support System Interface (OSSI)

The new administration commands, conditionals, keywords and forms are available via OSSI.

Path Replacement for QSIG/DCS ISDN Calls

For calls that are waiting in queue or in vector processing, even if the call is not connected to an answering user, path replacement can be attempted to find a more optimal path for this call. This results in more efficient use of the trunk facilities.

The QSIG ISDN or DCS ISDN trunk path-replacement operation can be triggered for ACD calls by the Look-Ahead Interflow route-to number vector step, BSR queue-to best vector step, and the Adjunct Routing vector steps.

For more information on path replacement, see the Avaya Communication Manager Contact Center – Call Vectoring and EAS Guide, 555-233-517.

QSIG

LAI, BSR, and information forwarding function over QSIG trunk facilities if the remote locations are Avaya communication servers.

Redirection on No Answer (RONA)

Calls redirected to a VDN by RONA can be subsequently processed and BSR or LAI applications. When the RONA feature redirects a call to a VDN, any best resource data defined in a previous vector will be initialized (cleared).

Service Observing

You can observe a call in BSR or LAI processing as long as the call is still connected through the local communication server. All current restrictions on Service Observing still apply.

Transfer

If a call is transferred to a VDN, any best resource data defined in previous vector processing will be initialized (cleared). Transferred calls do not forward any of the information that is forwarded with interflows (previously collected digits, In-VDN time, etc.).

Trunk Access Code (TAC)

Use of routing numbers (status poll or interflow) that utilize TACs is not recommended since the required in-band outpulsing slows the setup operation significantly.
VDN Override

VDN Override applies to the BSR Application Number and the Available Agent Strategy option assigned on the VDN form. It also applies to the VDN name forwarded via Information Forwarding. When a consider step is executed, the application number and available agent strategy assigned to the active VDN for the call will be used.

VDN Return Destination

The best resource data for a call is initialized when the call first leaves vector processing and therefore will not be available should the call return to vector processing.

VuStats

No enhancements have been added for BSR.
Call Management System (Category A only)

Call Management System (CMS) allows you to collect and monitor ACD facilities and personnel. You can create reports on the status of agents, splits/skills, trunks, vectors, and vector directory numbers. You can view and store historical CMS reports, view real-time reports, and view integrated reports at a terminal or PC.

Unlike Basic Call Management System (BCMS), the CMS resides on an adjunct computer that connects to the communication server via a data link. See Typical ACD Arrangement on page 78 for a graphic illustration of a typical ACD CMS configuration.

Administering the communication server-to-CMS interface

For detailed information on administering the interface between the communication server and the CMS, refer to Avaya CMS Switch Connections, Administration and Troubleshooting, 585-215-876.

Enabling CMS measurements

The following forms and fields are required to enable CMS measurements:

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunt Group</td>
<td>● Measured</td>
</tr>
<tr>
<td>Trunk Group (All)</td>
<td>● Measured</td>
</tr>
<tr>
<td>Vector Directory Number (VDN)</td>
<td>● Measured</td>
</tr>
</tbody>
</table>

Measured extensions and multiple splits

Using the Hunt Group form, you can assign an agent extension to as many splits as desired. Multiple split assignments are commonly used in either or both of the following scenarios:

- Agents log into multiple splits
- There are multiple agent shifts that use the same phone sets
Each extension-split assignment requires additional storage in CMS. Therefore, assigning extensions to multiple splits can quickly consume agent storage capacity on CMS. For example, if you assign 50 agent extensions to six splits, the communication server sends 300 extension-split assignments to the CMS. In this case, CMS creates space in real-time data storage for 300 agent splits, even if the number of agents logged in is less than 100.

When assignments exceed capacity

The maximum number of agent-split configurations CMS can measure is specified in the Data Storage Allocation window. If the allocated number is less than the split-extension assignments that CMS receives from the communication server, the link between the communication server and CMS fails to come up. For example, if 400 measured agent-split configurations are allocated in CMS, but the communication server has 450 split-extension assignments, the link fails to come up.

Assignments are not logins

In a non-EAS environment, a distinction is drawn between the number of agent extensions assigned to multiple splits and the number of agents logged into multiple splits. Even if an agent extension is assigned to six splits, the agent can be logged into only three splits simultaneously. CMS always creates space in real-time data storage for six agent-split pairs (one for each split), even though the agent is not simultaneously logged into all six splits.

In a standard EAS environment, the agent can log in to a maximum of four skills. In an EAS-PHD environment, the agent can log in to a maximum of 20 skills. However, the agent can be assigned to many more skills.

Measured trunks versus unmeasured facilities

CMS requires data allocation for unmeasured facilities trunk data. Unmeasured facilities are not actual trunks, but are tracking records on the CMS.

Unmeasured facilities on CMS are required for:

- Internal calls (intracommunication server) to a measured split or agent
- Internal calls to VDNs
- Calls made by agents to internal destinations or on an unmeasured facility group
- Transfers and conferences until the transfer/conference is complete.
Determining allocation of measured trunks and unmeasured facilities

Maximum values for measured trunks and unmeasured trunk facilities are specified for each ACD in the CMS Data Storage Allocation window. For CMS release R3V11, the total capacity for measured trunks and unmeasured facilities across all ACDs is 40000.

The recommended assignment of unmeasured facilities per ACD is 25% of the total number of trunks that are allocated for the ACD. However, the number of unmeasured trunk facilities that you choose to allocate for a particular ACD may vary according to the nature of your contact center operations.

Considerations for administering the communication server-to-CMS interface

You must consider the following factors when administering the communication server-to-CMS interface.

CMS measurements

CMS measurements may be inaccurate on calls to splits that intraflow to the attendant group.

IP Trunk Groups and ATM Trunk Groups

External IP trunk number identifier (Port ID) information is sent from the communication server to the CMS. Two types of messages can send information about single trunk group members and about status changes (from measured to unmeasured, or from unmeasured to measured via CMS) of trunk group members.

When IP trunk groups are administered on the communication server, the cabinet location of the associated C-LAN board is determined for each IP trunk group member. When message information is reported to the CMS, the location-id is copied into the message. as a number in the range of 1 through 400 in the circuit field of the messages sent to CMS. For example, an IP trunk member with a port-id of T00001 is displayed on CMS as 00000001, and an IP trunk member with port-id of T00400 will be displayed on CMS as 0000400.

CMS representation of IP trunk member port-ids

To display IP trunk member port-ids to the CMS, the circuit field accommodates a number in the range from 1 to 511. To report an IP trunk member number in the range of 1 to 5000 requires the use of both the slot field in the message and the circuit field.
ACD contact center features

Use the following table to correlate IP trunk member port IDs on the communication server and CMS:

<table>
<thead>
<tr>
<th>IP trunk member port ID</th>
<th>communication server representation</th>
<th>CMS representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>T00001 through 100499</td>
<td>0000001 through 0000499</td>
<td></td>
</tr>
<tr>
<td>T00500 through T00999</td>
<td>0001000 through 0001499</td>
<td></td>
</tr>
<tr>
<td>T01000 through T01499</td>
<td>0002000 through 0002499</td>
<td></td>
</tr>
<tr>
<td>T01500 through T01999</td>
<td>0003000 through 0003499</td>
<td></td>
</tr>
<tr>
<td>T02000 through T02499</td>
<td>0004000 through 0004499</td>
<td></td>
</tr>
<tr>
<td>T02500 through T02999</td>
<td>0005000 through 0005499</td>
<td></td>
</tr>
<tr>
<td>T03000 through T03499</td>
<td>0006000 through 0006499</td>
<td></td>
</tr>
<tr>
<td>T03500 through T03999</td>
<td>0007000 through 0007499</td>
<td></td>
</tr>
<tr>
<td>T04000</td>
<td>0008000</td>
<td></td>
</tr>
</tbody>
</table>

Display of physical (non-IP) member port-IDs on Avaya CMS and CMS Supervisor

Port IDs for IP trunks that terminate on a G700 Media Gateway are displayed in a different format than that used for normal port network equipment locations on other Communication Manager systems. This difference is also reflected in the way that G700 port IDs are listed in CMS and CMS Supervisor.
The following table compares the standard equipment format for port IDs to the G700 format.

Port network trunk equipment location formats on Avaya communication servers.

<table>
<thead>
<tr>
<th>Regular port network trunk equipment location format</th>
<th>G700-terminated trunk equipment location format</th>
</tr>
</thead>
<tbody>
<tr>
<td>bbXssccc</td>
<td>gggVscc</td>
</tr>
<tr>
<td>where:</td>
<td>where:</td>
</tr>
<tr>
<td>bb = cabinet (1-64)</td>
<td>ggg = gateway (replaces cabinet) (1-250)</td>
</tr>
<tr>
<td>X = carrier (A-E)</td>
<td>v = indicates G700 gateway (replaces carrier)</td>
</tr>
<tr>
<td>ss = slot (1-25)</td>
<td>s = slot (1-4)</td>
</tr>
<tr>
<td>ccc = circuit (1-256)</td>
<td>cc = circuit (1-32)</td>
</tr>
</tbody>
</table>

In CMS reports, G700-terminated trunk equipment locations are displayed in a slightly different format than that displayed on other Avaya communication servers.

Starting with CMS R3V8, the trunk equipment location is shown as a fixed 8-character format, as follows:

- The gateway number will always show as 2-digits (the leading digit shown in the communication server display is dropped by CMS).

Note:

Although Communication Manager 1.2 (and later) supports a maximum of 99 gateways, the numerical designation assigned to a gateway can be any number from 1 to 250. For gateway numbers that are greater than 99 the leading (“hundred”) digit of the gateway number is shown as the leading (“tens”) digit in the slot number. Therefore, the following rules apply to display of slot numbers for G-700-terminated trunk equipment on CMS and CMS Supervisor:

- For gateways 1-99, slot numbers range from 01 to 04.
- For gateways 100-199, slot numbers range from 11 to 14.
- For gateways 200-250, slot numbers range from 21 to 24.

- The carrier number shows as the number 7 (CMS versions earlier than R3V11ag) or the letter V (CMS version R3V11ag or later), followed by two digits (01-04) for the slot number.
- The circuit number shows as 3 digits (001-032).
ACD contact center features

Based on the format rules shown above, the following table shows how G700-terminated trunk equipment location formats are listed on Avaya communication servers and different CMS systems.

G-700 port ID representations on communication servers, CMS and CMS Supervisor

<table>
<thead>
<tr>
<th>Avaya communication server</th>
<th>On CMS (pre-R3V11ag) and CMS Supervisor (pre-R3V11FJ.04)</th>
<th>On CMS (R3V11ag or later) and CMS Supervisor (R3V11FJ.04 or later)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1: gateway=12, slot number=2, circuit number=16</td>
<td>012V116</td>
<td>12V02016</td>
</tr>
<tr>
<td></td>
<td>12702016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12V02016</td>
<td></td>
</tr>
<tr>
<td>Example 2: gateway=130, slot number=2, circuit number=16</td>
<td>130V216</td>
<td>30V12016</td>
</tr>
<tr>
<td></td>
<td>30702016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30V12016</td>
<td></td>
</tr>
<tr>
<td>Example 1: gateway=240, slot number=2, circuit number=16</td>
<td>240V216</td>
<td>40V22016</td>
</tr>
<tr>
<td></td>
<td>40722016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40V22016</td>
<td></td>
</tr>
</tbody>
</table>
Call Prompting

The guide contains information that is critical to the effective and efficient use of this feature. For more information about Call Prompting, see Avaya Communication Manager Contact Center – Call Vectoring and EAS Guide, 555-233-517.

Call Prompting uses specialized vector commands to process incoming calls based on information collected from the caller or from an ISDN-PRI message. It can be used in various applications to better handle incoming calls. The following list gives a brief description of some Call Prompting applications.

- Automated Attendant — Allows the caller to enter the extension of the party that he or she would like to reach. The call is routed to that extension.
- Data In/Voice Answer (DIVA) Capability — Allows the caller to hear an announcement based on the digits that he or she enters, or to be directed to a hunt group or another system extension.
- Data Collection — Allows the caller to enter data that can be used by a host/adjunct to assist in call handling. This data, for example, may be the caller’s account number.
- CINFO (Caller Information Forwarding) Routing (Category A only) — Allows a call to be routed based on digits supplied by the network in an ISDN-PRI message.
- Message Collection — Gives the caller the option of leaving a message or waiting in queue for an agent.

Administering call prompting

The following forms and fields are required to administer the Call Prompting feature.

Required forms — Call Prompting feature

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Parameters Customer-Options</td>
<td>Vectoring (Prompting)</td>
</tr>
<tr>
<td></td>
<td>Vectoring (CINFO) (Category A only)</td>
</tr>
<tr>
<td></td>
<td>ISDN-PRI — for CINFO only</td>
</tr>
<tr>
<td></td>
<td>This form describes other vectoring options that may be required depending upon the application.</td>
</tr>
<tr>
<td>Feature-Related System Parameters</td>
<td>Prompting Timeout</td>
</tr>
<tr>
<td>Vector Directory Number</td>
<td>All</td>
</tr>
</tbody>
</table>
ACD contact center features

Required forms (continued) – Call Prompting feature (continued)

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Announcements/Audio Sources</td>
<td>Complete all fields for each extension that provides a Call Prompting announcement</td>
</tr>
<tr>
<td>Hunt Group</td>
<td>Vector</td>
</tr>
<tr>
<td>Call Vector</td>
<td>Complete a form for each Call Prompting vector</td>
</tr>
<tr>
<td>Station (multi-appearance)</td>
<td>Button/Feature Button Assignments - callr-info</td>
</tr>
<tr>
<td>Attendant Console</td>
<td>Feature Button Assignments - callr-info</td>
</tr>
</tbody>
</table>

If Vectoring (Basic) is not enabled on the System-Parameters Customer-Options form, the Call Prompting feature cannot queue calls or make conditional checks based on queue or agent status, time of day, or day of week.

CINFO requires the AT&T Intelligent Call Processing (ICP) service, ISDN-PRI, and Vectoring (Prompting).

You can administer any display-equipped phone or attendant console with a Caller Information CALLR-INFO button. The button displays digits collected for the last `collect digits` command.

You must have Call Vectoring software for CMS to use Call Prompting (with or without Call Vectoring) with CMS.

Considerations

Call prompting, with the exception of CINFO, competes with several features for ports on the call classifier - detector circuit pack or equivalent.

Interactions

The following interactions apply specifically to Call Prompting. For general Call Vectoring interactions that may affect Call Prompting applications see [Call Vectoring](#) on page 128.

Authorization Codes

If authorization codes are enabled, and a `route-to` command in a prompting vector accesses AAR or ARS, if the VDN’s FRL does not have the permission to use the chosen routing preference, then the system does not prompt for an authorization code and the `route-to` command fails.
CallVisor ASAI (Category A only)

ASAI-provided digits can be collected by the Call Vectoring feature via the `collect` vector command as dial-ahead digits. CINFO is passed to CallVisor ASAI.

Hold

With the exception of CINFO, if a call is put on hold during the processing of a `collect` command, the command restarts, beginning with the announcement prompt, when the call is taken off hold. All dialed-ahead digits are lost. Similarly, if a call to a vector is put on hold, vector processing is suspended when a `collect` command is encountered. When the call becomes active, the `collect` command resumes.

Inbound Call Management (ICM) (Category A only)

You can use Call Prompting to collect information that may later be used by an adjunct to handle a call.

Transfer

If a call to a VDN is transferred during a `collect` command, the `collect` command restarts when the transfer is complete, and all dialed-ahead digits are lost. Similarly, if a call to a vector is transferred, vector processing is suspended when a `collect` command is encountered. When the transfer is complete, the `collect` command resumes. This is not true when a `collect` command collects CINFO digits. In this case vector processing is not suspended. Attendant extended calls do suspend vector processing in the same way as transferred calls.
Call Vectoring

Call Vectoring processes incoming and internal calls according to a programmed set of commands. These commands, called vector commands, determine the type of processing that calls receive. For example, vector commands can direct calls to on-premise or off-premise destinations, to any hunt group, split/skill, or to a specific call treatment such as an announcement, forced disconnect, forced busy, or delay. Vectors can queue or route calls based on a variety of different conditions.

There are many different applications for Call Vectoring. However, it primarily is used to handle the call activity of ACD splits/skills.

For more information about administering call vectoring, see Best Service Routing (Category A only) on page 94, Network Call Redirection (NCR) (Category A only) on page 183, and Look-Ahead Interflow (Category A only) on page 171.

Depending on your system, see one of the following documents for a detailed description of Call Vectoring: Avaya Communication Manager Contact Center – Call Vectoring and EAS Guide, 555-233-517, or Avaya MultiVantage Call Center – Call Vectoring Guide for BCS and Guestworks, 555-233-518.

Administering Call Vectoring

The following forms and fields are required to administer the Call Vectoring feature.

Note:

Do not change a vector while it is processing calls since calls already in the vector could experience problems. Instead, add a new vector and change the VDN to point to the new vector.
Required forms – Call Vectoring

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Parameters Customer-Options</td>
<td>● Vectoring (Basic)</td>
</tr>
<tr>
<td></td>
<td>● Vectoring (G3V4 Enhanced) (Category A only)</td>
</tr>
<tr>
<td></td>
<td>● Vectoring (G3V4 Advanced Routing) (Category A only)</td>
</tr>
<tr>
<td></td>
<td>● Vectoring (ANI/II-Digits Routing) (Category A only)</td>
</tr>
<tr>
<td></td>
<td>● Vectoring (Attendant Vectoring)</td>
</tr>
<tr>
<td></td>
<td>● Vectoring (Holiday Vectoring)</td>
</tr>
<tr>
<td>Vector Directory Number</td>
<td>● All</td>
</tr>
<tr>
<td>Announcements/Audio Sources</td>
<td>● Complete all fields for each extension that provides a vectoring announcement</td>
</tr>
<tr>
<td>Hunt Group</td>
<td>● Vector</td>
</tr>
<tr>
<td></td>
<td>● ACD</td>
</tr>
<tr>
<td>Call Vector</td>
<td>● Complete a form for each vector</td>
</tr>
<tr>
<td>Feature-Related System Parameters</td>
<td>● Vector Disconnect Timer</td>
</tr>
<tr>
<td></td>
<td>● Music/Tone on Hold</td>
</tr>
<tr>
<td></td>
<td>● Port</td>
</tr>
<tr>
<td></td>
<td>● Music (or Silence) on Transferred Trunk Calls</td>
</tr>
<tr>
<td>Vector Routing Table</td>
<td>● All</td>
</tr>
<tr>
<td>Holiday Table</td>
<td>● All</td>
</tr>
</tbody>
</table>

Fields that do not allow VDN extensions

You cannot enter a VDN extension in the fields listed in the following table.

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Announcements/Audio Sources</td>
<td>● Extension Number</td>
</tr>
<tr>
<td>Call Coverage Answer Group</td>
<td>● Group Member Assignments</td>
</tr>
</tbody>
</table>
Fields that do not allow a VDN extension. (continued)

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Coverage Paths</td>
<td>● Coverage Point Assignments, other than the last coverage point</td>
</tr>
<tr>
<td>Console Parameters</td>
<td>● CAS Back-up Extension</td>
</tr>
<tr>
<td>Feature-Related System Parameters</td>
<td>● ACA Long Holding Time Originating Extension</td>
</tr>
<tr>
<td></td>
<td>● ACA Short Holding Time Originating Extension</td>
</tr>
<tr>
<td></td>
<td>● Extensions With System wide Retrieval Permission</td>
</tr>
<tr>
<td></td>
<td>● Controlled Outward Restriction Intercept Treatment</td>
</tr>
<tr>
<td></td>
<td>● Controlled Termination Restriction (Do Not Disturb)</td>
</tr>
<tr>
<td></td>
<td>● Controlled Station-to-Station Restriction</td>
</tr>
<tr>
<td>Hospitality</td>
<td>● Extension of PMS Log Printer</td>
</tr>
<tr>
<td></td>
<td>● Extension of Journal/Schedule Printer</td>
</tr>
<tr>
<td></td>
<td>● Extension of PMS</td>
</tr>
<tr>
<td></td>
<td>● Extension to Receive Failed Wakeup LWC Messages</td>
</tr>
<tr>
<td>Hunt Group and Agent LoginID with EAS</td>
<td>● Supervisor Extension</td>
</tr>
<tr>
<td></td>
<td>● Member Extensions</td>
</tr>
<tr>
<td>Intercom Group</td>
<td>● Member Extensions</td>
</tr>
<tr>
<td>Listed Directory Numbers</td>
<td>● LDN Extensions</td>
</tr>
<tr>
<td>Loudspeaker Paging and Code Calling Access</td>
<td>● Extension Numbers Assigned to Codes</td>
</tr>
<tr>
<td>Pickup Groups</td>
<td>● Member Extensions</td>
</tr>
<tr>
<td>Remote Access</td>
<td>● Remote Access Extension</td>
</tr>
<tr>
<td>Station Forms</td>
<td>● Hunt to Station</td>
</tr>
<tr>
<td>Terminating Extension Group</td>
<td>● Member Extensions</td>
</tr>
</tbody>
</table>

Fields that do not allow a VDN extension. (continued)
Fields that allow VDN extensions
You can enter a VDN extension in the following fields.

Fields that do allow a VDN extension

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviated Dialing Lists</td>
<td></td>
</tr>
<tr>
<td>Call Coverage Paths</td>
<td>● allow it as the last coverage point only</td>
</tr>
<tr>
<td>Hunt Group</td>
<td>● Night Destination</td>
</tr>
<tr>
<td>Listed Directory Numbers</td>
<td>● Night Destination</td>
</tr>
<tr>
<td>Trunk Groups</td>
<td>● Night Destination ● Incoming Destination</td>
</tr>
</tbody>
</table>

You cannot enter a VDN extension as auxiliary data for the following buttons:
● Bridged Appearance (brdg-app)
● Data Call Setup (data-ext)
You can enter a VDN extension as auxiliary data for the following buttons:
● Remote Message Waiting Indicator (aut-msg-wt)
● Facility Busy Indication (busy-ind)
● Manual Message Waiting (man-msg-wt)
● Manual Signaling (signal)

Interactions

AP Demand Print
A VDN cannot be used as an argument to the feature access code for AP Demand Print.

Attendant Control of Trunk Group Access
If a route-to step in a vector dials a controlled trunk group, vector processing continues at the next step.

Attendant Recall
Attendant Recall to a VDN is blocked.
AUDIX Interface

A `route-to` step in a vector may call the AUDIX extension. If a voice port can be seized to that adjunct, vector processing is terminated. The system sends a message to AUDIX requesting retrieval of messages for the originating extension (not the VDN).

AUDIX may also be accessed by the `queue-to split` and `check split` commands. Also, the messaging step may use an AUDIX hunt group in its operation.

Authorization Codes

If authorization codes are enabled, and if a `route-to` command in a prompting vector accesses AAR or ARS and the VDN’s FRL does not have the permission to utilize the chosen routing preference, then no authorization code is prompted for and the `route-to` command fails.

Automatic Alternate Routing (AAR)/Automatic Route Selection (ARS)

Any `route-to` command in a vector can dial an AAR/ARS FAC followed by other digits. It cannot dial only the FAC.

Automatic Callback

Automatic Callback cannot be used for calls placed to a VDN.

Bridged Call Appearance

VDN extensions cannot be assigned to bridged appearance buttons. A `route-to` command to an extension with bridged appearances updates bridged appearance button lamps.

Busy Verification – Terminals, Trunks

Busy verification of VDNs is denied and intercept tone is returned.

Call Coverage

A VDN may be administered as the last point in a coverage path.

Call Forwarding

Calls can be forwarded to a VDN. Calls placed by a `route-to` command to an extension that has call forwarding activated are forwarded.

An attendant or phone with console permission cannot activation/deactivation call forwarding for a VDN.

An attendant or phone with console permission cannot activation/deactivation call forwarding for a vector-controlled hunt group.
Call Vectoring

Call Detail Recording
You can administer the Feature Related System Parameters form so that the VDN extension is used in place of the Hunt Group or Agent extension. This overrides the “Call to Hunt Group - Record” option of CDR for Call Vectoring calls.

If a vector interacts with an extension or group that has Call Forwarding All Calls active, normal Call Forwarding/CDR interactions apply.

For incoming calls to a VDN, the duration of the call is recorded from the time answer supervision is returned.

If answer supervision is returned by the vector, and the call never goes to another extension, then the VDN extension is recorded as the called number in the CDR record.

If the call terminates to a hunt group, then the VDN, hunt group, or agent extension is recorded as the called number as per the administration described above.

If the call terminates to a trunk, then the following two CDR records are generated:

- An incoming record with the VDN as the called number and the duration from the time answer supervision was provided to the incoming trunk.
- An outgoing record containing the incoming trunk information as the calling number and the dialed digits and the outgoing trunk information as the called number.

Outgoing vector calls generate ordinary outgoing CDR records with the originating extension as the calling number.

No Ineffective Call Attempt records are generated for Call Vectoring route-to commands that are unsuccessful.

Call Detail Recording — Account Code Dialing
If a route-to number command in a vector specifies an CDR account code, vector processing continues at the next step.

Call Park
Calls cannot be parked on a VDN.

Call Waiting Termination
If an extension is busy and has call waiting termination administered, the route-to with cov n operation is considered unsuccessful and vector processing continues at the next step. Route-to with cov y is successful (call will wait) and vector processing terminates.
Class of Restriction
Each VDN in the system has a COR associated with it. This VDN COR is used to determine the calling permissions/restrictions, the AAR/ARS PGN, and the priority queuing associated with a vector.

Code Calling Access
A VDN cannot be used as the argument to the code calling access feature access code.
If a `route-to number` command in a vector specifies the code calling feature access code, vector processing continues at the next step.

Conference
A call to a VDN can be included as a party in a conference call only after vector processing terminates for that call.

Data Restriction
Music will play on calls from data restricted extensions when the call receives music as the result of a wait-time vector step.

Facilities Restriction Level
If a `route-to` command dials an external number via AAR/ARS, the FRL associated with the VDN COR is used to determine the accessibility of a routing preference in an AAR/ARS pattern.

Facility Busy Indication
The facility busy lamp indication for a VDN is always off. A facility busy button may be used to call a VDN.

Facility Test Calls
If a `route-to number` command in a vector specifies a Facility Test Call, vector processing continues at the next step.

Forced Entry of Account Codes
If a COR requiring entry of account codes is assigned to a VDN, the `route-to number` commands executed by the associated vector are unsuccessful and vector processing continues at the next step.
Individual Attendant Access
A call sent to an attendant by a route-to number command can wait in the attendant priority queue. The call is removed from vector processing.

Integrated Directory
VDN names and extensions are not available in the Integrated Directory feature.

 Intercept Treatment
A VDN cannot be used for Intercept Treatment.

Inter-PBX Attendant Calls
A route-to number command in a vector can dial the Inter-PBX Attendant. If the call attempts to access a controlled trunk group, vector processing continues at the next step.

Intraflow and Interflow
The functionality of intraflow and interflow may be obtained using the check and goto Call Vectoring commands.
Calls may intraflow from an ACD split/skill that is not vector-controlled into one that is vector-controlled.

Leave Word Calling
LWC messages cannot be stored, canceled, or retrieved for a VDN.

Night Service
A VDN can be administered as a night service destination.
Route-to commands that route to destinations with night service activated redirect to the night service destinations.

Priority Calling
A VDN cannot be used with the priority calling access code. Intercept tone is supplied to the user. If a route-to number in a vector specifies the priority calling access code, vector processing continues at the next step.

Property Management System Interface
VDNs cannot be used with the following features and functions: Message Waiting Notification, Check-In, Check-Out, Room Status, and Automatic Wakeup.
ACD contact center features

Recorded Announcement

The first announcement extension, second announcement extension, first announcement delay, second announcement delay, and recurring second announcement do not exist for a vector-controlled hunt group.

Redirection on No Answer

If an ACD split/skill or Direct Agent call is not answered after an administered number of rings, RONA can redirect that call to a VDN for alternate treatment.

Ringback Queuing

External call attempts made via `route-to` commands with coverage no are not queue via Ringback Queuing when all trunks are busy. External call attempts made via `route-to` commands with coverage yes are.

Send All Calls

If the destination of a `route-to with coverage no` command has the Send All Calls feature active, calls are not redirected. If there is an idle appearance, the call terminates and vector processing stops. If not, vector processing continues at the next step.

If the Send All Calls button is pressed after a vector call is terminated, button activation is denied.

Time of Day Routing

Since a `route-to number` command in a vector can specify the AAR or ARS access codes, the TOD routing algorithm can be used to route the call.

Timed After Call Work (ACW)

A Timed ACW interval can be assigned to a VDN.

Timed Reminder

The attendant Timed Reminder is not available for calls placed, transferred, or extended to a VDN. Vectoring causes all other timers to be ignored.

Transfer

Calls can be transferred to a VDN.

Traveling Class Mark

A TCM is sent when a `route-to` command dials a seven-digit ETN or 10-digit DDD number via AAR/ARS. This TCM is the FRL associated with the VDN COR.
VDN in a Coverage Path

A call covering to a VDN can be routed to any valid destination by the call vectoring command `route-to`. The coverage option for the `route-to digits` command is disabled for covered calls. In other words, the `route-to digits with coverage=y` functions like the `route-to digits with coverage=n` command when processing covered calls. When the `route-to` command terminates a covered call locally, information identifying the principal and the reason for redirection are retained with the call. This information can be displayed on display phones or passed to an AUDIX or Message Center system.

The class of restriction assigned to a VDN determines the partition group number (PGN). The PGN in turn determines the AAR or ARS routing tables used by `route-to` commands.

When a call covers to a VDN, VDN override has no effect on the display shown on an answering display telephone. This station will show the normal display for a covered call.
Avaya Business Advocate (Category A only)

This section provides an overview of Avaya Business Advocate. For extensive information on implementing and using Advocate, refer to the *Avaya Business Advocate User Guide*, 585-210-711.

Advocate is a collection of features that provide flexibility in the way a call is selected for an agent in a call surplus situation and in the way that an agent is selected for a call in an agent surplus situation.

Note:
Advocate requires the Expert Agent Selection (EAS) feature to be enabled.

Advocate provides predictive and adaptive methods for contact centers that address three fundamental questions in terms of how the most expensive resource of the center, its agents, are used every time a call is handled.

What should this agent do next?
Advocate answers the question “What should this agent do next?” each time an agent becomes available and calls are waiting in queue. The term “should” is used deliberately because it implies a consideration of trade-offs in the decision. With Advocate, the answer to this question does not come from executing a set of pre-programmed directives such as “take the highest priority, oldest waiting call.” Such a fixed plan of attack considers nothing in terms of consequences. Instead, Advocate understands the consequences of its choices and the business objectives for each type of call.

Which agent should take this call?
Advocate answers the question “which agent should take this call?” when a call arrives and there are available agents waiting for calls. Advocate can make this choice so that workloads are distributed fairly across the agents, to eliminate “hot seats”. Advocate can also promote fairer opportunities for compensation by delivering a predetermined mix of calls to agents.

Does the contact center need to adjust its operations to bring performance back to the desired level?
Advocate continuously evaluates the contact center’s performance to determine “what does the contact center need to adjust to bring performance back to the desired level?” Advocate responds, down to the levels of an individual caller, when it detects that agent resources should be used differently to prevent a caller’s wait times from being too high or to accomplish service level goals more consistently.
Administering Advocate

Based on the needs and challenges of your contact center, you will determine which combination of call and agent selection will give you the best results and administer those methods on the communication server. See the Call and agent selection on page 141 section for information about these decisions.

You need to make several decisions about how to implement Advocate. Some of these decisions affect your contact center system wide, while others affect particular Vector Directory Numbers (VDNs), skills, or agents.

The following table lists the features that are available with Advocate and Dynamic Advocate, the level of impact for implementing those features, and where the features are administered on the communication server.

Required forms – Avaya Business Advocate

<table>
<thead>
<tr>
<th>Feature</th>
<th>Decision level</th>
<th>Administered form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least Occupied Agent:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● LOA (Group Type)</td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
<tr>
<td>● ACW Considered Idle</td>
<td>System</td>
<td>● Feature-Related System Parameters form</td>
</tr>
<tr>
<td>Percent Allocation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:Percent Allocation (call handling preference)</td>
<td>Agent</td>
<td>● Agent LoginID form</td>
</tr>
<tr>
<td>PAD (group type)</td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
<tr>
<td>● Expected Call Handling Time</td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
<tr>
<td>● Dynamic Percentage Adjustment</td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
<tr>
<td>● Service Level Target</td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
<tr>
<td>● ACW Considered Idle?</td>
<td>System</td>
<td>● Feature-Related System Parameters form</td>
</tr>
<tr>
<td>● Auto Reserve Agents</td>
<td>System</td>
<td>● Feature-Related System Parameters form</td>
</tr>
<tr>
<td>Dynamic Queue Position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Queue Position</td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
</tbody>
</table>
Required forms – Avaya Business Advocate (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Decision level</th>
<th>Administered form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Objective</td>
<td>VDN</td>
<td>● Vector Directory Number form</td>
</tr>
<tr>
<td>Service Objective (activate for agent)</td>
<td>Agent</td>
<td>● Agent LoginID form</td>
</tr>
<tr>
<td>Service Objective (set target objective)</td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
<tr>
<td>Call Selection Measurement (CWT or PWT)</td>
<td>System</td>
<td>● Feature-Related System Parameters form</td>
</tr>
<tr>
<td>Service Level Supervisor</td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
<tr>
<td>Service Level Supervisor (administer for skill)</td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
<tr>
<td>Activate on Oldest Call Waiting</td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
<tr>
<td>Call Selection Override</td>
<td>System</td>
<td>● Feature-Related System Parameters form</td>
</tr>
<tr>
<td></td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
<tr>
<td>Other</td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
<tr>
<td>Overload Thresholds</td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
<tr>
<td>Dynamic Threshold Adjustment</td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
<tr>
<td>Service Level Target</td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
<tr>
<td>Reserve Agents</td>
<td>Agent</td>
<td>● Agent LoginID form</td>
</tr>
<tr>
<td>Predicted Wait Time (PWT)</td>
<td>System</td>
<td>● Feature-Related System Parameters form</td>
</tr>
<tr>
<td>Call Handling Preference (call selection method: Greatest Need, Skill Level, Percent Allocation)</td>
<td>Agent</td>
<td>● Agent LoginID form</td>
</tr>
<tr>
<td>Group Type (agent selection method: UCD-MIA, EAD-MIA, UCD-LOA, EAD-LOA, PAD)</td>
<td>Skill</td>
<td>● Hunt Group form</td>
</tr>
</tbody>
</table>
Call and agent selection

Call selection

Call selection methods are used when calls are in queue and an agent becomes available. This is known as a call surplus condition. During such conditions, the communication server considers the call selection method that is administered for the agent on the Agent LoginID Form to determine which skill to serve. Once a skill is identified, the call at the head of that queue is selected and delivered to the agent. Call selection is based on such things as call handling preference, call selection measurement, and the use of service objectives.

Agent selection

Agent selection methods are used when there are one or more available agents for an incoming call. This is known as an agent surplus condition. Agent selection methods are administered as a hunt group type for the skill. Advocate allows you to select agents according to occupancy, idleness, individual skill level, and the percentage of time that you want the agent to spend serving each skill.

Automated agent staffing adjustments

What are automated staffing adjustments?

Advocate provides you with options that automate staffing during contact center operation. These methods simplify contact center management and eliminate the need for moving agents from skill to skill to ensure coverage as call conditions change.

Advocate offers you the ability to assign reserve agents and set overload thresholds to determine when those reserve agents will be engaged. The Dynamic Advocate feature, known as Dynamic Threshold Adjustment, takes this a step further by automatically adjusting the thresholds as needed to help maintain the service levels you defined.

The Dynamic Percentage Adjustment feature, gives you the ability to automate adjustments to predefined allocations for your agents’ time to maintain defined service levels. Auto Reserve Agents, another feature that is new with R9, allows you to intentionally leave an agent idle in a skill when the agent’s adjusted work time has exceeded the percentage that you administered for that skill.
Call selection at a glance

The following table shows what happens during call surplus conditions, according to the call selection methods that have been administered on the communication server.

<table>
<thead>
<tr>
<th>IF calls are waiting when an agent becomes available and the agent’s selection method is:</th>
<th>THEN the communication server takes the highest priority call:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skill Level without Service Objective</td>
<td>With the highest skill level and the longest CWT or PWT.</td>
</tr>
<tr>
<td>Skill Level with Service Objective</td>
<td>With the highest skill level and the highest ratio of CWT/SO or PWT/SO.</td>
</tr>
<tr>
<td>Greatest Need without Service Objective</td>
<td>With the longest CWT or PWT.</td>
</tr>
<tr>
<td>Greatest Need with Service Objective</td>
<td>With the highest ratio of CST/SO or PWT/SO.</td>
</tr>
<tr>
<td>Percent Allocation</td>
<td>That is the oldest call waiting that best maintains the administered target allocations for all skills.</td>
</tr>
</tbody>
</table>

Agent selection at a glance

The following table shows what happens during agent surplus conditions, according to the agent selection method that has been administered.

<table>
<thead>
<tr>
<th>WHEN agents are available, a call arrives, and the agent selection method is:</th>
<th>THEN the communication server selects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAD-MIA</td>
<td>The highest skill level, most idle agent.</td>
</tr>
<tr>
<td>UCD-MIA</td>
<td>The most idle agent, without regard to skill level.</td>
</tr>
<tr>
<td>EAD-LOA</td>
<td>The highest skill level agent with the lowest occupancy.</td>
</tr>
<tr>
<td>UCD-LOA</td>
<td>The least occupied agent, without regard to skill level.</td>
</tr>
<tr>
<td>PAD</td>
<td>The agent with the lowest ratio of adjusted work time and target allocation for the skill.</td>
</tr>
</tbody>
</table>
Combining agent and call selection methods

Advocate provides a variety of features to help meet your business goals and to help you manage your agent resources. The table below shows some of the ways you can combine call and agent selection methods to meet your company’s specific needs.

<table>
<thead>
<tr>
<th>IF your goal is to . . .</th>
<th>THEN consider . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintain service levels while controlling the time agents spend serving each of their</td>
<td>● Percent Allocation
● Dynamic Percentage Adjustment
● PAD</td>
</tr>
<tr>
<td>skills</td>
<td></td>
</tr>
<tr>
<td>Maintain service levels using more or less time from reserve resources to supplement</td>
<td>● Greatest Need
● Service Level Supervisor
● Dynamic Threshold Adjustment
</td>
</tr>
<tr>
<td>staffing as needed</td>
<td>● UCD-LOA</td>
</tr>
<tr>
<td>Add customer segmentation with differentiated levels of service while routing all</td>
<td>● Greatest Need
● Dynamic Queue Position
● UCD-LOA</td>
</tr>
<tr>
<td>segments to the same skill to simplify staffing</td>
<td></td>
</tr>
<tr>
<td>Increase revenue by assigning agents their best skills as primary skills and limiting</td>
<td>● Greatest Need
● Service Objective
● Service Level Supervisor
● UCD-LOA</td>
</tr>
<tr>
<td>the use of reserve skills to eliminate long call wait times</td>
<td></td>
</tr>
<tr>
<td>Ensure that critical skills are covered, regardless of caller wait time in other skills</td>
<td>● Greatest Need
● Service Level Supervisor
● Call Selection Override
● Oldest</td>
</tr>
<tr>
<td></td>
<td>● Call Waiting
● UCD-LOA</td>
</tr>
<tr>
<td>Control the time your agents spend serving their assigned skills while maintaining the</td>
<td>● Percent Allocation
● Dynamic Percentage Adjustment
● Call Selection Override</td>
</tr>
<tr>
<td>ability to change to meet service level requirements for the center</td>
<td>● Service Level Supervisor
● PAD</td>
</tr>
</tbody>
</table>
Different needs within a contact center

You may find that one Advocate solution does not fit for your entire organization. Your contact center may have different needs within particular areas or departments, and Advocate can help to meet these varying needs. A sales department, for example, may choose to use Dynamic Queue Position to create differentiation among various types of customer without creating a different skill for each type of sales call. A service department, on the other hand, may be more interested in working toward similar goals for each technical support skill, while eliminating the hot seats often experienced by the well trained, multiskilled agents.

Avaya offers a subscription service for Advocate customers that provides access to skilled consultants with expertise in understanding how Advocate helps to solve business problems. For more information, please contact your Avaya Account Executive or CRM Opportunity Management at 1-877-9-CRMOMC (1-877-927-6662).

Feature compatibility

It is important to choose the right combination of features to meet your organization’s needs and ensure that Advocate is set up to work most effectively. This section summarizes the features that provide the best results when used together and also lists those that are not designed to work together.
Call selection methods (call handling preferences)

The following table shows the features that work effectively with the various Advocate call selection methods.

<table>
<thead>
<tr>
<th>Call selection method</th>
<th>Recommended to work with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greatest Need</td>
<td>● Predicted Wait Time</td>
</tr>
<tr>
<td></td>
<td>● Service Objective</td>
</tr>
<tr>
<td></td>
<td>● Service Level Supervisor</td>
</tr>
<tr>
<td></td>
<td>● UCD-MIA</td>
</tr>
<tr>
<td></td>
<td>● UCD-LOA</td>
</tr>
<tr>
<td>Skill Level</td>
<td>● Predicted Wait Time</td>
</tr>
<tr>
<td></td>
<td>● Service Objective</td>
</tr>
<tr>
<td></td>
<td>● Service Level Supervisor</td>
</tr>
<tr>
<td></td>
<td>● EAD-MIA</td>
</tr>
<tr>
<td></td>
<td>● EAD-LOA</td>
</tr>
<tr>
<td>Percent Allocation</td>
<td>● Dynamic Percentage Adjustment</td>
</tr>
<tr>
<td></td>
<td>● Auto Reserve Agents</td>
</tr>
<tr>
<td></td>
<td>● Service Level Supervisor</td>
</tr>
<tr>
<td></td>
<td>● PAD</td>
</tr>
</tbody>
</table>

Agent selection methods (hunt group types)

The following table shows which features work with the various agent selection methods.

<table>
<thead>
<tr>
<th>Agent Selection Method</th>
<th>Recommended to work with</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCD-MIA</td>
<td>● Greatest Need</td>
</tr>
<tr>
<td></td>
<td>● Predicted Wait Time</td>
</tr>
<tr>
<td></td>
<td>● Service Objective</td>
</tr>
<tr>
<td></td>
<td>● Service Level Supervisor</td>
</tr>
<tr>
<td>EAD-MIA</td>
<td>● Skill Level</td>
</tr>
<tr>
<td></td>
<td>● Predicted Wait Time</td>
</tr>
<tr>
<td></td>
<td>● Service Objective</td>
</tr>
<tr>
<td></td>
<td>● Service Level Supervisor</td>
</tr>
</tbody>
</table>
Feature combinations to avoid

The PAD agent selection method should not be used with Greatest Need or Skill Level call selection methods.
Expert Agent Selection (Category A only)

Use Expert Agent Selection (EAS) to route incoming Automatic Call Distribution (ACD) calls to the agent who is best qualified to handle the call, that is, the agent with the specialized skills or experience required to best meet the caller’s needs.

In addition, EAS provides the following capabilities:

- You assign all agent functions to the agent login ID and not to a physical phone. Therefore, EAS agents can login to and work at any phone in the system.
- Using the agent login ID, a caller places a call directly to a specific agent. These calls can be treated and reported as ACD calls.

EAS ensures the best possible service to the caller.

Administering EAS

The following forms and fields are required to administer the EAS feature.

Required forms - EAS feature

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Parameters Customer-Options</td>
<td>● ACD</td>
</tr>
<tr>
<td></td>
<td>● Expert Agent Selection (EAS)</td>
</tr>
<tr>
<td></td>
<td>● EAS-PHD</td>
</tr>
<tr>
<td></td>
<td>● Vectoring (Basic)</td>
</tr>
<tr>
<td>Agent LoginID</td>
<td>● All</td>
</tr>
<tr>
<td>Hunt Group</td>
<td>● Skill</td>
</tr>
<tr>
<td></td>
<td>● ACD</td>
</tr>
<tr>
<td></td>
<td>● Vector</td>
</tr>
<tr>
<td></td>
<td>Set all three fields to y.¹</td>
</tr>
<tr>
<td></td>
<td>● Group Type (ucd/ead)</td>
</tr>
<tr>
<td>Vector Directory Number</td>
<td>● 1st/2nd/3rd Skill (optional)</td>
</tr>
<tr>
<td>Class of Restriction</td>
<td>● Direct Agent Calling</td>
</tr>
<tr>
<td>CDR System Parameters</td>
<td>● Record Called Agent Login ID Instead of Group or Member</td>
</tr>
</tbody>
</table>
Required forms - EAS feature (continued)

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Vector</td>
<td>● All</td>
</tr>
<tr>
<td>Feature-Related System Parameters</td>
<td>● Expert Agent Selection (EAS) Enabled</td>
</tr>
<tr>
<td></td>
<td>● Minimum Agent-LoginId Password Length</td>
</tr>
<tr>
<td></td>
<td>● Direct Agent Announcement Extension/Delay</td>
</tr>
<tr>
<td></td>
<td>● Message Waiting Lamp Indicates Status For</td>
</tr>
</tbody>
</table>

1. If the Message Center field is set to AUDIX on the Hunt Group form, the Skill and ACD fields must be set to y, but the Vector field can be set to either y or n.

EAS must be both optioned on the System Parameters Customer-Options form, and enabled on the Feature-Related System Parameters form. Once EAS is optioned, you can complete most of the EAS-related administration prior to enabling the feature.

When EAS is optioned on the System-Parameters Customer-Options form, Skill Hunt Groups replace splits. In addition, help messages, error messages and field titles change from “Split” to “Skill” on various forms.

Any EAS agent Login ID must be part of the station numbering plan.

Physical aspects of the phone, such as the set type and button layout, are associated with the phone and not the Login ID. On the Station form with the EAS featured optioned, when a work-mode button is selected, no “Gp” information can be entered. The assist and queue status buttons require that “Group” be entered.

Administering Direct Agent Announcement

Direct Agent Announcement (DAA) enhances Direct Agent Calling capabilities for CallVisor Adjunct-Switch Application Interface (ASAI) and Expert Agent Selection (EAS). It plays an announcement to Direct Agent callers waiting in a queue. The following forms should be administered for DAA.
You must also have enabled either Expert Agent Selection (EAS) or ASAI Adjunct Routing (or both).

Required forms – Direct Agent Announcement

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>System-Parameters</td>
<td>• ACD</td>
</tr>
<tr>
<td>Customer-Options</td>
<td>• Vectoring (Basic)</td>
</tr>
<tr>
<td></td>
<td>• Expert Agent Selection (EAS)</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>• ASAI Adjunct Routing</td>
</tr>
<tr>
<td>Feature-Related System Parameters</td>
<td>• Direct Agent Announcement Delay</td>
</tr>
<tr>
<td></td>
<td>• Direct Agent Announcement Extension</td>
</tr>
<tr>
<td>Announcements/Audio Sources</td>
<td>• All</td>
</tr>
</tbody>
</table>

Detailed administration for EAS

In general, EAS uses vectors to route calls to agents with the required skills. To administer EAS you must:

- Assign skills to VDNs on the Vector Directory Number form.
- Create vectors that will route a call to the correct skill.
- Assign skills with priority levels to agents on the Agent Login ID form.

VDN administration

You can administer up to three VDN skill preferences on the Vector Directory Number form in the 1st Skill, 2nd Skill and 3rd Skill fields. These fields indicate the skills that are required to handle calls to this VDN. All of the VDN skills on the VDN form are optional. For example, only the first and third, or only the second and third VDN skills might be assigned. Vector steps can then refer back to these fields to route calls. For example, `queue-to skill 1st` routes calls the skill administered as 1st on the VDN form.

Vector administration

When a call routes to a VDN, the VDN directs the call to the vector that is specified on the Vector Directory number form. The vector then queues the call to the skill specified in a vector step. You can write vectors that route calls either to specific skill numbers or to the skill preferences administered on the Vector Directory Number form.
Agent administration

Assign skills to each agent. In addition, assign a skill level to each skill for the agent. When a vector routes incoming calls to a skill, the call is delivered to an available agent with the skill assigned. If no agents are available, the call is queued until it can be answered by an agent who has the skill required to handle the call.

Agent selection

The administered agent selection method and Call Handling Preference determine which agent will receive an incoming call.

Agent selection method

EAS can use either Uniform Call Distribution (UCD) or Expert Agent Distribution (EAD) to select agents for calls. Both methods can use the Most-Idle Agent (MIA) or the Least Occupied Agent (LOA) algorithm to select agents. For more information on agent selection methods, see Automatic Call Distribution on page 77.

Call handling preference administration

The call handling preference selected on the Agent Login ID form can route calls based on either greatest need or agent skill level. The following table summarizes how a call is routed based on greatest need or agent skill level administration with either UCD or EAD distribution.

EAD Call handling preference call distribution

<table>
<thead>
<tr>
<th>If:</th>
<th>EAD/UCD with Skill Level</th>
<th>EAD/UCD with Greatest Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agents are available. When a new call arrives it is delivered to:</td>
<td>EAD - Most-idle agent with the highest skill level for the calls’ skill.</td>
<td>EAD - Most-idle agent with the highest skill level for the call’s skill.</td>
</tr>
<tr>
<td></td>
<td>UCD - Most-idle agent with the call’s skill.</td>
<td>UCD - Most-idle agent with the call’s skill.</td>
</tr>
<tr>
<td>Agents are not available, calls are in queue. When an agent becomes available, he or she receives:</td>
<td>EAD - Highest priority oldest call waiting for agent’s highest level skill with calls in queue.</td>
<td>EAD - Highest priority oldest call waiting for any of the agent’s skills.</td>
</tr>
<tr>
<td></td>
<td>UCD - Highest priority oldest call waiting for the agent’s highest level skill with calls in queue.</td>
<td>UCD - Highest priority oldest call waiting for any of the agent’s skills.</td>
</tr>
</tbody>
</table>
MIA Across Splits/Skills

In addition, both UCD and EAD can be used in conjunction the MIA Across Splits/Skills option. With MIA Across Splits/Skills, one available agent queue is set up for the entire system. When an agent answers a call for any skill, the agent is removed from the MIA queue.

See, Automatic Call Distribution on page 77 for more information about UCD, EAD, and MIA Across Splits/Skills.

Additional agent login ID capabilities

The following capabilities are also associated with agents’ login IDs.

- **Auto-Answer** — When EAS is optioned, auto answer settings can be assigned to agents on the Agent LoginID form. An agent’s auto answer setting will apply to the station where the agent logs in. If the auto answer setting for that station is different, the agent’s setting overrides the station’s.

- **Calls** — to call an EAS Agent, the caller dials the Login ID extension. The call is extended to the physical extension where the agent with that Login ID is logged in. Calls to the Login ID reach the agent independent of the phone the agent is currently using. For example, when agents use multiple phones because they have multiple offices or rotate desks, login IDs allow these agents to be reached independent of their current location.

- **Name** — calls to the Login ID display the name associated with the Login ID and not the name associated with the phone. This is also true for calls made from a phone with an agent logged in.

- **Coverage** — when the agent is logged out, or when calls go to coverage because the agent is busy, or does not answer, calls to the Login ID go to the coverage path associated with the agent and not the phone. When an agent is logged out, calls go to the agent’s busy coverage destination.

- **Restrictions** — calls to the Login ID or from the agent use the restrictions associated with the agent and not the phone.

Phones are fully functional when an agent is not logged in. The restrictions, coverage, and name revert to the phone administration when the agent logs out.

Direct Agent calling

Calls to an agent’s Login ID are treated as Direct Agent calls if the caller and the agent have the “Direct Agent Calling” Class of Restriction (COR). Direct Agent calls can be originated by stations or trunks. If the caller or agent does not have the proper COR, the call is treated as a normal non-ACD (personal) call.

See Direct agent calling (Category A only) on page 84 for additional information on how Direct Agent calling works, is used in the contact center, and is administered.
ACD contact center features

Direct Agent calls are treated as ACD calls and receive zip tone answer, queue as other ACD calls do, allow the agent to enter after call work following the call, and are measured by BCMS and CMS.

Any of the agent’s skills can be the Direct Agent skill. When greatest need is optioned as the Call Handling Preference, the agent always gets Direct Agent calls before any skill calls. This is because Direct Agent calls have a higher priority than skill calls. However, when skill level is optioned as the Call Handling Preference, the agent will get direct agent calls first only if the direct agent skill has the agent’s highest skill level. Otherwise calls from a skill with a higher level will be distributed before Direct Agent calls. If the Direct Agent skill and another skill are the same skill level, the agent will always receive Direct Agent calls before the other skill calls because Direct Agent calls have a higher priority.

A route-to vector command with an EAS Login ID as the destination is treated as a Direct Agent call if the VDN and agent have the COR and the Direct Agent field is set to y.

Considerations

Station User records cannot be shared between TTI ports and EAS LoginID extensions. This causes a reduction in the number of possible EAS LoginID extensions allowed by the System depending on the number of administered TTI ports. For example, if 2,000 TTI ports are administered, the maximum number of allowable EAS LoginIDs is reduced by 2,000.

EAS agent Login IDs are also tracked for personal calls. CMS uses the first skill an EAS Agent is logged into to track personal calls. If the first logged-into skill is unmeasured, CMS credits the agent Login ID with the personal call, but no skill hunt group is credited with the personal call.

The system can have either splits/skill hunt groups but not both simultaneously. Non-ACD hunt groups can exist with either splits or skills. Skill hunt groups are required when using EAS.

Interactions

Unless otherwise specified, the feature interactions for skill hunt groups are the same as for vector-controlled splits.

Abbreviated Dialing

Abbreviated dialing can be used to log in/out EAS agents. Abbreviated dialing lists/buttons can only be administered for stations.

Add/Remove Skills

In the EAS environment, agents have the ability to add and remove skills during a login session by dialing a FAC. Other phone users with console permissions can add or remove an agent’s skill on behalf of the agent. (Note that the ability to add and remove skills depends on whether a user has a class of restriction (COR) that allows adding and removing skills.)
Administration Without Hardware
EAS Login ID extensions are extensions without hardware. Login ID extensions require space in the dial plan.

Agent Work Mode States
With EAS, agents can only be in a single work mode at any one time for all their skills.

Assist
The Assist feature can be used with a skill hunt group (for example, where there is one supervisor per skill hunt group). When assist is selected, a call is placed to the supervisor associated with the skill for the active call.

AUDIX
Calls to the EAS agent Login ID can cover to AUDIX.

Auto-Available Splits/Skills
If a skill hunt group is administered as an Auto-Available Skill (AAS) the EAS Login IDs assigned to this skill must also be administered as Auto-Available. When the communication server reinitializes, these Login IDs are automatically logged in with the Auto-In work-mode. If any communication server features attempt to change the work-mode to anything except to Auto-In, this attempt is denied. This feature is not intended for human agents.

Automatic Answering with Zip Tone
The Automatic Answer option can only be administered for a physical extension.

Automatic Callback
Users can’t activate Automatic Callback to an EAS agent’s Login ID. They can activate Automatic CallBack to the phone where the agent is logged in.

Call Forwarding
Skill hunt groups (since they are vector-controlled) cannot be call forwarded. EAS agent Login IDs cannot be forwarded, but the physical extension where the EAS agent is logged in can be forwarded.

Call Park
Calls cannot be parked on the skill hunt group extension.
ACD contact center features

Call Pickup

Skill hunt group extensions and EAS Login ID extensions cannot be members of a call pickup group.

Class of Restriction (COR)

Skill hunt groups do have a class of restriction. This is used if the skill hunt group extension is called directly.

The COR for an EAS agent Login ID overrides the physical extension’s COR of the phone an EAS agent logs into.

Class of Service (COS)

EAS agents do not have a COS associated with their Login ID. Therefore, the COS of the telephone is not affected when an EAS agent logs into it.

Directed Call Pickup

An EAS agent can use the Directed Call Pickup feature to pick up a call and/or have his or her calls picked up by another agent. The Class of Restriction of the agent will override the Class of Restriction of the station where the agent is logged in.

If both the station’s COR and the logged-in agent’s COR allow the call to be picked up using Directed Call Pickup, the user picking up the call can use either the station’s extension or the agent’s loginID.

Displays - Phone

When an EAS agent logs in, the display for originators who call the Login ID shows the Login ID and agent name (as administered via the Agent Login ID form). Calls that the agent originates show the Agent Login ID and agent name at the receiving telephone display. However, the user can display the name of the physical extension where the EAS agent is logged in. To do this, the user must be active on a call with the agent, and must have a telephone with an alphanumeric display and an inspect button. When the inspect button is pressed during a call to or from the EAS agent, the physical extension name of the agent is displayed.

Calls to the physical extension show the physical extension’s number and name on the originator’s display.
Leave Word Calling

When an EAS agent is logged into a station, the agent can only retrieve LWC messages left for that agent’s login ID. To retrieve LWC messages left for that station, the agent must log out.

When an EAS agent is logged into a station, its Message lamp defaults to tracking the status of LWC messages waiting for the station. However, you can assign the Message lamp to track the status of LWC messages waiting for the agent’s login ID.

Look Ahead Interflow

VDN skills are not sent to another ACD/PBX when a call interflows using Look Ahead Interflow. If skills have the same meaning on both ACDs, then a Look Ahead Interflow command to a VDN with the same skills assigned can provide a mapping of the skills.

Message Waiting Lamp

The Message Waiting Lamp by default tracks the status of messages waiting for the logged in EAS agent LoginID rather than messages for the physical extension. The operation of the Message Waiting Lamp can be changed so that it tracks the status of messages waiting for the physical extension where the agent is logged in. For more information about Feature-Related System Parameters, see Administrator Guide for Avaya Communication Manager, 555-233-506.

Queue Status Indications

Physical extensions can be administered with Queue Status Indicator buttons and lamps for skill hunt groups. Queue Status Indicators can be administered for all skills needed by agents using that physical extension, given that enough buttons are available.

Service Observing

The Service Observing feature is activated in the EAS environment by dialing either the physical extension of the telephone where an EAS agent is logged in or the Login ID of the agent.

VuStats

VuStats displays can show an agent’s skill assignments and can show some measurements by skill.
Inbound Call Management

Inbound Call Management (ICM) allows you to integrate features of the communication server with host-application processing and routing, and automate delivery of caller information to agents’ displays. You can create a sophisticated system to handle inbound calls for applications such as telemarketing and claims processing.

To implement ICM, you integrate features of the communication server such as Automatic Call Distribution (ACD), Expert Agent Selection (EAS) Call Vectoring, Direct Agent Calling, and Call Prompting with an application on a host processor. The host application, or adjunct, can be a CallVisor/PC, Conversant voice system, Telephony Services Server serving a local-area network, or a vendor application using the CallVisor Adjunct/Switch Applications Interface (ASAI). A CallVisor ASAI link between the communication server and adjunct allows the adjunct to control incoming call processing and routing.

In addition, you can automate ACD agent telephone displays and associate them with new and transferred calls, and assist calls to a supervisor. You can display incoming call information such as Calling Party Number (CPN), Billing Number (BN), and Dialed Number Identification Service (DNIS). Or, you can set up the adjunct to retrieve caller information from a database and display it on a particular agent’s screen, based on the service dialed.

See Detailed description on page 158 for more information on applications.

Administering ICM

Display the System-Parameters Customer-Options and ensure that the ACD option is enabled. If you are using CallVisor ASAI or Call Vectoring, ensure appropriate ASAI Capability Groups options or the Vectoring (Basic) and/or Vectoring (Prompting) options are enabled.

Required forms – ICM

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>System-Parameters Customer-Options</td>
<td>● ACD</td>
</tr>
<tr>
<td></td>
<td>● Vectoring (Basic)</td>
</tr>
<tr>
<td></td>
<td>● Vectoring (Prompting)</td>
</tr>
<tr>
<td></td>
<td>● ASAI Capability Groups</td>
</tr>
<tr>
<td>Trunk Group (ISDN-PRI)</td>
<td>● Per Call CPN/BN</td>
</tr>
</tbody>
</table>
Required forms – ICM (continued)

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
</table>
| Hunt Groups | ● Group Type
 ● ACD
 ● Queue
 ● Vector
 ● Measured
 ● Supervisor Extension
 ● Controlling Adjunct
 ● Queue Length
 ● Calls Warning Threshold
 ● Calls Warning Port
 ● Time Warning Threshold
 ● Time Warning Port |
| Class of Restriction | ● Direct Agent Calling (optional) |
| Call Vector | ● All |
| Station (agent stations) | ● All |
| Agent LoginID (EAS only) | ● All |

- **Trunk Group form** — Administer the Per Call CPN/BN field for the appropriate ISDN-PRI trunk group. The corresponding information is sent with a call-offered event report to the adjunct.

- **Hunt Group form** — Complete a Hunt Group form for each split/skill that the ICM adjunct will monitor.

- **Call Vector form** — If you are using Call Vectoring, an ASAI link interface extension number is required for adjunct routing vector commands. This extension is the same as the one you enter on the Station form.

See [Automatic Call Distribution](#) on page 77, [Call Vectoring](#) on page 128, [Call Prompting](#) on page 125, and CallVisor Adjunct-Switch Application Interface and any other features you are implementing for ICM for additional administration requirements.
Detailed description

Applications

The following are some typical ICM applications:

- The system passes calling party/billing number (CPN/BN) information and the call is routed to an adjunct application for screen pop and supervisory transfers, with screen duplication.

- The system sends to the adjunct application both caller and prompter information about all incoming calls to a particular number. According to caller information in a database, the application directs the communication server to route the call. For example, the call could be routed to a preferred agent, to best customer treatment, or to accounts receivable.

- The system uses Call Prompting to obtain a customer account number and then passes this information to the adjunct for call routing or screen pop.

- The system connects the caller to a voice response unit (VRU), along with caller CPN/BN and DNIS information. The caller then interacts with the VRU to direct how the call is handled. The system can verify a caller’s identity and provide access to database information such as claims status or account balance.

- With Direct Agent Calling, an adjunct application can transfer a call to a specific ACD agent and have the call treated as an ACD call and tracked on Call Management System (CMS).

- An adjunct application can attach information used by another application to an ICM call using User-to-User Information fields. The adjunct transfers the call, along with the application-specific information, over primary rate interface (PRI) trunk to a CallVisor ASAI application at another communication server. For example, an application at one communication server can determine a caller’s account or claim number and pass this information to a special list on another communication server, where an application will transfer the call.

See the Avaya MultiVantage CallVisor ASAI Technical Reference, 555-230-220, for additional application scenarios.

Agent data screen delivery applications

You can use the Conversant voice system to deliver appropriate display data about callers to agents. You can pass information such as CPN/BN, DNIS, and Look-Ahead Interflow information, digits collected from Call Prompting, and which agent is selected to a Conversant voice system. Conversant delivers the appropriate data screen to the agent who takes the voice call. Conversant can transfer or duplicate data screens for transferred or conferenced calls.
A simplified configuration for the use of Conversant for agent data screen delivery applications is shown in the following figure.

Note:
Conversant VIS is used as an example — other adjunct processors have similar capabilities but should be verified for a particular application. If the host supports ASAI, Conversant is not needed.

Simplified ICM configuration for data screen delivery

1. Telephone
2. ISDN-PRI
3. Avaya switch
4. ASAI
5. Conversant
6. Host
7. Agent data terminal
8. Agent telephone

General processing for this type of application occurs as follows.

1. The Conversant voice system or host requests notification for events such as call offered, call ended, call connected, call dropped, call transfer, and alerting.

2. The communication server notifies Conversant with event reports when the call arrives, when the agent answers, when the call drops, and so on.

3. Conversant sends information to the host application so that it can send a data screen to the agent’s data terminal.

Conversant can determine when a call drops before being answered and can track abandoned calls or use CPN/BN information for callbacks.
Integration with speech processing adjuncts

ICM can be used to provide integration with VRUs. The advantages of using ICM with CallVisor ASAI in addition to tip/ring interfaces are as follows:

- Data-screen integration is provided on transferred calls.
- Answer notification is provided on internal calls (CallVisor ASAI capabilities let you know what happens with the call).
- ISDN network information such as CPN/BN and DNIS is delivered to agents (call prompting for this information is not necessary).

A simplified configuration of this application is shown in the following figure.

Simplified ICM configuration for speech processor integration

1. Phone
2. ISDN-PRI
3. Avaya switch
4. ASAI
5. Speech processor
6. Tip/ring lines
7. Agent phone
8. Agent data terminal
9. Host

General processing for this type of application occurs as follows:

1. The communication server uses CallVisor ASAI link to pass incoming call information to the Conversant voice system.
2. The split/skill on the communication server distributes the call to an available voice line.
3. After digits are collected via a DTMF keypad, Conversant transfers the call back to a split/skill or specific agent on the communication server via CallVisor ASAI.
4. If the call is transferred to an agent, the communication server uses CallVisor ASAI link to pass an event report on which agent receives the call.
5. Conversant forwards the agent ID to the host application, which delivers a data screen to the agent.

6. Agents can display collected digits on their data terminals. Except for the dialed number, information from a Conversant voice system cannot be carried with the call and displayed on a phone. For example, digits collected in a Conversant voice system adjunct cannot be passed to the communication server for display.

7. If the collected digits are the extension where the call is being routed, these routing digits are passed to the communication server as the destination in the CallVisor ASAI third-party make-call request. Conversant uses the request to set up various types of calls.

Host/adjunct call routing

The host or Conversant adjunct uses incoming call information to route the call to a split/skill, vector, particular agent, or location off the communication server. Conversant can also direct the system to handle the call as a priority call. Routing can be based on the caller’s area code or country code, digits collected via Call Prompting, dialed number or service, agent availability, or information in a customer database.

To implement this type of call routing, make sure that calls come into a vector that contains an `adjunct routing` vector command. This command causes the communication server to initiate the route CallVisor ASAI capability. Vector processing occurs while the caller waits. A default split/skill or answering position can also be specified in the vector, in case Conversant does not respond in the administered amount of time (determined by the announcement/wait steps). Announcement and wait steps are needed to give the host time to respond.

Note:

If the Display VDN for Route-to DAC option is enabled, and an `adjunct` vector step results in a direct agent call to an EAS agent, the VDN name is provided in the same manner as when a `route-to digits` or `route-to number` vector command is used.

For adjunct routing, if the call queues to a split/skill or leaves vector processing, a route-end request is sent to Conversant.

Considerations

Administrators and planners must consider:

- ICM traffic
- Rated communication server capacity
- CallVisor ASAI interface traffic
- Rated capacity of the adjunct application processor

Avaya Technical Design Center can provide planning assistance.
ACD contact center features

In addition, you must consider the following:

● CallVisor ASAI and BX.25 CPN/BN-ANI are not supported simultaneously.
● Direct Agent Calls (DACs) are allowed only if the caller and the receiving agent have a Class of Restriction (COR) that allows Direct Agent Calling.
● DACs cannot go through vectors.
● DACs cannot be made over a DCS link. If the receiving agent is not an internal extension, the call is denied.

Interactions

Call Prompting

Digits collected by Call Prompting are passed with current call information to a Conversant adjunct.

Direct Agent Calling

Direct Agent Calling allows an adjunct to direct a call to a particular ACD agent and have the call treated as an ACD call. Calls that enter the communication server as ACD calls and are routed to a particular agent via adjunct routing, or are transferred via a third-party make-call request, are treated as ACD calls for the duration of the call. See Automatic Call Distribution on page 77 for more information on Direct Agent Calls.

Priority Calling

CallVisor ASAI allows both Priority Calling and Direct Agent Calling for the same call.
Information Forwarding (Category A only)

Whenever the communication server interflows a call over ISDN trunk facilities (for example, PRI or BRI) by means of a route-to (with Look-Ahead Interflow active), queue-to best, or check best command, the following information is sent with the call via user-to-user information transport (via UUI IE) and can be used by adjuncts or displayed at the receiving communication server:

- ASAI user information
- the name of the active VDN (LAI DNIS)
- other LAI information (a time stamp showing when the call entered the current queue, the call’s priority level in its current queue, and the type of interflow)
- any collected digits (this does not include dial-ahead digits). These digits are available for processing at remote vectors and/or displaying to the agent.
- the number of seconds that the call has already spent in vector processing (called “in-VDN time”)
- Universal Call ID (UCID)

Note:

Sending of information depends on priority settings and activated features. Also the communication server version must be V6 or later.

Administering User-to-User Information transport

This section outlines the procedure to administer your incoming and outgoing trunk groups to send user data over your network. Before administering the trunk group, review these guidelines:

- If you are using shared UUI (any Supplementary Service other than b), then you must administer the UUI Treatment for the trunk groups (both outgoing and incoming at the remote end) as shared. Use this option when you want to forward information to the communication server in non-QSIG networks.

- With QSIG (Supplementary Service b), you need to administer Shared UUI to include ASAI user information with MSI transport. If UUI Treatment is the default service-provider, the communication server forwards the ASAI user data (if provided) in a non-shared codeset 0 UUI IE while forwarding the other data as MSI.

Note:

You do not need to complete this procedure if you do not intend to send user data over the network.
ACD contact center features

The following table lists the form and fields needed to administer information transport on trunk groups.

Required forms – UUI feature

<table>
<thead>
<tr>
<th>Form</th>
<th>Fields</th>
<th>Why is this field needed?</th>
<th>Optional field?</th>
</tr>
</thead>
</table>
| ISDN Trunk Group (BRI or PRI) | UUI IE Treatment | Set field to either:
● shared (for trunk groups connected to the communication server, if you want shared data).
● service-provider (for trunk groups connected to communication server releases prior to R6.3, or if you want service provider functionality). | Yes
However, this field cannot be blank. |
| Maximum Size of UUI IE Contents | | Set according to what the network supports. 128 (default) is recommended for private networking. | Yes |
| Shared UUI Feature Priority fields | | Set the priority for each type of user data (such as UCID, ASAI, and other application information). Only needed for non-QSIG trunk groups. | Yes
If blank, info not sent. |

To administer Shared UUI information transport:

1. In the command line, enter:

```
change trunk-group n
```

where n is the number of the trunk group you want to administer.

The Trunk Group administration form is displayed.

2. Go to page 2 of the form.

⚠️ CAUTION:

If you want service provider functionality, do not enter shared in page 2 in the UUI Treatment field. Instead, leave the default service-provider in this field.

3. If the trunk group is not connected to a pre-DEFINITY ECS 6.3 communication server, or if you otherwise do not want service provider functionality, enter shared in the UUI Treatment field.

The Maximum Size of UUI IE Contents field appears.

Note:

If you enter shared and the Send Codeset 6/7 LAI trunk group option is on, you send the LAI information twice (unless the LAI Name and Other LAI data items’ priorities are blank with non-QSIG—with QSIG, both are always sent), and you may exceed the maximum ISDN message size.
4. If you want to change the default size of 128 in the **Maximum Size of UUI IE Contents** field, then enter the number for the maximum UUI size. If you want to keep the default size, go to Step 5.

You must administer the trunk groups to send the appropriate amount of user information over the connected network. For example, if the public network only supports 32 bytes of user information, and you enter a number larger than 32, the network may reject the entire UUI IE.

The communication server accepts a range from 32 to 128.

5. Go to page 4 (the Shared UUI Feature Priorities page which comes up only when the **UUI Treatment** field is set to shared).

Notice that all feature names (whether enabled or not) appear on this page. The default values were assigned when Shared UUI was enabled.

6. Either leave the default settings, or reassign numbers from 1 to 6 (1 is the highest priority) to each feature. For more information about user needs, see [Determining user information needs](#) on page 166.

Note:

If you leave a feature field blank, that feature will not transport in the UUI IE.

If the public network supports less than 128 bytes, you need to choose what feature information you want to send, and give that feature field a higher priority.

7. Press **Enter** to save your changes.

Detailed description

In the past, look-ahead interflow transported the LAI Information Element (IE) in codeset 6 or 7, which functioned over non-QSIG private networks, but only over certain public networks.

Now, contact centers can transport application information (including the LAI information) over many more public ISDN networks because of using User to User Signaling (UUS) Supplementary Services that incorporate user-to-user information (codeset 0 UUI). Information passes over QSIG private networks using manufacturer specific information (MSI—codeset 0 Facility IE) in various messages.

This feature:

- enables multiple applications on the communication server to share the contents of the UUI IE or MSI
- allows for backwards compatibility with software prior to the DEFINITY R6.3.
Support of contact center features

Information transport supports these contact center features:

- Enhanced Look-Ahead Interflow—routes calls from busy contact centers to centers that are less busy (see Look-Ahead Interflow (Category A only) on page 171).

 Note:
 Look-Ahead Interflow information can be forwarded using information transport or the traditional codeset 6/7 LAI IE.

- Best Service Routing—routes calls to the best available agents wherever they are (see Best Service Routing (Category A only) on page 94).

- Universal Call ID—provides a means to collect and trace call data from multiple contact centers (see Universal Call ID on page 238).

Determining user information needs

The network byte limit on user information contents (the user data part of the UUI IE) must be large enough to carry the data needed for the customer application.

If you want to forward information over a network that does not support at least 82 bytes of user data, you must determine the space required for the application and adjust priorities accordingly.

Considerations

- Enhanced information forwarding has been tested with several major carriers. To find out if these capabilities work with your carrier, check with your account team for the most current information. If testing has not been done to verify operation over the public networks involved with the preferred specific configuration, use of private ISDN trunking between the nodes should be assumed until successful testing has been completed.

- Any communication server that acts as tandem node must have priorities assigned to the Shared UUI features for non-QSIG trunk groups. Even if this communication server does not create anything, the priorities must be set correctly to pass the information along. For more information, see the Troubleshooting on page 167 section.

- The Send codeset 6/7 LAI trunk group option operates independently of the UUI IE Treatment trunk group option. However, if you turn both of these options on, you’ll send the same information twice and possibly exceed the maximum ISDN message size. The communication server provides a warning message when both options are administered. There are two ways to correct when the user data exceeds the maximum message size, either:
 - put a blank in the priority fields for VDN Name and Other LAI Information on the Shared UUI Feature Priorities form, or
 - disable the Send codeset 6/7 LAI option.
Information Forwarding (Category A only)

- For non-QSIG or QSIG trunk groups to the communication server that require information forwarding, the UUI IE Treatment should be shared and the Send Codeset 6/7 LAI IE should be n.

- Information transported via the Shared UUI will not work with non-Avaya switches unless they adhere to the proprietary encoding.

Troubleshooting

The following troubleshooting hints should be reviewed when information is not forwarded, even though you received no error messages while administering the Shared UUI feature, and all software and connections meet the minimum requirements:

- If DCS is used, make sure all ISDN trunks between the communication server used for DCS or remote AUDIX are configured in the D-channel mode.

- For each ISDN trunk administered with the Shared UUI option, make sure the UUI size does not exceed the UUI IE size that the network can support.

- For all non-QSIG ISDN trunks, make sure the UUI IE Treatment field is set to shared.

- Make sure trunk group options are set correctly for the application and configuration.

- Applications may fail on networks supporting limited UUI transport. Administration determines which application’s UUI will be transported in these cases. If a given application is failing, first check the administration to determine if the application in question has the highest priority. This applies to tandem nodes as well as originating nodes.

Applications that originate UUI on tandem nodes can request that assigned priorities at the tandem node be applied to the resulting UUI. Therefore, it is possible for a tandem node to erase UUI information received from the originator. Passing UUI through a tandem node transparently, as required for UUS Service 1, does not apply to the proprietary shared UUI procedures of the communication server.

Interactions

Best Service Routing

Best Service Routing-related data is sent in addition to the associated ASAI user data and UCID.

Intraflow and Interflow

Intraflow and Interflow allow you to redirect ACD calls from one split/skill to another split/skill when the splits/skills are not vector-controlled. Intraflow redirects calls to other splits/skills within the system using Call Coverage or Call Forwarding All Calls. Interflow redirects calls to an external split/skill or location using Call Forwarding All Calls.
Intraflow

Use Call Coverage with Intraflow to redirect ACD calls from one split/skill to another conditionally, according to the coverage path’s redirection criteria. For example, you can define a split/skill’s coverage path to automatically redirect incoming ACD calls to another split/skill when a terminal is busy or unanswered. You can redirect calls to less busy splits/skills, for more efficient call handling.

Use Call Forwarding with Intraflow to unconditionally forward calls for a split/skill.

Interflow

Interflow allows you to redirect ACD calls from a split/skill on one communication server to a split/skill on another communication server or external location. Use Call Forwarding All Calls with Interflow to unconditionally forward calls directed to a split/skill to an off-premises location. Calls can be forwarded to destinations off the communication server (that is, phone numbers on the public telephone network). You cannot use Call Coverage with Interflow. If a coverage point station or split/skill is forwarded/interflowed, it is taken out of the coverage path.

For details on how to forward calls to an external extension and on Call Coverage redirection criteria, see Administrator Guide for Avaya Communication Manager, 555-233-506. See Call Vectoring on page 128 and Look-Ahead Interflow (Category A only) on page 171 for information on advanced Interflow capabilities.

Administering Intraflow and Interflow

The following forms and fields are required to administer the Intraflow and Interflow feature.

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature-Related System Parameters</td>
<td>● Coverage — Don’t Answer Interval for Subsequent Redirection</td>
</tr>
<tr>
<td>Feature Access Code (FAC)</td>
<td>● Call Forwarding Activation</td>
</tr>
<tr>
<td></td>
<td>● Call Forwarding Deactivation</td>
</tr>
<tr>
<td>Hunt Group</td>
<td>● Inflow Threshold</td>
</tr>
<tr>
<td></td>
<td>● Priority on Intraflow</td>
</tr>
<tr>
<td>Coverage Paths</td>
<td>● Don’t Answer</td>
</tr>
<tr>
<td></td>
<td>● Busy</td>
</tr>
<tr>
<td></td>
<td>● Number of Rings</td>
</tr>
</tbody>
</table>
Detailed description

Assign an inflow threshold for each split/skill receiving Intraflow and Interflow calls. This threshold prevents a split/skill from receiving new ACD calls if the oldest call in the queue has been there longer than the threshold. If an ACD call is forwarded or redirected through Call Coverage, but cannot be routed to another split/skill or coverage path point, it remains in queue at the original split/skill even though coverage tone may be heard.

For a split/skill with Intraflow and Call Coverage assigned, you can also assign Priority on Intraflow. When an ACD call intraflowing from a split/skill with Priority on Intraflow to a covering split/skill enters the queue, that call is placed ahead of nonpriority calls but behind other priority calls already in the queue. All priority calls are answered before any nonpriority calls.

Calls intraflowed via Call Coverage to a covering split/skill are never connected to the first delay announcement at the covering split/skill. Calls redirected via Call Forwarding receive the delay first announcement at the forwarded-to split/skill, but never receive a forced first announcement.

As an illustration of how Intraflow works, assume the following:

- A call is intraflowed from split 1 to split 2 via Call Coverage.
- Split 1 is assigned priority on intraflow.
- Split 2 has a queue with three priority calls and four nonpriority calls.
- Split 2 has an inflow threshold of 90 seconds and the oldest call in queue at split 2 has been in queue for 60 seconds.
- Split 2 has been assigned a second delay announcement and has a second delay announcement interval of 45 seconds.
- Music-on-Hold is provided.

When the call is intraflowed from split 1 to split 2, the call is placed in the split 2 queue as the fourth priority call, ahead of the four nonpriority calls. The call stays in the queue for 45 seconds and is still not answered. Then the call is connected to the second delay announcement for split 2. After the announcement, the caller hears music until an agent answers the call.

You can assign a Coverage ICI button to an agent’s multiappearance phone. The agents use the button to identify a call that is intraflowed from another split/skill. When an agent receives such a call, the button lamp lights.

Considerations

The same coverage path can be used for as many splits/skills as desired. You should administer redirection criteria for a split/skill coverage path so that calls are redirected under Busy or Don’t Answer conditions. Do not use All or Send All Calls as redirection criteria.
Interactions

Call Coverage
All splits/skill with the same coverage path are automatically assigned the same Don’t Answer Interval. The default Don’t Answer Interval is 2.

If Intraflow via Coverage is active, the Coverage Don’t Answer Interval associated with Call Coverage begins when a call enters the split/skill queue.

If the Coverage Don’t Answer interval expires before either of the two delay-announcement intervals expires, a call is redirected to coverage. If either of the delay-announcement intervals expires before the Coverage Don’t Answer interval, the call is connected to a delay announcement, if available.

If no coverage point is available to handle a call, a call remains in queue and may then be connected to a delay announcement.

Temporary Bridged Appearance
If an ACD call is routed to an agent but is intraflowed to another split/skill before being answered, the Temporary Bridged Appearance at the agent’s telephone or console is no longer maintained.
Look-Ahead Interflow (Category A only)

Use Look-Ahead Interflow (LAI) to balance the load of ACD calls across multiple locations. With Look-Ahead Interflow, you can optionally route a call to a backup location based on your system’s ability to handle the call within parameters defined in a vector. In turn, the backup system can accept or deny the call also based on parameters defined in a vector.

Look-Ahead Interflow requires end-to-end ISDN connections, and it works over private and public networks.

Look-Ahead Interflow can:
- produce First in First Out (FIFO) or near FIFO call routing
- provide globally-supported information forwarding over public or private ISDN (PRI and BRI) networks using non-QSIG or QSIG protocols. For more information, see Information Forwarding (Category A only) on page 163.

Administering LAI

The following forms and fields are required to administer the LAI feature.

Required forms –

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Parameters Customer-Options</td>
<td>● Vectoring (Basic)</td>
</tr>
<tr>
<td></td>
<td>● ISDN-PRI</td>
</tr>
<tr>
<td></td>
<td>● Lookahead Interflow</td>
</tr>
<tr>
<td>Trunk Group (ISDN)</td>
<td>● Outgoing Display</td>
</tr>
<tr>
<td></td>
<td>● Codeset to Send TCM, Lookahead</td>
</tr>
<tr>
<td></td>
<td>● Supplementary Service Protocol</td>
</tr>
<tr>
<td></td>
<td>● UUI Treatment</td>
</tr>
<tr>
<td>Feature-Related System Parameters</td>
<td>● Interflow-Qpos EWT Threshold</td>
</tr>
<tr>
<td>ISDN Numbering - Public/Unknown</td>
<td>● Ext Len</td>
</tr>
<tr>
<td></td>
<td>● Ext Code</td>
</tr>
<tr>
<td></td>
<td>● CPN Prefix</td>
</tr>
<tr>
<td>Call Vector</td>
<td>● Complete a form for each Look-Ahead Interflow vector</td>
</tr>
</tbody>
</table>

See Call Vectoring on page 128 for associated Call Vectoring administration.
ACD contact center features

- System-Parameters Customer-Options — For full functionality, options must be enabled at both the sending and receiving communication servers. If Look-Ahead Interflow is not optioned on the receiving communication server, interflow still results on a look-ahead basis. However, the forwarded Dialed Number Identification Service (DNIS) (sending communication server VDN name) information is ignored and tandem Look-Ahead Interflow is not provided.

- Trunk Group Form (ISDN) — If you do not want the call originator’s display to update on each Look-Ahead Interflow call attempt, look-ahead calls should be routed over trunk groups with the Outgoing Display field set to n.

- Feature-Related System Parameters Form — Administer the Interflow-Qpos EWT Threshold field when working with enhanced Look-Ahead Interflow. Any calls that will be answered before this threshold will not be interflowed (therefore saving CPU resources).

- ISDN Numbering - Public/Unknown Form — Administer a CPN Prefix for each Vector Directory Number (VDN) that maps to a vector used to place Look-Ahead Interflow calls. If you do not, a Look-Ahead Interflow DNIS of all blanks displays on the answering agent’s phone.

For private network non-QSIG connectivity with direct facilities between the communication server, administer Look-Ahead Interflow DS1/E1 circuit packs with Country Protocol Option 1 independent of the country where the system is located.

Considerations

Carrier compatibility

LAI has been tested with several major carriers. To find out if these capabilities work with your carrier, check with your account team for the most current information. If testing has not been done to verify operation over the public networks involved with the preferred specific configuration, use of private ISDN trunking between the nodes should be assumed until successful testing has been completed.

ISDN routing with LAI enabled

All calls routed over ISDN facilities by a route-to number with cov n or route-to digits with cov n vector command on a communication server where Look-Ahead Interflow is enabled are treated as Look-Ahead Interflow call attempts.

A vector may route a call over an ISDN facility to a destination that is not a VDN. The sending communication server processes this call as a Look-Ahead Interflow call even though it is not. ISDN processing at the receiving communication server causes the call to always be accepted. However, the DNIS and any other information in the Look-Ahead Interflow information forwarded with the call are ignored.
Look-Ahead Interflow (Category A only)

Interim call handling before LAI is accepted by receiving communication server

Until the look-ahead attempt is accepted by the receiving communication server, the caller continues to hear any feedback applied by the sending communication server vector and will remain in any split/skill queues.

Call handling with Route-to number or Route-to digits handling with coverage y

Route-to number with coverage y or route-to digits with coverage y commands never result in a Look-Ahead Interflow call attempt. The sending end assumes the call is always going to be accepted. This command always completes the call. Moreover, the command should not be used if the vector at the receiving communication server might deny the call, since the caller in this case would be given a busy signal or would be disconnected. Use this command with coverage y only when you want unconditional interflow (with Look-Ahead Interflow active) and the terminating communication server is set up accordingly.

Continuity during call transfer between communication servers

Audible feedback may be provided to the caller before interflow is attempted. Therefore, another audible feedback from the receiving communication server may confuse the caller. For example, a caller hearing ringback on the sending communication server may be confused if music is applied suddenly when the call interflows to the receiving communication server.

Backward compatibility of LAI applications

For backward compatibility of LAI applications between Avaya communication servers, leave the “Send Codeset 6/7 LAI IE” option on the Trunk Group form set to its default y. Existing LAI applications will continue to operate as before, even after you upgrade.

You can use enhanced LAI available in the communication server without any network or trunk administration changes, by adding the `interflow-qpos` conditional to original LAI vectors (the conditional applies only to calls in queue). Interactions

AAR/ARS

ISDN facilities used to provide Look-Ahead Interflow to a VDN on another communication server in a private network can use the AAR feature if private facilities are to be used for call routing.

Agent Telephone Display

If collected digits are forwarded with an interflowed call, the forwarded digits are displayed to the answering agent (unless they’re overridden with newly collected digits) on the telephone display.
Attendant Control of Trunk Group Access
Calls will not route over a trunk with Attendant Control of Trunk Group Access set.

Authorization Codes
Authorization Codes must not be required for interflow routing. Assign a high enough FRL to the VDN so that the route desired for routing interflow calls can be used without requiring an Authorization Code entry. If a route choice is encountered that requires a higher FRL, the interflow is considered an invalid destination (rejected for Look-Ahead Interflow or not available for standard interflow) without the application of recall dial tone.

BCMS
BCMS does not log LAI attempts, nor does it report accumulated in-VDN time.

Call Detail Recording — Sending Server
No Ineffective Call Attempt or Outgoing Call CDR records are generated for vector route-to commands that are unsuccessful including denied Look-Ahead Interflow attempts.

If a local (on-communication server) call to a VDN generates a Look-Ahead Interflow call attempt that is accepted, and answer supervision is returned from the receiving communication server, then one Outgoing Call CDR record is generated with the originating extension as the calling number.

If an incoming (off-communication server) call to a VDN generates a Look-Ahead Interflow call attempt that is accepted, and no answer supervision is returned from the receiving communication server, then one Outgoing Call CDR record is generated with the VDN as the called number, and the duration is from the time answer supervision was provided to the incoming trunk.

If an incoming (off-communication server) call to a VDN generates a Look-Ahead Interflow call attempt that is accepted, and answer supervision is returned from the receiving communication server, then two incoming CDR records are generated:

- An incoming record with the VDN as the called number and the duration as the time since answer supervision was provided to the incoming trunk. This is generated if the call is initially answered in the sending communication server before interflow takes place.

- An outgoing record containing the incoming trunk information as the calling number and the dialed digits and the outgoing trunk information as the called number.

Call Detail Recording — Receiving Server
On the receiving communication server, an incoming Look-Ahead Interflow call is treated like any other incoming vector call.

If answer supervision is returned by the vector, and the call is never terminated to another destination, then the VDN extension is recorded as the called number in the CDR record.
If the call terminates to a hunt group, then the VDN, hunt group, or agent extension is recorded as the called number. If the Record VDN in Record field of the Feature Related System Parameters is y, then the VDN extension overrides the Call to Hunt Group - Record administration option for vector calls.

Call Prompting

Digits collected at the sending communication server, no matter how they are collected (caller-entered, ASAI provided, CINFO provided, etc.) are forwarded with interflowed calls and available at the remote communication server via information forwarding. For more information, see Information Forwarding (Category A only) on page 163.

Note:
Dial-ahead digits are not forwarded with the call. There is a maximum of 16 forwarded digits.

Centralized Attendant Service

A centralized attendant can be a Look-Ahead Interflow destination.

Display - 27 Character

The VDN name (part of the LAI information forwarded with calls) can be up to 15 characters long. Any characters over this limit will be dropped.

Distributed Networking - Manufacturers Specific Information (MSI)

LAI (whether enhanced or not) may not function with systems from other vendors (unless that vendor develops a corresponding capability that works with the Avaya communication server).

Facilities Restriction Level and Traveling Class Marks

The FRL for interflow over ARS/AAR route choices is assigned to the original VDN used for the incoming call.

Incoming Call Management

The adjunct routing capabilities of vectoring can be used at the sending communication server to determine if a call should be interflowed. Adjunct routing at the receiving communication server can be used to tandem the call to a far-end communication server.

If the call terminates to a trunk (tandem), then two CDR records are generated:

- An incoming record with the VDN as the called number and the duration as the time since answer supervision was provided to the incoming trunk.
- An outgoing record containing the incoming trunk information as the calling number and the dialed digits and the outgoing trunk information as the called number.
Network Access
LAI operates over public, private, or virtual private (for example, SDN) ISDN-BRI and -PRI networks that meet minimum network requirements.

The sending of a Look-Ahead Interflow codeset 6/7 information element is counted toward Message Associated User-to-User Information (MA-UUI) counts.

Path Replacement for QSIG/DCS ISDN Calls
For calls that are waiting in queue or in vector processing, even if the call is not connected to an answering user, path replacement using QSIG can be attempted to find a more optimal path for this call. This results in more efficient use of the trunk facilities.

The QSIG ISDN or DCS ISDN trunk path-replacement operation can be triggered for ACD calls by the Look-Ahead Interflow route-to number vector step, BSR queue-to best vector step, and the Adjunct Routing vector steps.

QSIG
LAI and information forwarding function over QSIG trunk facilities if the remote locations are Avaya communication servers. You may get LAI call control functionality with other vendors if an Avaya communication server is the starting point.

Redirect on No Answer (RONA)
Calls redirected to a VDN by RONA can be subsequently processed and routed by LAI applications.

Service Observing
You can observe a call in LAI processing via VDN observing throughout the life of the call (as long as the call is still connected through the local communication server). All current restrictions on Service Observing still apply. Incoming calls can be service observed at the remote communication server.

Trunk-to-Trunk Transfer
Interflowed calls may be transferred by a receiving communication server to another trunk connection.

VDN Override
The name of the active VDN for a call is displayed at the remote answering agent.
Multiple Call Handling

Multiple Call Handling (MCH) allows agents to receive an ACD call while other types of calls are alerting, active, or on hold.

Note:
MCH Forced is available only with Category A only.

Administering MCH

The following forms and fields are required to administer the MCH feature.

Required forms – MCH feature

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunt Group</td>
<td>• ACD</td>
</tr>
<tr>
<td></td>
<td>• Multiple Call Handling</td>
</tr>
</tbody>
</table>

The MCH column on the List Hunt Group form contains the value that you enter in Multiple Call Handling.

Detailed description

Applications

Use Multiple Call Handling in applications where you want agents to take additional calls without dropping the active call. Examples of applications include:

- An agent and a caller may need to wait on a call for information. MCH allows the agent to put the call on hold and handle other ACD calls until information is available.
- ACD calls may be more important to your business than non-ACD calls. Use MCH to interrupt agents on non-ACD calls with an ACD call.
- In an EAS environment, calls from one skill may be more important than calls from another skill. Use MCH to interrupt an agent who has a call from the less-important skill with a call from the more-important skill.

You can use MCH in an Expert Agent Selection (EAS) or non-EAS environment.

- With EAS, you can administer any combination of MCH and non-MCH skills for an agent. If an EAS agent is a member of both MCH and non-MCH skills, he or she can handle multiple simultaneous ACD or Direct Agent Calls only in the MCH skills.
- Without EAS, agents can be logged into only one split if it is an MCH split. Similarly, an agent logged in to a non-MCH split cannot log into an MCH split.
MCH settings

On request

In on-request splits/skills, the following is true:

- If an agent goes into Auto-In or Manual-In work mode, but there are no calls in the queue, the agent is placed at the bottom of the MIA queue or at the bottom of their skill level in the EAD queue, or is made available in the DDC queue.
- Agents must select Auto-In or Manual-In work mode for each new ACD call they take while a call is on hold.
- The agent can take additional ACD calls as long as there is an available line appearance.

Use on-request MCH in conjunction with a feature such as VuStats, which agents can use to see when the queue is getting full and take additional calls.

One forced (Category A only)

An agent who is idle or active on a non-ACD call is automatically interrupted with an ACD call from this split/skill when no other ACD call for any of the agent’s splits/skills are alerting, active, or held. In addition, the following must also be true:

- The agent is in Manual-In or Auto-In work mode.
- The agent is the most idle or next available.
- An unrestricted line appearance is available.
- AUX work or Move from CMS are not pending.

As long as an ACD call is active or held, the agent does not automatically receive an additional call from the one-forced split/skill. An agent in a one-forced split/skill in Auto-In or Manual-In work mode is unavailable for that split/skill from the time that an ACD call rings until all ACD calls are abandoned, redirected, or dropped. However, the agent can request another ACD call from a one-forced split/skill by placing the active call on hold and selecting Manual-In or Auto-In work mode.

If an agent with multiple skills is active on an ACD call for a group with one-forced MCH, the agent could be forced to take an ACD call for one of his or her other skills, depending on that skill’s MCH settings.

Because one-forced MCH forces an ACD call to alert an agent who is not on an ACD call, use it when you want ACD calls to take precedence over other calls.

One per skill (Category A only)

You must have EAS to use one-per-skill MCH. An agent with no ACD calls for this skill is automatically interrupted with a single ACD call from this skill under the same conditions listed for one-forced.
If a one-per-skill call is active or held, the agent does not automatically receive additional calls from that skill. However, the agent can request another ACD call from a one-per-skill in the usual way.

If an agent with multiple skills is active on an ACD call for a one-per-skill group, the agent could be forced an ACD call for one of his or her other skills if those skills are many-forced or one-per-skill MCH.

Use one-per-skill MCH when calls from one skill are higher priority than other ACD calls.

Many forced (Category A only)

Agents are automatically interrupted with an ACD call under the same conditions listed for one-forced. As soon as an agent answers an alerting ACD call, the agent immediately becomes available to receive another ACD call from a many-forced split/skill.

Agents in many-forced groups in Auto-In or Manual-In work mode are unavailable only when an ACD call is ringing.

Use many-forced MCH when agents must answer important or urgent calls, even when they must put equally important calls on hold. It can also be used to force Direct Agent calls to an agent.

MCH example

In this example, an agent is logged into 4 skills, each with a different MCH option. The following table shows how calls are delivered when an unrestricted-line appearance is available and the agent is in Auto-In or Manual-In work mode (AUX work mode is not pending).

MCH call delivery example

<table>
<thead>
<tr>
<th>Condition</th>
<th>Skill 1 (MCH=one-request)</th>
<th>Skill 2 (MCH=one-forced)</th>
<th>Skill 3 (MCH=one-per-skill)</th>
<th>Skill 4 (MCH=many-forced)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No calls on set</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>One active extn call</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Skill 1 call active</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Skill 2 or 4 call active</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Skill 3 call active</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Extn call held, no other action</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Skill 1, 2, or 4 call held, no other action</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Agents and supervisors in on-request MCH splits/skills can use Queue Status, VuStats, and BCMS/CMS reports to determine if a waiting call must be answered immediately.

Considerations

- Agents can receive multiple calls only when in Auto-In or Manual-In work mode. All forced MCH calls are delivered with ringing at the agent's station, not with zip tone. Requested MCH calls are delivered with ringing or zip tone.

- Agents can toggle between Auto-In and Manual-In work mode.

- If an agent selects ACW or AUX work mode with calls on hold, the work mode is pending until all calls complete or until an Manual-In call completes. New ACD calls are not delivered when AUX work is pending. When an ACD or Direct Agent call with pending ACW completes, the agent enters ACW. When an agent is active on a non-ACD call with ACW pending, the agent can receive forced MCH calls.

- If an agent is either in Auto-In work mode and active on an ACD or Direct Agent call, or in Auto-In or Manual-In work mode and active on a non-ACD call and a Manual-In ACD or Direct Agent call abandons from hold, the agent is pending for ACW work mode and the after-call button lamp flashes.

- If an agent reconnects to an ACD or Direct Agent call on hold, his or her work mode changes to the call's work mode (Auto-In or Manual-In).

- Do not use forced MCH with DDC distribution because the first agent continues to receive calls until all line appearances are busy.

Interactions

Automatic Hold

To answer a ringing ACD call, an agent in a many-forced, one-forced, or one-per-skill split/skill pushes the line-appearance button. If automatic hold is administered, the active call is automatically placed on hold. Otherwise, the agent must first push hold.
Call Work Codes and Stroke Counts

Agents handle multiple ACD calls simultaneously with MCH can enter CWCs and Stroke Counts. When an agent does so with multiple calls on the station, the code/count is associated with the last call the agent handled. If an agent enters a code/count during an active call with calls on hold, the code/count is associated with the active call.

If an agent with on-request MCH is active on a call that requires forced entry of CWC or stroke counts and places the call on hold without entering a code/count, he or she cannot request another call.

If agents with many-forced MCH are in a split/skill with forced entry of CWC or stroke counts, they are forced to handle an ACD call even if they have not entered a code/count.

Direct Agent Calling

Agents can handle multiple Direct Agent calls if their direct agent skills have MCH. The queue-status indicator is not lit when a Direct Agent call queues to a split/skill. Agents are notified that calls are waiting with a ring ping and a flashing current-work-mode lamp.

Move Agent While Staffed

An agent with a move pending can place a call on hold and request another ACD call. All calls and ACW must complete before the pending move occurs.

Non-ACD calls

If an agent activates Auto-In or Manual-In work mode with calls on hold, he or she can answer or originate a non-ACD call. With on-request MCH, the agent is temporarily unavailable for ACD or Direct Agent calls. With forced MCH, a call can be delivered. If an agent in ACW reconnects to an AUXIN/AUXOUT call, the agent remains in ACW.

Queueing

When an agent is available, the agent is placed at the end of the queue for Uniform Call Distribution (UCD) hunt groups or at the bottom of the skill type for Expert Agent Distribution (EAD) hunt groups, or is made available for Direct Department Calling (DDC) hunt groups. When the agent becomes the most available according to group type (UCD, EAD, or DDC), he or she receives a queued ACD or Direct Agent call.

If the last agent on a forced MCH split/skill is pending for AUX work mode in a nonvector-controlled split, the agent must empty the queue before going to AUX work mode. The agent continues receiving ACD calls until the queue is emptied.
ACD contact center features

Redirection on No Answer

If an agent has a call active or on hold and the RONA timer expires for another ringing ACD call, RONA redirects the alerting call back to the split/skill or administered VDN. The agent is not taken out of service when the call redirects, but is placed at the bottom of the Most Idle Agent (MIA) or Expert Agent Distribution (EAD) queue.

Restricted line appearance

If you administer last-available line appearance as Restricted Last Appearance for an agent’s telephone, the agent does not receive additional ACD calls because the appearance is reserved for making conference or transfer calls.
Network Call Redirection (NCR) (Category A only)

Full administration support of the NCR feature is provided with the DEFINITY ECS R8.3 SAT. In addition, route-to-number support for ~r vector administration is available with Avaya CMS R3V9 and Avaya Visual Vectors Version 9.0. CMS R3V6 or newer administration support for BSR will support NCR. NCR is not supported on Category B communication servers.

NCR may only be activated for incoming ISDN trunk calls where the associated trunk group has been enabled by the public network service provider to use Network Call Transfer or Network Call Deflection features. Because some public network service providers do not support forwarding of User-to-User Information (UUI), Information Forwarding data is lost and the second leg of the redirected call will look like an entirely new call to the communication server to which the call is redirected.

NCR uses the Best Service Routing feature’s queue-to-best vector step, which is the recommended approach for implementation.

Note:
Network Call Transfer (NCT) currently works with only the MCI® DMS250 network communication servers. NCT is not currently offered on MCI DEX600 switches.

NCT on the MCI DMS250 switch requires that the second leg of the call must be answered before NCT can be invoked.

Until NCR has been tested on specific PSTNs, performance is not guaranteed. To verify operability, contact your CRM Regional Offer Manager.

Administering NCR

This section describes how NCR is administered on the communication server.

The following fields must be set on the communication server administration forms for NCR to work:

Required forms – NCR

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>For both NCT and NCD...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Parameters</td>
<td>Call Center Release</td>
<td>8.3 or later (G3 Version on customer option form must be V11 or later for TBCT or Enhanced ANSI ECT)</td>
</tr>
<tr>
<td>Customer Options</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACD contact center features

Required forms – NCR (continued)

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Parameters</td>
<td>ISDN Network Call Redirection</td>
<td>Y</td>
</tr>
<tr>
<td>Best Service Routing</td>
<td>Net Redir?</td>
<td>Y</td>
</tr>
<tr>
<td>Application form (for the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>location to receive the call)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trunk Group form</td>
<td>Group Type</td>
<td>isdn g</td>
</tr>
<tr>
<td></td>
<td>Supplementary Services Protocol</td>
<td>Nortel-transfer (for MCI DMS250 switches), ANSI-transfer (for MCI DEX600 switches), or Enhanced ANSI-transfer (for future use)</td>
</tr>
<tr>
<td></td>
<td>Network Call REDirection</td>
<td></td>
</tr>
<tr>
<td>Signaling Group form</td>
<td>Network Call Transfer</td>
<td>Y</td>
</tr>
<tr>
<td>DS1 form</td>
<td>Country Protocol</td>
<td>Any, typically 1a</td>
</tr>
<tr>
<td>For NCT or 1998 Enhanced ANSI ECT . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trunk Group Form</td>
<td>Group Type</td>
<td>isdn c</td>
</tr>
<tr>
<td></td>
<td>Supplementary Services Protocol</td>
<td>deflect</td>
</tr>
<tr>
<td></td>
<td>Network Call REDirection</td>
<td></td>
</tr>
<tr>
<td>Signaling Group Form</td>
<td>Network Call Transfer</td>
<td>N</td>
</tr>
<tr>
<td>For NCD. . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trunk Group Form</td>
<td>Group Type</td>
<td>isdn a</td>
</tr>
<tr>
<td></td>
<td>Supplementary Services Protocol</td>
<td>Telcordia-TBCT (for Lucent 5ESS or Nortel DMS-100 switches)</td>
</tr>
<tr>
<td></td>
<td>Network Call REDirection</td>
<td></td>
</tr>
<tr>
<td>Signaling Group Form</td>
<td>Network Call Transfer</td>
<td>Y</td>
</tr>
<tr>
<td>DS1 form</td>
<td>Country Protocol</td>
<td>1b or 1d</td>
</tr>
</tbody>
</table>

For TBCT version of NCT. . .

Trunk Group Form	Group Type	isdn a
	Supplementary Services Protocol	Telcordia-TBCT (for Lucent 5ESS or Nortel DMS-100 switches)
	Network Call REDirection	
Signaling Group Form	Network Call Transfer	Y
DS1 form	Country Protocol	1b or 1d
The \texttt{~r} command takes up two digit positions in the vector step. This works with \texttt{queue-to-best} or \texttt{check-best} vector steps. No change to the vector steps is required for NCR with BSR.

Trunk Group form

If the NCT feature is subscribed to for the NCR feature, only PRI ISDN 2-way trunks may be used for the incoming-call trunk groups to be administered for vectoring activation of NCT, since the software selects a trunk from the same trunk group to set up the second leg call. Refer to the following figures:

Supplementary Service Protocol: NCT

```
change trunk-group 29

<table>
<thead>
<tr>
<th>TRUNK GROUP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Number: 29</td>
<td>Group Type: isdn</td>
</tr>
<tr>
<td>Group Name: MCI-1</td>
<td>CDR Reports: y</td>
</tr>
<tr>
<td>Direction: two-way</td>
<td>COR: 1</td>
</tr>
<tr>
<td>Dial Access? n</td>
<td>TN: 1</td>
</tr>
<tr>
<td>Queue Length: 0</td>
<td>TAC: 729</td>
</tr>
<tr>
<td>Service Type: sdn</td>
<td></td>
</tr>
<tr>
<td>Auth Code? n</td>
<td></td>
</tr>
<tr>
<td>Far End Test Line No:</td>
<td></td>
</tr>
<tr>
<td>TestCall BCC: 4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRUNK PARAMETERS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Codeset to Send Display: 7</td>
<td>Codeset to Send National IEs: 7</td>
</tr>
<tr>
<td>Max Message Size to Send: 260</td>
<td>Charge Advice: none</td>
</tr>
<tr>
<td>Supplementary Service Protocol: g</td>
<td>Digit Handling (in/out): enbloc/enbloc</td>
</tr>
</tbody>
</table>

Trunk Hunt: descend

Digital Loss Group: 13

Calling Number - Delete: Insert:

Bit Rate: 1200
Synchronization: async
Duplex: full

Disconnect Supervision - In? y Out? y
Answer Supervision Timeout: 0
```
ACD contact center features

Supplementary Service Protocol: Telcordia-TBCT

For NCD, the Supplementary Service Protocol field must be set to c and the Network Call Redirection field must be set to deflect. Refer to the following screens:
Network Call Redirection (NCR) (Category A only)

Supplementary Service Protocol: NCD

change trunk-group 30

TRUNK GROUP

Group Number: 30
Group Name: BT-1
Group Type: isdn
Direction: two-way
Dial Access? n
Queue Length: 0
Service Type: sdn

Change trunk-group 30

TRUNK PARAMETERS

Codeset to Send Display: 7
Codeset to Send National IEs: 7
Supplementary Service Protocol: c
Digit Handling (in/out): enbloc/enbloc
Trunk Hunt: descend

Digital Loss Group: 13

Calling Number - Delete: Insert:
Bit Rate: 1200
Disconnect Supervision - In? y Out? y
Answer Supervision Timeout: 0

Network Call Transfer: NCD

change trunk-group 30

TRUNK FEATURES

ACA Assignment? n
Suppress # Outpulsing? n
Outgoing Channel ID Encoding: preferred

Used for DCS? n
Data Restriction? n
NCA-TSC Trunk Member:
Send Name: n

Network Call Redirection: deflect
Send UCID? y
Send Codeset 6/7 LAI IE? n

Network (Japan) Needs Connect Before Disconnect? N

NCT invocation using Call Vectoring requires that the trunk group used for the incoming calls be two-way since the second outgoing call will be placed over an idle trunk in the same trunk group used by the incoming call.
ACD contact center features

To increase the chance that there will be a trunk available to place the second leg call, some trunks in the two-way trunk group can be reserved for outgoing-only use by using Call-by-Call Service Selection Usage Allocation capabilities.

1. On the ISDN Trunk Group form, set the following fields:
 - Direction = two-way
 - Service Type = cbc
 - Usage Alloc = y
 - Disconnect Supervision In? = y
 - Disconnect Supervision Out? = y

2. Assign the incoming call Network Specific service (NSF) types on the ISDN Trunk Group form CBC Trunk Group Usage Allocation page to limit how many trunks can be used for incoming calls. For example, if all incoming calls are “mega800” and two trunks out of a total of 100 are to be reserved, set the Service field to mega800 and set the Min# Chan field to 2 and the Max# Chan field to 98. If the incoming calls are receive with two different NSF types, for example, “sdn” and “mega800”, then assign both for the same Min# and Max# values. Refer to the following figure.

CBC Trunk Group Allocation

<table>
<thead>
<tr>
<th>Service/Feature</th>
<th>Min# Chan</th>
<th>Max# Chan</th>
</tr>
</thead>
<tbody>
<tr>
<td>mega800</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>sdn</td>
<td>2</td>
<td>98</td>
</tr>
</tbody>
</table>

Note:

The NSF coding for MCI WorldCom VNET service is defined as “sdn” on the communication server. The MCI 800 service is defined as “mega800” on the communication server.

Signaling Group form

For NCT, the Network Call Transfer field on the Signaling Group form must be set to y. Refer to the following figure:
Signaling Group form: NCT

For NCD, the Network Call Transfer field on the Signaling Group form must be set to n. Refer to the following figure:

Signaling Group form: NCD

Call Vector form

For non-BSR applications or for standard or enhanced Look-Ahead Interflow applications replaced by NCR, supplementing BSR applications, on the communication server Call Vector form, the left-most two character positions (before the number) in the route-to vector step (vector step 2 in the example on the next page) must be set to ~r to invoke NCR.
ACD contact center features

⚠️ CAUTION:
The number administered in the ~r vector step on the Call Vector form should not have any ARS prefix or trunk access code. Refer to the following figure.

Call Vector form with ~r vector step in NCR

<table>
<thead>
<tr>
<th>CALL VECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number: 37</td>
</tr>
<tr>
<td>Multimedia? n</td>
</tr>
<tr>
<td>wait 0 secs hearing ringback</td>
</tr>
<tr>
<td>route-to number ~r3035385103</td>
</tr>
</tbody>
</table>

Best Service Routing Application form

On the Best Service Routing Application form, the Net Redir? field must be set to y for each location to which calls are to be directed using NCR. Refer to the following figure.

⚠️ CAUTION:
The number administered in the interflow VDN field on the Best Service Routing form (or in the ~r vector step on the Call Vector form) should not have any ARS prefix or trunk access code. Some PSTN numbers will need to include the long-distance access code. Contact your PSTN for specific information.

BSR Application form with NCR in use

<table>
<thead>
<tr>
<th>BEST SERVICE ROUTING APPLICATION PLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number: 1</td>
</tr>
<tr>
<td>Num</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
Administration for support of AT&T In-band Transfer and Connect

For transfer and connect data forwarding support, the ISDN NCR customer options must be active. Only some of the trunk administration for NCR should be assigned, as compared with NCT or NCD administration. Complete the following fields on the forms that are specified.

Required forms – Administration of AT&T In-band Transfer and Connect support.

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signaling Group</td>
<td>● NCR</td>
<td>Y</td>
</tr>
<tr>
<td>Trunk Group</td>
<td>● Supplementary Services Protocol</td>
<td>a (National Public Network - AT&T)</td>
</tr>
<tr>
<td></td>
<td>● Network Call Redirection</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>● DS1 country protocol</td>
<td>1a</td>
</tr>
<tr>
<td></td>
<td>● UUI IE Treatment service provider</td>
<td>service provider (if only the ASSAI user data without the shared OP code-length header is to be included in the IE)</td>
</tr>
<tr>
<td></td>
<td>● Send UCID</td>
<td>Y (with UCID active for the system and if UCID data is to be included in the shared UUI IE)</td>
</tr>
<tr>
<td></td>
<td>● CBC Usage Allocation</td>
<td>not required. The trunk group does not have to be two-way as a second call is not generated by the communication server with Transfer and Connect.</td>
</tr>
</tbody>
</table>

Detailed description

Call redirection using NCR is accomplished by using either the public network’s NCD or NCT options. NCD “clear call upon invocation” is only offered outside of the United States. In the United States, only NCT is offered. In the future, the NCD “retain call until alerting/connect” option may be provided by public networks outside of the United States, but it is not currently available. NCR supports Information Forwarding via UUI transport to the redirected-to location.
Network Call Transfer

NCT occurs after the incoming call is initially answered. With NCT, the communication server is required to set up the second leg of the call and then wait for the second site to acknowledge before requesting the PSTN to transfer the first leg of the call to the second leg, and before the PSTN drops the trunks to the communication server. The benefit is that the communication server retains control over the call and can redirect the call using the trunk-to-trunk method should the NCT invocation fail. Therefore, the NCT option is the most reliable.

After the second leg of the call is initiated and acknowledged by the public switch, the public network joins the original ISDN caller to the redirected-to endpoint and then drops both the original ISDN call and the second leg of the call at the redirecting communication server.

Network Call Deflection

NCD occurs before the incoming call is initially answered. With NCD, the public network sets up the second leg of the call to the redirected-to location when the communication server deflects the call. There are two PSTN options for NCD, per the ETSI standards: “retain call until alerting/connect” and “clear call upon invocation.” This is commonly referred to as a partial call reroute.

With the “clear call on invocation,” which is the only NCD operation currently available, the communication server loses control of the call once the call has been transferred to the public network for redirection. The communication server does not retain control of the call until it has been acknowledged by the network, so there is no alternative transfer possible if the public communication server cannot transfer the call to the second location.

The “retain call until alerting/connect” option is not widely available (no known PTSN offers it at this time). With this option, the PSTN sets up the second leg of the call and waits until an alerting message is received before the first leg of the call is dropped. In this case, if the second leg of the call fails, then the communication server can redirect the call through another method (such as trunk-to-trunk connection) and not lose the call.
Network Call Redirection (NCR) (Category A only)

Note:
There may be limits placed on the number of times a call may be redirected over the public network. These limits are imposed by the public network service provider. For example, in the United States, MCI currently allows only one redirection per call. In the United Kingdom, there is a limit of 20 call deflections per call. In addition, there may be additional charges associated with redirected calls.

Additionally, some public network service providers do not support forwarding of User-to-User Information (UUI), including ASAI User data, collected digits, VDN name, the VDN in-time (as reflected by the NETINTTIME database items), and the UCID. This means that Information Forwarding will be lost and the second leg of the redirected call will look like an entirely new call to the redirected-to communication server at the second location. One of the data items lost is the VDN name, which is rerouted to the originally called service (DNIS) information. The indication that the call has been forwarded can be achieved by using dedicated VDNs for call forwarding, but it does reduce the benefits of Information Forwarding inherent with NCR. Also, this option limits CTI applications as there is no ASAI information or UCID forwarded.

Note:
At this time, no PSTNs are offering the Network Call Deflection “retain call until alerting/connect” operation. Therefore, only the Network Call Deflection “clear call upon invocation” offer is available from PSTNs. Both methods are described in this document. It is advised that you negotiate with your PSTN as the NCR feature will work on either platform. NCR is limited by which PSTN platform is available to you.

Information Forwarding support for AT&T In-band Transfer and Connect

Enabling NCR also provides Information Forwarding support for the AT&T Transfer and Connect In-band network service ISDN D-channel data forwarding capability. The Information Forwarding feature forwards UUI that is associated with the call to the “transferred to” location. When NCR is active in the communication server, transferring the call using Call Vectoring and AT&T In-band Transfer and Connect, the disconnect vector step includes the codeset UUI IE in the ISDN DISCONNECT message.
Considerations

This section contains basic information on troubleshooting, as well as important information about administering NCR.

Troubleshooting

General troubleshooting of NCR can be accomplished by using the following techniques:

- The ISDN message trace information provided by the Message Sequence Tool (MST)
- Vector events displayed by the display events administration command.
- To see the behavior of a particular VDN or vector, use the list trace vdn and/or list trace vector commands to check for NCR errors.
- To check for NCR errors using BSR processing, enter the ch MST switch administration terminal command to set the BSR and vector fields to Y, and use the enable mst and the list mist cont switch administration terminal commands to see NCR-related MST trace data.
- If logged in at the switch administration terminal (SAT) via the init login, enter go tcm followed by the rdd:dp_mgr Bsr_applloc command to see the total attempts, internal error, network error, successful redirection, and disconnect peg counts that are associated with BSR call interflows where NCR was invoked. These peg counts are free running and are only reset when the BSR Best Service Routing Application form is accessed using the ch best SAT command for a particular BSR application number.

If NCR vector activation fails, use the display events SAT command to check for the following NCR vector events:

- 310 NCR: Invoke trunk not ISDN
- 311 NCR: Bad NCR trunk admin
- 312 NCR: No NCT PSTN service
- 313 NCR: No NCT outgoing trk
- 314 NCR: NCT outgo trk drop
- 315 NCR: PSTN NCT invoke err
- 316 NCR: PSTN NCT netwrk err
- 317 NCR: Used NCT trk-to-trk
- 318 NCR: No NCD PSTN service
- 319 NCR: NCD invalid PSTN nmbr
- 320 NCR: NCD call connect err
- 321 NCR: PSTN NCD invoke err
- 322 NCR: PSTN NCD netwrk err
- 323 NCR: PSTN NCD max redirs
Things to know

The following important items should be known.

Failures

Failures can occur in NCR after the queue-to-best or the ~r route-to number vector step is executed. Vector programming should be provided to route the call in another manner if the NCR operation fails.

- **Failure to invoke Network Call Transfer**: If Network Call Transfer is invoked and the public network rejects the call, the call will revert to a trunk-to-trunk transfer. In this case, the call is not lost. However, vector processing is stopped at the redirecting communication server.

- **Failure to invoke Network Call Deflection**: If NCD is invoked and the public network rejects the call, the call is disconnected from the rerouting communication server. In this case, the call is lost. No vector processing takes place at the redirecting communication server.

NCT and call vectoring

With NCT, the transferring vector may or may not answer the first leg of the call before redirecting the call over the public network. If the call has not been answered by vector processing, the communication server will automatically answer the call before requesting NCT.

NCD

With NCD, no steps in the vector can be executed that answer the call or the redirection will not occur. Vector steps that should not be used before NCD is invoked are:

- announcement
- wait hearing music
- converse-on split/skill
- collect

Announcement vector steps

Announcement vector steps cannot be used with NCD before NCD is to be invoked. Announcement vector steps can be used in following vector steps if NCD fails. Announcement vector steps can be used with NCT.
ACD contact center features

ASAI drop event

Successful NCR call redirection causes an ASAI “drop” event to be sent to the CTI application with a CV_REDIR cause value of decimal(30) after the redirection is completed. Only one NCR “drop” event is received for a successful NCR operation when the NCT PSTN feature is used, even though two trunks are dropped by the PSTN.

ASAI third-party merge/call transfer

The CTI application requests a third-party merge/call transfer ASAI operation to transfer the call to the second communication server. This is only used if Network Call Transfer is not available. Once the two calls merge, then ASAI sends a third-party acknowledgement, and when the call is completed, ASAI sends a drop event report, and the third-party call ends.

Interactions

Network Call Redirection interacts with several existing contact center features. The features, and the effect NCR has on them, are described in this section.

NCR interacts with or affects the following communication server components:

- station transfer by DCP set Transfer button/hangup or communication server hook flash transfer by hangup
- station transfer by DCP set Conference button, in which the conferencing (middle) party connects the two calls and then hangs up
- Station call transfer/conference — An incoming ISDN call over a trunk with NCT PSTN service is answered at the station or VRU or IVR. The station user/VRU answers the call and initiates a “station call transfer” using the transfer feature button or a communication server hook flash. The DEIFNITY automatically sends the invoke NCT ISDN FACility message when the transfer is complete only if NCT is assigned to the incoming trunk group and the call is eligible for NCT. That is, if the second leg of the call has been set up over a trunk with the same signaling group as the incoming call and the second leg call has been answered. If the station user initiates and completes a three-way conference instead, the communication server automatically sends an invoke NCT ISDN message when the initiating station user drops from the three-way conference.
- ASAI third-party call transfer
- ISDN trunk administration
- Attendant Vectoring — Attendant Vectoring can use the route-to number vector step with the ~r option to route calls to attendants located at another communication server node. The operation of the NCR feature using the NCD or NCT networks features to accomplish the call redirection is exactly the same as for redirecting ACD calls.
- Call Vectoring and Best Service Routing (BSR)
Network Call Redirection (NCR) (Category A only)

- **Advice of Charge** — No new capabilities are added for the NCR feature for the Advice of Charge PSTN feature. The Advice of Charge feature should be used with the same trunk facilities used for the NCR feature.

- **BCMS** — No change is made to BCMS for support of NCR. redirected calls are tracked as completed calls since the PSTN disconnects the incoming facility of the original call when the call is redirected to another site.

- **Enhanced Information Forwarding** — For the NCR feature, Enhanced Information Forwarding transports User-to-User information (UUI) for the incoming ISDN call to the PSTN endpoint that receives the redirected call. The use of the Enhanced Information Forwarding capability with NCR (the recommended configuration) requires that the incoming call trunk group be assigned as “shared” (i.e., the UUI IE treatment field is set to shared). However, if the trunk group is set up as service provider, only the ASAI user information (or user information provided by the incoming ISDN call) will be included in the UUI IE sent on a non-shared basis to the redirected-to PSTN endpoint. NCR supports Information Forwarding for AT&T In-band Transfer and Connect service.

- **Look-Ahead Interflow** — NCR activation using the route-to number vector step does not require Look-Ahead Interflow to be active to provide multi-site capabilities, which are required for considering remote locations and access to the BSR Application Plan form.

- **Service Observing by VDN** — If the Service Observing by VDN feature is used to service observe a VDN, where the NCR feature is used to redirect incoming ISDN calls, the service-observer will hear the same tones, music, and/or announcements heard by the incoming caller before the NCR feature reroutes the call to another PSTN endpoint. When the NCR operation is completed, the service-observer will be dropped as an observer of the incoming call and placed in the service-observing queue associated with the VDN.

- **Trunk-to-Trunk Transfer** — If the NCR feature is optioned and the ASAI Third-Party make Call/transfer operation is used to redirect an incoming ISDN to a PSTN endpoint, the Trunk-to-Trunk Transfer field on the System-Related Customer Options for must be set to y for the call redirection to succeed. If the route-to number or BSR queue-to-best vector step uses the NCR feature to redirect an incoming ISDN call to a PSTN endpoint, the Trunk-to-Trunk Transfer customer option does not have to be set to y.

- **VDN Return Destination** — If the VDN Return Destination feature is administered for the VDN that is associated with a vector that causes the NCR feature to be invoked, the VDN Return Destination feature will be canceled when the call is redirected by NCR.

- **CMS, Visual Vectors, and Supervisor** — CMS Reporting and/or administration on public network calls that have been rerouted to another public network endpoint using NCR will be provided by the following Lucent products:
 - Release 3 Version 6 (R3V6) CMS or later (reporting), administration of ~r with R3V9
 - Release 6 Avaya CMS Supervisor or later (reporting)
ACD contact center features

— Avaya Visual Vectors Version 1.0 or later (administration, BSR vector support)

— Avaya Network Reporting Version 8 or later (reporting)

Currently, the ~r vector step used to activate NCR cannot be administered with CMS. Beginning with R3V9 CMS and Release 9 Visual Vectors, the ~r vector step can be administered using those products.

ISDN calls that are rerouted by NCR to multiple sites will be reported by NICE Analyzer when used with R3V6 or later CMS by using the Universal Call ID (UCID) information that is part of the User-to-User Information for ISDN calls rerouted by NCR.

CMS database items — CMS data base items are affected by NCR, as follows:

— DEFLECTCALLS: In the vector and VDN tables, the DEFLECTCALLS item includes the number of calls that are redirected using NCR through the BSR feature by using the ~r route-to-number or queue-to-best commands. Successful NCR attempts are pegged as DEFLECTCALLS.

— INTERFLOWCALLS: In the vector and VDN tables, the INTERFLOWCALLS item includes successful BSR interflows using NCR redirections.

— LOOKATTEMPTS: In the vector and VDN tables, the LOOKATTEMPTS item includes the number of times the Look-Ahead Interflow or BSR interflow was attempted for calls in the vector. Successful Look-Ahead Interflow or BSR attempts are also counted. NCR invoke attempts (NCD or NCT) are also reflected in LOOKFLOWCALLS.

— LOOKFLOWCALLS: In vector and VDN tables, the LOOKFLOWCALLS item includes the number of INTERFLOWCALLS that were redirected by the Look-Ahead Interflow or BSR features. LOOKFLOWCALLS is a subset of INTERFLOWCALLS and includes LOOKATTEMPTS for the Look-Ahead Interflow or BSR interflows. With BSR interflow via trunk-to-trunk transfer or NCR, every LOOKATTEMPT will also be counted as a LOOKFLOWCALLS unless a failure occurs.
Queue Status Indications

Queue Status Indications allows you to assign queue-status indicators for Automatic Call Distribution (ACD) calls based on the number of split/skill calls queued and time in queue. You can assign these indications to lamps on agent, supervisor, or attendant telephones or consoles to help users monitor queue activity.

In addition, you can define auxiliary queue warning lamps to track queue status. On telephones and consoles with displays, you can display the number of calls queued and time in queue of the oldest call in the split/skill.

Administering Queue Status Indications

The following forms and fields are required to administer the Queue Status Indications feature.

Required forms – Queue Status Indications

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunt Groups</td>
<td>● Queue Length</td>
</tr>
<tr>
<td></td>
<td>● Calls Warning Threshold (per split/skill or attendant group)</td>
</tr>
<tr>
<td></td>
<td>● Time Warning Threshold (per split/skill or attendant group)</td>
</tr>
<tr>
<td></td>
<td>● Time Warning Port (per split/skill)</td>
</tr>
<tr>
<td></td>
<td>● Calls Warning Port (per split/skill)</td>
</tr>
<tr>
<td>Station (multi-appearance)</td>
<td>● Button/Feature Button Assignments</td>
</tr>
<tr>
<td></td>
<td>— q-calls</td>
</tr>
<tr>
<td></td>
<td>— q-time</td>
</tr>
<tr>
<td>Attendant Console</td>
<td>● Feature Button Assignments</td>
</tr>
<tr>
<td></td>
<td>— atd-qcalls</td>
</tr>
<tr>
<td></td>
<td>— atd-qtime</td>
</tr>
<tr>
<td></td>
<td>— q-calls</td>
</tr>
<tr>
<td></td>
<td>— q-time</td>
</tr>
<tr>
<td>System Capacity</td>
<td>● Queue Status Buttons</td>
</tr>
</tbody>
</table>
Detailed description

There are two types of Queue Status Indications:

- Number of queued calls (NQC) – The system reports the total number of calls, excluding direct agent calls (DACs), in queue at a hunt group.
- Oldest queued time (OQT) – The system reports the time in queue of the oldest call in a split/skill queue.

You can also use auxiliary queue warning lamps to provide both types of indications. Install the lamps at any location convenient to agents and supervisors.

If a queue status threshold is reached, the lamp next to the associated button flashes. If calls are queued but the threshold is not reached, the lamp lights steadily. If no calls are queued, the lamp goes dark.

If the OQT or NQC button on a telephone or console with display is pressed, the following information is briefly displayed:

- Split/skill name (or extension, if name is not assigned)
- Oldest queued time
- Number of queued calls

You can use Queue Status Indications to provide status information for attendant groups or other hunt group types (DDC and UCD). With attendant groups, the button names (AQT and AQC) are different than for split/skill queues, the display shows OPERATOR instead of the split/skill name or extension, and all status information applies to the attendant group queue.

If you need to know how many queue status buttons have been administered, or how many your system will allow you to administer, check page 5 of the System Capacity form.

Interactions

Attendant and Telephone Display Timers

The timer and the queue status information can be displayed at the same time. On 1-line displays, the timer is displayed in the last eight display positions and the number of queued calls is not displayed. On 2-line displays, the timer is displayed on the first line and the queue status information is displayed on the second line.

CMS

When you use CMS to move an agent from one split/skill to another, all buttons associated with the first split/skill, including NQC and OQT buttons, become associated with the second split/skill.
Reason Codes (Category A only)

Reason Codes allows agents to enter a numeric code that describes their reason for entering Auxiliary (AUX) work mode or for logging out of the system. Reason codes give contact center managers detailed information about how agents spend their time. Use this data to develop more precise staffing forecasting models or use it with schedule-adherence packages to ensure that agents are performing scheduled activities at the scheduled time.

You can administer the codes so that entry is forced or optional. Ten reason codes are available, including a default code. You can assign two system-wide names to each code — one for entering AUX work mode and one for logging out.

You can use VuStats to display the reason code name or number. Use VuStats or CMS to gather historical and real-time reason-codes statistics.

You must have Expert Agent Selection (EAS) enabled to use reason codes.

Administering Reason Codes

The following forms and fields are required to administer the Reason Codes feature.

Required forms – Reason Codes feature

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Parameters Customer-Options</td>
<td>● ACD
 ● EAS
 ● Reason Codes</td>
</tr>
<tr>
<td>Attendant Console</td>
<td>● RC</td>
</tr>
<tr>
<td>Feature-Related System Parameters</td>
<td>● EAS
 ● Aux Work Reason Code Type
 ● Logout Reason Code Type
 ● CMS Release (Release 5 and later configurations, or none)</td>
</tr>
<tr>
<td>Feature Access Code (FAC) (optional)</td>
<td>● Aux Work Reason Code Type
 ● Logout Reason Code Type</td>
</tr>
<tr>
<td>Language Translations</td>
<td>● Line 49</td>
</tr>
</tbody>
</table>
ACD contact center features

Required forms – Reason Codes feature (continued)

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason Code Names</td>
<td>● All</td>
</tr>
<tr>
<td>Station</td>
<td>● RC</td>
</tr>
</tbody>
</table>

Detailed description

Forced reason codes
If you have administered forced reason codes, agents cannot enter AUX work mode or log out until they enter a code. Agents can enter codes 1 — 9, but not default code 0.

If an agent enters an invalid code or fails to enter a code within the 10-second timeout interval, the change is denied and the agent remains in the current work mode. If the agent dialed a FAC, the agent hears an intercept tone. If the agent pressed the AUX button, the AUX lamp flutters and then goes dark (or lights steadily if the agent was already in AUX with a different reason code).

Requested reason codes
If you have administered requested reason codes, agents need not enter a code to enter AUX work mode or log out. Agents can enter the codes 0 — 9. If an agent enters an invalid code or fails to enter a code within the timeout interval, the agent enters AUX work mode or logs out with default code 0.

Entering AUX work mode
An agent can enter an AUX reason code in one of three ways:
● Pressing an AUX work button with an assigned code
● Pressing an AUX work button with no assigned code and responding to the prompt for a reason code
● Dialing an AUX work FAC and responding to the dialtone prompt for a reason code

If there are no calls ringing, active, or held at the telephone, agents enter AUX work mode immediately and the AUX lamp lights steadily. Otherwise, the AUX lamp blinks until the agent completes all calls at the telephone.

If a button for AUX work is associated with the reason code that the agent entered, the button lamp lights. If no such AUX button exists, the system lights the first AUX button lamp with no administered reason code.

You can assign an AUX button without a reason code to an agent’s phone. This allows agents with a limited number of buttons to use all 10 reason codes.
Logging out

To log out with a reason code, the agent dials the logout FAC, hears a second dial tone and enters a reason code. The agent hears confirmation tone and is logged out.

Default code

Default code 0 is used when the system puts an agent into AUX work mode or logs the agent out without the involvement of the agent. For example:

- When an agent logs in and is put into AUX mode
- When an agent makes or receives a non-ACD call from the available state
- When a call is redirected as a result of Redirection on No Answer (RONA) and the agent is logged out or put into AUX mode
- When agent skill assignments are changed while an agent is staffed (the system automatically logs the agent out and back in)
- When an agent forces a logout without entering a code (for example, by pulling the headset)
- When an agent who is requested to enter a reason code fails to enter a valid code within the 10-second timeout period
- When an agent with requested reason codes enters # or *

Considerations

- If an agent in Auto-In or Manual-In work mode dials the logout FAC but fails to enter a reason code and logout reason codes are forced, the agent is returned to the available state. ACD calls are delivered even if the agent has left the phone. To prevent this, be certain that agents enter AUX or ACW work mode before logging out.
- When an agent changes to AUX work mode and the AUX Work Reason Code Type is set to none, the agent is put into AUX work mode with the default reason code even if you have administered a different reason code for the AUX button. Setting AUX Work Reason Code in this way allows you to complete button administration before activating the feature.
- Do not administer AUX buttons without a reason code for hybrid station sets.
- When an agent in AUX work mode is active on a non-ACD call, the agent cannot immediately change the reason code. A change is pending until the call drops.
- There is a limit to the number of agents who can simultaneously be entering either a reason code or a Call Work Code.
Interactions

Abbreviated Dialing
You can program FACs for AUX work mode or logout with or without an associated Reason Code on automatic-dial buttons or in abbreviated-dial lists. At the reason code prompt, when an agent selects an abbreviated-dial or automatic-dial button, the first digit of the button is taken as the reason code.

Agents in Multiple Skills
When an agent who is assigned to multiple skills enters AUX work mode with a reason code, the agent enters AUX work for all of his or her skills with the same reason code.

ASAI
ASAI allows a host to log an agent out and place an agent in AUX work mode with a reason code. The host can query the agent’s current work mode and receive the reason code associated with the AUX work mode.

Auto-Available Split/Skill
The system logs AAS agents out for Redirection on No Answer with the default reason code.

Basic Call Management System
Statistics about AUX work mode by reason code are not available in BCMS reports.

CMS
CMS tracks time in AUX work mode by reason code and displays reason codes for agents currently in that mode. When an agent is moved from CMS while the agent is staffed, the system logs the agent out using the default code, and then logs the agent back in again. If an agent is in AUX work mode when moved, the agent is returned to AUX work mode with the same reason code when the move is completed.

Direct Agent Calling
When a Direct Agent call is queued for an agent in AUX work mode with a reason code, the appropriate AUX button lamp flutters to alert the agent to the queued call. If there is no AUX button lamp, agents receive an audible alert (ring-ping or call-waiting tone). If there is an AUX button with no assigned reason code administered, then that lamp flutters.

Redirection on No Answer
When a call is redirected via RONA, an agent is placed into AUX work mode with the default code or is logged out with the default code if the agent is in an auto-available skill.
Redirection on No Answer

Redirection on No Answer (RONA) redirects a ringing ACD split/skill call or Direct Agent Call after an administered number of rings. RONA prevents an unanswered call from ringing indefinitely. The call can redirect either to the split/skill to be answered by another agent or to a VDN for alternative call handling. Direct Agent Calls route to the agent’s coverage path, or to a VDN if no coverage path is administered.

You must have ACD enabled to use RONA. Administer RONA for each ACD hunt group as required. RONA can be used in Auto-Available Splits/Skills (AAS), or in splits/skills with agents operating in Manual-In work mode. You can administer RONA for vector-controlled or nonvector-controlled splits/skills.

Do not administer RONA for splits/skills controlled by adjuncts or AUDIX or for auto-answer agents assigned splits/skills because calls must ring at a telephone to be redirected.

Administering RONA

The following forms and fields are required to administer the RONA feature:

Required forms – RONA feature

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunt Group</td>
<td>● ACD</td>
</tr>
<tr>
<td></td>
<td>● AAS</td>
</tr>
<tr>
<td></td>
<td>● Vector</td>
</tr>
<tr>
<td></td>
<td>● Controlling Adjunct</td>
</tr>
<tr>
<td></td>
<td>● Message Center</td>
</tr>
<tr>
<td></td>
<td>● Redirect On No Answer (Rings)</td>
</tr>
<tr>
<td></td>
<td>● Redirect to VDN</td>
</tr>
<tr>
<td>Station (multifunction)</td>
<td>● Button Assignments</td>
</tr>
<tr>
<td></td>
<td>— noans-a1rt</td>
</tr>
</tbody>
</table>

Note:

You must set Controlling Adjunct to none.
ACD contact center features

Detailed description

When RONA is invoked for a call, the system:

- Places an agent in AUX work mode, and thus unavailable to receive calls from other splits/skills. In an AAS, the agent is logged out.

- Redirects split/skill calls back to the split/skill or administered VDN. Redirected calls are requeued at the highest priority so that they are distributed before any other split/skill calls. See RONA routing sequences on page 207 for more information about call redirection.

- Sends a message to CMS. When a RONA timeout occurs, the Noans-alrt lamp for the split/skill lights steadily. The supervisor presses the Noans-alrt button to display the login ID or the extension and name of the last agent timed out with RONA.

- Records the redirection in BCMS or CMS. See Using BCMS/CMS reports with RONA on page 208 for additional information.

RONA application examples

VRU applications (Category A only)

Typically, RONA is used with VRU applications in AAS configurations. RONA detects VRU failures and provides alternate operation. For example, an adjunct port failure is not detected by ACD call processing. RONA detects the failure, takes the port out of service, and provides notification of the failure.

Use Call Vectoring for flexible call handling in case of a VRU failure. Assign RONA a converse split/skill connected to the Conversant or to equivalent VRU ports. Whenever RONA times out on a ringing call delivered via the converse-on command to a VRU port, the agent is logged out and the call is redirected back to the converse split/skill.

Note:
RONA can not redirect a call to an administered VDN from a converse step.

With a complete VRU failure, all VRU ports are eventually logged out and vector processing for the converse-on command bypasses that step for new calls.

The following vector example shows how to provide automatic backup for a complete VRU failure.
Example vector – Providing automatic backup for a complete VRU failure

<table>
<thead>
<tr>
<th>CALL VECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 wait-time 0 secs hearing ringback</td>
</tr>
<tr>
<td>02 converse-on split... (VRU returns the digit “1” as a return code followed by additional digits for the application)</td>
</tr>
<tr>
<td>03 collect 1 digits after announcement none</td>
</tr>
<tr>
<td>04 goto step 6 if digits = "1"</td>
</tr>
<tr>
<td>05 goto vector xxx (for backup when the VRU fails)</td>
</tr>
<tr>
<td>06 collect 2 digits after announcement none</td>
</tr>
<tr>
<td>07 ...</td>
</tr>
</tbody>
</table>

In the example vector shown above, the application works as expected as long as the VRU returns the digit string, which includes a return code of 1. In this case, the condition in Step 4 is satisfied and the program branches to Step 6, which provides normal application processing.

On the other hand, if all VRU ports in an AAS split/skill are logged out by a RONA timeout, the converse-on command step (Step 2) is skipped, and no digits are collected by Step 3 (after the 10-second timeout). The condition in Step 4 is not satisfied and vector processing proceeds to Step 5, which branches to vector xxx to connect the call to an agent.

Other applications

You can use RONA for applications that involve human agents with manual answering and other adjunct applications, such as Home Agent. For example, a call may not be answered because an agent left without entering AUX work mode or logging out. You can use RONA to make the nonanswering agent unavailable and redirect calls to another agent or to the RONA VDN.

RONA routing sequences

The following tables describe how RONA redirects split/skill calls and Direct Agent calls.

<table>
<thead>
<tr>
<th>RONA Routing Sequence for Direct Agent Calls (Category A only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redirection Destination</td>
</tr>
<tr>
<td>Coverage path</td>
</tr>
<tr>
<td>RONA VDN</td>
</tr>
<tr>
<td>VDN return destination</td>
</tr>
<tr>
<td>None</td>
</tr>
</tbody>
</table>
ACD contact center features

RONA Routing Sequence for Split/Skill Calls

<table>
<thead>
<tr>
<th>Redirection Destination</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RONA VDN</td>
<td>If a RONA VDN is administered, calls redirect to the VDN.</td>
</tr>
<tr>
<td>Requeue to split/skill</td>
<td>If a RONA VDN is not administered, calls redirect to the split/skill.</td>
</tr>
<tr>
<td>Coverage path</td>
<td>In nonvector-controlled splits, if calls cannot requeue to the split, they redirect to the split’s coverage path if one is administered.</td>
</tr>
<tr>
<td>VDN return destination</td>
<td>For external calls, if a coverage path or a RONA VDN is not administered and calls can not requeue, they redirect to the VDN Return Destination extension.</td>
</tr>
</tbody>
</table>

Using BCMS/CMS reports with RONA

You can use BCMS and CMS reports to determine which agents had RONA timeouts and how calls were redirected.

With R3V2 and later releases of CMS, the exception report lists agents who were timed out and made unavailable. With BCMS and earlier releases of CMS, you can determine which agents were in AUX work mode or logged-out with AAS.

With R3 CMS, you can use the real-time “Split Status” report to see which agents are in AUX work mode, but you need a custom report to see logged-out agents.

With BCMS, use SAT to create a list of unstaffed agents for the split to see which agents are logged out (for AAS applications). With EAS, list agent-loginid specifying unstaffed and AAS = yes.

With BCMS, agents’ changes to AUX work mode appears in the BCMS Split (AGENT) Status report. In an AAS split, agents log out, so they do not appear in the Split Status report. When the call is requeued, the System Status report shows only the AVG ANSW SPEED time and AVG ABAND TIME time for the requeued call. The Historical Split and System reports show both a FLOWOUT (primary split) and FLOWIN (redirected split) for requeued calls, while the VDN report shows only a FLOWOUT.

Direct Agent calls are recorded as ACD split/skill calls but the flowout is recorded only if an agent’s coverage path queues the call to a split/skill.

Since BCMS does not report exceptions, RONA events are not reported. If you have BCMS, use the RONA split/skill lamp indicator for RONA event indication.
Returning AAS agents to service

When RONA redirects a call that was directed to an AAS, the agent is logged out. To return an AAS agent to service, readminister the agent as a member of the AAS split/skill to be logged in again in one of the following ways:

- For ACD splits, remove the agent from the split and then resubmit the split Hunt Group form with the agent added to it. Alternatively, administer the agent in a different location in the split members list on the Hunt Group form. Use the `list unstaffed-agents` command to get a list of all AAS agents that have been logged out, not just AAS agents that were logged out because of a RONA timeout.

- For EAS skills, readminister the Agent LoginID form so that the AAS agent is automatically logged in. To determine which EAS agents are logged out, use the `list agent-loginid` command.

- For ACD splits and for EAS skills, you can busy-out the AAS agent station with the `G3-MT busyout station` command and release it with the `release station` command. Releasing the AAS agent station automatically logs the agent in. If all AAS agent ports on the circuit pack had a RONA timeout, busy-out and release the entire circuit pack.

- Use CMS Move Agents to move up to 32 agents at a time into a dedicated unused split/skill and then move the agents back into the AAS split/skill. You can set this up using the timetable on a manual-scheduled basis to activate when the VRU has been restored to service after a failure.

- Use ASAI to log the logged-out agents back in via ASAI login request messages.

Considerations

- RONA can timeout while an agent is actually at the station if the agent does not answer soon enough or has selected another work mode while a call is ringing. RONA handles the call as usual, making the agent unavailable. With ACD splits, agents at multifunction telephones know that they have been made unavailable when they see the AUX-Work lamp lit. They press the Auto-In or Manual-In button to become available.

- Specify a coverage path or VDN for redirection for nonvector-controlled splits or for Logical Agent IDs with EAS Direct Agent Calls to ensure that calls are always redirected.

Interactions

AAS

Use AAS with RONA for VRU ACD non-ASAI adjunct-controlled split/skill applications. Assign AAS only to ACD hunt groups. When all lines in a vector-controlled AAS split/skill are logged out, the split/skill is considered unavailable, and vector processing skips the step in the vector for new calls.
ACD contact center features

If RONA occurs on the last VRU port in an AAS split, the call is not requeued to the converse split, but is processed by the next vector step.

Any calls queued to a split/skill that has been taken out of service may be left at this split/skill. When the system reinitializes, all busied-out ports are automatically logged back into the AAS splits. New calls cause a RONA timeout if the adjunct or agent still does not answer after the system reinitializes.

Abandoned Call Search

Abandoned Call Search, if defined for a trunk, is reapplied to call on that trunk that RONA requeued whenever the calls are routed to another agent.

Agents in multiple splits

When a RONA timeout occurs, an agent is placed in AUX work mode with notification to CMS for all splits that the agent is logged into. The agent is responsible for becoming available in each split. In an AAS, agents are logged out of all splits that they are logged into. You must log agents back into the AAS splits.

Agent logout

An agent can log out from a multifunction set while an ACD call subject to RONA is ringing the set. However, if the agent logs out before RONA times out, RONA timing is canceled, and RONA redirection and notification occur immediately.

Agent work modes

If an agent presses the ACW button with an ACD call ringing, the change request is pending. If the agent has a pending change to ACW before a RONA timeout occurs on a ringing ACD call, RONA timing continues. At timeout, the call is redirected, CMS is notified, and the agent is placed in AUX work (overriding the pending ACW request).

If an agent presses the AUX-Work button with an ACD call ringing, the change request is pending. With ACD splits/skills, since the RONA time-out changes the state to AUX-Work, there is no conflict with the pending AUX-Work change request. With AAS splits/skills, an agent-initiated AUX-Work change is denied per existing operation.

ASAI (Category A only)

RONA applies to vector-processed calls that are routed by an adjunct to a split or agent as a Direct Agent Call.

You can assign RONA to ASAI adjunct-monitored splits and adjunct-monitored calls. An event report is not sent to the ASAI adjunct when a RONA timeout puts an agent into AUX work mode.
The adjunct makes an agent query (as part of the value query capability group) to determine the agent's state. Once the call is requeued to the split, the adjunct receives a call-queued event report if event reporting is active for the domain (VDN or nonvector-controlled split/skill).

An adjunct-monitored split/skill can be assigned as an auto-available split/skill. The logout event for an AAS split/skill is sent to the adjunct when RONA timeout logs an agent out.

You cannot assign RONA to an adjunct-controlled split/skill. An adjunct-controlled split/skill cannot be an AAS.

ASA Conversant VRU applications are configured with nonvector-controlled splits/skills using manual-answer operation on analog lines to Conversant ports. The ASA link provides event notification for the ACD split/skill for enhanced services. In addition, you can log in and log out the ports as required. (AAS splits/skills are not used for this application because the ASA link controls the login or logout).

You can assign RONA to these splits/skills to detect failure conditions in the same manner as non-ASA VRU applications. RONA does not notify Conversant of AUX work mode changes. ASA Conversant cannot query to determine the states of its ports. You must restore ports manually after a failure via ASA management screens. Complete failure is automatically restored when Conversant reinitializes.

The following table describes ASA events that the communication server sends the adjunct for various stages of the RONA call. Also included are the ASA associations (assuming that they are active) for which the events are provided. For the split/skill to have Notification association active, the split/skill must not be vector-controlled or adjunct-controlled.

RONA/ASA events

<table>
<thead>
<tr>
<th>Stage of Call</th>
<th>ASA Event</th>
<th>ASA Associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RONA timeout</td>
<td>Logout (for AAS)</td>
<td>Domain (agent) control</td>
</tr>
<tr>
<td>2. Call redirected to</td>
<td>Call redirected</td>
<td>Domain (station) control (for agent ext call is leaving)</td>
</tr>
<tr>
<td>split</td>
<td>Call queued (only if the call queues)</td>
<td>Domain (station) control, (for new agent & for internal originator) call control, notification</td>
</tr>
<tr>
<td>3. Call redirected to</td>
<td>Call redirected</td>
<td>Domain (station) control (for agent ext that call is leaving)</td>
</tr>
<tr>
<td>VDN processing</td>
<td>Call redirected (only if call is redirected to a VDN with Notification active)</td>
<td>Notification</td>
</tr>
<tr>
<td></td>
<td>Call offered to Domain</td>
<td>Notification (VDN)</td>
</tr>
<tr>
<td>4. Call delivered to</td>
<td>Alerting</td>
<td>Domain (station) control, (for new agent & for internal originator) call control, notification</td>
</tr>
<tr>
<td>agent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ACD contact center features

RONA/ASAI events (continued)

<table>
<thead>
<tr>
<th>Stage of Call</th>
<th>ASAI Event</th>
<th>ASAI Associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Call routed to split’s coverage path</td>
<td>Call redirected followed by existing operation of ASAI Events</td>
<td>Domain (station) control (for agent ext that call is leaving)</td>
</tr>
<tr>
<td>6. Infinite feedback to caller</td>
<td>Call redirected</td>
<td>Domain (station) control (for agent ext that call is leaving)</td>
</tr>
<tr>
<td>7. Continue vector processing</td>
<td>Call redirected followed by existing ASAI events</td>
<td>Domain (station) control (for agent ext that call is leaving redirecting to VDN)</td>
</tr>
<tr>
<td>8. Call routed to direct agent’s coverage path</td>
<td>Call redirected followed by existing operation of ASAI events</td>
<td>Domain (station) control (for agent ext that call is leaving)</td>
</tr>
</tbody>
</table>

Note:
When a call is redirected via ASAI Redirect Call, the RONA timer is canceled.

Attendant return call

If an attendant extends a call to an ACD split or VDN for which the return call timer is not activated, the call does not interact with RONA. The Attendant Return Call Timer is not set if an attendant extends the call to another attendant.

AUDIX Transfer

RONA applies to a call transferred by AUDIX to an ACD split. A redirected call to AUDIX does not go to split or agent coverage after it is transferred out of AUDIX. If RONA times out on this type of call, the call cannot be redirected.

Automatic answering

If an agent with automatic answering receives a call with zip tone instead of ringing, RONA timing is canceled.

Call Coverage

Direct Agent calls are redirected to the agent’s coverage path if a path is administered. A temporary bridged call appearance is not maintained for a call directed to an ACD hunt group or VDN, or for a Direct Agent call.

When a call is redirected to a split/skill, the Coverage Subsequent Redirection/CFWD No Answer timer is started on the call. Covered calls go to the next point in the split/skill coverage path.
If no other point is available to accept the call, the call remains queued or continues to ring the current coverage point. When RONA times out at the coverage point, the following occurs:

- RONA does not reset the Subsequent Redirection/CFWD No Answer timer. The timer that expires first controls the call.

- If the coverage point for a covered call is a direct agent logical agent ID whose skill has RONA, and if RONA times out first, the call is sent to the next point in the skill coverage path, not to the agent’s coverage path. The Subsequent Redirection/CFWD No Answer timer is reset when the call is redirected to the next coverage point.

- If RONA was applied to an ACD call that was a previously redirected coverage call (that is, the RONA split was a point in the coverage path), RONA is used to requeue the call as specified for a noncovered call. However, the call is not designed to go to split coverage or forwarding. The Subsequent Redirection/CFWD No Answer timer is reset if RONA requeues the call to the RONA split. Both the RONA timer and Subsequent Redirection/CFWD No Answer timer are reapplied.

- If RONA applies to an ACD call that was a previously-redirected coverage call (for example, the RONA split was the second point in the coverage path), the call is redirected to the next coverage point in the principal’s coverage path if the call cannot be requeued to the RONA split. The Subsequent Redirection/CFWD No Answer timer is reset.

- If no other point in the coverage path exists or other points are unavailable, the split-covered call that cannot be requeued or the direct-agent-covered call receives call-cannot-be-redirected handling.

Call Detail Recording (CDR)

When an agent is assigned to be recorded on the CDR record as the called number, the RONA redirected-to answering destination is recorded as the final called number. You can administer CDR to record the VDN, the hunt group, or the answering agent as the called number.

Call Forwarding All

If an adjunct Direct Agent call is made to an agent’s extension that has Call Forwarding All assigned and it is redirected by RONA, the call follows the agent’s coverage path.

A call forwarded via Call Forwarding to a split or logical agent ID with RONA is sent to the principal’s coverage path instead of going to the split’s coverage path (if the call cannot be requeued) or to the agent’s coverage path (for a Direct Agent call) on RONA redirection.

Call Pickup

A member of an agent’s pickup group can pick up an ACD call that is being timed for RONA. RONA is cancelled.
Call Vectoring

RONA applies to vector-controlled ACD splits when calls are queued via the queue-to split, or converse-on split, or check split commands. Also, RONA applies to nonvector-controlled and vector-controlled ACD splits when calls are routed to the split via a route-to or a messaging split command. Basic Call Vectoring handles an AAS with all agents logged out as unavailable and skips the relevant step, just as it does for a split with all queue slots busy. With an adjunct routing or route-to with coverage step that routes to a vector-controlled split with all agents logged out, the call is given a busy tone just as when the call cannot queue to a nonvector controlled split according to the existing operation.

Vector events are generated for a RONA timeout when converse-on processes a call or results in a RONA redirection failure, and when a vector step is skipped because all AAS agents are logged out.

Do not assign vector-controlled splits coverage, forwarding, or night service, because Call Vectoring provides these functions. These functions do not apply to RONA-redirected calls involving vector-controlled splits.

Calling/Called Number Display

A call to a split/skill that RONA redirects is similar to a direct call to the split/skill. If the call goes to coverage, the destination display looks like it does for a normal covered call.

An internal or DCS caller to an ACD hunt group or VDN sees displayed the hunt-group or VDN name and extension. This display remains when the call rings an agent. A Direct Agent call (with EAS) initiated at a phone displays the agent name and logical ID when the call rings the agent station. If the ACD split call or Direct Agent call goes to coverage, the name remains, but the extension or logical ID portion changes to “cover.” This also happens when RONA redirects a call.

Delay announcements

Delay announcements assigned to non-vector-controlled splits are applied to requeued RONA calls as usual for redirected calls.

Direct Agent Calling (Category A only)

RONA applies to Direct Agent calls from splits with RONA assigned. RONA timing applies when a Direct Agent call (from an adjunct or phone) is delivered to and rings an agent with manual answering. Agents are placed in AUX work mode or logged out even if they are the last agent in the split and ACD split calls are queued. Direct agent calls that are queued for an agent remain queued and are not delivered because the agent is unavailable. Don’t-answer (DA) coverage continues for the queued calls.
If an agent with a coverage path is made unavailable by a RONA time-out on a non-covered Direct Agent call, the call follows the agent’s coverage path. With EAS, the agent’s logical extension coverage path for Direct Agent calls is used. If the agent has no coverage path or if the path is unavailable, the call cannot be redirected and the caller hears previously-provided feedback.

If Direct Agent call comes from a split that has forwarding or night service, the call is forwarded, precluding RONA timing. If the agent has forwarding or Send-All-Calls, the Direct Agent call is forwarded (ACD calls only) or goes to coverage, precluding RONA timing.

Direct Department Calling

RONA applies to DDC-type hunt-group ACD calls.

Home Agent

RONA applies to Home Agent lines that terminate on the Conversant Home Agent system as a means to detect port failures. Home Agent lines use Manual Answer and are not present in AAS. Once RONA notification is made, you can correct the failure and restore service manually on Conversant.

Inbound Call Management (ICM)

RONA applies to ICM-managed calls that ring an agent in an ACD split with RONA assigned.

Message Center/Server Service

You can assign RONA to Message Center/Server ACD splits.

Multiple Call Handling (MCH)

If an MCH agent has a call active or on hold and the Redirection on No Answer timer expires for another ringing ACD call, the ringing call is redirected to the split/skill or administered VDN. When the call redirects, the agent is not made unavailable, but is placed in the queue of available agents.

Music-on-Hold access — Music on Transferred trunk call

Trunk callers who are transferred to another destination continue to hear administered music (or silence), not ringback, while the call rings. This applies while the transferred call queues to a split.

If the trunk call (an ACD call or Direct Agent call) is transferred to a split with RONA, timeout applies to the call, but the caller continues to hear the previous feedback instead of ringback.
Night Service

When Night Service is activated, calls (including RONA calls) for the hunt group redirect to the night station extension. If the night service split has RONA assigned, RONA timing is reapplied to the redirected call.

Queue status indications

Calls that RONA requeues are counted in the queued calls total. When a RONA call is queued, the call’s call-wait time is reset, so RONA does not affect the oldest call waiting (OCW) time.

Queuing

When redirected to a split, RONA timed-out ACD calls in a nonvector-controlled split are queued at the highest priority. These calls are distributed before any other calls, except Direct Agent calls.

Stations

RONA applies to ACD split or direct agent ACD calls that ring at multifunction or hybrid stations with Manual Answering in an ACD hunt group.

RONA applies to Off-Premises Station (OPS) lines in an ACD split.

Voice Response Integration (VRI) (Category A only)

You can assign RONA to converse splits. RONA timing applies to calls that a converse-on command queues and delivers. RONA timing is canceled if a call is delivered to an agent in another split to whom the system previously tried to queue a call.

RONA interacts with a converse split that is an AAS like any other AAS.

If RONA must redirect a call to an agent port in a converse split and the queue is full or all AAS agents are logged out, the call is processed by the next vector step while the caller continues to hear the previous vector feedback.

Interactions with other ringing call timers

Several features time the ringing when an ACD call is delivered to an agent. You can use the RONA timer in conjunction with other timers.

Note:

The timer that expires first applies to the call. RONA is canceled if any of the other timers expires first, except in the case of coverage timers.
When a coverage timer expires, RONA timing is canceled only when the call goes to coverage. If RONA times out first, the other timers continue timing or are stopped and may later be reset. RONA interactions with other timers are summarized in the following table.

Summary of RONA-Timer interactions

<table>
<thead>
<tr>
<th>Timer</th>
<th>Description</th>
<th>RONA-timer interaction</th>
<th>Restarted after redirection?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Split DA</td>
<td>Split Call Coverage Don’t Answer (nonvector-controlled)</td>
<td>Stopped</td>
<td>If requeued or delivered to another agent</td>
</tr>
<tr>
<td>Covering DA</td>
<td>Covering Point DA - Subsequent Redirection No Answer</td>
<td>Stopped</td>
<td>If redirects to covering point</td>
</tr>
<tr>
<td>Agent DA</td>
<td>Agent DA Coverage (Direct Agent Calls)</td>
<td>Stopped</td>
<td>If covers to Direct Agent with coverage</td>
</tr>
<tr>
<td>NATO</td>
<td>DID/CO Trk No Answer Timeout</td>
<td>Continues</td>
<td>N/A</td>
</tr>
<tr>
<td>WAST</td>
<td>Wait Answer Supervision Timer</td>
<td>Continues</td>
<td>If ringing destination or RONA redirection fails</td>
</tr>
</tbody>
</table>

If you want RONA notification and redirection, set the number of rings (or equivalent time) for a RONA timeout to shorter than other timeout periods. DA timers start when a call is placed in queue and continue when the call rings the station. Since RONA starts only when the call is ringing, the RONA interval is usually set to two or three rings, while the DA interval is set to 10 or more rings.

Since queue time is variable, assign a coverage timeout period that is greater than the longest expected queue time plus three or four rings (the time the call could ring the agent).

The NATO timer starts when the call seizes the incoming trunk. The timer could thus be timing before the call is queued by vector processing. Therefore, set the NATO timer to greater than the longest expected time before the call rings the agent (including time before and after being queued) plus three or four rings.

The WAST timer starts when the call rings the agent. Set the RONA timer to a slightly shorter interval (fewer than 10 rings) than the WAST 50-second interval.
Remote Logout of Agent

The Remote Logout of Agent feature allows a user to logout an idle ACD or EAS agent without being physically present at the agent’s station. The user who is logging out the agent can be locally or remotely located.

The Remote Logout of Agent is similar to the Add/Remove Skills feature.

Administering Remote Logout of Agent

The following forms and fields are required to administer the Remote Logout of Agent feature.

Required forms – Remote Logout of Agent

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Parameters</td>
<td>● Call Center Release field set to 9.1 or newer</td>
</tr>
<tr>
<td>Customer-Options</td>
<td>● Remote logout of agent field set to y</td>
</tr>
<tr>
<td>Feature Access Code</td>
<td>● Call Center page, Remote Logout of Agent field set to appropriate access code</td>
</tr>
</tbody>
</table>

Detailed description

This feature allows a user to log out an agent using a feature-access-code (FAC). Remote Logout of Agent can be used to discontinue the delivery of ACD calls to a station that is no longer staffed by the agent.

While the RONA feature places an agent station in the aux-work mode, it does not log an agent out. Note that the RONA feature does log out an AAS port. The Remote Logout of Agent feature addresses the need to be able to log out the agent who is no longer at his station and is still logged in.

The Remote Logout of Agent feature makes it possible for supervisors (or other users who are appropriately authorized) to log out agents without physically going to the agent station to perform the logout action.
Verifying system parameters to enable the Remote Logout of Agent feature

To verify that the system parameters are set for use of this feature, complete the following steps:

1. For the **Class of Service** form, set up a Class of Service (COS) with console permissions set to y.

2. For the **Class of Restriction** form, enter:

 command display system-parameters customer options

 Note:

 You will only be able to do this if your loginID has an appropriate COS assigned to it). Ensure that the Call Center Release is set to 9.1 (or later).

3. Enter command change cor x and proceed to page 2 of the form.

 Note:

 x = valid COR, which is any number between 1 and 95.

4. Set the Remote Logout of Agent field to y.

5. Submit the form.

6. Recall the form and verify that the change is intact.

7. For the Feature Access Code form, enter:

 command change feat

8. Go to the Call Center page.

10. Submit the form.

11. Recall the form and verify that the change is intact.

12. Enter the TCM command:

 rdd :dp_mgr Dac_e

13. Verify that the assigned value appears as the Remote Logout access code.

 Note:

 Steps 11 and 12 only need to be completed if there is reason to suspect that there was a problem with the change implementation.

14. Enter command “save trans” to save the changes to the COR and FAC.
Administering permissions for users to remotely logout agents

The Remote Logout of Agent feature can only be used if user permissions are administered appropriately for the person who is attempting to use the feature. The communication server administrator must ensure that the appropriate users have permissions administered so that they can use this feature.

Prior to setting up the user’s Login ID, the communication server Administrator needs to administer a COR and the FAC for the Remote Logout of Agent feature.

The following table summarizes the fields where the permissions are set for each type of Remote Logout of Agent user.

Setting permissions for Remote Logout of Agent users

<table>
<thead>
<tr>
<th>User type</th>
<th>COS form</th>
<th>COR form</th>
<th>TN form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local station</td>
<td>station</td>
<td>extension</td>
<td>extension</td>
</tr>
<tr>
<td>EAS agent logged in</td>
<td>station</td>
<td>loginID</td>
<td>loginID</td>
</tr>
<tr>
<td>Remote (using VDN)</td>
<td>NA</td>
<td>VDN</td>
<td>VDN</td>
</tr>
</tbody>
</table>

To enable the user to use the Remote Logout of Agent feature, the communication server Administrator ensures that the following permissions for are set correctly:

- COR is set to a COR that has the feature enabled
- For local users, the station set is assigned to a COS that has console permissions
- If tenant partitioning is used (more than one is assigned for the system), the person who is logging out agents must be in the same tenant partition as the agent being logged out.

Logging out an Agent (locally, within the communication server)

If an agent has left his station without logging out of the communication server, then ACD calls can still be sent to the station but they do not get serviced and BCMS/CMS/ASAI may continue to track activity to the station.

Prior to Release 9, the agent could only be logged out at the physical station where he was logged in, or from the communication server room using the PBX to busy-out the station.

This feature allows the supervisor (or a fellow agent with permissions) to log out an agent who has left his station without being physically present at the agent’s station.

To do this, enter the FAC that was established to activate this feature followed by the agent’s loginID or physical station extension (physical extension only in non-EAS).

Logging out an Agent (remotely using VDN)

Many contact centers are geologically dispersed, but the reporting and tracking of agent activity takes place from one main location. Or, agents can log into the system remotely and take calls using the Home Agent capability.
With the Remote Logout of Agent feature, a vector is administered with a route-to number step that contains the FAC for remote logout. The FAC can be followed by the agent’s loginID or the supervisor can dial the loginID after the VDN with an appropriately programmed vector. Note that service observing and remote logout are the only features that can use a VDN vector in this manner.

If the user is remote and calling into the communication server through a trunk, the user may reach the activation VDN to logout the agent. In this case, the entire FAC-with-EXT is required in the vector. Or, the vector can prompt the user to enter the extension and then route-to digits. An activation vector can also prompt the user for a password for additional security. Note that a remote trunk user might not hear confirmation tone (it varies with trunk type and trunk administration) and the user’s phone will continue to hear feedback until the user hangs up.

To set up this capability, the communication server Administrator must create an activation VDN and set the incoming destination of a CO trunk to be the activation VDN. The VDN to which the trunk terminates must be assigned a COR and a TN that include the appropriate settings for use of the Remote Logout of Agent feature. In this example, the activation VDN includes the following vector:

```
01 wait time 0 seconds hearing ringing
02 collect 5 digits announcement 3501 ("enter password")
03 goto step 5 if digits = 39744
04 disconnect after announcement 3502 ("bye")
05 collect 1 digits announcement 3503 ("enter 1 to logout agent 89923, 2 to logout agent 89924...")
   Note: The names of the agents can also be requested in the appropriate switch-setup.
06 route-to number *6389923 with cov n if digit = 1
07 route-to number *6389924 with cov n if digit = 2)
08 goto step 5 if unconditionally
```

Note:

In this example, *63 is the FAC assigned for Remote Logout of Agent. This example is one of many ways in which the vector can be written to activate the VDN.

To log out an agent from an outside line, the supervisor (or other authorized user) completes the following steps:

1. Dial into the communication server from an outside line and reaches the activation VDN.
2. The system prompts the user for a password (step 2 in the vector shown above).
3. Enter the programmed password.
4. The system begins prompting for the agent to be logged out.
5. (Using the above vector example) Enter 1 because the loginID associated with that prompt is Agent A’s loginID (or name).
ACD contact center features

Considerations

- The Call Center Release field on the System-Parameters Customer-Options form must be set to 9.1 or higher in order for Remote Logout of Agent to work.
- The user who performs the remote logout must have the appropriate Class of Restriction and Class of Service assigned to his/her station set.
- If a remote logout is attempted for an agent who is on an ACD call or who is not logged in, the logout fails.
- An activation VDN can be created to use for remotely logging out an agent. The activation VDN can then be used to log agents out from a remote location. To accomplish this, the incoming destination should be assigned the activation VDN. The VDN must have the appropriate COR and TN (if Tenant Partitioning is used) assigned.

Interactions

- Tenant Partitioning – If Tenant Partitioning is used, the user who or VDN that performs the remote logout must be in the same tenant partition as the agent who is being logged out.
- Auto-Available Split/Skill – If an agent login ID is assigned to an Auto-Available split/skill, then the Remote Logout of Agent feature cannot be used to log the agent out. RONA can be used to automatically logout a port that is not answering calls.
- AUDIX – If an agent is a member of an AUDIX hunt-group and has no other splits/skills assigned to the agent login ID, then the Remote Logout of Agent feature will not successfully log out the agent, even though the user attempting the logout hears a confirmation tone.
- non-ACD hunt groups – If an agent is a member of ACD splits/skills and is using a physical extension that is a member of a non-ACD hunt group, then use of the Remote Logout of Agent feature will log the agent out of the splits/skills but allow the agent to continue receiving non-ACD calls.
- Timed ACW – If an agent answers a an ACD call for a hunt group with Timed After Call Work administered and then hangs up the call, the Remote Logout of Agent feature can be used to log out the agent during the ACW time.
- Service Observing – An agent can be logged out using the Remote Logout of Agent feature while being service observed.
Service Observing

Service Observing allows a specified user, such as a supervisor, to observe or monitor another user’s calls. In this section, “observer” refers to the supervisor who is observing calls. “Agent” refers to the extension, attendant, or logical agent being observed. A vector directory number (VDN) call can also be observed (Category A only). Observers can observe in listen-only or listen-and-talk mode.

Note that you set up Service Observing to observe a particular extension, not all calls to all extensions at a station.

Service Observing may be subject to federal, state, or local laws, rules, or regulations or require the consent of one or both of the call parties. Familiarize yourself and comply with all applicable laws, rules, and regulations before using this feature.

Administering Service Observing

The following forms and fields are required to administer the Service Observing feature.

Required forms – Service Observing feature

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Parameters</td>
<td>● Service Observing (Basic) — for basic or Logical Agent ID</td>
</tr>
<tr>
<td>Customer-Options</td>
<td>observing</td>
</tr>
<tr>
<td></td>
<td>● Service Observing (Basic) and Service Observing (Remote/By FAC) —</td>
</tr>
<tr>
<td></td>
<td>for remote observing or observing via feature access code</td>
</tr>
<tr>
<td></td>
<td>● Service Observing (Basic) and the Service Observing (VDNs) —</td>
</tr>
<tr>
<td></td>
<td>for VDN observing</td>
</tr>
<tr>
<td></td>
<td>● Vectoring (Prompting) — for vector-initiated observing</td>
</tr>
<tr>
<td>Class of Restriction</td>
<td>● Can Be Service Observed</td>
</tr>
<tr>
<td></td>
<td>● Can Be Service Observer</td>
</tr>
<tr>
<td></td>
<td>● Service Observing COR Table</td>
</tr>
<tr>
<td>Feature-Related System</td>
<td>● Service Observing Warning Tone</td>
</tr>
<tr>
<td>Parameters</td>
<td>● Expert Agent Selection (Logical Agent ID)</td>
</tr>
<tr>
<td>Station (multiappearance)</td>
<td>● Button/Feature Button Assignment (basic, VDN, Logical Agent ID)</td>
</tr>
<tr>
<td></td>
<td>— serv-observ</td>
</tr>
</tbody>
</table>
ACD contact center features

Required forms – Service Observing feature (continued)

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Access Code (FAC)</td>
<td>● Service Observing Listen Only Access Code (remote/by FAC, VDN, Logical Agent ID)</td>
</tr>
<tr>
<td></td>
<td>● Service Observing Listen/Talk Access Code (remote/by FAC, VDN, Logical Agent ID)</td>
</tr>
<tr>
<td>Vector Directory Number (VDN)</td>
<td>● Observe on Agent Answer</td>
</tr>
<tr>
<td>Class of Restriction forms</td>
<td></td>
</tr>
<tr>
<td>— Agent COR form</td>
<td>● Can Be Service Observed field set to yes (if extension is to be observed)</td>
</tr>
<tr>
<td>— Observer COR form</td>
<td>● Can Be Service Observer field set to yes (if extension is to act as observer)</td>
</tr>
<tr>
<td></td>
<td>● In Service Observing COR table, enter y next to the CORs to be observed</td>
</tr>
</tbody>
</table>

Detailed description

To begin observing, the observer presses the Service Observing button plus the agent’s extension number. Initially, the observer is in listen-only mode. The observer presses the Service Observing button to toggle between listen-only and listen/talk mode. The lamp indicates which mode the observer is in.

To deactivate Service Observing, the observer hangs up, selects another call appearance, or presses the disconnect or release button.

An observer can observe an agent who is not active on a call. The observer is in the wait state until the agent receives a call, then the observer is bridged onto the call.

You can administer a warning tone on each system to let agents and callers know when someone is observing a call. Before connection, the conference tone may add 2-3 seconds delay if enabled. The parties hear a 2-second, 440-Hz warning tone before an observer connects to a call, followed by a half-second burst of this tone every 12 seconds during observation.

Observing Logical-Agent IDs

With EAS, an observer can observe agents based on their logical-agent ID rather than their physical phone. The observer enters the logical-agent ID extension number of an agent, who must be logged in to a phone. The observer can monitor every ACD, personal, and Direct Agent call delivered to or placed by the agent, including calls placed to the physical extension.
Only one observer can observe an extension at one time. An observer cannot observe a logical agent ID extension at a physical terminal that is already being observed. Likewise, an observer cannot observe a physical extension that is being observed as a logical-agent ID extension.

Observing VDNs (Category A only)

To observe a VDN, the observer enters a specific VDN extension and bridges onto calls (one call at a time) that have started vector processing for that VDN. The observer hears all tones, call prompting, caller dialing, announcements, music, and speech that the agent and caller hear. If an observer is in a COR administered to hear VDN of Origin announcements and has a VOA Repeat button, he or she can hear and replay VDN of Origin announcements.

Effective with Release 9, service observing of VDNs is enhanced to (optionally) start observing of a call to the VDN when the call is delivered to the agent or station. When this VDN option is active, VDN service observing activation still associates the observer with calls to the VDN, but the observer does not hear a call during vector processing. After initial activation, the first call to be observed must first pass through vector processing before the observing is enabled. When the observing connection is completed for the first call (the call is released), the observer is bridged on a subsequent call to the VDN (which has also been through vector processing) when the call is answered by an observable agent/station. This ability saves time for the observer because, after observing of the VDN has been activated, the observer does not have to wait (and listed) for each subsequent call to go through vector processing and for the agent to answer.

The ability to observe VDNs when the call is delivered to an agent/station is activated by setting the “Observe on Agent Answer” field on the VDN form to y.

The observer sees the name of the VDN, agent, or trunk as each is accessed in sequence by the VDN. For example, during vector processing the VDN name is displayed, but when the call connects to an agent, the agent name is displayed.

When the observer connects to a call in vector processing, the system maintains the connection until the call is disconnected or the observer hangs up, even if the call is routed or transferred externally. If the observer does not disconnect after one observed call is disconnected, the observer is connected to another call on the same VDN. Observing is listen-only as long as the call is in vector processing. Once the call is out of vector processing, an observer with listen/talk capability can talk as well as listen.

Observing Remotely or by FAC (Category A only)

Observers can observe calls from a remote location or locally using Service Observing FACs. When observing remotely, observers must use FACs. Different FACs are required for listen-only and listen/talk modes. When observing locally or remotely by FAC, the observer cannot toggle between modes. Physical extensions, logical-agent ID extensions, and VDNs can be observed remotely.
Remote observing is initiated through Remote Access or Call Vectoring.

- With Remote Access, an observer accesses a communication server via a trunk group dedicated to Remote Access or via a DID to the Remote Access extension. Remote observing works with all types of DID trunks, including ISDN-PRI and tie trunks, and DCS over analog, T1, or PRI.

- With Call Vectoring, an observer accesses a communication server by dialing a VDN extension or a central office (CO) trunk that has a VDN extension as its incoming destination. Using route-to commands, you can design a Service Observing vector to allow a VDN call to directly access a specific extension to be observed or a Service Observing dial tone. At the dial tone, observers can enter any extension that they are authorized to observe. The following is a simple example of a Service Observing vector.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>wait-time 0 seconds hearing ringing</td>
</tr>
</tbody>
</table>
| 2. | collect 5 digits announcement 2300
 | ("please dial your 5- digit security code") |
| 3. | goto step 5 if digits = 12345 |
| 4. | disconnect after announcement 2000 |
| 5. | collect 1 digits announcement 2310
 | ("enter 1 to observe sales, 2 to observe billing") |
| 6. | route-to number 113001 with cov n if digit = 1
 | (1=listen-only observe, 3001="Sales" VDN) |
| 7. | route-to number 113002 with cov n if digit = 2
 | (1=listen-only observe, 3002="Billing" VDN) |
| 8. | goto step 5 if unconditionally |

You can combine Call Prompting and Call Vectoring to provide security and to limit observation.

Service Observing indicators

The following table shows general Service Observing indicators that observers receive.

General indications to observer

<table>
<thead>
<tr>
<th>Condition</th>
<th>Button lamp</th>
<th>Tone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not active</td>
<td>Dark</td>
<td>None</td>
</tr>
<tr>
<td>Denied activation</td>
<td>Broken flutter</td>
<td>Intercept/busy/reorder</td>
</tr>
<tr>
<td>Activated</td>
<td>Steady/Winking</td>
<td>Confirmation tone followed by silence or connection to call.</td>
</tr>
<tr>
<td>Observing (listen only)</td>
<td>Steady</td>
<td>Hear call</td>
</tr>
<tr>
<td>Observing (listen/talk)</td>
<td>Winking</td>
<td>Hear/talk on call</td>
</tr>
<tr>
<td>In wait state</td>
<td>Flash</td>
<td>None</td>
</tr>
<tr>
<td>Denied observing</td>
<td>Flash (wait state)</td>
<td>Silence/ineligible tone followed by silence</td>
</tr>
</tbody>
</table>
The following tables show the indicators that observers receive when they activate and use Service Observing. In these tables:

- Wait state means that the observer has activated Service Observing but there are no calls or a call cannot be observed. A call appearance is not reserved. The observer must have an idle call appearance available to be used by Service Observing when an observable call comes in.

- Ineligible tone is heard when an observed call becomes ineligible for observation. See Considerations on page 231 for conditions that make a call ineligible. This tone is the “hold confirmation tone”—a rapid series of 5 short 440-Hz beeps. The observer does not hear this tone if the agent receiving the ineligible call hears zip tone.

Feedback to observers when activation denied

<table>
<thead>
<tr>
<th>Condition</th>
<th>State</th>
<th>Lamp</th>
<th>Tone</th>
</tr>
</thead>
<tbody>
<tr>
<td>No such extension</td>
<td>denied</td>
<td>broken flutter</td>
<td>intercept</td>
</tr>
<tr>
<td>Extension not observable</td>
<td>denied</td>
<td>broken flutter</td>
<td>intercept</td>
</tr>
<tr>
<td>Not allowed COR(^1)</td>
<td>denied</td>
<td>broken flutter</td>
<td>intercept</td>
</tr>
<tr>
<td>Extension has Data Restriction</td>
<td>denied</td>
<td>broken flutter</td>
<td>intercept</td>
</tr>
<tr>
<td>Extension has Exclusion Active</td>
<td>denied</td>
<td>broken flutter</td>
<td>busy</td>
</tr>
<tr>
<td>Extension has Data Privacy Active on call</td>
<td>denied</td>
<td>broken flutter</td>
<td>busy</td>
</tr>
<tr>
<td>Extension already observed</td>
<td>denied</td>
<td>broken flutter</td>
<td>busy</td>
</tr>
<tr>
<td>Extension is an observer</td>
<td>denied</td>
<td>broken flutter</td>
<td>busy</td>
</tr>
<tr>
<td>Extension being busy-verified</td>
<td>denied</td>
<td>broken flutter</td>
<td>reorder</td>
</tr>
<tr>
<td>Extension has a 6-party conference</td>
<td>denied</td>
<td>broken flutter</td>
<td>reorder</td>
</tr>
<tr>
<td>COR doesn’t allow SO activation</td>
<td>denied</td>
<td>broken flutter</td>
<td>intercept</td>
</tr>
<tr>
<td>Observe VDN not optioned</td>
<td>denied</td>
<td>broken flutter</td>
<td>intercept</td>
</tr>
<tr>
<td>Logical ID not logged In</td>
<td>denied</td>
<td>broken flutter</td>
<td>busy</td>
</tr>
<tr>
<td>Activation to logical with physical observed</td>
<td>denied</td>
<td>broken flutter</td>
<td>busy</td>
</tr>
<tr>
<td>Activation to physical with logical ID observed</td>
<td>denied</td>
<td>broken flutter</td>
<td>busy</td>
</tr>
<tr>
<td>Maximum VDNs being observed</td>
<td>denied</td>
<td>broken flutter</td>
<td>reorder</td>
</tr>
</tbody>
</table>

1. Extension COR cannot be observed or COR for observer calling permission does not allow observing the COR of extension to be observed.
ACD contact center features

Feedback to observer when activation allowed — at time of activation

<table>
<thead>
<tr>
<th>Condition</th>
<th>State</th>
<th>Lamp</th>
<th>Tone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active-eligible call</td>
<td>observing</td>
<td>steady/ winking</td>
<td>confirmation tone followed by connection to call</td>
</tr>
<tr>
<td>No active call</td>
<td>wait state</td>
<td>flash</td>
<td>confirmation tone followed by silence</td>
</tr>
<tr>
<td>Call ineligible</td>
<td>wait state</td>
<td>flash</td>
<td>confirmation tone followed by silence</td>
</tr>
<tr>
<td>Call has “No Observe” COR</td>
<td>wait state</td>
<td>flash</td>
<td>confirmation tone followed by silence</td>
</tr>
<tr>
<td>VDN call already being observed</td>
<td>wait state</td>
<td>flash</td>
<td>silence</td>
</tr>
</tbody>
</table>

Feedback to observer when activation allowed — after observe activated

<table>
<thead>
<tr>
<th>Condition</th>
<th>State</th>
<th>Lamp</th>
<th>Tone</th>
</tr>
</thead>
<tbody>
<tr>
<td>No active/eligible Call</td>
<td>wait state</td>
<td>flash</td>
<td>silence</td>
</tr>
<tr>
<td>Call in 6-party conference</td>
<td>wait state</td>
<td>flash</td>
<td>silence</td>
</tr>
<tr>
<td>Call already being observed</td>
<td>wait state</td>
<td>flash</td>
<td>silence</td>
</tr>
<tr>
<td>Call is being busy-verified</td>
<td>wait state</td>
<td>flash</td>
<td>silence</td>
</tr>
<tr>
<td>Call has Data Privacy active</td>
<td>wait state</td>
<td>flash</td>
<td>silence</td>
</tr>
<tr>
<td>Call has Data Restriction</td>
<td>wait state</td>
<td>flash</td>
<td>silence</td>
</tr>
<tr>
<td>Call has Exclusion Active</td>
<td>wait state</td>
<td>flash</td>
<td>silence</td>
</tr>
<tr>
<td>Active-eligible call (in listen-only mode)</td>
<td>SO listen</td>
<td>steady</td>
<td>hear call</td>
</tr>
<tr>
<td>Active-eligible call (in listen/talk mode)</td>
<td>SO listen/talk</td>
<td>winking</td>
<td>hear/talk on call</td>
</tr>
<tr>
<td>Press button while observing in listen-only mode</td>
<td>SO listen/talk</td>
<td>winking</td>
<td>hear/talk on call</td>
</tr>
<tr>
<td>Observer presses Release</td>
<td>not observing</td>
<td>dark</td>
<td>none</td>
</tr>
<tr>
<td>Call has “No Observe” COR</td>
<td>wait state</td>
<td>flash</td>
<td>silence</td>
</tr>
<tr>
<td>VDN call already being observed</td>
<td>wait state</td>
<td>flash</td>
<td>silence</td>
</tr>
<tr>
<td>No active eligible call</td>
<td>wait state</td>
<td>flash</td>
<td>silence</td>
</tr>
<tr>
<td>Eligible VDN call</td>
<td>observing</td>
<td>steady/ winking</td>
<td>hear call</td>
</tr>
<tr>
<td>Eligible VDN call (in vector processing)</td>
<td>SO listen</td>
<td>steady</td>
<td>hear call</td>
</tr>
<tr>
<td>Eligible VDN call (out of vector processing in listen-only)</td>
<td>SO listen</td>
<td>steady</td>
<td>hear call</td>
</tr>
</tbody>
</table>
While observing, the observer should press only the following buttons:

- Call Appearance
- Service Observing
- Position Busy
- Auto-ckt Assure
- Release (ACD) (This will end Service Observing)
- Bridged Appearance
- Auxiliary Work
- Queue Status (NQC, OQT, AQC, and AQT)
- System Night Service
- Hold (ignored)

General security

Use the following COR restrictions to prevent unauthorized observing.

- For the observer, set the Can Be An Observer field on the COR form to y.
- For the agent to be observed, set the Can Be Observed field on the COR form to y.
- For the observer, grant permissions to all CORs to be observed on the Service Observing Permissions COR table.

Feedback to observer when activation allowed — after observe activated (continued)

<table>
<thead>
<tr>
<th>Condition</th>
<th>State</th>
<th>Lamp</th>
<th>Tone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligible VDN call (out of vector processing in listen/talk)</td>
<td>SO listen/talk</td>
<td>winking</td>
<td>hear/talk on call</td>
</tr>
<tr>
<td>Press button while observing in vector processing</td>
<td>SO listen</td>
<td>steady</td>
<td>no change to mode</td>
</tr>
<tr>
<td>Press button while not in vector and in listen-only</td>
<td>SO listen/talk</td>
<td>winking</td>
<td>hear/talk on call</td>
</tr>
<tr>
<td>Call being observed becomes ineligible</td>
<td>wait state</td>
<td>flash</td>
<td>ineligible tone followed by silence</td>
</tr>
<tr>
<td>Active call disconnects</td>
<td>wait state</td>
<td>flash</td>
<td>silence</td>
</tr>
<tr>
<td>Logical agent logs out</td>
<td>denied</td>
<td>broken flutter</td>
<td>busy, then silence</td>
</tr>
<tr>
<td>Observer (without button) hangs up</td>
<td>deactivates observing</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
VDN-call security

Use the following COR restrictions for VDN-call observing.

- For the VDN extension to be observed, set the Can Be Observed field on the COR form to y.
- For the VDN destination, set the Can Be Observed field on the COR form to y.
- Enter the VDN extensions to be observed in the observer’s Service Observing Permissions COR table.

Vector-initiated security

Use the following guidelines for vector-initiated observing.

- Use Call prompting commands in Service Observing vectors to provide passcode protection and limit access to specific destinations or vector-verified, caller-entered digits.
- Use Time of Day/Day of Week checks in Service Observing vectors.
- Create a vector used exclusively for Service Observing.
- If you use route-to commands to observe a VDN extension, ensure the extension has an observable COR.
- If the observer is observing locally, grant calling permission to the observer on the VDN’s COR.

In vector-initiated Service Observing, the COR assigned to the VDN used to initiate Service Observing, the COR assigned to the internal caller extension, and the COR assigned to agent to be observed are used to determine if Service Observing will be allowed. If the agent’s COR is not observable, observation fails regardless of the VDN or caller COR. When a call routes through multiple VDNs, the COR of the last VDN is used for calling/observing permissions regardless of VDN Override settings.

If you have administered the optional warning tone, the caller and the observer hear the tone only when the system connects the call to the answering or routed-to destination after vector processing is finished. The periodic tone is heard during the call even if the call is transferred off-communication server. Use a warning announcement at the beginning of vector processing to inform the caller of observation since the system cannot give a warning tone until the call is out of vector processing.

Remote-access security

Use the following guidelines for remote observing.

- Use Barrier Codes and Authorization Codes to limit the use of Remote Access to authorized users. Refer to Administrator Guide for Avaya Communication Manager, 555-233-506 for information about these codes and other Remote Access security measures.
- Use different Authorization Codes for different Service Observing permissions.
● Use Facility Restriction Levels (FRLs) and restrictions such as the Authorization Code (COR) to restrict Remote Access service observer access to other destinations (for example, stations or trunks).

● Use Call Prompting to create additional access security.

Assign the VDN, Barrier Code, and Authorization Code calling and Service Observing permissions and set Can Be Observer to yes on the associated COR form. The last COR encountered is used to determine observer permissions.

Considerations

Observability

Although an agent can be a member of multiple splits/skills, an agent can be observed by only one observer at a time. If two agents with different supervisors are observed and one agent calls the other, the originator’s supervisor observes the call, and the other supervisor is placed in the wait state.

An attendant can be observed but cannot be an observer.

Ineligibility

A call to an agent extension or VDN is ineligible for observing when the call:

● Is already being observed

● Is being busy-verified

● Has Data Privacy active

● Has Data Restriction active, is conferenced with an extension that has Data Restriction active, or is a VDN call that reached an extension that has Data Restriction active

● Has Privacy — Manual Exclusion active, is conferenced with an extension that has Privacy — Manual Exclusion active, or is a VDN call that reached an extension that has Privacy — Manual Exclusion active

● Is in a conference where adding the observer results in more than 6 parties (see Conferenced calls on page 232 for more detail on conferences)

● Is a VDN-observed call that reaches an unobservable extension or VDN. (Note that the COR of the hunt group split/skill used to distribute the call to the station/agent is not checked. The CORs of stations/agents conferenced with the call are not checked.)

Trunk calls

If an agent being observed makes a trunk-call, observation starts after the agent finishes dialing. For central office (CO) trunks, dialing is considered complete when answer supervision is returned or when answer supervision timeout occurs.
Multiple observers

Multiple observers can observe a single VDN simultaneously, but only one observer is observing a given call to the VDN. There is no limit to the number of observers observing a single VDN as long as the total number of observers actively observing VDNs does not exceed 50.

Conferenced calls

An observer cannot initiate a conference while observing.

If an observed agent conferences a call and the number of conferenced parties is less than 6, the observer is placed in the wait state until the call is connected. Then the observer observes the conference. In addition, the observer is bridged onto any call on which the agent becomes active before the conference is complete. When the conference is complete, the observer is again bridged onto that call.

If an observed agent conferences a call and the number of conferenced parties (including the observer) is 6, the conference is denied.

A call to an observed VDN cannot be monitored if the observer, caller, and other parties bridged onto the call constitutes more than 6 parties.

If a conference is being observed because an observed agent entered the conference, when the agent hangs up, the conference is no longer observed. If a conference is being observed because an observed VDN call entered the conference, observing continues until the call is routed to an unobservable destination.

Conference members are observed during a conference regardless of their COR setting.

If a VDN call being observed is conferenced to an agent call being observed, the VDN observer continues to observe and the agent observer goes into wait state. If two observers (of either VDN or agent calls) are conferenced to a call, the first observer conferenced-in continues to observe and the second observer goes into the wait state. VDN or agent call observers hear the ineligible tone before going into wait state.

The same rules apply when multiple observers monitor transferred calls.

Transferred calls

Observers cannot initiate a transfer while observing.

If an agent being observed transfers a call, the observer is placed in wait state. The observer is bridged on after the transfer is complete.

A VDN observer continues to monitor the transferred call until it is transferred or routed to a unobservable destination.
Interactions

ASAI (Category A only)

A call to an observed VDN continues to be observed after it routes to an adjunct. A call can be routed to a Service Observing FAC by the adjunct routing command in the same way that it can be with the route-to command.

Assist

A VDN observer continues to observe a call during an assist operation. The observer observes the caller on hold and the conference, when the agent conferences the assist call with the VDN call.

BCMS

BCMS does not report on Service Observing. BCMS reports show normal measured-call and agent activity related to Service Observing calls. When a physical agent (non-EAS) is observed, the BCMS Report By Login ID shows the physical extension along with the login ID.

Bridged appearances

If an observer observes agent extension 3082, the observer is bridged onto calls only to 3082. If the agent with extension 3082 has a bridged appearance for extension 3282, calls to extension 3282 are not observed. Although extensions 3082 and 3282 have a call appearance on the same telephone, the observer cannot observe both extensions at the same time.

Busy-verification

An observer cannot observe an agent call that is bridged onto by busy-verification. Also, an agent’s call that is being bridged onto by an observer cannot be busy-verified.

Call Coverage/Call Pickup

An observer cannot observe a call answered by a covering agent or member of a pickup group until the called agent bridges onto the call. The observer continues observing a call to an observed VDN call if the call is routed to a destination that forwards the call (via Call Coverage, Call Forwarding, or Call Pickup).

Call Park

An observer cannot park a call while observing the call. An observer observing a VDN continues observing after a call is parked.
ACD contact center features

Call Waiting
A call cannot wait on a single-line phone that is being observed.

Call Work Codes/Integrated Directory
The observer does not hear agent dialing with these features because the digits are passed to the communication server in S-channel messages.

CMS (Category A only)
When an observer is bridged onto a VDN call, CMS is notified.

Conference and Transfer
A VDN observer who is bridged on a call follows the call on a conference and/or transfer operation.

Converse Command (Category A only)
Converse-split extension ports can be observed as physical extensions. A call to an observed VDN continues to be observed if the call is answered by a VRU through the converse command.

Converse-on Vector Command
Calls connected by the converse-on command are not observed by the VDN observer when the Observe on Agent Answer option is set to y. If the call is subsequently answered at an agent station or other destination via the route-to command, the VDN observer is bridged on the call.

DCS (Category A only)
To observe stations on another node (a DCS station extension), you must set up remote-access service observing. A DCS station can only observe another node using remote service observing. Service observing displays are not supported across DCS.

Dialed Number Identification Service
Observing by VDN provides monitoring by DNIS since the VDNs represent the DNIS of the service dialed.

Direct Agent Calling (Category A only)
A Direct Agent call to a logical-agent ID is monitored by observing the Logical Agent not by monitoring the physical extension.
Hold
Observers cannot place calls on hold while observing.

If an observed agent places a call on hold, the observer is put in wait state. A VDN observer continues to monitor the caller placed on hold.

Leave Word Calling
Parties on an observed call cannot use LWC.

Look Ahead Interflow (Category A only)
If an observed VDN call routes to another location via Look Ahead Interflow, the call continues to be observed. The observer hears a warning tone, if administered at the sending communication server, when the call arrives at the receiving communication server. The observer continues to hear the periodic tone while observing the VDN call.

Manual Answer
VDN observers are bridged on to the call when the agent answers the call that has been ringing the ACD agent extension with the “Observe on Agent Answer” set to y.

Move Agent/Change Skills
Moves or changes of physical or logical agents being observed occur according to the move or change rules. Observing continues.

Multiple Call Handling
While an agent extension or logical ID is observed, only the active call is monitored. If all calls are put on hold, the observer hears silence.

Music-on-Delay/Music-on-Hold
If an observer is in listen/talk mode, neither caller nor observer hears music-on-hold. If an observer is in listen-only mode, the caller hears music-on-hold, but the observer does not. A VDN observer hears music provided to the caller.

Night Service
A VDN observer continues to observe when a call routes to night service.

Recorded Announcement
A VDN observer continues to monitor a call connected to an announcement. A Verify Announcement call placed by an observed physical or logical agent can also be observed.
Redirection on No Answer
A VDN observer continues observing a call after it is redirected or rings “in limbo”.

Route-to Number Vector Command
Calls connected by the route-to number command are observed by the VDN observer after “answer” is received or assumed when the “Observe on Agent Answer” option is set to y. This includes routing to internal destinations (stations, hunt groups, ACD splits/skills, the attendant, etc.) or to external destinations (via trunk facilities).

Trunks without disconnect supervision
Service observing cannot be activated over no-disconnect-supervision trunks. The caller hears denial indication.

VDN of Origin Announcement (VOA)
VDN observers with the “Observe on Agent Answer” option set to y are not bridged on the call until after the VOA is given to the agent. Therefore, the observer does not hear VOAs.

VDN Return Destination (Category A only)
You can create a prompting VDN with a return destination assigned so that, if you activate observing and it fails or the denial indication times out, the prompting VDN allows you to retry activation. This is true only if the denial and disconnection occur after the call leaves vector processing.

If a vector step fails, the system proceeds to the next vector step. Disconnect or busy commands cause calls to be dropped and do not trigger return destination.

When return destination is triggered, the call is monitored through each return destination operation until the caller disconnects.

The observer bridged on the call follows the call when the VDN Return Destination feature, active on the VDN, redirects the call back through vector processing after the agent releases the call.

Telephone displays
The display for local observers match exactly what is displayed on the observed physical or logical agent’s telephone display. For example:

 a="3035001234 to Sales SO"

While observing a VDN, an observer sees displayed the name of the VDN being observed while in vector processing. After the call leaves vector processing, the name of the agent or trunk group that the call is connected to is displayed.
VuStats (Category A only)
Nonremote observers using 2-line displays can activate VuStats for an agent. An observer must activate VuStats before using Service Observing. The agent’s statistics appear on the second line of the observer’s display.

Zip tone
VDN observers do not hear the zip tone that the answering agent hears.
Universal Call ID

Universal Call ID (UCID) is a unique tag assigned to a call.

In simple call scenarios, the tag stays with that call within a network that is based on a communication server connected by ISDN lines. In complex call scenarios, the tag often merges with other tags.

Note:
The UCID data element is “universal” because it does not just identify a call on one particular communication server; a UCID uniquely identifies a call across a network of communication servers.

What is UCID’s purpose?

The purpose of UCID is to tag a call with a unique identifier.

UCID provides a way to track calls across multiple communication servers and Voice Response Units.

Contact centers can use UCID to track call history. Because UCID can uniquely identify every call in a network of any size, it is possible to track call-related data from multiple sources and multiple sites. For example, you can combine data from many locations and print reports that enable you to track a call throughout its lifecycle. For information about such reports, refer to Avaya CMS Reports, 585-210-929.

Note:
Although UCID is intended for contact centers, a communication server configured to create UCIDs will assign one to every call—not just to Automatic Call Distribution (ACD) calls.

What does UCID look like?

The Universal Call ID is an 8-byte data element that displays as a 20-character number.

How does UCID work?

For every new call that comes into or is originated by the communication server or Conversant product, the product creates a UCID. Depending on the call scenario, the UCID will either remain unique to that call or merge with other UCIDs.

What creates UCIDs?

Both the communication server and the Conversant can create UCIDs once the capability has been enabled. In other words, neither product automatically creates UCIDs until the feature is enabled.
When are UCIDs created?

Once the communication server or the Conversant is administered to create UCIDs, these products assign a UCID to each call. For incoming calls over ISDN trunks, the communication server determines whether or not the call already has a UCID. If so, the communication server preserves the existing UCID and does not create a new one. If the call does not have a UCID, the communication server creates one when call processing begins. For incoming calls over non-ISDN trunks, the communication server creates a UCID for the call because non-ISDN trunks do not support the transmission of UCID.

For outgoing calls, the communication server creates a UCID when the caller goes off-hook.

How are UCIDs transmitted?

How communication server transmits UCIDs depends on the sending and receiving equipment. The following table summarizes UCID transmission features.

<table>
<thead>
<tr>
<th>UCID transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sender</td>
</tr>
<tr>
<td>Switch</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Switch</td>
</tr>
<tr>
<td>INTUITY Conversant</td>
</tr>
<tr>
<td>Switch</td>
</tr>
<tr>
<td>Switch</td>
</tr>
</tbody>
</table>

1. Refer to Information Forwarding (Category A only) on page 163.

How are UCIDs tracked?

The way a network maintains and tracks a UCID depends on the call path. To illustrate UCID transport throughout a call’s life cycle, this section describes several call scenarios:

- Station-to-station Calls
- Incoming Trunk Calls
- Outgoing Trunk Calls
- Simple Transfer or Conference
- Complex Transfer and Conference
Station-to-station calls

This scenario describes what happens when Phone I calls Phone II (both phones are on the same communication server).

The communication server creates a new UCID (such as UCID “a”) for any call originated by an internal station user.

Incoming trunk calls

UCID is assigned to an incoming call.

The communication server either

- receives UCID x information from an incoming call over an ISDN trunk.
- creates UCID y for incoming calls that do not already have a UCID.

There is one CMS call history record for each incoming call.

Outgoing trunk calls

UCID is associated with the outgoing trunk call from Phone I.

The communication server creates a UCID (such as UCID x) for an outgoing trunk call and then sends it over an outgoing shared UUI or QSIG ISDN trunk.

The communication server creates a UCID (such as UCID x) for an outgoing trunk call even if the trunk (such as a non-ISDN trunk) does not support the transmission of a UCID.

Simple transfer or conference

This scenario describes a simple transfer or conference call scenario.

When an incoming trunk or station call is received by the station user at Phone I and transferred to or conferenced with another station user or outside party:

1. The communication server creates a UCID for the incoming call if it needs one.
2. The communication server creates a new UCID for the temporary conference or transfer portion of the call.
3. The communication server merges the temporary portion of the call with the original call when the conference or transfer is completed within the communication server. This is when the overriding UCID (such as UCID “a”), becomes the UCID for all parties within the communication server.

Note:

If the outgoing trunk does not support the sending of UCIDs, then the UCID of the outgoing call at the receiving communication server will be “null”.
If the call is transferred to another communication server, only the UCID for the transfer (UCID “b”) gets passed on. This is because the communication server cannot merge UCIDs if the call is not completed within the communication server.

Note:

If, during the conference or transfer, the incoming call drops before the operation is complete, the two UCIDs will not appear to be associated because no merge of the two parts of the call was done.

Complex conference

The following complex call scenario illustrates when a station user adds an incoming call to an existing conference.

In this scenario,

1. Phones I, II, and III are in the same conference call with UCID “x”.
2. The person at Phone III receives an incoming call from Phone IV (this call has UCID “y” associated with it).
3. The person at Phone III puts the conference call on hold and answers the incoming call from Phone IV.
4. The person at Phone III decides to add Phone IV into the conference call.
5. The person at Phone III
 a. presses the Conference button
 b. presses the call appearance button to return to the conference call
 c. presses the Conference button again.

This brings the conference call into the call between Phones III and IV.
ACD contact center features

6. UCID “y” overrides UCID “x” because the communication server views Phone IV as the primary party in the conference initiated by step 5.

7. The UCIDs associated with each segment of the complex conference are sent to CMS if the parties in the call are measured (for this example, if the parties are ACD agents in a measured split/skill).

Configuration — communication server before Conversant

The following scenarios describe what happens to UCID information when a call comes in to the switch before it goes to INTUITY Conversant. In this configuration, the Conversant serves as a Voice-Response Unit (VRU) that controls the routing of incoming ACD calls.

Note:
This configuration is more common than a call coming in to INTUITY Conversant before reaching the communication server.

This section describes two scenarios:
- Simple call tracking
- Conversant transfers a call

Simple call tracking
The following call scenario describes when a call comes in to the communication server before INTUITY Conversant.
When the communication server is before INTUITY Conversant:

1. The communication server receives an incoming call over an ISDN trunk.
2. The communication server does one of two things:
 - If the incoming call has a UCID (such as UCID “x”), then the communication server passes it along.
 - If the incoming call does not have an associated UCID, the communication server creates a new one (such as UCID “y”).
3. The communication server passes the UCID to INTUITY Conversant through an ASAI connection (via the activation of split/skill or VDN “event notification” by the INTUITY Conversant).
4. UCID information is sent to the CMS if trunk, VDN(s), and/or split/skill(s) involved in the call are measured.

INTUITY Conversant transfers a call

The following call scenario involves a Conversant behind the communication server configuration when Conversant initiates a call transfer after the call is answered by a port on the INTUITY Conversant that serves as an ACD agent.

1. Call is directed to INTUITY Conversant VRU port (typically by call vectoring) with UCID information (UCID “x” or UCID “y”).

 ![Diagram](image)

 2. INTUITY Conversant determines the call’s destination and transfers the call (via an ASAI “third-party transfer” operation).
3. The communication server temporarily creates a new UCID (such as UCID “a” or UCID “b”) for the transfer portion of the call (the original UCID is quickly merged into the call).

4. The UCIDs of the transfer segment and merged call are returned to INTUITY Conversant in ASAI acknowledgment messages.

5. The communication server sends UCID information to CMS if trunk, VDN(s), and/or split/skill(s) involved in the call are measured.

Configuration — INTUITY Conversant before the communication server

This scenario illustrates a system configuration where a call comes in to INTUITY Conversant before reaching the communication server. In this configuration, INTUITY Conversant provides voice response services and/or call screening so that the number of incoming calls to the communication server is reduced.

Note:
This configuration is less common than the communication server before INTUITY Conversant configuration.
When INTUITY Conversant is before the communication server:

1. INTUITY Conversant receives an incoming call with UCID “x”.
 or
 INTUITY Conversant creates a new UCID “y” and associates it with the incoming call (if the call has no UCID already associated with it).

 Note:
 For INTUITY Conversant to recognize an incoming UCID (such as UCID “x”) from an ISDN trunk, special INTUITY Conversant scripting is required. When INTUITY Conversant receives a call from the public network, it automatically creates a new UCID because it cannot recognize whether or not the call already has a UCID.

2. INTUITY Conversant sends UCID to the communication server over an ISDN-PRI trunk.

3. The communication server receives UCID and reuses it for the incoming call.

4. The communication server reports UCID to the CMS if the trunks, VDNs, and/or splits/skills associated with the call are measured.

Interactions

Distributed Communications System (DCS)
If DCS is used in a network of communication servers where UCIDs are tracked, the DCS feature must be configured with ISDN trunks having the Shared UUI service protocol. Otherwise, calls that are handled through one of the many DCS features (such as DCS Coverage) will not retain the UCID initially assigned to the call.

Remote AUDIX
For remote AUDIX over DCS, the DCS trunk(s) used to accomplish the remote AUDIX operation must be configured (as described previously in “Distributed Communications System”) to retain the UCID associated with a call.

Tandem Calls
When a call is tandemed through the communication server, the UCID information may be blocked or passed through the tandem communication server. To pass a UCID through a tandem communication server, both the incoming and outgoing trunks at the tandem communication server must be configured to handle UCIDs. See Information Forwarding (Category A only) on page 163 for proper private and public network information forwarding administration.
Before you start

Before you start to administer the UCID feature, be aware that UCIDs are successfully transmitted only when all of the communication server network components meet the requirements (software and connections) specified below.

Some requirements vary, depending on how you want to use UCID. The following table lists requirements for different applications of UCID.

Requirements for UCID applications

<table>
<thead>
<tr>
<th>Operation</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCID sent from communication server to communication server</td>
<td>ISDN (BRI/PRI) trunks with Shared UUI or QSIG service protocol</td>
</tr>
<tr>
<td>UCID sent from communication server to CONVERSANT</td>
<td>ASAI link to CONVERSANT</td>
</tr>
<tr>
<td>Communication server receives UCID from CONVERSANT</td>
<td>ISDN-PRI connection (with shared UUI) between communication server and CONVERSANT</td>
</tr>
<tr>
<td>Switch sends UCIDs to CMS</td>
<td>X.25 or Ethernet connection from switch to CMS</td>
</tr>
<tr>
<td>Switch sends UCIDs to a CTI Application</td>
<td>ASAI link to adjunct</td>
</tr>
</tbody>
</table>

To maximize the benefits of UCID, it is recommended that all communication servers be configured with the DEFINITY ECS R6.3 (or newer) software. However, because upgrading a network is often a gradual process, there may be a communication server that cannot yet support UCIDs. In this environment, disallow the UCID transmission for any trunk group connected to a pre-DEFINITY ECS R6.3 communication server. For information about enabling or disabling UCID transmission on a trunk group, see *Administering UCID* on page 247 later in this chapter.

In the case of a communication server network component that cannot support UCIDs, it is recommended that the component (ISDN trunk group, ASAI connection, or CMS software) be administered to disallow the sending or receiving of UCID. For example, if an Avaya communication server is connected to a non-Avaya switch, then the connecting ISDN trunk must be administered to not send UCID over that trunk for outgoing calls.
Administering UCID

These instructions assume you’re using the SAT (System Administration Terminal) screen or a terminal emulator to access the communication server software.

There are three tasks involved in administering UCID on the communication server. Complete these tasks in the following order:

Task A - Check ASAI Interface before enabling UCID

Task B - Set the communication server to create and send UCIDs

Task C - Enable UCID Transmission on Trunk Groups

Task A: Check ASAI interface before enabling UCID

If this procedure is not performed, you may encounter the “ASAI Interface feature not assigned” error message in later steps.

Required forms to check ASAI interface

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
<th>Why?</th>
<th>Optional?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional</td>
<td>ASAI Interface</td>
<td>Global setting to send UCIDs to ASAI</td>
<td>Y</td>
</tr>
</tbody>
</table>

To check the ASAI interface:

5. In the command line, enter `change system-parameters customer-options` and press RETURN.

6. On page 1, enter `y` in the ASAI Interface field.

7. Log out and log back in if this and any other fields in this form have changed.
Task B: Set the communication server to create and send UCIDs

You must administer each communication server that you want to create UCIDs. If you do not administer a communication server, it will pass along an already-created UCID, but it won’t create one if a call comes to it first.

Required forms for the communication server to create and send UCIDs

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
<th>Why?</th>
<th>Optional?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature-Related System Parameters</td>
<td>Create Universal Call ID (UCID)?</td>
<td>To generate a UCID for each call when necessary.</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>UCID Network Node ID</td>
<td>Important component of the UCID tag.</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Send UCID to ASAI?</td>
<td>So that ASAI receives UCIDs.</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Adjunct CMS Release</td>
<td>So that CMS receives UCIDs.</td>
<td>Y</td>
</tr>
</tbody>
</table>

For the communication server to create and send UCIDs:

1. If your network includes CMS and you want CMS to track UCIDs, then enter busyout mis in the command line. If not, go to step 2.

2. In the command line, enter change system-parameters feature and press RETURN.

3. The Feature-Related System Parameters form comes up.

4. Go to page 4 of the form.

5. In the Create Universal Call ID (UCID)? field, enter y.

6. In the UCID Network Node ID field, enter the node ID number. Valid numbers are from 1 to 32,767.

⚠️ **CAUTION:**

The UCID Network Node ID **must** be unique for every communication server and Conversant in the system. If it is not unique, the integrity of the UCID is compromised.

7. If your network includes ASAI, go to page 7 of the form. If not, go to step 8.

8. In the Send UCID to ASAI? field, enter y.

9. If you have performed the busyout mis command, go to step 9. If not, you are done with this task (Task b), so press Enter to save your work and go to Task c.

10. Go to page 8 of the form.

11. In the Adjunct CMS Release field, enter R3V6.
12. Press Enter to save your work.
13. In the command line, enter release mis.

Task C: Enable UCID transmission on trunk groups

When you send UCIDs over ISDN trunks, it is administered on a trunk group basis. The following table provides the form and field information that you need to perform this task.

Required forms to enable UCID transmission on trunk groups

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
<th>Why?</th>
<th>Optional?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunk Group</td>
<td>Group Type</td>
<td>To specify correct trunk type: ISDN is the only type that supports UCID.</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Supplementary Service Protocol</td>
<td>Specify correct service type. b is for QSIG, others are for UUI.</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Send UCID?</td>
<td>Allows or blocks UCID transmission.</td>
<td>N</td>
</tr>
</tbody>
</table>

To enable UCID transmission on a trunk group:

1. In the command line, enter change trunk-group n and press RETURN.
2. The Trunk Group administration form comes up. n is the number of the trunk group you want to administer.
3. On page 1, enter ISDN in the Group Type field.
4. In the Supplementary Service Protocol field, enter the letter of the service protocol you want for this trunk group.
5. b is for QSIG, other protocols are for UUI.
6. Go to page 2 of the form.
7. In the Send UCID? field, enter y.
8. Press Enter to save your changes.

You also need to administer your trunk groups to send user data over your private and public networks. To administer the trunk groups, see Information Forwarding (Category A only) on page 163.

Considerations

UCID has been tested with several major carriers. To find out if these capabilities work with your carrier, check with your account team for the most current information. If testing has not been done to verify operation over the public networks involved with the preferred specific configuration, use of private ISDN trunking between the nodes should be assumed until successful testing has been completed.
Troubleshooting

The following troubleshooting hints should be reviewed when UCIDs are not transmitted, even though you received no error messages while administering the UCID feature, and all software and connections meet the minimum requirements:

- A tandem communication server has the Send UCID? option set to y for all trunk groups that AAR/ARS or station users may use to tandem an incoming call.

- If DCS is used, make sure all ISDN trunks between the communication servers used for DCS or remote AUDIX are configured in the D-channel mode.

- For CMS tracking purposes, make sure all trunks, VDN, and split/skills that handle calls for which UCIDs are tracked are administered as “measured” (either “both” or “external”).
VDN in a Coverage Path

VDN in a Coverage Path (VICP) enhances Call Coverage and Call Vectoring. If Basic Call Vectoring or Call Prompting is enabled on your communication server, you can assign a Vector Directory Number (VDN) as the last point in a coverage path. Calls that reach this coverage point can be processed by a vector or by Call Prompting.

Administering VICP

The following forms and fields are required to administer the VICP feature.

| Required forms – VICP feature |
|-----------------------------|-----------------|
| Form | Field |
| Coverage Paths | All |
| Call Vector | All |
| Vector Directory Number | All |

- Call Coverage Path form — Set one of the following to the extension of the VDN you want to use as a coverage point: Point 1, Point 2, Point 3, Point 4, Point 5, Point 6.

Considerations

Once a call has covered to a VDN, it cannot be further redirected by features such as Call Coverage, Call Forwarding, or Night Service.

A VDN is not allowed to be a member of a coverage answer group. A vector cannot route a covered call to a coverage answer group — a coverage answer group can only be a point in a coverage path.

Removing a VDN from the system with the `remove vdn <extension>` command automatically removes the VDN from any coverage paths.

Interactions

AAR/ARS Partitioning

The class of restriction assigned to the VDN determines the partition group number (PGN). The PGN in turn determines the AAR or ARS routing tables used by `route-to` commands.
ACD contact center features

ASAI (Category A only)

For direct calls to a VDN, the `adjunct routing` command operates like the command `route to digits with coverage=y`. For calls that cover to a VDN, however, the `adjunct routing` command operates the same as a `route to digits with coverage=n` command. Since calls redirected once to coverage should not be redirected again, the coverage option is disabled for the `adjunct routing` command in this situation.

Attendant

A call covering to a VDN can be connected to an attendant queue or hunt group by a vector. Internal calls that route to an attendant display the class of restriction of the originating station if the attendant presses the “display COR” button.

An attendant cannot establish a conference with a call covering to a VDN if the call is in vector processing. If a call placed to a local destination has covered to a VDN and the attendant attempts to add this call to a conference, the conference will be denied until the call has completed vector processing.

An attendant-extended call that covers to a VDN will not return. If the attendant extends a call to a local destination that covers the call to a VDN, the attendant’s return call timer is canceled when vector processing begins and the Return Call button will not affect the call.

If a call covers to a VDN and is then routed to an attendant, the attendant can transfer the call to another VDN.

AUDIX

Calls that cover to a VDN can be routed to an AUDIX by the `route-to` or `messaging` vector commands. Calls that cover to a VDN may be subsequently transferred to AUDIX. Calls may also be transferred out of AUDIX to a VDN.

Automatic Call Distribution (ACD)

A VDN can be the last point in an agent’s coverage path for direct agent calls.

Call Coverage

A VDN cannot be a member of a coverage answer group. A vector cannot route a covered call to a coverage answer group.

Calls that have covered to a VDN cannot be redirected again by Call Coverage.

Coverage Callback and Leave Word Calling work normally when a vector delivers a call to a covering user.

Call Forwarding

Calls that have covered to a VDN cannot be redirected by Call Forwarding.
Call Park

A parked call will not cover to a VDN. When a call is parked at an extension with a VDN in its coverage path, the call will continue ringing the extension. If the call is parked to a hunt group extension and the call is in queue, the call will remain in the queue until it is retrieved, or answered by an agent, or abandoned by the caller. A vector event is generated for these calls when the administered coverage criteria are met.

Once a call covers to a VDN, Call Park cannot be established until the call is delivered to an extension and vector processing ends.

Call Vectoring

The class of restriction assigned to a VDN determines the partition group number (PGN). The PGN in turn determines the AAR or ARS routing tables used by route-to commands.

When a call covers to a VDN, VDN override has no effect on the display shown on an answering display. This station will show the normal display for a covered call.

adjunct routing (Category A only): For direct calls to a VDN, the adjunct routing command operates like the route to digits with coverage=y command. For calls that cover to a VDN, however, the adjunct routing command operates the same as a route to digits with coverage=n command. Calls redirected once to coverage should not be redirected again, however, so in this situation the coverage option is disabled for the adjunct routing command.

converse (Category A only): Covered calls to a VDN work with the converse command. If a call in vector processing is connected to an agent in a “converse split,” the agent cannot activate Consult, Coverage Callback, or Coverage Leave Word Calling.

messaging: The messaging command handles covered calls differently depending on whether an extension is specified in the command. If the command messaging split xxxx extension none is used, the mailbox of the principal extension is used for the call. The number of the principal extension and the reason for redirection are passed to the messaging adjunct in the CONNECT message.

When an extension is specified in the messaging command, no information about the principal extension is passed to the adjunct. Instead, the number of the extension specified in the command is passed to the adjunct in the CONNECT message along with the reason for redirection. The mailbox for the specified extension is used.

route-to: A call covering to a VDN can be routed to any valid destination by the call vectoring command route-to. The coverage option for the route-to digits command is disabled for covered calls. In other words, the route-to digits with coverage=y functions like the route-to digits with coverage=n command when processing covered calls. When the route-to command terminates a covered call locally, information identifying the principal and the reason for redirection are retained with the call. This information can be displayed on display phones or passed to an AUDIX or Message Center system.
ACD contact center features

Class of Restriction (COR)
The COR assigned to the covering VDN governs the vector routing of the call.

Conference
Calls in an established conference will not cover to a VDN.
Once a call covers to a VDN, a conference cannot be established until the call is delivered to an extension and vector processing ends.

Consult
The Consult feature normally uses a Temporary Bridged Appearance on the principal's set. Call coverage to a VDN removes the Temporary Bridged Appearance from the principal's set, but the Consult feature still works.

Hunt Groups
A VDN can be the last point in a hunt group’s coverage path. If the coverage vector for a split or hunt group routes calls to another via a route-to or messaging command, calls will queue at the second resource with the queue priority assigned for the first split or hunt group. If a queue-to, check, or converse command is used, calls will queue at the second split or hunt group with the priority specified in the command.

If an inflow threshold has been assigned to a hunt group, the group will not allow new calls to queue when the oldest call in queue has exceeded the threshold. Therefore, covered calls are not connected to a hunt group when the group’s inflow threshold has been exceeded. Note that this interaction can also occur when a messaging split or route-to command routes a covered call to a split that isn’t vector-controlled.

Look-Ahead Interflow (Category A only)
For calls that have covered to a VDN, LAI works like a route-to digits/number with cov=n vector command. Any Dialed Number Identification Service (DNIS) digits sent with the interflowed call will indicate the VDN to which the call covered, not any VDN the call encountered before it went to coverage.

Night Service
Calls that have covered to a VDN cannot be redirected by Night Service.

Personal CO lines (PCOL)
A VDN may be assigned as the last point in a PCOL coverage path.
Phone Display

Calls covering to a VDN and then directed to an agent in a split or hunt group by a queue-to, check, converse, or route-to command display the following information to the agent:

```
a=EXT 3174 to EXT 3077 b
```

In this example, station A called station B. Station B was busy, and the call covered to a VDN.

Redirection on No Answer (RONA)

RONA applies to calls that cover to a VDN. If the vector associated with the VDN queues the call to a resource (for example, a split or agent) that uses RONA, the call can be requeued for the same resource. The call cannot be redirected, however, since it has already covered to the VDN.

Terminating Extension Groups

A VDN may be assigned as the last point in the coverage path for a Terminating Extension Group.

Transfer

Calls may be transferred to extensions that cover to a VDN. Users who receive a covered call may transfer it to a VDN. If a transfer attempt goes to coverage and covers to a VDN, the user at the answering station can complete the transfer by pushing the Transfer button (or by flashing the switchhook on an analog station).

Calls that cover to a VDN may be subsequently transferred to AUDIX. Calls may also be transferred out of AUDIX to a VDN.
VDN of Origin Announcement (Category A only)

VDN of Origin Announcement (VOA) provides agents with a short message about a caller’s city of origin or requested service based on the VDN used to process the call.

Use VOA messages to help agents to respond appropriately to callers. For example, if you have two 800 numbers, one for placing orders and one for technical support, you can administer two VDNs to route calls to the same set of agents. When an incoming call is routed to a VDN with a VOA assigned (for example, “new order” or “tech help”), the VDN routes the call to a vector, which can place the call in an agent queue. When an agent answers the call, he or she hears the VOA message and can respond appropriately to the caller’s request.

Administering VOA

The following forms and fields are required to administer the VOA feature.

Required forms – VOA feature

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendant Console</td>
<td>Feature Button Assignments — VOA Repeat</td>
</tr>
<tr>
<td>Class of Restriction (COR)</td>
<td>VDN of Origin Announcements</td>
</tr>
<tr>
<td>Feature-Related System Parameters</td>
<td>Hear Zip Tone Following VOA?</td>
</tr>
<tr>
<td>Announcements/Audio Sources</td>
<td>All</td>
</tr>
<tr>
<td>Vector Directory Number</td>
<td>VDN of Origin Ann. Extension</td>
</tr>
<tr>
<td>Phones</td>
<td>Feature Button Assignments — VOA Repeat</td>
</tr>
</tbody>
</table>

- Announcements/Audio Sources — Assign each VOA you want to use. You can administer aux-trunk types with queue, without queue, and with barge-in. You can administer integrated types with queue and without queue. Do not administer analog and integrated repeating announcement types as VOAs.

Note:

The VDN for which you are administering a VOA must be in a vector command line.
Detailed description

The agent cannot hear the caller while the VOA message is playing. The caller is not connected to the agent until after the message completes and cannot hear the message or the agent during the message. The caller hears ringback while the agent is listening to the VOA.

Agents logged in at multiline telephones see the call-appearance button for an incoming call flash until after the VOA completes. An agent can press the flashing call-appearance button to stop the VOA.

To repeat the VOA, an agent presses the VOA Repeat button. The VOA Repeat button lamp lights during the VOA. The VOA Repeat button lamp remains lit if the repeat request is queued. If an agent presses the VOA Repeat button while the lamp is lit, the VOA is stopped. If an agent presses the VOA Repeat button but there is no VOA or the system cannot play the VOA within three seconds, the lamp flutters.

You assign VOAs for each VDN. However, the VOA applies to a COR, so you must administer a COR for agents who will receive VOAs.

You can set up VOAs in four ways:

- Agents can hear a unique announcement based on the dialed number identification service (DNIS) received from the service office or carrier communication server. Assign each DNIS as the VDN of a vector. Set up the VOA to announce the services associated with the DNIS.

 Note:

 The announcement associated with the current VDN only plays if the VDN Override for the previous VDN is set to y. If VDN Override for the previous VDN is set to n, the VOA associated with that VDN plays.

- Use vector steps, an integrated prompting, or *converse-on* step to route calls to a VDN. Set up the VOA to announce the service the caller requested or to announce a condition that caused the call to *route-to* the VDN.

- You can route calls to a voice response system, directly or through a vector. Use voice prompting to direct the caller to enter a touchtone response, and route the call to a specific VDN based on the caller’s response. Set up the VOA to indicate the service the caller selected.

- If agents require a caller’s city of origin, assign the trunk group to a particular VDN. Set up the VOA to provide the location of the origin of the trunk group. Subsequent VDNs can be used to handle the call, or multiple VDNs can be assigned to a single vector.

 Note:

 VDN Override applies to VOA in the same way that VDN Override applies to display information. If a VDN with a VOA has VDN Override enabled, the system overrides the original VOA with VOAs in subsequent VDNs to which the call is routed.
ACD contact center features

Considerations

- Because callers are kept waiting while a VOA plays, messages should be kept very brief — no more than 1.5 seconds in length. Agents should use a speakerphone or headset, so they do not miss the VOA while they are picking up the handset. If agents cannot use a speakerphone or headset, administer phones with a VOA Repeat button.

- If you have multiple announcement boards, you should place shorter VOAs on one board and longer recorded announcements on the other to avoid delaying delivery of VOAs. If you have only one announcement board, place VOAs on the integrated board and consider installing an auxiliary announcement device for longer announcements.

- Agents must be on the same communication server as the VOA.

- A VOA can be assigned to multiple VDNs, but a VDN can have only one VOA.

- If you use the TN750 circuit board for integrated announcements, the system maintains a separate logical queue for VOAs. If the VOA cannot be delivered to the agent within 1 second because of traffic or inoperative equipment, the system does not provide the announcement. VOAs are higher priority than other announcements on the TN750. A burst of VOAs can delay other announcements. Therefore, record non-VDN of Origin Announcements as auxiliary or analog.

- Auxiliary announcements are connected for a duration of 1 to 2 seconds on a barge-in basis, immediately after the agent answers (or is assigned the call for auto-answer) and the incoming call is extended to the agent. Integrated and non-barge-in auxiliary announcements are connected for the duration of the announcement. The communication server does not ensure that the integrated announcement is shorter than the allowed playback time.

- VOA supports Auxiliary Trunks (aux-trunk) with barge-in, queue, or without queue. For aux-trunk with or without queue, when the trunk is idle, a VDN call seizes the trunk to start the VOA and the system plays the entire announcement (not just 1 to 2 seconds). However, if the announcement is busy and if aux-trunk has barge-in, the call does not queue but bridges onto the announcement for 1 to 2 seconds. When the VOA completes, the trunk is released along with the listeners, and the next call requiring the VOA starts the process over again. For this reason, your aux-trunk announcements should consist of one short announcement that repeats during the full announcement time. For example, you might want to record “New Order” as many times as possible, so that when a call bridges to the announcement, the agent hears “New Order” no matter where the agent bridges into the announcement.

- If you use aux-trunk or integrated announcement without queue and a port is busy when a VDN call comes in, the system cannot play an announcement. If you use aux-trunk or integrated announcement with queue, the system plays the current announcement for an agent and then connects the next agent in the queue.
Interactions

Agent Call Handling (Answering Options)

● Automatic Answer
 — ACD agents at phones in Auto Answer mode hear a zip tone, then the VOA. You can also administer a zip tone after the VOA completes, to alert agents that an announcement is complete and a caller is connected.
 — Non-ACD agents can receive a VOA if a call is routed to them via vector processing. When non-ACD agents at phones in Automatic Answer mode receive calls, they hear a call ID tone then the VOA. Agents hear a second zip tone after the VOA indicating connection to the caller.

● Manual Answer
 — When non-ACD agents at phones in Manual Answer mode receive calls they hear ringing, answer the call, and hear the VOA.

ASAI Adjunct Routing

If a vector step includes Adjunct Routing, the VOA is played for the agent to whom the call is routed.

Auto-Available Split/Skill (AAS)

AAS is intended to be used for splits/skills containing only nonhuman adjuncts such as AUDIX or Conversant; however, VOAs can be directed to Auto-Available splits/skills.

Call Forwarding

VOAs apply to forwarded calls, including those forwarded to a hunt group. The answering station must be on the same communication server. If a VOA is forwarded, the message is played only if the destination extension is administered with a COR that allows VOA.

Call Pickup

Call Pickup allows an agent to pick up a ringing call on another extension. If the pick-up extension has COR permissions for VOA, the agent can receive a VOA.

Conference

If an agent receives a call and then conferences in additional stations, any station on the connection can use VOA Repeat button to replay the VOA. Only the person using the button can hear the VOA unless the call is being service observed.
Converse-on split/skill

A converse-on split/skill is one used in a converse-on vector step. When a converse-on vector step is executed, a VOA is not applied. After returning to the vector, the call can be routed to a station or VDN where the answering agent receives the VOA (as if the converse-on step had not been processed).

Coverage

VOA applies to coverage paths.

Data Restriction

Data Restriction prevents tones from being applied to line or trunk circuits during a data call. VOAs are not played for data-restricted calls.

Direct Agent Calling

Direct Agent Calling allows a vector to route a call to particular ACD agent and have the call treated as an ACD call. The VOA only applies to direct agent calls if the calls reach an agent through vector processing. Direct agent calls from a phone on a communication server are not vector-processed and cannot cause a VOA to be played.

Enhanced Automatic Wake-up

If you are using enhancements to Automatic Wake-up with integrated announcements, there can be contention for integrated announcement ports. VOAs have priority over Automatic Wake-Up announcements.

Expert Agent Selection (EAS)

When you are using EAS, the logical agent COR definition determines the assignment of VOAs for each extension. EAS uses the COR of the logical agent instead of the COR for the telephone the agent is using.

Hold

Agents cannot use the VOA Repeat button if their calls are all on hold. The VOA Repeat button only applies to active calls.

Home Agent

You can assign an initial VOA to a home-agent port on the communication server. However, home agents cannot use a VOA Repeat button because home agents need a dial access code (DAC) to reach features and VOA replay does not use a DAC.
Hunt Groups
VOAs apply to calls routed to a hunt group. The COR for the answering station’s extension determines whether the station can receive a VOA.

Look-Ahead Interflow
VOAs apply only to the communication server where the VDN is defined. If a call interflows to another communication server, the VOA is lost. You can have the interflow to another communication server access a VDN with the same VOA message as on the original communication server.

Redirection on No Answer (RONA)
If a call re-queues to a split/skill because the RONA timer expired, the VOA applies to the call when an agent answers the call.

Service Observing
The system handles Service Observing calls as conference connections. If the observer presses the VOA Repeat button only he or she hears the announcement. However, if another party on the call presses the VOA Repeat button, the user and the observer hear the VOA.

Supervisor Assist
If an agent requests supervisor assistance and conferences the supervisor into a call, either the agent or the supervisor can use their VOA Repeat button to replay the VOA, but only the person who presses the button hears the VOA.

Transfers
If an agent receives a VDN call and transfers the call, the answering party can use the VOA Repeat button to replay the message.

VOA distribution
If you use long VOAs or multiple VOAs, there may be a delay between the zip tone and the announcement. The system provides multiple announcement circuit packs to help prevent announcement delays. Contact your Avaya representative for more information.
Voice Response Integration (Category A only)

Voice Response Integration (VRI) integrates Call Vectoring with the capabilities of voice response units (VRUs) such as the Conversant Voice Response Unit (VRU). With Conversant, you can:

- Run a VRU script while retaining control of a call in vector processing
- Run a VRU script while a call is queued, retaining its position in the queue
- Pool Conversant ports for multiple applications
- Use a VRU as a flexible external-announcement device
- Pass data between the system and a VRU
- Tandem VRU data through a communication server to an ASAI host

The `converse-on` command, which is part of Basic Call Vectoring, provides these capabilities. Use a `converse-on` call-vector step to integrate a VRU with Automatic Call Distribution (ACD). VRI allows you to use VRU capabilities while controlling a call in ACD.

Include VRUs with vector processing to take advantage of the following:

- Access to local and host databases
- Validation of caller information
- Text-to-speech capabilities
- Speech recognition
- Increased recorded announcement capacity
- Audiotex applications
- Interactive voice-response (IVR) applications
- Transaction-processing applications

VRI allows users to make productive use of queuing time. For example, while a call is queued, a caller can listen to product information via an audiotex application or can complete an interactive voice-response transaction. It may be possible to resolve the caller’s questions while the call is queued, which helps reduce queuing time for other callers during peak times.
Administering VRI

Enable Call Prompting to allow the system to collect digits from the caller and Conversant to return data. You must have Call Prompting to administer the Converse Data Return Code and use the digits keyword for the <data_1> or <data_2> fields on the converse-on command.

Required forms – VRI feature

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Parameters Customer-Options</td>
<td>Call Prompting</td>
</tr>
<tr>
<td>Feature Access Code (FAC)</td>
<td>Converse Data Return Code</td>
</tr>
<tr>
<td>Feature-Related System Parameters</td>
<td>Converse Delay Data1/Data2 Converse Signaling Tone/Pause</td>
</tr>
<tr>
<td>Call Vector</td>
<td>All</td>
</tr>
</tbody>
</table>

Detailed description

A call queued to a split/skill retains position in the queue while a VRU script is being run. When an agent becomes available, the line to the VRU is dropped and the caller connects to the agent.

The converse-on command delivers a call to a predetermined converse split/skill. A converse split/skill is administered and operates exactly like other splits/skills. Nonconverse splits/skills are splits/skills that are accessed by queue-to and check vector steps.

Members of a converse split/skill are the ports connected to the VRU. If all VRU ports are busy, a call queues to the converse split/skill with the administered priority. After the VRU answers the call, the converse-on command may pass up to 2 data items to the VRU, depending on command parameters specified. You can pass data required by a VRU script or data that selects the VRU script to be run.

Whether or not you pass data, a caller is connected to the VRU, which runs the VRU script. Audible feedback provided by the vector is not heard and no further vector steps are run until the VRU script completes. The VRU may return data to the system and then drops the line to the system. Vector processing continues at the step following the converse-on command.

If the call was queued to a nonconverse split/skill before the converse-on command was run, the call retains its queue position. If an agent becomes available while the VRU script runs, the system drops the line to the VRU and connects the caller to the agent. The VRU detects the disconnect and terminates the VRU script.
Call Prompting allows you to collect and use digits that the VRU returns. These digits are handled as dial-ahead digits. Rules for collecting and processing VRU digits are the same as for Call Prompting.

You can use digits returned from the VRU in the following ways:

- To display for the answering agent’s (automatically for 2-line displays or with the CALLR-INFO button for other displays)
- As an extension in a route-to digits vector step. For example:

  ```
  converse-on split . . . (VRU returns 4 digits)
  collect 4 digits after announcement none
  route-to digits coverage y
  ```

- For vector-conditional branching in an if digits equals vector step. For example:

  ```
  converse-on split . . . (VRU returns 1 digit)
  collect 1 digit after announcement none
  goto vector 101 if digits = 1
  goto vector 102 if digits = 2
  goto vector 103 if unconditionally
  ```

- Tandemed to an ASAI host – Collected digits are passed to ASAI hosts in Call Offered to Domain Event reports and in route request messages, thus caller digits or database information returned from the VRU can be tandemed through the system to ASAI hosts. For example:

  ```
  converse-on split ... (VRU returns 9 digits)
  collect 9 digits after announcement none
  adjunct route link Y
  ```

In this vector, the digits returned from the VRU are forwarded to the ASAI host in the adjunct routing route request message.

When you use a VRU application that returns data for a collect-digits step, the opportunity for toll fraud exists when the VRU application does not return any data. Take the following precautions:

- If the collected digits are used to route calls internally, ensure that the Class of Restriction (COR) for the vector directory number (VDN) does not allow calls to route externally.
- If the collected digits are used to route calls externally, use a password to verify that the collected digits have been passed by the VRU application. For example, in the following vector, the VRU application returns a 3-digit password followed by the 8-digit external number. The vector routes calls without the correct password to a vector 23.
converse-on split 10 primary passing none and none (VRU returns 11 digits)
collect 3 digits after announcement none
goto vector 23 if digits <> 234
collect 8 digits after announcement none
route-to digits with coverage n

Interactions

Converse splits interact like other vector-controlled splits unless noted here.

Adjunct Switch Applications Interface (ASAI)

When a converse-on vector step places a call to an ASAI-monitored domain, ASAI event messages are sent over the ASAI link. When a converse-on step places an ASAI-monitored call, the ALERT message sent to the ASAI adjunct includes a cause IE, Coding Standard 3 value 23 (CS3/23), which informs the adjunct that the call has not been dequeued from any nonconverse splits.

If a converse-on step is run while an adjunct routing request is outstanding, the request is canceled.

ASAI cannot transfer or conference calls, but can direct the system to do this.

Agents

Although not recommended, you can use a converse-on step to deliver a call to a group of human agents. To agents, the call looks like an ACD call, except they cannot use certain features, such as Transfer, Conference, and Supervisor Assist.

The agent can return data to vector processing by pushing the transfer button (or flash hook on analog) and dialing the converse-on data return code and required digits.

Answer supervision

Answer supervision is returned only once during a call. If a call is answered because of a converse-on step, answer supervision is sent if it hasn’t previously been sent. If digits are passed to the VRU, answer supervision is sent after digits are sent.

AUDIX

If a converse-on step calls AUDIX, the call is handled as a direct call to AUDIX. The caller hears the AUDIX welcome message and can retrieve messages as usual.

If a call is forwarded to a VDN and then delivered to an AUDIX hunt group by a converse-on step, the call to AUDIX is treated as a redirected call, and the caller may leave a message.
Auto-Available Split/Skill (AAS)

A converse-on vector step can place a call to an AAS. Use auto-available converse splits/skills for VRI except when ASAI controls the converse split/skill.

Automatic answering

When you administer Conversant ports as agents of a converse split/skill, do not administer agents as automatic answer. The system-provided zip tone may interfere with the interaction between Conversant and the calling party.

BCMS/CMS

BCMS tracks calls that a converse-on step places to a BCMS-measured hunt group. CMS tracks calls that a converse-on step places to a CMS-measured hunt group, split, or skill.

The VDN tracks such calls as waiting in the vector. A call is considered answered when answered by a nonconverse split/skill agent, not when answered by a converse split/skill agent. The converse split/skill tracks this as a separate “answered” call when the VRU answers. Though trunk and split/skill totals may no longer match, VDN and trunk totals match.

Call Detail Recording

The duration of a call to a VDN is recorded from when answer supervision is returned after a successful converse-on step. Unsuccessful converse-on steps do not generate ineffective call-attempt records. Converse-on steps cannot place calls; these steps simply direct a call to a hunt group.

Call Park

Calls that a converse-on step placed cannot be parked.

Call Pickup

Do not use Call Pickup with converse-on steps.

Class of Restriction

The system does not check CORs when a converse-on vector step routes a call to a split.

Conference

You cannot conference a call routed by a converse-on step.
Direct Department Calling
You can administer a converse split/skill as a DDC split/skill.

Distributed Communications System
If an incoming DCS call is placed to a vector with a converse-on split/skill x prim passing ani... step, the caller’s DCS extension is sent to the VRU.

Expert Agent Selection
Converse-on steps can place calls to a skill hunt group.

Hold
An agent answering a converse call can put the call on hold, but the caller does not hear music on hold. If a call is queued to a backup split/skill before it was sent to the VRU and a nonconverse split/skill agent answers the call on hold, the agent who placed the call on hold is dropped, and the caller connects to the answering agent.

Hold - Automatic
Automatic hold applies to converse-on calls.

Hunt Groups
A converse-on step can deliver a call to a vector-controlled or AUDIX hunt group, ACD split, agent skill, or message center.

ISDN
You can administer a converse-on step to send a caller’s calling party/billing number (CPN/BN) to Conversant using the caller keyword.

Intraswitch CDR
If a converse-on call is answered and either the caller or the VDN associated with the call is administered for intraswitch recording, timing for the call is started and the CDR record shows “calling party to VDN” as the originating and answering parties.

Line-side T1 connectivity
T1 connectivity between the switch and Conversant is supported for VRI. The DS1 board must be a TN767E (or later) or TN464F (or later). Administer all converse agents as DS1FD-type stations. Operation of the converse step using Line-side T1 is identical to that over a tip/ring line. In particular, delay-timing and outpulsing speed is the same as for analog lines. T1 connectivity to Conversant is supported only in the United States and Canada.
ACD contact center features

Look-Ahead Interflow

If an incoming call or a call routed by a *converse-on* vector step is answered by a VRU, or is queued to the converse split/skill while a Look-Ahead Interflow call attempt is outstanding, the attempt is accepted.

Message Center

Converse-on steps can deliver calls to message hunt groups. Such calls are handled as direct calls to the message hunt group.

If a call is forwarded to a VDN and a *converse-on* step delivers it to a message split, it is handled as a redirected call.

A *converse-on* step can queue a call to three different skills and then to a converse skill group or split.

Music-on-Hold

During the data return phase of a *converse-on* step, the caller is placed on hold, but does not hear music.

Nonvector-controlled splits

A *converse-on* step cannot route a call to a nonvector-controlled split.

Queuing

Converse-on calls queue when they are delivered to busy hunt groups. Call Vectoring audible feedback is not disconnected while a converse-on call is queued.

If a *converse-on* step is run while a call is queued to a non-converse split/skill, the call remains in queue, even after being answered by the VRU.

Converse-on steps can queue calls at one of four priority levels: low, medium, high or top. You administer the queue priority of a call on the *converse-on* step.

R2-MFC Signaling

R2-MFC signaling trunks can send ANI to VRUs via the ani data item on the *converse-on* step.

Recorded announcement

Use VRI to increase the system’s recorded announcement capacity by offloading some recorded announcements to a VRU, such as Conversant. Using the *converse-on* step, redirect callers to a group of VRU ports by passing the number of the announcement to be played. Conversant can play any announcement on any port.
Although only one caller can be connected to each port, up to 48 callers can be connected simultaneously to Conversant. The maximum number of callers that can be connected to a VRU simultaneously varies with each VRU.

Redirection on No Answer (RONA)

If a `converse-on` step calls a hunt group with “no answer timeout” administered, and the call rings an agent/port for longer than the timeout interval, the call redirects and the agent/port is put into AUX work mode (or logged out if the agent is an AAS member).

With RONA, the call is requeued to the split/skill. The call cannot requeue to the split/skill if it is an AAS with all agents logged out or if the queue is full. If the call cannot be requeued, the `converse-on` step fails, a vector event is logged, and processing restarts at the next vector step.

Service Observing

Calls delivered by a `converse-on` step can be observed. To prevent the observer from hearing tones associated with data being sent to the VRU, the observer is not connected to the call until after data is passed. If the VRU returns data, the observer is put in service-observing-pending mode and the caller is put on hold while the data is sent. When the `converse-on` session ends and the VRU drops the line, the observer remains in service-observing-pending mode and waits for the next call.

In addition, the observer observing a VDN does not hear data being sent. After data is sent, the observer rejoins the call.

Do not administer a service observing warning tone because the warning tone may interfere with the interaction between Conversant and the caller.

System measurements

System measurements track `converse-on` calls to hunt groups.

Touch-tone dialing

A caller can use touch-tone dialing while digits are passed in a `converse-on` session. The data is not corrupted. The system does not collect the dialed numbers as dial-ahead digits.

After the system sends digits to Conversant, a caller can enter touch-tone digits at a Conversant prompt. After Conversant has returned data to the system and an additional `collect <#> digits` vector step is run, a caller can enter a touch-tone response to a system prompt.
ACD contact center features

Transfer
A call delivered by a `converse-on` step cannot be transferred.

If an attempt to transfer a converse-on call is made, a vector event is logged, the line to Conversant is dropped, and processing restarts at the next vector step.

If a human agent tries to transfer a call, the transfer fails and the agent reconnects to the call.

Transfer out of AUDIX
If a `converse-on` step delivers a call to an AUDIX hunt group and the caller tries to transfer out of AUDIX, the transfer fails and processing continues at the next vector step.

Uniform Call Distribution (UCD)
You can administer a converse split/skill as a UCD split/skill.

VDN display override
If a call that accesses multiple VDNs encounters a `converse-on` step that passes vdn, normal display override rules determine which VDN number is sent to the VRU.

Vector-controlled splits/skills
`Converse-on` steps can deliver calls only to skills or vector-controlled splits.
VuStats presents Basic Call Management System (BCMS) statistics on phone displays. Agents, supervisors, contact center managers, and other users can press a button and view statistics for agents, splits/skills, VDNs, and trunk groups.

These statistics reflect information collected during the current BCMS interval, information collected since the agent logged in or since the day began, or historical data accumulated over an administered number of intervals. The information is limited to 40 characters displayed at a time. VuStats can display on demand or update periodically.

With VuStats, anyone who is using a telephone with digital display can view BCMS statistics, which are otherwise available only on BCMS reports or management terminals. These statistics can help agents monitor their own performance or can be used to manage splits/skills or small contact centers.

Note:
Although VuStats can run with either BCMS or CMS enabled, neither is required.

The following figure illustrates a Callmaster with a VuStats display.
Administering VuStats

The following forms and fields are required to administer the VuStats feature.

Required form – VuStats feature

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Parameter Customer-Options</td>
<td>ACD
BCMS/VuStats Login ID
BCMS/VuStats Service Level
VuStats or VuStats (G3V4 Enhanced)</td>
</tr>
<tr>
<td>Feature-Related System Parameters</td>
<td>ACD Login Identification Length
BCMS/VuStats Measurement Interval
BCMS/VuStats Abandoned Call Timer
Validate BCMS/VuStats Login IDs
Clear VuStats Shift Data</td>
</tr>
<tr>
<td>Trunk Group</td>
<td>Measured</td>
</tr>
<tr>
<td>Attendant Console</td>
<td>Feature Buttons</td>
</tr>
<tr>
<td>BCMS/VuStats Login ID</td>
<td>Login ID, Name</td>
</tr>
<tr>
<td>Hunt Group</td>
<td>ACD
Acceptable Service Level
Measured
Objective</td>
</tr>
<tr>
<td>Station</td>
<td>Feature Buttons</td>
</tr>
<tr>
<td>Vector Directory Number</td>
<td>Acceptable Service Level
Measured</td>
</tr>
<tr>
<td>VuStats</td>
<td>All</td>
</tr>
</tbody>
</table>

Display the System-Parameter Customer-Options form and ensure that ACD, BCMS/VuStats Login IDs, BCMS/VuStats Service Level, and VuStats or VuStats (G3V4 Enhanced) are set to y.

- Feature-Related System-Parameters form
 - ACD Login Identification Length — If you are not using EAS, enter a number (1–9) that identifies the length of Agent Login IDs used by BCMS/VuStats. If you are not using BCMS/VuStats Login IDs, accept the default 0. This field defines the ACD login ID length and the BCMS login ID length, so you must coordinate with the BCMS administrator before changing this field.
— BCMS/VuStats Measurement Interval — This interval determines how frequently
BCMS polls and records data for BCMS reports and VuStats displays. Set this field
to half-hour or hour.

If you specify hour, an entire day of traffic information is available for BCMS history
reports. Otherwise, only half a day is available. There is a maximum of 25
measurement intervals, including the current interval.

— BCMS/VuStats Abandon Call Timer — Set this field to 1–10, or leave blank. This
value is the number of seconds a call can last and still be recorded as an abandoned
call. For example, if you set this field to 5, a call could last up to 5 seconds and be
recorded as abandoned. Thus, very short calls are not included as ACD calls in
BCMS and VuStats statistics. Abandoned time is measured from the time the call is
answered until the agent hangs up. Any time an agent is on a call that is within
the abandon call timer value is recorded as total AUX time with the default reason code.
Use this timer if your central office does not provide disconnect supervision.

— Validate BCMS/VuStats Login IDs — Set to n to allow entry of any ACD login of the
proper length. Set to y to allow entry only of login-IDs that have been entered on the
BCMS/VuStats Login-ID form.

— Clear VuStats Shift Data. Set to on-login or at-midnight to specify when shift data for
an agent is cleared.

● Agent Login ID form — Administer Agent Login IDs for EAS. With EAS, VuStats
accesses agent and agent-extension object type information based on agent login ID.
Agents logging in agent IDs (administered on this form or BCMS/VuStats Login ID form)
can view their own statistics on any VuStats phone they are using. If agent IDs are not
administered, VuStats displays only statistics collected for the agent’s extension.

● Trunk Group form — For each trunk group that will have VuStats display statistics, set
Measured to internal or both. Specify internal to record statistics for BCMS/VuStats.
Specify both to record statistics for BCMS/VuStats and CMS.

● Attendant Console form — Administer a VuStats feature button (vu-display) to allow an
attendant to display VuStats statistics. There is no limit to the number of VuStats buttons
that can be administered.

— Fmt — When you assign VuStats feature buttons, an Fmt field appears. You can
associate a VuStats feature button with a particular display format. The Fmt value
identifies the VuStats format used to display the information. Specify 1 — 50 in the
Fmt (1 is the default format). See "Format Number" in this section for additional
information.

— ID number — Optionally administer an ID number for each vu-display button. Use
the ID number to define the agent, split/skill, trunk group, or VDN that the VuStats
display will describe. The ID can be an agent login ID or extension number, a
split/skill or trunk group number, or a VDN extension. For example, a vu-display
button administered with split/skill ID 6 is used to view statistics for split/skill number
6.
Do not administer IDs for VuStats displays with the agent object type. Agent object type displays are limited to statistics for the logged-in agent.

IDs allow supervisors and agents to bypass entering an agent extension, split/skill, or VDN number when viewing statistics. IDs can also be used to limit access to certain statistics to designated phones.

- BCMS/VuStats Login ID form — Administer Agent Login IDs if you do not have EAS. BCMS/VuStats Login IDs can be used to track statistics by specific agent rather than extension number. Specify any character, except a space, to be used as a placeholder for data in Format Description text. $ is the default. Each character holds a place for one character of data. See “Data Field Character” in this section for more information.

- Hunt Group form
 - ACD — Set this field to y.
 - Acceptable Service Level — Specify the number of seconds within which calls to this hunt group are answered. Calls answered within this time are considered acceptable. BCMS and VuStats use this value to determine the percentage of calls that meet the acceptable service level.
 - Measured — Set this field to internal or both. Specify internal to record statistics for BCMS/VuStats. Specify both to record statistics for BCMS/VuStats and CMS.
 - Objective — Specify an objective, or goal, for the split/skill. Examples include an agent objective of a number of ACD calls to be handled, an average talk time, or a percent of calls to be answered within the acceptable service level.

- Station form — Administer a VuStats feature button (vu-display) to allow agents to display VuStats statistics. See “Attendant Console form” above for more information.

- Vector Directory Number form — For each VDN that has statistics displayed by VuStats, administer the following fields:
 - Acceptable Service Level — Specify the number of seconds within which calls to this VDN are answered. Calls answered within this time are considered acceptable. BCMS and VuStats use this value to determine the percentage of calls that meet the acceptable service level.
 - Measured — Set this field to internal or both. Specify internal to record statistics for BCMS/VuStats. Specify both to record statistics for BCMS/VuStats and CMS.

- VuStats Display Format form — For definitions related to completing this form, see the VuStats Display Format (Category A only) on page 323.
Detailed description

The following forms and fields determine information that VuStats displays.

Forms that determine what information appears on the VuStats display

Data type

Data type defines what data is displayed for an object type. For example, for an agent object type, VuStats can display information agents are interested in, such as the total number of calls the agent has answered since login, the average time the agent has spent on ACD calls, the number of agents available to receive calls for a split/skill, and the percent of calls within the acceptable service level.

For split/skill object types, VuStats can display split/skill description and performance information, such as average speed of answer, number of calls waiting, and agent work states. VuStats can also display an objective, acceptable service level, or percent of calls answered within the acceptable service level for a split/skill.

For more information, see the data types tables in Chapter 3: ACD contact center switch forms on page 281.
ACD contact center features

Period

VuStats can show statistics that have accumulated for the day, or for an administered number of intervals. For example, if you administer VuStats to display the number of ACD calls for the past 4 completed intervals, it displays the number of ACD calls received in the past 2 hours (1/2-hour intervals) or 4 hours (1-hour intervals) plus those completed during the current interval. Using historical data can affect processor occupancy, depending upon the number of active users, their update rates, and the number of historical data types.

With agent or agent-extension object types, shift data is available for the number of ACD calls answered, the average ACD talk time, and AUX work mode time by Reason Code for an agent. You can clear shift data at midnight or the next time an agent logs in.

Threshold

Many data types can be administered with a threshold comparator and value. When the condition defined by the threshold is true, and the data type is shown on the display, the VuStats button lamp flashes. For example, suppose a format is created in which the oldest call waiting data type is administered with a threshold of \(\geq \) (greater than or equal to) five minutes. Whenever that VuStats format is displayed, if the oldest call in queue has been waiting for five minutes or longer, the VuStats lamp flashes on the phone. Each time the display updates, the threshold is checked for each data type being displayed.

Format description

Use Format Description to create labels on the display to identify data. For example, in the example figure Callmaster with VuStats display on page 271, “AUX=” identifies the data type “split-agents-in-aux-all” (that is, the number of agents currently in AUX work mode for a specified split/skill). Text appears on the display exactly as you enter it in the field. Text is optional.

Because of the 40-character limit, use abbreviations when possible. For example, use “S=” to indicate “split number”.

Display linking

Link display formats to increase the amount of information users can view. For example, link a display of information for an agent’s first split/skill to a display of information for the agent’s second split/skill. Or, link a display of information about the work states of all agents on a split/skill linked to another display of information about calls waiting, number of calls abandoned, or oldest call waiting for the split/skill.

If you use display linking, assign a Next button on agent telephones.
How the information looks

The following fields on the VuStats Display form determine how information looks on the VuStats display.

VuStats Display Format form
- Data Field Character
- Format Description
- Format

VuStats statistics appear on the second line of 2-line DCP telephone displays or on the first line of 1-line DCP telephones and all BRI telephones. On telephones with 2 x 24 displays, the display automatically wraps to the second line of the display. When VuStats is activated, it overwrites and cancels any display feature on the second line of a 2-line display and on the first line of a 1-line display.

You define the following format information on the VuStats Display Format form:
- Labels for data types and the amount of space reserved for data
- Order in which data types appear on the display
- Format for time-related data types
- Display links

When the information updates

The following forms and fields determine when VuStats displays update.

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature-Related Systems-Parameters</td>
<td>BCMS/VuStats Measurement Interval</td>
</tr>
<tr>
<td>VuStats Display Format</td>
<td>Update Interval</td>
</tr>
<tr>
<td></td>
<td>On Change</td>
</tr>
<tr>
<td></td>
<td>Display Interval</td>
</tr>
</tbody>
</table>

Most display features that use the second line of a 2-line display or the first line of a 1-line display overwrite and cancel VuStats. Reason Codes and Call Work Codes only suspend VuStats; when the prompt is removed, the VuStats display reappears.

User press the normal button to clear the VuStats display.

Administer VuStats to display information until agents press the normal button or another operation overwrites the VuStats display, or administer VuStats to display for an interval of 5, 10, 15, or 30 seconds.

Issue 1.0 May 2003 277
ACD contact center features

You can also administer VuStats to update displayed statistics every 10, 20, 30, 60 or 120 seconds or every time an agent changes work mode or a BCMS Measurement Interval is completed, or not update at all.

Considerations

Some VuStats data is accumulated for an agent’s login session. This shift data clears either at midnight or the next time the agent logs in depending upon how the system is administered. If the data clears at login and agents log out to go to lunch, the system clears their accumulated data when they log back in after lunch.

To accumulate a full day’s statistics, you can require agents and supervisors to keep a running total of all their login sessions, or, to avoid this, use historical data, require agents to use AUX work mode when temporarily unavailable, or administer the system to clear shift data at midnight.

Interactions

BCMS

You must have BCMS activated to receive BCMS reports. VuStats displays data collected by BCMS, but BCMS need not be enabled for you to use VuStats.

Call Prompting

When Call Prompting digits are displayed, VuStats is canceled. When an agent reactivates VuStats, the VuStats display overwrites the Call Prompting display.

Call Work Codes (CWC)

The CWC-display prompt suspends VuStats, so when the CWC prompt is removed, the VuStats display reappears.

If VuStats is activated while a CWC is being entered (that is, the pound (#) sign is not yet dialed), the CWC display is overwritten. The CWC must be reentered.

Change skills

An agent changing skills automatically cancels VuStats. Display of the new skills overwrites the VuStats display. When the agent reactivates VuStats, the VuStats display overwrites the new skills display.
CMS
Moving an agent from one split/skill to another does not affect the ID assigned to the vu-display button.

If an agent is moved from one split/skill to another, the system does not associate VuStats buttons from the agent’s previous split/skill to the new split/skill. Therefore if you must frequently move agents between splits/skills, do not associate agents’ VuStats buttons with a specific split/skill. Instead, associate the VuStats button with the agent format (without an ID) on each agent’s phone and use a split/skill reference to view the agent’s split/skill.

EAS-PHD
When you have EAS-PHD enabled, VuStats can provide statistical data for all twenty skills. However, agent statistics by skill (agent or agent-extension object types) are available only for the current interval or for the “shift-acd-calls” and “shift-average-acd-talk-time” data types.

Integrated Directory
If an agent activates Integrated Directory, VuStats is automatically cancelled. The Integrated Directory display overwrites the VuStats display and the VuStats button extinguishes. When VuStats is reactivated, the VuStats display overwrites the Integrated Directory display.

Queue-Status Indications
The queue-status button display automatically cancels VuStats. When VuStats is reactivated, the VuStats display overwrites the queue-status display.

Reason Codes
Using certain VuStats data types, you can report real-time and historical AUX work mode time by Reason Code or AUX work mode time summed for each Reason Code.

The Reason Codes display prompt suspends VuStats; when the Reason Codes prompt is removed, the VuStats display reappears.

Service Observing
On telephones with a 1-line display, the Service Observing button display automatically cancels VuStats. When VuStats is reactivated, the VuStats display overwrites the Service Observing display.
Chapter 3: ACD contact center switch forms

This chapter defines the switch forms that are used to administer the ACD contact center features.

List of contact center forms

This chapter describes the following administrative forms:

- Agent LoginID (Category A only) on page 282
- Best Service Routing (BSR) Application Plan (Category A only) on page 288
- BCMS/VuStats Login ID (Category A only) on page 291
- Contact Center System Parameters on page 293
- Call Vector on page 300
- Holiday Table on page 304
- Hunt Group on page 307
- Reason Code Names (Category A only) on page 310
- SIT Treatment for Call Classification (Category A only) on page 311
- Vector Directory Number (VDN) on page 314
- Vector Routing Table (Category A only) on page 320
- VuStats Display Format (Category A only) on page 323
Agent LoginID (Category A only)

This form is used to administer Agent LoginIDs for the Expert Agent Selection feature.

Agent LoginID administration commands

Use the following commands to administer the Agent LoginID form.

<table>
<thead>
<tr>
<th>Action</th>
<th>Object</th>
<th>Qualifier¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>agent-loginid</td>
<td>xxxxx (extension) or next</td>
</tr>
<tr>
<td>change</td>
<td>agent-loginid</td>
<td>xxxxx (extension)</td>
</tr>
<tr>
<td>display</td>
<td>agent-loginid</td>
<td>xxxxx (extension) [print or schedule]</td>
</tr>
<tr>
<td>duplicate</td>
<td>agent-loginid</td>
<td>xxxxx (extension) start xxxxx (starting extension number) count x</td>
</tr>
<tr>
<td>remove</td>
<td>agent-loginid</td>
<td>xxxxx (extension)</td>
</tr>
<tr>
<td>list</td>
<td>agent-loginid</td>
<td>[staffed</td>
</tr>
</tbody>
</table>

¹. Brackets [] indicate the qualifier is optional. Single quotes (’) indicate the text inside the quote must be entered exactly as shown or an abbreviated form of the word may be entered.
Agent LoginID form instructions

An example Agent LoginID form is shown below, followed by descriptions of the various fields included in the form.

Agent LoginID field descriptions

Make assignments as required for the following fields on the form:

Login ID

Display-only field. Contains the identifier for the Logical Agent as entered on the command line.

Name

Enter up to a 27-character string naming the agent. Any alpha-numeric character is valid. Default is blank.

TN

Enter the Tenant Partition number. Valid entries are 1-20. Default is 1.

COR

Enter the Class of Restriction for the agent. Valid entries are 0-95. Default is 1.
Coverage Path
Enter the number of the Coverage Path used by calls to the LoginID. Valid entries are a path number between 1-999, time of day table t1-t999 or blank (default). This is used when the agent is logged out, busy, or does not answer.

Security Code
Enter the 4-digit security code (password) for the Demand Print messages feature. This field may be blank (default).

Direct Agent Skill
Enter the number of the skill that is used to handle Direct Agent calls. Valid entries are 1-99, or blank (default).

Call Handling Preference
Choices are skill-level (default), greatest-need, and percent-allocation. When calls are in queue and an agent becomes available, skill-level delivers the oldest, highest priority call waiting for the agent’s highest level skill. Greatest-need delivers the oldest, highest priority call waiting for any of the agent’s skills. Percent allocation delivers a call from the skill that will otherwise deviate most from its administered allocation. Percent-allocation is available only with Avaya Business Advocate software. For more information, see Avaya Business Advocate User Guide, 585-210-711.

Service Objective
This field is displayed only when the call handling preference is greatest-need or skill-level. You may enter y or n in this field. When Service Objective is administered on the Hunt Group form and the agent LoginID form, the switch selects calls for agents according to the ratio of Predicted Wait Time (PWT) or Current Wait Time (CWT) and the administered service objective for the skill. Service Objective is a feature that is part of the Advocate software.

Direct Agent Calls First (not shown)
This field replaces the Service Objective field when percent-allocation is entered in the Call Handling Preference field. Enter y if you want direct agent calls to override the percent-allocation call selection method and be delivered before other ACD calls. Enter n if you want direct agent calls to be treated like other ACD calls. For more information, see the Avaya Business Advocate User Guide, 585-210-711.
AAS
Enter y if this extension will be used as a port for an Auto Available Split/Skill. Default is n.

⚠️ Important:
Entering y in the AAS field clears the password and requires execution of the remove agent-loginid command. To set AAS to n, this logical agent must be removed then re-added.

⚠️ Important:
This option is intended for switch adjunct equipment ports only, not human agents.

AUDIX
Enter y if this extension will be used as a port for an AUDIX. Default is n.

Note:
The AAS and AUDIX fields cannot both be y.

LWC Reception
Valid entries are audix, msa-spe (default), and none.

Port Extension (not shown)
Only displayed if either the AAS or AUDIX field is y. Enter the assigned extension for the AAS or AUDIX port. This extension cannot be a VDN or an Agent LoginID. Default is blank.

AUDIX Name for Messaging
Enter the name of the AUDIX used for LWC Reception and/or the name of the AUDIX that provides coverage for this Agent LoginID or leave blank (default).

Messaging Server Name for Messaging
Enter the name of the Messaging Server used for LWC Reception and/or the name of the Messaging Server that provides coverage for this Agent LoginID or leave blank (default).

LoginID for ISDN Display
Enter y if the Agent LoginID CPN and Name field is to be included in ISDN messaging over network facilities. In this case, the physical station extension CPN and Name is sent. Default is n.
ACD contact center switch forms

Password
Only displayed if both the AAS and AUDIX fields are n. Enter up to nine digits as the password the Agent must enter upon login. Valid entries are the digits 0 through 9. The minimum number of digits that must be entered in this field is specified in the Minimum Agent-LoginID Password Length field on the Feature-Related System Parameters form. Default is blank.

Note:
Values entered into this field will not be echoed to the screen.

Password (enter again)
Only displayed if both the AAS and AUDIX fields are n. Reenter the same password exactly as it was entered in the Password field. Default is blank.

Note:
Values entered into this field will not be echoed to the screen.

Auto Answer
Valid entries are all, acd, none, and station. When Expert Agent Selection is optioned, the agent’s auto answer setting will apply to the station where the agent logs in. If the auto answer setting for that station is different, the agent’s setting will override the station’s.

The entries all, acd, and none have the same effect as the corresponding entries on the Station form. Enter all to allow all calls (ACD and non-ACD) terminated to the agent to be cut through immediately. Enter acd to allow only ACD split /skill calls and direct agent calls to auto answer. If this field is acd, Non-ACD calls terminated to the agent ring audibly. Enter none (default) to cause all calls terminated to this agent to receive an audible ringing treatment. Enter station if you want auto answer for the agent to be controlled by the auto answer field on the Station form.

Note:
The Auto Answer field is only displayed if G3 Version on the System Parameters Customer-Options form is set to V6 or later.

SN (Skill Number)
Enter the Skill Hunt Group(s) that this agent handles. The same skill may not be entered twice. If EAS-PHD is not optioned, up to 4 skills can be entered. If EAS-PHD is optioned, up to 20 skills can be entered.

RL (Reserve Level)
Enter the reserve level (if any) assigned to this agent with the Service Level Supervisor feature. You may assign a reserve level of 1 or 2. When this skill reaches the corresponding EWT threshold set on the Hunt Group form, this agent will automatically be logged into the skill and will take calls until the skill’s EWT drops below the preassigned overload threshold. Service Level Supervisor is available as part of the Advocate software.
SL (Skill Level)

Enter a skill level for each of an agent’s assigned skills. If EAS-PHD is not optioned, 2 priority levels are available. If EAS-PHD is optioned, 16 priority levels are available. In releases prior to R3V5, level 1 was the primary skill and level 2 was the secondary skill.

PA (Percent Allocation)

If the call handling preference is percent-allocation, you must enter a percentage for each of the agent’s skills. Enter a number between 1–100 for each skill. Your entries for all of the agent’s skills together must total 100%. Do not use target allocations for reserve skills. Percent Allocation is available as part of the Advocate software.

Example List Agent-LoginID form

<table>
<thead>
<tr>
<th>list agent-loginID</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AGENT LOGINID</td>
<td></td>
</tr>
<tr>
<td>Login ID Extn Name</td>
<td>Dir AAS/ Agt AUD COR Prf SO Skl/Lv Skl/Lv Skl/Lv Skl/Lv</td>
</tr>
</tbody>
</table>

The following fields appear only on the List Agent LoginID form. All of these fields are display-only:

Extn

The physical extension at which this agent is currently logged in. This field is blank if the agent is not logged in.

Dir Agt

Shows the entry in the Direct Agent Skill field.

AAS/AUD

This field is y if the login ID is assigned as an auto-available split/skill or an AUDIX port.

Agt Pref

Shows the call handling preference assigned to this loginID.

SO

Shows the entry in the Service Objective field. If you are not using Service Objective, this field is blank.

Skl/Lv

Shows the agent’s assigned skills and the skill level for each one.
Best Service Routing (BSR) Application Plan
(Category A only)

Use this form to identify the remote locations used in each BSR application.

Note:
For an explanation of BSR application plans see Best Service Routing (Category A only) on page 94.

BSR Administration commands

Use the following administration commands to administer the Best Service Routing form

<table>
<thead>
<tr>
<th>Action</th>
<th>Object</th>
<th>Qualifier¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>best-service-routing</td>
<td>xxx (application number) or 'next'</td>
</tr>
<tr>
<td>change</td>
<td>best-service-routing</td>
<td>xxx (application number)</td>
</tr>
<tr>
<td>display</td>
<td>best-service-routing</td>
<td>xxx (application number)</td>
</tr>
<tr>
<td>remove</td>
<td>best-service-routing</td>
<td>xxx (application number)</td>
</tr>
<tr>
<td>list²</td>
<td>best-service-routing</td>
<td></td>
</tr>
</tbody>
</table>

¹. Brackets [] indicate the qualifier is optional. Single quotes (‘’) indicate the text inside the quote must be entered exactly as shown or an abbreviated form of the word may be entered.

². The command List best-service-routing displays the List Best Services Routing Applications form. This is a display-only form and is shown below.

Form instructions

An example BSR application form is shown below, followed by descriptions of the various fields included in the form.
BSR application plan form

<table>
<thead>
<tr>
<th>Num</th>
<th>Location Name</th>
<th>Switch Node</th>
<th>Status Poll VDN</th>
<th>Interflow VDN</th>
<th>Net Redir?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Denver</td>
<td>320</td>
<td>95022011</td>
<td>3035389425</td>
<td>y</td>
</tr>
<tr>
<td>2</td>
<td>New Jersey</td>
<td>18</td>
<td>95022111</td>
<td>2038053552</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>New York</td>
<td>12245</td>
<td>95032211</td>
<td>95032221</td>
<td>n</td>
</tr>
</tbody>
</table>

BSR Application field descriptions

Make assignments as required for the following fields on the form:

Number
This display-only field shows the identifying number of the plan you’re working with. Numbered from 1 to 255.

Name
Give the application plan a name with up to 15 characters.

Maximum Suppression Time
Enter the maximum poll suppression time in seconds from 0-60. This value applies when a subsequent Call Vector consider command replaces a location as the best. For example, if the poll suppression time is set to 30 seconds, the remote location polling is suppressed for up to 30 seconds if the adjusted Expected Wait Time (EWT) is very far from being the best.

Lock
When set to y, this field provides extra security by not sending the information over the CMS. When set to n, the system sends the information.

Num
Enter the location number. Location numbers are identifiers, and therefore need not be in sequential order. For example, you could assign locations with the identifiers 1, 3, 14 and 89 to one application plan.

Location Name
Give each location a name with up to 15 characters.

Switch Node
This is an optional field. If you’re using Universal Call ID, enter the UCID Network Node ID for each switch. Valid Network Node IDs range from 1–32,767.
ACD contact center switch forms

Status Poll VDN
In this field, enter the routing number (including the dial access code) your switch will use to access the Status Poll VDN at the remote location. Valid entries may be up to 16 characters long and contain the digits 0–9, * or #, p (pause), w/W (wait), m (mark), and s (suppress) characters.

Interflow VDN
In this field, enter the routing number (including the dial access code) your switch will use to access the Interflow VDN at the remote location. Valid entries may be up to 16 characters long and contain the digits 0–9, * or #, p (pause), w/W (wait), m (mark), and s (suppress) characters.

Net Redir
When set to y, this field enables network call redirection. When set to n, network call redirection is not enabled. Default is n.
You must administer the BCMS/VU-Stats Login IDs form, if:

- The EAS feature is not optioned.
- The BCMS/VuStats Login ID field on the Feature-Related System Parameters form is set to y. This field is located in the Call Management System section of the form.

You do not have to enter agent names to administer the form. If you choose not to associate names with login IDs, the data you receive from BCMS and/or VuStats defaults to:

ID xxxxxxxxx
where xxxxxxxxx is an agent login ID.

⚠️ Important:
Only agents using an administered login IDs can successfully log in to a split/skill that is measured by BCMS.

Administration commands

Use the following administration commands to administer the BCMS/VuStats Login ID form.

<table>
<thead>
<tr>
<th>Action</th>
<th>Object</th>
<th>Qualifier¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>bcms/vustats login IDs</td>
<td></td>
</tr>
<tr>
<td>change</td>
<td>bcms/vustats login IDs</td>
<td>[login ID]</td>
</tr>
<tr>
<td>display</td>
<td>bcms/vustats login IDs</td>
<td>[login ID]</td>
</tr>
<tr>
<td>list</td>
<td>bcms/vustats login IDs</td>
<td>[login ID] count X</td>
</tr>
</tbody>
</table>

¹. Brackets [] indicate the qualifier is optional.

BCMS/VuStats form instructions

An example BCMS/VuStats Login ID form is shown below, followed by descriptions of the various fields included in the form.

Note:

The BCMS/VuStats Login ID form cannot be displayed unless the BCMS/VuStats Login ID field on the Feature-Related System Parameters form is set to y.
BCMS/VuStats field Descriptions

Make assignments as required for the following fields on the form:

Login ID - This field has the following requirements:

- For non-EAS systems the Login ID field can be a number up to nine digits long.

⚠️ Important:
On EAS enabled systems, Login IDs can be only five digits long. If it is possible that you may upgrade to the EAS feature at a future date, you may want to limit the Login ID length to five digits or less.

- The login ID must be the same length as the number in the ACD Login Identification Length field that is specified on the Feature-Related System-Parameters form. If you enter a login ID that does not match the length specified in the ACD Login Identification Length field, the system displays an error message and places the cursor at the field that is incorrect.

- You can change the administered login length to a different value, but the allowed length for all other IDs entered on this form is also changed. Before agents with logins that do not match the administered login length can log on, you must re-administer either the ACD login identification length to fit the existing logins or change the logins to match the ACD login identification length.
- If you enter a duplicate login ID, the system displays an error message and places the cursor at the duplicated field.

Name - A name associated with the login ID (optional).

Implementation notes

The form is displayed only two pages (64 Login IDs) at a time. If you are adding login IDs, you can enter two pages, and reissue the command to fill an additional two pages, repeating as necessary. When you change or display login IDs, the system displays two pages of login IDs beginning with the ID you specify. If you do not specify a login ID, the display begins with the first login ID.

The list command lists all login IDs and may run to 63 pages.

Contact Center System Parameters

Contact center System Parameters are listed on two pages of the Feature-Related System Parameters form. For a complete discussion of the Feature-Related System Parameters form, see *Administrator Guide for Avaya Communication Manager*, 555-233-506.

Administration commands

Use the following administration commands to administer the contact center System Parameters.

<table>
<thead>
<tr>
<th>Action</th>
<th>Object</th>
<th>Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>change</td>
<td>system-parameters</td>
<td>features</td>
</tr>
<tr>
<td>display</td>
<td>system-parameters</td>
<td>features</td>
</tr>
</tbody>
</table>
Field Descriptions for Feature-Related System Parameters ("EAS" page)

<table>
<thead>
<tr>
<th>Call Center System Parameters</th>
<th>Vectoring</th>
<th>Service Observing</th>
<th>ASAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS</td>
<td>Vectoring</td>
<td>Service Observing</td>
<td>ASAI</td>
</tr>
<tr>
<td>Expert Agent Selection (EAS) Enabled? y</td>
<td>Converse First Data Delay: 0 Second Data Delay: 2</td>
<td>Service Observing Warning Tone? y or Conference Tone? n</td>
<td>Call Classification After Answer Supervision? n Send UCID to ASAI? n</td>
</tr>
<tr>
<td>Minimum Agent-LoginID Password Length: _</td>
<td>Converse Signaling Tone (msec): 100 Pause (msec): 70_</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Agent Announcement Extension: _____ Delay: ___</td>
<td>Prompting Timeout (secs): 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message Waiting Lamp Indicates Status For: station</td>
<td>Interflow-qpos EWT Threshold: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse Star/Pound Digit For Collect Step? n</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field descriptions

Expert Agent Selection (EAS) Enabled
Only displays if Expert Agent Selection (EAS) on the System-Parameters Customer-Options form is y. Enter y to enable Expert Agent Selection. To enable this field, either no ACD or vectoring hunt groups may exist or, existing ACD or vectoring hunt groups must be skilled. Default is n.

Minimum Agent-LoginID Password Length
Only displays if Expert Agent Selection (EAS) on the System-Parameters Customer-Options form is y. Enter the minimum number of digits that must be administered as an EAS Agent’s LoginID password. Valid entries are 0 through 9 or blank. Entering a 0 or blank indicates no password is required. Default is blank.

Direct Agent Announcement Extension
Only displays if Expert Agent Selection (EAS) or ASAI on the System-Parameters Customer-Options form is y. Enter a valid announcement extension (consistent with the dial plan).
Delay

Only displays if Expert Agent Selection (EAS) or ASAI on the System-Parameters Customer-Options form is y. Enter the number of seconds (0 to 99) the caller will hear ringback before the Direct Agent Announcement is heard by the calling party.

Message Waiting Lamp Indicates Status For

Only displays if Expert Agent Selection (EAS) on the System-Parameters Customer-Options form is y. If Expert Agent Selection (EAS) Enabled is y, you can enter either station or loginID, otherwise you can only enter station.

Converse First Data Delay/Second Data Delay (Category A only)

Only displays if Vectoring (Basic) on the System-Parameters Customer-Options form is y. The First Data Delay prevents data from being outpulsed (as a result of a converse vector step) from the system to a voice response unit (VRU) before the unit is ready. The delay commences when the VRU port answers the call. Enter the number of seconds (0 to 9) for the delay. Default is 0. The Second Data Delay is used when two groups of digits are being outpulsed (as a result of a converse vector step) from the system to the VRU. The Second Data Delay prevents the second set from being outpulsed before the VRU is ready. The delay commences when the first group of digits has been outpulsed. Enter the number of seconds (0 to 9) for the delay. Default is 2.

Converse Signaling Tone/Pause (Category A only)

Only displays if Vectoring (Basic) and DTMF on the System-Parameters Customer-Options form are y. In the Signaling Tone field, enter the length in milliseconds of the digit tone for digits being passed to a voice response unit (VRU). In the Pause field, enter the length in milliseconds of the delay between digits being passed. The optimum timers for the VRU are a 100 msec tone and 70 msec pause.

Note:

Values entered in the Tone/Pause fields are rounded up or down depending upon the type of circuit pack used to outpulse the digits.

— For TN742B (or later) suffix analog boards, tone and pause round up or down to the nearest 25 msecs. For example a 130 msec tone rounds down to 125 msecs, a 70 msec pause rounds up to 75 msec for a total of 200 msecs per tone.

— For TN464F, TN767E (or later) suffix DS1 boards, tone and pause round up to the nearest 20 msecs. For example a 130 msec tone rounds up to 140 msecs, a 70 msec pause rounds up to 80 msecs for a total of 220 msecs per tone.
ACD contact center switch forms

Note:
If a circuit pack has been used for end-to-end signalling to the VRU, and has then been used to send digits to a different destination, the VRU timers may stay in effect. To reset your timers to the system default, pull and reseat the circuit pack.

Prompting Timeout (secs)
Only displays if Vectoring (Prompting) on the System-Parameters Customer-Options form is y. Enter the number of seconds, from 4 to 10 (default), before the Collect Digits command times out for callers using rotary dialing.

Interflow-qpos EWT Threshold (Category A only)
Part of enhanced Look-Ahead Interflow. Any calls predicted to be answered before this threshold will not be interflowed (therefore saving CPU resources). Enter the number of seconds for this threshold. The default is 2 seconds.

Reverse Star/Pound Digit For Collect Step?
Setting this field to y reverses the normal handling of the asterisk (*) and pound (#) digits by the collect vector command. With the Reverse Star/Pound Digit for Collect Step set to y, the asterisk (*) digit is interpreted as a caller end-of-dialing indicator and the pound (#) digit is interpreted to clear all digits that were previously entered for the current collect vector step.

Note:
Any use of the asterisk (*) or pound (#) digits in the converse and adjunct-route vector commands is not changed by this field.

Service Observing: Warning Tone
Service Observing (Basic) on the System-Parameters Customer-Options form must be y before this field may be administered. Enter y to assign a warning tone to be given to telephone users and calling parties whenever their calls are being monitored using the Service Observing feature. Default is n.

Note:
The use of Service Observing features may be subject to federal, state, or local laws, rules or regulations or require the consent of one or both of the parties to the conversation. Customers should familiarize themselves and comply with all applicable laws, rules, and regulations before using these features.
Service Observing: or Conference Tone

Service Observing (Basic) on the System-Parameters Customer-Options form must be y before this field may be administered. Enter y to assign a warning tone to be given to the caller and the agent when a call that is being service observed is conferenced with another extension. Default is n.

Call Classification After Answer Supervision?

For use with ASAI Outbound Call Management (OCM). Enter y to force the switch to rely on the network to provide answer/busy/drop classification to the switch. After the call has been answered, a call classifier can be added to perform answering machine, modem and voice answering detection. Enter n for standard operation.

Send UCID to ASAI?

Enter y to enables transmission of Universal Call ID (UCID) information to ASAI. Enter n (default) to prevent transmission of UCID information to ASAI.

Field Descriptions - Feature-Related System Parameters

(AGENT AND CALL SELECTION page)

<table>
<thead>
<tr>
<th>Feature-Related System Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AGENT AND CALL SELECTION</td>
<td></td>
</tr>
<tr>
<td>MIA Across Splits or Skills?</td>
<td>_</td>
</tr>
<tr>
<td>ACW Agents Considered Idle?</td>
<td>_</td>
</tr>
<tr>
<td>Call Selection Measurement:</td>
<td></td>
</tr>
<tr>
<td>Service Level Supervisor Call Selection Override?</td>
<td>_</td>
</tr>
<tr>
<td>Auto Reserve Agents:</td>
<td></td>
</tr>
<tr>
<td>REASON CODES</td>
<td></td>
</tr>
<tr>
<td>Aux Work Reason Code Type:</td>
<td>_</td>
</tr>
<tr>
<td>Logout Reason Code Type:</td>
<td>_</td>
</tr>
<tr>
<td>CALL MANAGEMENT SYSTEM</td>
<td></td>
</tr>
<tr>
<td>Adjunct CMS Release:</td>
<td>_</td>
</tr>
<tr>
<td>BCMS/VuStats LoginIDs?</td>
<td>_</td>
</tr>
<tr>
<td>ACD Login Identification Length:</td>
<td></td>
</tr>
<tr>
<td>BCMS/VuStats Measurement Interval:</td>
<td>_</td>
</tr>
<tr>
<td>BCMS/VuStats Abandon Call Timer (seconds):</td>
<td>_</td>
</tr>
<tr>
<td>Validate BCMS/VuStats Login IDs?</td>
<td>_</td>
</tr>
<tr>
<td>Clear VuStats Shift Data:</td>
<td>_</td>
</tr>
</tbody>
</table>
Field Descriptions

MIA Across Splits or Skills?
Enter y to remove an agent from the MIA queue for all the splits/skills that the agent is available in when the agent answers a call from any of his or her splits/skills. The default is n.

ACW Agents Considered Idle?
Enter y (default) to have agents who are in After Call Work included in the Most-Idle Agent queue. Enter n to exclude ACW agents from the queue.

Call Selection Measurement (Category A only)
Valid entries are current-wait-time (default) and predicted-wait-time. This field determines how the switches selects a call for an agent when the agent becomes available and there are calls in queue. **Current Wait Time** selects the oldest call waiting for any of the agent’s skills. Predicted Wait Time is a feature of the Advocate software.

Service Level Supervisor Call Selection Override? (Category A only)
Enter y (default) to enable an agent to receive a lower priority call from a skill in an over threshold state before receiving an higher priority call from a skill not in an over threshold state.

Auto Reserve Agents: (Category A only)
Enter all so that an agent will be intentionally left idle in a skill if her work time in the skill has exceeded her target allocation for the skill. Enter secondary-only to activate this feature only for the agent’s nonprimary skills (skill levels 2 through 16).

Aux Work Reason Code Type
Enter none if you do not want an agent to enter a Reason Code when entering AUX work. Enter requested if you want an agent to enter a Reason Code when entering AUX mode but do not want to force the agent to do so. Enter forced to force an agent to enter a Reason Code when entering AUX mode. To enter requested or forced, the Reason Codes and EAS on the System-Parameters Customer-Option form must be y.

Logout Reason Code Type
Enter none if you do not want an agent to enter a Reason Code when logging out. Enter requested if you want an agent to enter a Reason Code when logging out but do not want to force the agent to do so. Enter forced to force an agent to enter a Reason Code when logging out. Enter forced to force an agent to enter a Reason Code when entering AUX mode. To enter requested or forced, the Reason Codes and EAS on the System-Parameters Customer-Option form must be y.
Adjunct CMS Release

Specifies the release of the CMS adjunct used with the system. For CMS, this field cannot be blank. Default is blank.

BCMS/VuStats LoginIDs

This field is used to activate login IDs for use with BCMS and VuStats, and is displayed only if:
- EAS is not optioned for the system
- Either BCMS or VuStats is optioned for the system

If EAS is optioned for the system, this field is set to `y` and cannot be changed to `n`.

The default value is `n`. Set this field to `y` if you want to use BCMS or VuStats to monitor agent call activity.

ACD Login Identification Length

Enter the number of digits (0 through 9) for an ACD Agent Login ID if Expert Agent Selection (EAS) on the System-Parameters Customer-Options form is `n`. Default is 0. If BCMS/VuStats Login IDs is `y`, the ACD Login ID length must be greater than 0. This field identifies an ACD agent to CMS. The number you enter in this field must equal the number of characters in the agent’s login ID. For CMS, this field cannot be 0.

BCMS/VuStats Measurement Interval

You can enter half-hour or hour (default) for polling and reporting measurement data if the BCMS (Basic) and/or the VuStats on the System-Parameters Customer-Options form is `y`. If neither of these features is optioned, and if you enter a value in the BCMS Measurement Interval field, the system displays the following error message:

```
<value> cannot be used; assign either BCMS or VuStats first
```

If you receive this message, see your Avaya representative to turn on BCMS (Basic) and/or VuStats on the System-Parameters Customer-Options form.

There are a maximum of 25 time slots available for measurement intervals. If hour is specified, an entire day of traffic information will be available for history reports; otherwise, only half a day will be available. This does not affect daily summaries as they always reflect traffic information for the entire day. The interval may be changed at any time, but will not go into effect until the current interval completes.

BCMS/VuStats Abandon Call Timer (seconds)

Enter none or 1–10 to specify the number of seconds for calls to be considered abandoned. Calls with talk time that is less than this number (and that are not held) are tracked by BCMS and displayed by VuStats as ABAND calls.
Validate BCMS/VuStats Login IDs
Enter n to allow entry of any ACD login of the proper length. Enter y to allow entry only of login-IDs that have been entered on the BCMS Login-ID form.

Clear VuStats Shift Data
Enter on-login to clear shift data for an agent when the agent logs in. Enter at-midnight to clear shift data for all agents at midnight.

Call Vector

This form programs a series of commands that specify how to handle calls directed to a Vector Directory Number (VDN).

Call Vector administration commands

Use the following commands to administer the Call Vector form.

<table>
<thead>
<tr>
<th>Action</th>
<th>Object</th>
<th>Qualifier¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>change²</td>
<td>vector</td>
<td>1-MAX</td>
</tr>
<tr>
<td>display</td>
<td>vector</td>
<td>1-MAX [’print’ or ’schedule’]</td>
</tr>
<tr>
<td>list</td>
<td>vector</td>
<td>1-MAX [’count’ 1-MAX] [’print’ or ’schedule’]</td>
</tr>
</tbody>
</table>

¹ Brackets [] indicate the qualifier is optional. Single quotes (‘ ’) indicate the text inside the quote must be entered exactly as shown or an abbreviated form of the word may be entered. MAX is the maximum number available in your system configuration.

² Do not change a call vector while it is processing a call. It is recommended to add a new vector with the Call Vector form, and then use the Vector Directory Number form to point an existing VDN to the new vector.
Call Vector form instructions

An example Call Vector form is shown below, followed by descriptions of the various fields included in the form.

Note:
The call vector form can include 32 vector steps, which are continued on pages 2 and 3 of the form.

Example Call Vector form

<table>
<thead>
<tr>
<th>change vector 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>page 1 of 3</td>
</tr>
<tr>
<td>CALL VECTOR</td>
</tr>
<tr>
<td>Number: 37</td>
</tr>
<tr>
<td>Multimedia? n</td>
</tr>
</tbody>
</table>

01 ____________
02 ____________
03 ____________
04 ____________
05 ____________
06 ____________
07 ____________
08 ____________
09 ____________
10 ____________
11 ____________

Call Vector form field descriptions

Make assignments as required for the following fields on the form:

Number
Display-only field when the form is accessed using a change or display administration command. Enter a vector number when completing a paper form.

Name
Enter up to 27 alphanumeric characters to represent the vector name. This is an optional field. Default is blank.
ACD contact center switch forms

Multimedia (Category A only)

Indicates whether the vector should receive early answer treatment for multimedia calls. This only applies if Multimedia Call Handling is enabled. If you expect this vector to receive multimedia calls, set this field to y. Valid values are y or n (default). If this value is y, the call is considered to be answered at the start of vector processing, and billing for the call starts at that time.

Meet-me Conference

Appears when the meet-me conference feature is enabled. Valid entries are y and n. For more information, see the “Meet-me Conference” chapter in Avaya MultiVantage Call Center Software Call Vectoring and EAS Guide, 585-230-714.

Attendant Vectoring

Appears only when Attendant Vectoring is optioned. Valid entries are y and n (default). The Attendant Vectoring field defaults to n and changes are allowed to the field. If Basic Vectoring and Vector Prompting are both set to n, then the Attendant Vectoring field defaults to y and no changes are allowed to the field.

To associate VDNs and vectors for attendant vectoring, a field has been added to both the VDN and the call vectoring forms to indicate attendant vectoring. When attendant vectoring is indicated for VDNs and vectors, all contact center-associated fields (such as Skills and BSR) are removed.

Lock

This field controls access to the vector from the CMS or Visual Vectors. Valid entries are y and n (default). Enter n to give CMS and Visual Vectors users the ability to administer this vector from these client programs. Enter y if you do not want this vector to be accessible to these client programs. Locked vectors can only be displayed and administered through the SAT or a terminal emulator.

Note:
Always lock vectors that contain secure information (for example, access codes).

Basic

Display-only field. Indicates whether the Vectoring (Basic) option is enabled on the System-Parameters Customer-Options form. Valid values are y or n.
EAS (Category A only)
Display-only field. Indicates whether the Expert Agent Selection (EAS) option is enabled on the System-Parameters Customer-Options form. Valid values are y or n.

When Expert Agent Selection (EAS) is enabled, the help messages and error messages associated with this form will reflect a terminology change from “Split” to “Skill”. In addition, the vector commands entered also will be affected by this terminology change (for example, check backup split becomes check backup skill when EAS is enabled).

G3V4 Enhanced (Category A only)
Display-only field. Indicates whether you can use G3V4 Enhanced Vector Routing commands and features.

ANI/II-Digits (Category A only)
Display-only field. Indicates whether you can use ANI and II-Digits Vector Routing Commands. ANI/II-Digits Routing requires that G3V4 Enhanced be set to y.

ASAI Routing (Category A only)
Display-only field. Indicates whether or not the CallVisor Adjunct/Switch Applications Interface (ASAI) Routing option is enabled on the System-Parameters Customer-Options form. Valid values are y or n.

Prompting
Display-only field. Indicates whether the Vectoring (Prompting) option is enabled on the System-Parameters Customer-Options form. Valid values are y or n.

LAI (Category A only)
Display-only field. Indicates whether Look-Ahead Interflow is enabled.

G3V4 Adv Route (Category A only)
Display-only field. Indicates whether you can use the G3V4 Advanced Vector Routing commands.

CINFO (Category A only)
Display-only field. Indicates whether the Vectoring (CINFO) option is enabled on the System-Parameters Customer-Options form. Valid values are y or n.

BSR (Category A only)
A y in this display-only field indicates that the Vectoring (Best Service Routing) option is enabled on the System-Parameters Customer-Options form. Thus, you can use BSR commands and command elements in your vectors. An n indicates that the BSR option is not enabled.
ACD contact center switch forms

Holidays
Display-only field. The value of y appears if Holiday Vectoring is set to y on the system Parameters Customer Options form.

Lines 01 through 32
Enter vector commands as required (up to the maximum allowed in your configuration). Valid entries are adjunct, announcement, busy, check, collect, consider, converse-on, disconnect, goto, messaging, queue-to, reply-best, route-to, stop, wait-time. Default is blank.

Holiday Table

This form is used to establish the days/times for which Holiday Vectoring will apply. It is available to you only if Holiday Vectoring is set to y on the Customer Options form.

Holiday table administration commands

You can use the commands listed in the table below to administer Holiday Tables.

<table>
<thead>
<tr>
<th>Action</th>
<th>Object</th>
<th>Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>holiday-table</td>
<td>1 through 10, or next</td>
</tr>
<tr>
<td>change</td>
<td>holiday-table</td>
<td>1 through 10, or next</td>
</tr>
<tr>
<td>display</td>
<td>holiday-table</td>
<td>1 through 10, or next</td>
</tr>
<tr>
<td>remove</td>
<td>holiday-table</td>
<td>1 through 10, or next</td>
</tr>
<tr>
<td>list</td>
<td>holiday-table</td>
<td>none - all Holiday Tables will display</td>
</tr>
</tbody>
</table>

Holiday Table form instructions

An example Holiday Table form is shown below, followed by descriptions of the various fields included in the form.
Example Holiday Table form

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>START</th>
<th>END</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bank Holidays</td>
<td>12 24</td>
<td>12 31</td>
<td>Christmas</td>
</tr>
<tr>
<td>01 01 00 00</td>
<td>01 01 10 00</td>
<td>New Year’s Day</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Holiday Table form field descriptions

Make assignment as required for the following fields on the form:

- **Number** — This is the table number that you entered on the command line. It is a display only field.

- **Name** — Enter a 1 to 15-character alphanumeric table name. You may leave this field blank. Default is blank.

- **Start** — Enter the Month (1 through 12), the Day (optional, 1 through 31), Hour (optional, 00 through 23), and the Min (minute) (optional, 00 through 59) on which vector processing for this holiday should begin. See the Implementation notes for entering dates on page 305 for additional information.

- **End** — Enter the Month (1 through 12), the Day (optional, 1 through 31), Hour (optional, 00 through 23), and the Min (minute) (optional, 00 through 59) on which vector processing for this holiday should end. See the Implementation notes for entering dates on page 305 for additional information.

- **Description** — Enter a description of the holiday defined on this line. Default is blank.

Implementation notes for entering dates

Note:

When using a range of dates, the end date must be greater than the start date. Ranges must be within one calendar year. In the example above, two entries were made — one for each calendar year.

The Holiday Table Form can be used for entering individual holiday or for holiday ranges. The following rules apply to entering dates on this form:

- If a day is entered, the corresponding month must be entered.

- If a month is entered, the corresponding day must be entered.

- If an hour is entered, the corresponding minute must be entered.

- If a minute is entered, the corresponding hour must be entered.
ACD contact center switch forms

- If an hour/minute is entered, the corresponding month/day must be entered.
- If a month/day is entered, the corresponding hour/minute is not required.
- If an end month/day is entered, the corresponding start month/day must be entered.
- If a start month/day is entered, the corresponding end month/day is not required.
- To enter an individual holiday, enter a start month/day, but do not enter an end month/day.
- To enter a holiday range, enter both a start month/day and an end month/day.
- The start m/d/h/m must be less than or equal to the end m/d/h/m.

Implementation notes

Consider the following when administering a holiday table:

- There is no validation that verifies the consistency among the 15 holidays in any table. If the same holiday is entered twice, the system stops checking with the first entry found.
- With holidays that are ranges of dates, the ranges could overlap. When a call is in vector processing, the holidays are checked from top to bottom on the table and the check stops if a match is found. Even though there might be multiple entries that would match, the check stops at the first match.
- There is a validation that the day of the month that is entered is valid with the given month. Specifically, if the month is April, June, September, or November, then the date must be 1 - 30. If the month is January, March, May, July, August, October, or December, then the date can be 1 - 31. If the month is February, then a range of 1 - 29 is allowed.

 Note:
 The year is not checked in holiday vector processing. This allows the same holidays to be used year-to-year when the holiday is on a fixed date. For holidays where the date changes from year-to-year, the holiday tables must be readministered.
The ACD software directs a high volume of calls to hunt groups that are designed as ACD splits. Each ACD split is created to receive calls for one or more services, such as Business Travel or Billing. The services that are defined are based on the needs of the people who are calling the contact center.

The Hunt Group form is used to define how the switch sends calls to extensions in ACD and non-ACD environments.

One Hunt Group form needs to be completed for each split/skill.

For a full discussion of all of the fields on the Hunt Group form, see Administrator Guide for Avaya Communication Manager, 555-233-506.

Hunt Group administration commands

You can use the commands listed in the table below to administer the Hunt Group form.

<table>
<thead>
<tr>
<th>Action</th>
<th>Object</th>
<th>Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>hunt-group</td>
<td>1-99 (si/csi), 1-999 (r), or next</td>
</tr>
<tr>
<td>change</td>
<td>hunt-group</td>
<td>1-99 (si/csi), 1-999 (r), or next</td>
</tr>
<tr>
<td>display</td>
<td>hunt-group</td>
<td>1-99 (si/csi), 1-999 (r), or next</td>
</tr>
<tr>
<td>remove</td>
<td>hunt-group</td>
<td>1-99 (si/csi), 1-999 (r), or next</td>
</tr>
<tr>
<td>list</td>
<td>hunt-group</td>
<td>1-99 (si/csi), 1-999 (r), or none (all hunt groups display)</td>
</tr>
</tbody>
</table>

Hunt Group form instructions

Examples of the Hunt Group form pages are shown below. See Administrator Guide for Avaya Communication Manager, 555-233-506 for a description of each field on the forms.

Note:

Hunt Group for page 4 and the following pages are used to assign agent extensions to the split hunt group. If the group is a skill (Skill field on page 2 is set to y), these pages do not appear.
ACD contact center switch forms

Hunt Group form (pages 1 of x)

change hunt-group xxx

HUNT GROUP

Group Number: ___
Group Name: __________________________
Group Extension: ____
Group Type: ___
Coverage Path: ___
TN: ___
Night Service Destination: ___
COR: ___
MM Early Answer? ___
Security Code: ____
ISDN Caller Disp: _______
Queue Length: ___
Calls Warning Threshold: ___ Port: ___ Extension: ___
Time Warning Threshold: ___ Port: ___ Extension: ___

Hunt Group form (pages 2 of x)

change hunt group xxx

HUNT GROUP

Skill? ____
AAS? ____
Supervisor Extension: ____
Controlling Adjunct: ____

Dynamic Percentage Adjustment? ___
Service Level Target: ___
Dynamic Queue Position? ___
Redirect on No Answer (rings): ___
Redirect to VDN: ___
Forced Entry of Stroke Counts or Call Work Codes? ___
Hunt Group form (page 3 of x)

<table>
<thead>
<tr>
<th>Message Center:___</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWC Reception:____</td>
</tr>
<tr>
<td>AUDIX Name:______</td>
</tr>
<tr>
<td>Messaging Server Name:______</td>
</tr>
<tr>
<td>First Announcement Extension:___ Delay (sec):___</td>
</tr>
<tr>
<td>Second Announcement Extension:___ Delay (sec):___ Recurring?:_</td>
</tr>
</tbody>
</table>

Hunt Group form (page 4 of x)

| Group Number:___ Group Extension:_____ Group Type:___ |
| Voice Mail Number:_____ Administered Members (min/max):___ |
| Total Administered Members:___ |

GROUP MEMBER ASSIGNMENTS

<table>
<thead>
<tr>
<th>Ext</th>
<th>Name</th>
<th>Ext</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>___</td>
<td>14:</td>
<td>___</td>
</tr>
<tr>
<td>2:</td>
<td>___</td>
<td>15:</td>
<td>___</td>
</tr>
<tr>
<td>3:</td>
<td>___</td>
<td>16:</td>
<td>___</td>
</tr>
<tr>
<td>4:</td>
<td>___</td>
<td>17:</td>
<td>___</td>
</tr>
<tr>
<td>5:</td>
<td>___</td>
<td>18:</td>
<td>___</td>
</tr>
<tr>
<td>6:</td>
<td>___</td>
<td>19:</td>
<td>___</td>
</tr>
<tr>
<td>7:</td>
<td>___</td>
<td>20:</td>
<td>___</td>
</tr>
<tr>
<td>8:</td>
<td>___</td>
<td>21:</td>
<td>___</td>
</tr>
<tr>
<td>9:</td>
<td>___</td>
<td>22:</td>
<td>___</td>
</tr>
<tr>
<td>10:</td>
<td>___</td>
<td>23:</td>
<td>___</td>
</tr>
<tr>
<td>11:</td>
<td>___</td>
<td>24:</td>
<td>___</td>
</tr>
<tr>
<td>12:</td>
<td>___</td>
<td>25:</td>
<td>___</td>
</tr>
<tr>
<td>13:</td>
<td>___</td>
<td>26:</td>
<td>___</td>
</tr>
</tbody>
</table>

At End of Member List
Reason Code Names (Category A only)

Use the Reason Code Names form to assign names to Reason Codes. You can assign a different name to each Reason Code for Aux Work and for Logout.

Administration commands

Use the following administration commands to access the Reason Code Names form.

<table>
<thead>
<tr>
<th>Action</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>display</td>
<td>reason-code-names</td>
</tr>
<tr>
<td>change</td>
<td>reason-code-names</td>
</tr>
</tbody>
</table>

Reason Code Names (Category A only) form instructions

Reason Code Names form

<table>
<thead>
<tr>
<th>Reason Code Names form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aux Work Logout</td>
</tr>
<tr>
<td>Reason Code 1: ________ ________ _</td>
</tr>
<tr>
<td>Reason Code 2: ________ ________ _</td>
</tr>
<tr>
<td>Reason Code 3: ________ ________ _</td>
</tr>
<tr>
<td>Reason Code 4: ________ ________ _</td>
</tr>
<tr>
<td>Reason Code 5: ________ ________ _</td>
</tr>
<tr>
<td>Reason Code 6: ________ ________ _</td>
</tr>
<tr>
<td>Reason Code 7: ________ ________ _</td>
</tr>
<tr>
<td>Reason Code 8: ________ ________ _</td>
</tr>
<tr>
<td>Reason Code 9: ________ ________ _</td>
</tr>
<tr>
<td>Default Reason Code: ________ ________ _</td>
</tr>
</tbody>
</table>

Reason Code Names field descriptions

Make assignments as required for the following fields on the form.
Aux Work
For each Reason Code enter the name to be associated with this Reason Code when the agent uses this Reason Code to enter Aux Work mode. Names can be up to ten characters long. Default is blank.

Logout
For each Reason Code enter the name to be associated with this Reason Code when the agent uses this Reason Code to log out. Names can be up to ten characters long. Default is blank.

SIT Treatment for Call Classification (Category A only)

This form is used to provide the capability of specifying the treatment of Special Information Tones (SITs) used for Outbound Call Management type calls with USA tone characteristics. The TN744 Call Classifier circuit pack ports are used to detect SITs. The TN744 is capable of detecting the following six SITs:

- SIT Ineffective Other
- SIT Intercept
- SIT No Circuit
- SIT Reorder
- SIT Vacant Code
- SIT Unknown
- AMD Treatment
SIT Treatment for Call Classification (Category A only) administration commands

Use the following administration commands to administer the SIT Treatment For Call Classification form. In some cases, just the most commonly used commands are shown. See Administrator Guide for Avaya Communication Manager, 555-233-506, for a complete listing of all administration commands, the command structure, and the use of abbreviated command words when entering a command.

<table>
<thead>
<tr>
<th>Action</th>
<th>Object</th>
<th>Qualifier¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>change</td>
<td>sit-treatment</td>
<td>—</td>
</tr>
<tr>
<td>display</td>
<td>sit-treatment</td>
<td>['print' or 'schedule']</td>
</tr>
</tbody>
</table>

1. Brackets [] indicate the qualifier is optional. Single quotes (‘’) indicate the text inside the quote must be entered exactly as shown or an abbreviated form of the word can be entered.

SIT Treatment for Call Classification form instructions

SIT Treatment For Call Classification form

```markdown
SIT TREATMENT FOR CALL CLASSIFICATION
SIT Ineffective Other: dropped
SIT Intercept: answered
SIT No Circuit: dropped
SIT Reorder: dropped
SIT Vacant Code: dropped
SIT Unknown: dropped
AMD Treatment: dropped
Pause Duration (seconds): 0.5
Talk Duration (seconds): 2.0
```

SIT Treatment for Call Classification field descriptions

Make assignments as required for the following fields on the form:

In the field following each type of SIT, enter answered to specify that the call is classified as answered, and is therefore sent to an agent; or enter dropped to specify that the call is classified as not answered, and is therefore not sent to an agent.
SIT Ineffective Other
Sample announcement following this SIT — “You are not required to dial a “1” when calling this number.” Valid entries are answered and dropped. Default is dropped.

SIT Intercept
Sample announcement following this SIT — “XXX-XXXX has been changed to YYY-YYYY, please make a note of it.” Valid entries are answered and dropped. Default is answered.

SIT No Circuit
Sample announcement following this SIT — “All circuits are busy, please try to call again later.” Valid entries are answered and dropped. Default is dropped.

SIT Reorder
Sample announcement following this SIT — “Your call did not go through, please hang up and dial again.” Valid entries are answered and dropped. Default is dropped.

SIT Vacant Code
Sample announcement following this SIT — “Your call cannot be completed as dialed, please check the number and dial again.” Valid entries are answered and dropped. Default is dropped.

SIT Unknown
A situation or condition that is unknown to the network is encountered. Valid entries are answered and dropped. Default is dropped.

AMD (Answering Machine Detected)
An ASAI adjunct can request AMD for a call. If Answering Machine is detected, one of two treatments is specified. Valid entries are dropped and answered. Default is dropped.

AMD Treatment has two separately administrable subfields. Talk Duration is for full seconds and Pause Duration is for fractions of a second, separated by a display-only decimal point. Talk Duration defaults to 2.0 seconds and allows a range from 0.1 seconds to 5.0 seconds in increments of 0.1 seconds. Pause duration defaults to 0.5 seconds and allows a range from 0.1 seconds to 2.0 seconds in increments of 0.1 seconds.
Vector Directory Number (VDN)

This form is used to define vector directory numbers (VDNs) for the Call Vectoring feature. A VDN is an extension number used to access a call vector. Each VDN is mapped to one call vector.

VDNs are software extension numbers (that is, not assigned to physical equipment). A VDN is accessed via direct dial CO trunks mapped to the VDN (incoming destination or night service extension), DID trunks, and LDN calls. The VDN may be Night Destination for LDN.

VDN Administration commands

Use the following administration commands to administer the Vector Directory Number form.

<table>
<thead>
<tr>
<th>Action</th>
<th>Object</th>
<th>Qualifier¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>vdn</td>
<td>xxxxx (extension number of VDN to be added) or 'next'</td>
</tr>
<tr>
<td>change</td>
<td>vdn</td>
<td>xxxxx (extension number of VDN to be changed)</td>
</tr>
<tr>
<td>display</td>
<td>vdn</td>
<td>xxxxx (extension number of VDN to be displayed) ['print' or 'schedule']</td>
</tr>
<tr>
<td>list</td>
<td>vdn</td>
<td>xxxxx (extension number of VDN to be listed) ('count' 1-MAX) ['print' or 'schedule']</td>
</tr>
<tr>
<td>vdn</td>
<td>bsr xxx</td>
<td>number of a BSR application plan</td>
</tr>
<tr>
<td>remove</td>
<td>vdn</td>
<td>xxxxx (extension number of VDN to be removed)</td>
</tr>
</tbody>
</table>

¹. Brackets [] indicate the qualifier is optional. Single quotes (" ") indicate the text inside the quote must be entered exactly as shown or an abbreviated form of the word can be entered. MAX is the maximum number available in your system configuration. For more information, see Hardware Guide for Avaya Communication Manager, 555-233-200.

VDN form instructions

An example VDN form is shown below.

Note:

When the Attendant Vectoring field is set to y, none of the fields listed after the Measured field are displayed.
Vector Directory Number (VDN)

VDN form (page 1) with Attendant Vectoring field set to n.

<table>
<thead>
<tr>
<th>VECTOR DIRECTORY NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension: 2001</td>
</tr>
<tr>
<td>Name: vdn 2001</td>
</tr>
<tr>
<td>Vector Number: 1</td>
</tr>
<tr>
<td>Attendant Vectoring? n</td>
</tr>
<tr>
<td>Allow VDN Override? n</td>
</tr>
<tr>
<td>COR: 1</td>
</tr>
<tr>
<td>TN: 1</td>
</tr>
<tr>
<td>Measured: internal</td>
</tr>
<tr>
<td>Acceptable Service Level (sec): ___</td>
</tr>
<tr>
<td>Service Objective (sec): 20</td>
</tr>
<tr>
<td>VDN of Origin Annnc. Extension:</td>
</tr>
<tr>
<td>1st Skill:</td>
</tr>
<tr>
<td>2nd Skill:</td>
</tr>
<tr>
<td>3rd Skill:</td>
</tr>
</tbody>
</table>

VDN form (page 2) with Attendant Vectoring field set to n.

<table>
<thead>
<tr>
<th>VECTOR DIRECTORY NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audix Name:</td>
</tr>
<tr>
<td>Messaging Server Name:</td>
</tr>
<tr>
<td>Return Destination:</td>
</tr>
<tr>
<td>VDN Timed ACW Interval:</td>
</tr>
<tr>
<td>BSR Application:</td>
</tr>
<tr>
<td>BSR Available Agent Strategy: 1st-found</td>
</tr>
<tr>
<td>Observe on Agent Answer?: n</td>
</tr>
<tr>
<td>Display VDN for Route-To DAC?: n</td>
</tr>
</tbody>
</table>

Vector Directory Numbers list form

<table>
<thead>
<tr>
<th>VECTOR DIRECTORY NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Tech Support</td>
</tr>
<tr>
<td>Customer Serv.</td>
</tr>
<tr>
<td>New Orders</td>
</tr>
<tr>
<td>Denver</td>
</tr>
<tr>
<td>San Francisco</td>
</tr>
<tr>
<td>Chicago</td>
</tr>
</tbody>
</table>
VDN field descriptions

Make assignment as required for the following fields on the form:

Extension

Enter the extension associated with the VDN when completing a paper form. The extension is a number that starts with a valid first digit and length as defined by the System's dial plan. This is a display-only field when using an administration command such as add or change to access the form.

Name

Enter up to a 27-character alphanumeric name that identifies the VDN. This is an optional field that need not contain any data. The name may be truncated on agents’ displays depending on the application. When information is forwarded with an interflowed call, only the first 15 characters are sent. Default is blank.

Vector Number

Enter a 1- to 3-digit vector number that specifies a particular call vector that is accessed through the VDN. The field cannot be blank.

Attendant Vectoring

When Attendant Vectoring is optioned, a field on the VDN form identifies if this is an Attendant Vectoring VDN. If this field is n, there are no changes on the VDN form. If this field is y, the form appearance changes (see below).

When removing a VDN, validation verifies that this VDN is not being used on either the Console Parameters form or the Tenant Partitioning forms.

Allow VDN Override

Valid entries are y and n (default). This entry affects the operation of an agent’s display and certain options/data assigned to the VDN when a call is routed through several VDNs. If it is set to n, the name of this VDN appears on the agent's display and the VDN's AUDIX mail is accessed. If any subsequent VDNs are used to process this call, their names will not appear on the terminating display and the AUDIX mail for the original VDN is accessed. If the field is set to y, the name of the VDN appearing on the terminating display will depend on the administration and chaining of the subsequent VDNs and the AUDIX mail for the last VDN is accessed. Default is n.
For Expert Agent Selection (EAS) (Category A only), if this field is y on the original VDN, the Skills of the new VDN will be used. If this field is n on the original VDN, the Skills of the original VDN will be used.

For Best Service Routing (BSR) (Category A only), if this field is y on the original VDN, the BSR Application and Available Agent Strategy of the new VDN will be used. If this field is n on the original VDN, the BSR Application and Available Agent Strategy of the original VDN will be used.

COR

Enter a 1- to 2-digit number that specifies the class of restriction (COR) to be assigned the VDN. The default value is 1. The field cannot be blank and must have an entry in the range from 0-95.

TN

Enter the Tenant Partition number. Valid entries are 1-20. The default value is 1.

Measured

Used to collect measurement data for this VDN. Valid entries for Category A only are internal, external, both, or none. Valid entries for Category B are internal or none. Data may be collected for reporting by BCMS or CMS. Default is none.

Note:

The BCMS feature must be enabled on the System-Parameters Customer-Options form for the Measured field to be set to internal or both. In addition, the appropriate CMS release must be administered on the Feature-Related System Parameters form if the field is being changed to external or both.

Service Objective (sec) (Category A only)

Displayed in one of two cases:

- When the BCMS/VuStats Service Level option is enabled on the System-Parameters Customer-Options form and the Measured field is internal or both. Enter the number of seconds within which calls to this VDN should be answered. This will allow BCMS to print out a percentage of calls that were answered within the specified time. Valid entries are 0 through 9999 seconds. Default is blank.

- When the Dynamic Advocate customer option is set on the System-Parameters Customer-Options form. This field enables the Dynamic Queue Position feature, which is new with Advocate Release 9. The new feature allows you to queue calls from multiple VDNs to a single skill, while maintaining different service objectives for those VDNs. Enter the service level, in seconds, that you want to achieve for the VDN. Valid entries are 1 through 9999. The default value is 20.
ACD contact center switch forms

VDN of Origin Ann. Extension (Category A only)
Only displayed if VDN of Origin Announcements is enabled on the System-Parameters Customer-Options form. Enter the extension number of the VDN of Origin announcement. Default is blank.

1st/2nd/3rd Skill (Category A only)
Only displayed when Expert Agent Selection is enabled on the System-Parameters Customer-Options form. Enter the desired Skill numbers (or leave blank) in each field. Valid entries are 1-999, or blank (default).

AUDIX Name (Category A only)
If this VDN is associated with the AUDIX vector, enter the name of the AUDIX machine as it appears in the Adjunct Names form.

Messaging Server Name (Category A only)
If this VDN is associated with MSA, enter the name of the server as it appears in the Adjunct names form.

Return Destination (Category A only)
The VDN extension number to which an incoming trunk call will be routed if it returns to vector processing after the agent drops the call. Valid entries are the VDN extension, or blank (default).

VDN Timed ACW Interval (Category A only)
When a value is entered in this field, an agent in auto-in work mode who receives a call from this VDN is automatically placed into After Call Work (ACW) when the call drops. Enter the number of seconds the agent should remain in ACW following the call. When the administered time is over, the agent automatically becomes available. This field has priority over the Timed ACW Interval field on the Hunt Group form.

BSR Application (Category A only)
To use multi-site Best Service Routing with this VDN, enter a 1- to 3-digit number to specify an application plan for the VDN. This field only appears if Look-Ahead Interflow (LAI) and Vectoring (Best Service Routing) are enabled on the System Parameters Customer-Options form.

BSR Available Agent Strategy (Category A only)
The available agent strategy determines how Best Service Routing identifies the best split/skill to service a call in an agent surplus situation. To use Best Service Routing with this VDN, enter an agent selection strategy in this field. Acceptable entries are 1st-found, UCD-LOA, UCD-MIA, EAD-LOA, and EAD-MIA.
This field only appears if Vectoring (Best Service Routing) is enabled on the System Parameters Customer-Options form.
Observe on Agent Answer

Valid entries are y and n (default). This entry allows for a service observer to start observing of a call to the VDN when the call is delivered to the agent/station.

Display VDN for route-to DAC

Valid entries are y and n (default). The Display VDN for Route-to DAC option is designed to address situations where one of the following conditions is in effect:

- Either a route-to number or route-to digits vector command routes an EAS direct agent call, with the coverage option set to y
- An adjunct routing step routes a direct agent call, with the coverage option set to y

For more information, see “Displaying VDN names for direct agent calls,” in the “Considerations for Call Vectoring Features” appendix, in *Avaya MultiVantage Call Center Software Call Vectoring and EAS Guide*, 585-230-714.

Implementation notes

- The BCMS feature must have been optioned if the Measured field is set to internal or both. In addition, the appropriate CMS release must be administered on the Feature-Related System Parameters form if the field is being changed to external or both.
- The 1st/2nd/3rd Skill fields are only displayed when Expert Agent Selection is enabled on the System-Parameters Customer-Options form.
- The BCMS Acceptable Service Level (sec) field is only displayed if the BCMS Acceptable Service Level option is enabled on the System-Parameters Customer-Options form and the Measured field is internal or both.
- Data for the Orig Annnc column appears only when VDN of Origin Announcement is enabled on the System-Parameters Customer-Options form.
- To list all VDNs using the same BSR Application Plan, type the administration command list VDN BSR xxx (xxx is the number of the BSR Application Plan used by one or more VDNs).
- To associate VDNs and vectors for attendant vectoring, a field has been added to both the VDN and the Call Vectoring forms to indicate attendant vectoring. When attendant vectoring is indicated for VDNs and vectors, all contact center-associated fields (such as Skills and BSR) are removed.
Vector Routing Table (Category A only)

This form is used to store ANI or Digits that you refer to in \texttt{goto} vector steps. It is available to you only if the Vectoring (G3V4 Enhanced) field on the System-Parameters Customer-Options form is set to y.

For more information, refer to \textit{Call Vectoring} on page 128.

Vector Routing Table (Category A only) administration commands

You can use the commands listed in the table below to administer Vector Routing Tables. In addition, you can use the List Usage command to see the vectors and digit fields used by a Vector Routing Table.

<table>
<thead>
<tr>
<th>Action</th>
<th>Object</th>
<th>Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>vrt</td>
<td>1 through x, or next</td>
</tr>
<tr>
<td>change</td>
<td>vrt</td>
<td>1 through x, or next</td>
</tr>
<tr>
<td>display</td>
<td>vrt</td>
<td>1 through x, or next</td>
</tr>
<tr>
<td>remove</td>
<td>vrt</td>
<td>1 through x, or next</td>
</tr>
<tr>
<td>list</td>
<td>vrt</td>
<td>none - all Routing Tables will display</td>
</tr>
</tbody>
</table>
Vector Routing Table form (1 of 3)

VECTOR ROUTING TABLE

Number: ___ Name: _______________ Sort? n

1:________________ 17: __________________
2:________________ 18: __________________
3:________________ 19: __________________
4:________________ 20: __________________
5:________________ 21: __________________
6:________________ 22: __________________
7:________________ 23: __________________
8:________________ 24: __________________
9:________________ 25: __________________
10:________________ 26: __________________
11:________________ 27: __________________
12:________________ 28: __________________
13:________________ 29: __________________
14:________________ 30: __________________
15:________________ 31: __________________
16:________________ 32: __________________

Vector Routing Table field descriptions

Make assignment as required for the following fields on the form:

Number
This is the table number that you entered on the command line. It is a display only field.

Name
Enter a 1 to 15-character alphanumeric table name. You may leave this field blank. Default is blank.

Sort
Enter y if you want the digit fields to be sorted. Default is n. If you elect not to sort the numbers, they will remain in the order that you entered them. If you elect to sort the number fields, they will be sorted as described below. Remember that leading zeros are significant. That means that 02 will sort ahead of a 2 followed by a space.

- Any Plus signs (+) will sort first.
- Any question marks (?) will sort second.
- All numbers (0–9) will sort last.
ACD contact center switch forms

Number (1-32)

Enter a number. Default is blank. Entries in this field also can include the + and/or ? wildcard. The + represents a group of digits. The ? represents a single digit. The field is limited to 16 characters and these characters are restricted as follows:

- You may enter only a plus sign (+), a question mark (?), or the numbers 0 through 9. No other entries are valid.
- You may enter one plus sign (+) as either the first or last character in the number field. However, you cannot use this character as the sixteenth character of the number field.
- You may use as many question marks (?) as you wish, anywhere in the number field.
- You may not embed blanks in the number field.
- You may leave the field entirely blank. If you leave the field blank, the switch will store the entry as a null value.
VuStats Display Format (Category A only)

Use the VuStats Display Format form to define the content and layout of information on VuStats telephone displays. The system has 50 different display formats; the first display is a predefined example format, which can be changed; displays 2 through 50 are blank. Each display format can contain up to ten data items. However, the amount of data to be displayed is limited to 40 characters, due to the physical limitations on display telephones.

VuStats Display Format (Category A only) administration commands

Use the following administration commands to access the VuStats Display Format form.

<table>
<thead>
<tr>
<th>Action</th>
<th>Object</th>
<th>Qualifier¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>change</td>
<td>vustats-display-format</td>
<td>1-50</td>
</tr>
<tr>
<td>display</td>
<td>vustats-display-format</td>
<td>1-50</td>
</tr>
<tr>
<td>list</td>
<td>vustats-display-format</td>
<td>1-50 count ##</td>
</tr>
</tbody>
</table>

¹. Specify a number from 1 to 50 to indicate the number of the display format to be changed or displayed. Count ## is the number of display formats to list.
VuStats Display Format (Category A only) form instructions

VuStats Display Format blank change/display form

VUSTATS DISPLAY FORMAT
Format Number: ___ Object Type: ____________
Next Format Number: ____ Update Interval: ________ On Change? _
Data Field Character: _ Display Interval: __________
Number of Intervals: __
Format Description: __

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Format</th>
<th>Period</th>
<th>Threshold</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>2: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>3: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>4: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>5: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>6: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>7: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>8: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>9: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>10: ______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
</tbody>
</table>

VuStats Display Format example change/display form

change display-format 11

VUSTATS DISPLAY FORMAT
Format Number: 11 Object Type: agent
Next Format Number: 12 Update Interval: 30 On Change? n
Data Field Character: $
Number of Intervals: 16
Format Description: SPLIT=$$ ASL=$$ ASA=$$ PSL=$$$

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Format</th>
<th>Period</th>
<th>Threshold</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>2: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>3: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>4: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>5: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>6: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>7: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>8: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>9: _______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
<tr>
<td>10: ______</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
<td></td>
</tr>
</tbody>
</table>
VuStats Display Format field descriptions

Enter the data as required for the following fields on the form:

Format Number
The system generates a format number automatically when it creates a VuStats display. You cannot change this number. You can create 50 different display formats. Format Number 1 is a predefined sample format that you can modify.

Object Type
The type of object for which data will be displayed. Enter one of the following values: agent (for staffed agents to view their own statistics), agent-extension (for other users to view agent statistics), split/skill (default), trunk-group, or vdn.

- Agent — Provides agents with their own statistics, or statistics about the splits/skills they log into.
- Agent-extension — Provides supervisors with statistics about agents or the splits/skills the agents log into. VuStats can automatically display statistics for a specific agent (if you administer agent login ID or BCMS/Vustats Login ID). Or, supervisors can enter the ID of any agent they want to review.
- Split/Skill — Displays statistics about a specific split/skill. You must administer the split/skill as Measured (internal or both) on the Hunt Group form.
- Trunk-group — Displays statistics about a specific trunk group. You must administer the trunk group as Measured (internal or both) on the Trunk Group form.
- VDN — Displays statistics about a specific VDN. You must administer the VDN as Measured (internal or both) on the Vector Directory Number form.

Next Format Number
To link this display to another display, enter the number of the display format (between 1-50) that should appear when a VuStats user presses the next button, or enter none (default). In general, you only link displays with the same object type.

Update Interval
The interval, in seconds, between display updates. Enter one of the following values:

- no-update – The display is not updated, and appears only for the interval specified in the Display Interval field
- polled – Updates the display hourly or half-hourly, based on the value in BCMS Measurement Interval (System-Parameters Features form)
- 10 – Updates every 10 seconds
- 20 – Updates every 20 seconds
- 30 – Updates every 30 seconds
ACD contact center switch forms

- 60 – Updates every 60 seconds
- 120 – Updates every 2 minutes

On Change
Enter y to update the display whenever the agent’s state changes. The update on agent state change is in addition to the update as a result of the value entered in the Update Interval field. If n is entered, an update will only occur based on the Update Interval and not on the agent state change.

Data Field Character
The character that will be used in the Format Description field to identify the position and length of each data field (see the Format Description field description below). The default is $. Enter another character if the $ is needed for fixed text in the Format Description field. Any character is valid except a space.

Display Interval
The interval, in seconds, for which data is displayed if no update is entered in the Update Interval field. Enter one of the following values:
- 5 – Display clears after 5 seconds
- 10 – Display clears after 10 seconds
- 15 – Display clears after 15 seconds
- 30 – Display clears after 30 seconds
- not cleared – The display does not clear, and the data appears until the display is used for another operation or until you press the Normal button.

Number of Intervals
Specify the number of BCMS intervals used to collect data when you have specified interval as the period for a historical Data Type. You can enter a number between 1 and 25, or blank for current interval. The default is blank. If you enter 24, and the BCMS measurement interval on the Feature-Related System Parameters form is set to 1 hour, you will receive information on the previous 24 hours. If the BCMS measurement interval is set to half-hour, you will receive information on the previous 12 hours. You can also leave this field blank. If you do, you will receive information on the current interval.

Format Description
The definition of the layout for the 40-character display. Specify the starting position and the length of the data items by entering, for each data field, an optional label for the field followed the appropriate number of data field characters (such as $s). Each $ represents one character in the display. For example, if the data will be a maximum of five characters long, enter $$$$$$.
Some data types have preset maximum field length limits based on the switch administration. For example, the data type acceptable-service-level is taken from the BCMS Acceptable Service Level field on the Hunt Group and Vector Directory Number forms; on this form, the field allows a maximum number of four characters. Therefore, for the acceptable-service-level, you should not create a VuStats display field that consists of more than four characters (that is, $$$$). Other data types have similar limits.

Field lengths for data items that appear as time must match the value in the Format field, which is discussed below. Remember to account for possible colons when the display will be in a time format.

Format descriptions can be all text (such as a message of the day) or they can be all data fields, in which case users will have to memorize the labels or use customer-provided overlays above or below the display.

If the numeric data for a field is too large for the number of data field characters entered, the VuStats display will show asterisks instead of data. If name database items are too large for the number of data field characters, the VuStats display will truncate the data to fit the data field size. The split/skill objective, as entered on the Hunt Group form, will display as asterisks if the information exceeds the data field size.

If the data for a field is too large for the number of data field characters entered, VuStats displays asterisks. If name database items are too large for the number of data field characters, VuStats truncates the data. VuStats also displays Split/Skill Objective (assigned on the Hunt Group form) as asterisks if the information exceeds the data field size.

Data Item fields
On lines 1 through 10, beneath the Data Type field label enter data items for the display format. These data items are associated with the sets of data field characters in the Format Description field. Each data item is defined by one or more of the following fields: Data Type, Format, Period, Threshold, and Reference. Input for these fields is described in more detail below.

Enter each data item in the same order as data fields are defined in the Format Description field. For example, Line 1 of the Data Type field must contain the data item for the first data field (that is, the first set of $s).

- Data Type — The data item to be included in the current display format. For a complete list of data types available for each object type, see the Required and allowed fields — split data types on page 334, Agent and agent-extension data types on page 337, Split data types on page 344, VDN data types on page 348, and Trunk group data types on page 349 tables for a description of data types associated with each object type. The default is blank.
ACD contact center switch forms

- **Format** — The format for displaying the data type. The format is required only for a data type with a time value. Enter one of the following Format values. Default is blank.

<table>
<thead>
<tr>
<th>Valid Input</th>
<th>Description</th>
<th>Minimum Input Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccs</td>
<td>Hundred call seconds (CCS) rounded to the nearest CCS</td>
<td>1</td>
</tr>
<tr>
<td>h</td>
<td>Hours rounded to the nearest hour</td>
<td>1</td>
</tr>
<tr>
<td>h:mm</td>
<td>Hours and minutes rounded to the nearest minute</td>
<td>4</td>
</tr>
<tr>
<td>h:mm:ss</td>
<td>Hours, minutes, and seconds</td>
<td>7</td>
</tr>
<tr>
<td>m</td>
<td>Minutes rounded to the nearest minute</td>
<td>1</td>
</tr>
<tr>
<td>m:ss</td>
<td>Minutes and seconds</td>
<td>4</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Period** — Enter the amount of time to be used to collect the historical data for display. If the data type is historical data, you cannot leave this field blank. Valid entries are day (midnight to the current time), interval (the time specified in the Number of Intervals field), or blank. Refer to VuStats required and allowed fields to determine if a measurement period is required for a particular Data Type. The default is blank.

- **Threshold** — The threshold field is always an optional field. It contains two subfields, the threshold comparator and the threshold value. The threshold value is used with the threshold comparator to determine if a threshold warning should be generated. A threshold warning is generated if the specified condition is met for one or more of the data items. If the specified condition is not met for any of the data items, then no threshold warning is generated. The threshold value can be any numeric value from 0 to 9999. Default is blank. Valid threshold comparators are:
 - = (equal to)
 - <> (not equal to)
 - < (less than)
 - <= (less than or equal to)
 - > (greater than)
 - >= (greater than or equal to)

- **Ref** — A reference to a split/skill; this field does not appear unless the Object Type is either agent or agent-extension. This field is required only if the data type is an agent-related data type collected on a per-split/skill basis or a split/skill-related data type for one of the agent’s logged-in splits/skills. Enter one of the following values:
— Top references the first-administered, highest-level skill for EAS agents, or the first split/skill logged into for non-EAS agents.

Note:
With EAS, the top skill for VuStats is the first administered, highest level skill measured internally or both. For CMS it is the first-administered, highest-level skill measured externally or both. Therefore, it is possible for the top skill to be a different number skill for CMS than it is for VuStats. To avoid this, measure all skills as both.

— All displays the combined data for all splits/skills the agent is logged into.

— Any number from 1-20. The number represents a split/skill to which the agent has logged in. For example, if the Ref field contains 1, VuStats displays the data for the first split/skill the agent logged into, if the Ref field contains 2, VuStats displays the data for the second split/skill the agent logged into, and so on.

List VuStats Display Format Screen

A second VuStats Display Format screen is available with the list command. The purpose of this screen is to present the format of all, or a selected number, of VuStats displays. The List VuStats Display Format screen displays the Format Number, Next Format Number, Number of Intervals, Object Type, Update Interval, and Format Description fields, and all designated data items, including the Data Type, Format, Threshold, and Ref (split/skill reference).

Use this screen to compare VuStats displays to each other. This list presentation is most helpful when trying to see how displays are linked to each other. The screen includes the Next field, which contains the number of the next display (if any) to which a display is linked.

The following screen shows an example of the List VuStats Display Formats form.

VuStats Display Formats list form

```
VuStats Display Formats list form

Page 1

VUSTATS DISPLAY FORMATS

<table>
<thead>
<tr>
<th>No</th>
<th>Next Int</th>
<th>Object Type</th>
<th>Update</th>
<th>Format Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>split</td>
<td>30</td>
<td>SPLIT=## WAITING=### OLDEST=$$$$$$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>split-number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>calls-waiting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oldest-call-waiting m:ss</td>
</tr>
<tr>
<td>2</td>
<td>none</td>
<td>agent-extension on-change</td>
<td>1</td>
<td>AGENT=$$$ STATE=$$$$$$$ TIME=$$$$$$$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>agent extension</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>agent state</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>time-agent-entered-state</td>
</tr>
</tbody>
</table>

press CANCEL to quit -- press NEXT PAGE to continue
```
VuStats Display Formats field descriptions

- **No** — Number. The unique identifying number of each display format.
- **Next** — The number of the next display if the current display is linked to (followed by) another display format, or none if the current display format is not linked to another display format.
- **Int** — Number of Intervals. The number of measurement intervals.
- **Object Type** — The type of object for which data will be displayed.
- **Update** — Update Interval. The time between display updates.
- **Format Description** — The definition of the display’s layout. The first line of the Format Description contains the text that precedes the data on a display plus the length of each data field (indicated by s). The succeeding lines of the Format Description identify the data items, in the order they are to appear. The data items are the actual measurements and other information that tell how agents, splits/skills, vector directory numbers (VDNs), trunk groups, and the contact center are performing. The data items are followed by the format (if any), which identifies how the data is to appear in the display, the period and threshold (if any), and the split/skill reference (if any).

VuStats required and allowed fields

Required and allowed fields — agent and agent-extension data types

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Format</th>
<th>Period</th>
<th>Threshold</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>acd-calls</td>
<td></td>
<td>required</td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>agent-extension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>agent-name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>agent-state</td>
<td></td>
<td></td>
<td></td>
<td>required</td>
</tr>
<tr>
<td>average-acd-call-time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>average-acd-talk-time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>average-extension-time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>call-rate</td>
<td></td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>current-reason-code</td>
<td></td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>current-reason-code-name</td>
<td></td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>elapsed-time-in-state</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VuStats Display Format (Category A only)

Required and allowed fields — agent and agent-extension data types (continued)

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Format</th>
<th>Period</th>
<th>Threshold</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>extension-calls</td>
<td></td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>extension-incoming-calls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>extension-outgoing-calls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>percent-acd-call-time</td>
<td></td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>shift-acd-calls</td>
<td></td>
<td></td>
<td></td>
<td>required</td>
</tr>
<tr>
<td>shift-aux-time-1</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>shift-aux-time-2</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>shift-aux-time-3</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>shift-aux-time-4</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>shift-aux-time-5</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>shift-aux-time-6</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>shift-aux-time-7</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>shift-aux-time-8</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>shift-aux-time-9</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>shift-aux-time-all</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>shift-aux-time-default</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>shift-aux-time-non-default</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>shift-aux-time-reason-code</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>shift-average-acd-talk-time</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>skill-level</td>
<td></td>
<td></td>
<td>required</td>
<td></td>
</tr>
<tr>
<td>split-acceptable-service-level</td>
<td>required</td>
<td></td>
<td></td>
<td>required</td>
</tr>
<tr>
<td>split-acd-calls</td>
<td></td>
<td>required</td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-after-call-sessions</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-available</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-in-after-call</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-in-aux-1</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-in-aux-2</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
</tbody>
</table>
Required and allowed fields — agent and agent-extension data types (continued)

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Format</th>
<th>Period</th>
<th>Threshold</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>split-agents-in-aux-3</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-in-aux-4</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-in-aux-5</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-in-aux-6</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-in-aux-7</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-in-aux-8</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-in-aux-9</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-in-aux-all</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-in-aux-default</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-in-aux-non-default</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-in-other</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-on-acd-calls</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-on-extension-calls</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-agents-staffed</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-average-acd-talk-time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-average-after-call-time</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-average-speed-of-answer</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-average-time-to-abandon</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-call-rate</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-calls-abandoned</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-calls-flowed-in</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-calls-flowed-out</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-calls-waiting</td>
<td></td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split-extension</td>
<td></td>
<td></td>
<td>required</td>
<td></td>
</tr>
<tr>
<td>split-name</td>
<td></td>
<td></td>
<td>required</td>
<td></td>
</tr>
<tr>
<td>split-number</td>
<td></td>
<td></td>
<td>required</td>
<td></td>
</tr>
<tr>
<td>split-objective</td>
<td></td>
<td></td>
<td>required</td>
<td></td>
</tr>
</tbody>
</table>
Required and allowed fields — agent and agent-extension data types (continued)

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Format</th>
<th>Period</th>
<th>Threshold</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>split.oldest.calling.waiting</td>
<td>required</td>
<td></td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split.percent.in.service-level</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split.total.acd.talk.time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split.total.after.call.time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>split.total.aux.time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td>required</td>
</tr>
<tr>
<td>time.agent.entered.state</td>
<td></td>
<td>required</td>
<td></td>
<td>required</td>
</tr>
<tr>
<td>total.acd.call.time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>total.acd.talk.time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>total.after.call.time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>total.aux.time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>total.available.time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>total.hold.time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>total.staffed.time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
</tbody>
</table>
Required and allowed fields — split data types

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Format</th>
<th>Period</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>acceptable-service-level</td>
<td>required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acd-calls</td>
<td>required</td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>after-call sessions</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-available</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-in-after-call</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-in-aux-1</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-in-aux-2</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-in-aux-3</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-in-aux-4</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-in-aux-5</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-in-aux-6</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-in-aux-7</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-in-aux-8</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-in-aux-9</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-in-aux-all</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-in-aux-default</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-in-aux-non-default</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-in-other</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-on-acd-calls</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-on-extension-calls</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>agents-staffed</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>average-acd-talk-time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>average-after-call-time</td>
<td>required</td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>average-speed-of-answer</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>average-time-to-abandon</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>call-rate</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
</tbody>
</table>
Required and allowed fields — split data types (continued)

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Format</th>
<th>Period</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>calls-abandoned</td>
<td></td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>calls-flowed-in</td>
<td></td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>calls-flowed-out</td>
<td></td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>calls-waiting</td>
<td></td>
<td></td>
<td>allowed</td>
</tr>
<tr>
<td>oldest-calling-waiting</td>
<td></td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>percent-in-service-level</td>
<td></td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>split-extension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>split-name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>split-number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>split-objective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total-acd-talk-time</td>
<td></td>
<td>required</td>
<td>required</td>
</tr>
<tr>
<td>total-after-call-time</td>
<td></td>
<td>required</td>
<td>required</td>
</tr>
<tr>
<td>total-aux-time</td>
<td></td>
<td>required</td>
<td>required</td>
</tr>
</tbody>
</table>
Required and allowed fields — VDN data types

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Format</th>
<th>Period</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>acceptable-service-level</td>
<td>required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acd-calls</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>average-acd-talk-time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>average-speed-of-answer</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>average-time-to-abandon</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>calls-abandoned</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>calls-flowed-out</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>calls-forced-busy-or-disc</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>calls-offered</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>calls-waiting</td>
<td>allowed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-acd-calls-connected</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>oldest-calling-waiting</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>percent-in-service-level</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>total-acd-talk-time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>vdn-extension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vdn-name</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. For a description of VDN data types, see [VDN data types](#) on page 348.

Required and allowed fields — trunk group data types

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Format</th>
<th>Period</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>average-incoming-call-time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>average-outgoing-call-time</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>incoming-abandoned-calls</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>incoming-calls</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>incoming-usage</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>number-of-trunks</td>
<td>required</td>
<td>required</td>
<td>allowed</td>
</tr>
<tr>
<td>outgoing-calls</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
</tbody>
</table>
Required and allowed fields — trunk group data types

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Format</th>
<th>Period</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>outgoing-completed-calls</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>outgoing-usage</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>percent-all-trunks-busy</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>percent-trunks-maint-busy</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>trunk-group-name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trunk-group-number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trunks-in-use</td>
<td></td>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>trunks-maint-busy</td>
<td>required</td>
<td>allowed</td>
<td></td>
</tr>
</tbody>
</table>

1. For a description of trunk group data types, see Trunk group data types on page 349.

Agent and agent-extension data types

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Description</th>
<th>BCMS report: field name/column heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>acd-calls</td>
<td>Split/skill calls and direct agent calls answered by an agent</td>
<td>Split status/VDN Status/Agent Report: ACD CALLS</td>
</tr>
<tr>
<td>agent-extension</td>
<td>The extension for a specific agent; if either BCMS/VuStats Login IDs or EAS is optioned, then this shows the agent's login ID.</td>
<td>Split Status: Login ID or EXT</td>
</tr>
<tr>
<td>agent-name</td>
<td>The administered name for a specific agent.</td>
<td>Split Status/Agent Report/Agent Summary Report: Agent</td>
</tr>
<tr>
<td>agent-state</td>
<td>The agent’s current work state</td>
<td>Split Status: STATE</td>
</tr>
<tr>
<td>average-acd-call-time</td>
<td>The average of hold-time plus talk-time.</td>
<td>None</td>
</tr>
<tr>
<td>average-acd-talk-time</td>
<td>The average time a specific agent has spent talking on completed ACD calls during a specified time period for all internally-measured splits/skills that the agent was logged into. This does not include the time a call was ringing or was on hold at an agent's terminal.</td>
<td>Agent Report/Agent Summary Report: AVG TALK TIME</td>
</tr>
</tbody>
</table>
Average Extension Time

The average amount of time an agent spent on non-ACD calls while logged into at least one split/skill during the reported interval. This average does not include time when the agent was holding the EXTN call.

Description

The agent spent an average of [average-time] minutes on non-ACD calls while logged into at least one split/skill during the reported interval. This average does not include time when the agent was holding the EXTN call.

BCMS Report

- **Agent Report/Agent Summary Report:** AVG EXTN TIME

Call Rate

The current rate of ACD calls handled per agent per hour for all split/skills.

Description

None

BCMS Report

None

Current Reason Code

The number of the Reason Code associated with the agent’s current AUX work mode, or with the agent’s logout.

Description

None

BCMS Report

None

Current Reason Code Name

The name of the Reason Code associated with the agent’s current AUX work mode or with the agent’s logout.

Description

None

BCMS Report

None

Elapsed Time in State

The amount of time an agent has been in the current state.

Description

None

BCMS Report

None

Extension Calls

The number of incoming and outgoing non-ACD calls that an agent completed while logged into at least one split/skill.

Description

Agent Report: EXTN CALLS

BCMS Report

None

Extension Incoming Calls

The number of non-ACD calls that an agent receives while logged into at least one split/skill.

Description

Split Report: EXT IN CALLS

BCMS Report

None

Extension Outgoing Calls

The number of non-ACD calls that an agent places while logged into at least one split/skill.

Description

Split Report: EXT OUT CALLS

BCMS Report

None

Percent ACD Call Time

The current calculated occupancy for the agent. This data type indicates the percentage of time the agent talks and holds ACD calls, and is calculated as:

\[
\text{Percent ACD Call Time} = \frac{\text{ACDTime} + \text{Hold Time (ACD calls only)}}{\text{Staffed Time in Interval} + 100}
\]

The calculation is listed in the occupancy field of the Station Status screen.

Description

None

BCMS Report

None

Shift ACD Calls

The number of ACD calls answered by an agent during the administered period.

Description

None

BCMS Report

None

Shift AUX Time 1

The amount of time an agent has spent in AUX work mode for Reason Code 1 during the administered period.

Description

None

BCMS Report

None

Agent and agent-extension data types (continued)

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Description</th>
<th>BCMS report: field name/column heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>shift-aux-time-2</td>
<td>The amount of time an agent has spent in AUX work mode for Reason Code 2 during the administered period.</td>
<td>None</td>
</tr>
<tr>
<td>shift-aux-time-3</td>
<td>The amount of time an agent has spent in AUX work mode for Reason Code 3 during the administered period.</td>
<td>None</td>
</tr>
<tr>
<td>shift-aux-time-4</td>
<td>The amount of time an agent has spent in AUX work mode for Reason Code 4 during the administered period.</td>
<td>None</td>
</tr>
<tr>
<td>shift-aux-time-5</td>
<td>The amount of time an agent has spent in AUX work mode for Reason Code 5 during the administered period.</td>
<td>None</td>
</tr>
<tr>
<td>shift-aux-time-6</td>
<td>The amount of time an agent has spent in AUX work mode for Reason Code 6 during the administered period.</td>
<td>None</td>
</tr>
<tr>
<td>shift-aux-time-7</td>
<td>The amount of time an agent has spent in AUX work mode for Reason Code 7 during the administered period.</td>
<td>None</td>
</tr>
<tr>
<td>shift-aux-time-8</td>
<td>The amount of time an agent has spent in AUX work mode for Reason Code 8 during the administered period.</td>
<td>None</td>
</tr>
<tr>
<td>shift-aux-time-9</td>
<td>The amount of time an agent has spent in AUX work mode for Reason Code 9 during the administered period.</td>
<td>None</td>
</tr>
<tr>
<td>shift-aux-time-all</td>
<td>The amount of time an agent has spent in AUX work mode for all Reason Codes during the administered period.</td>
<td>None</td>
</tr>
<tr>
<td>shift-aux-time-default</td>
<td>The amount of time an agent has spent in AUX work mode for the default Reason Code (code 0) during the administered period.</td>
<td>None</td>
</tr>
<tr>
<td>shift-aux-time-non-default</td>
<td>The amount of time an agent has spent in AUX work mode for Reason Codes 1 through 9 during the administered period.</td>
<td>None</td>
</tr>
<tr>
<td>shift-aux-time-reason-code</td>
<td>The amount of time an agent has spent in AUX work mode for the agent’s current Reason Code during the administered period.</td>
<td>None</td>
</tr>
</tbody>
</table>
Agent and agent-extension data types (continued)

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Description</th>
<th>BCMS report: field name/column heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>shift-average-acd-talk-time</td>
<td>The average talk time for ACD calls for a specific agent during the administered period.</td>
<td>None</td>
</tr>
<tr>
<td>skill-level</td>
<td>The skill level at which the skill was assigned to the agent.</td>
<td>None</td>
</tr>
<tr>
<td>split-acceptable-service-level</td>
<td>The number of seconds within which calls must be answered to be considered acceptable. Identified on a per-hunt group basis. Timing begins when the call enters the hunt group queue.</td>
<td>Split Status: Acceptable Service Level</td>
</tr>
<tr>
<td>split-after-call-sessions</td>
<td>The number of times all agents have entered After Call Work (ACW) for a specific split/skill.</td>
<td>None</td>
</tr>
<tr>
<td>split-agents-available</td>
<td>The number of agents currently available to receive ACD calls for a specific split. This includes agents in Auto-In or Manual-In work mode.</td>
<td>Split Status: Avail</td>
</tr>
<tr>
<td>split-agents-in-after-call</td>
<td>For a specific split, the number of agents currently in ACW.</td>
<td>Split Status: ACW</td>
</tr>
<tr>
<td>split-agents-in-aux-1</td>
<td>For a specific skill, the number of agents currently in Aux work mode with Reason Code 1.</td>
<td>None</td>
</tr>
<tr>
<td>split-agents-in-aux-2</td>
<td>For a specific skill, the number of agents currently in Aux work mode with Reason Code 2.</td>
<td>None</td>
</tr>
<tr>
<td>split-agents-in-aux-3</td>
<td>For a specific skill, the number of agents currently in Aux work mode with Reason Code 3.</td>
<td>None</td>
</tr>
<tr>
<td>split-agents-in-aux-4</td>
<td>For a specific skill, the number of agents currently in Aux work mode with Reason Code 4.</td>
<td>None</td>
</tr>
<tr>
<td>split-agents-in-aux-5</td>
<td>For a specific skill, the number of agents currently in Aux work mode with Reason Code 5.</td>
<td>None</td>
</tr>
</tbody>
</table>
Agent and agent-extension data types (continued)

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Description</th>
<th>BCMS report: field name/column heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>split-agents-in-aux-6</td>
<td>For a specific skill, the number of agents currently in Aux work mode with Reason Code 6.</td>
<td>None</td>
</tr>
<tr>
<td>split-agents-in-aux-7</td>
<td>For a specific skill, the number of agents currently in Aux work mode with Reason Code 7.</td>
<td>None</td>
</tr>
<tr>
<td>split-agents-in-aux-8</td>
<td>For a specific skill, the number of agents currently in Aux work mode with Reason Code 8.</td>
<td>None</td>
</tr>
<tr>
<td>split-agents-in-aux-9</td>
<td>For a specific skill, the number of agents currently in Aux work mode with Reason Code 9.</td>
<td>None</td>
</tr>
<tr>
<td>split-agents-in-aux- all</td>
<td>For a specific split/skill, the total number of agents currently in Aux work mode for all Reason Codes.</td>
<td>Split Status: AUX</td>
</tr>
<tr>
<td>split-agents-in-aux-default</td>
<td>For a specific split/skill, the number of agents currently in Aux work mode with the default Reason Code (code 0).</td>
<td>None</td>
</tr>
<tr>
<td>split-agents-in-aux- non-default</td>
<td>For a specific skill, the number of agents currently in Aux work mode with Reason Codes 1 through 9.</td>
<td>None</td>
</tr>
<tr>
<td>split-agents-in-other</td>
<td>The number of agents currently who: are on a call for another split, are in ACW work mode for another split, have a call on hold but are not in another state, or have a call ringing at their terminals, or are dialing a number while in AI/MI.</td>
<td>Split Status: Other</td>
</tr>
<tr>
<td>split-agents-on-acd-calls</td>
<td>The number of agents currently on split/skill or direct agent ACD calls for a specific split.</td>
<td>Split Status: ACD</td>
</tr>
<tr>
<td>split-agents-on-extension-calls</td>
<td>The number of agents in a specific split who are currently on non-ACD calls.</td>
<td>Split Status: Extn</td>
</tr>
<tr>
<td>split-agents-staffed</td>
<td>The number of agents currently logged into a split.</td>
<td>Split Status: Staffed</td>
</tr>
<tr>
<td>split-average-acd-talk-time</td>
<td>The average talk time for ACD calls during a specific period/day for a specified split.</td>
<td>System Status/Split Report/Split Summary Report: AVG TALK TIME</td>
</tr>
</tbody>
</table>
Agent and agent-extension data types (continued)

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Description</th>
<th>BCMS report: field name/column heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>split-average-after-call-time</td>
<td>The average time for call-related ACW completed by agents for this split (the same as average-after-call-time, but only available for agent and agent-extension object types). Call-related ACW time is recorded when an agent leaves the ACW state. If an agent is in call-related ACW when an interval completes, all of the ACW time will be recorded for the interval in which the agent leaves ACW.</td>
<td>System Status: AVG AFTER CALL</td>
</tr>
<tr>
<td>split-average-speed-of-answer</td>
<td>The average speed for answering split and direct agent ACD calls that have completed for a specified split/skill.</td>
<td>System Status/Split Report/Split Summary Report: AVG SPEED ANS</td>
</tr>
<tr>
<td>split-call-rate</td>
<td>The current rate of ACD calls handled per agent per hour for a specific split or skill.</td>
<td>None</td>
</tr>
<tr>
<td>split-calls-abandoned</td>
<td>The number of calls that abandoned from queue (provided this is the first split/skill queued to) or abandoned from ringing.</td>
<td>System Status/Split Report/Split Summary Report: ABAND CALLS</td>
</tr>
<tr>
<td>split-calls-flowed-in</td>
<td>The total number of calls for a specific split/skill that were received as a coverage point (intraflowed) from another internally-measured split/skill, or were call-forwarded (interflowed) to the split/skill.</td>
<td>Split Report/Split Summary Report: FLOW IN</td>
</tr>
<tr>
<td>split-calls-flowed-out</td>
<td>The total number of calls for a specific split/skill that successfully extended to the split/skill’s coverage point, were call-forwarded out, or were answered via call pick-up.</td>
<td>Split Report/Split Summary Report: FLOW OUT</td>
</tr>
<tr>
<td>split-calls-waiting</td>
<td>The number of calls that have encountered a split but have not been answered, abandoned, or outflowed.</td>
<td>System Status: CALLS WAIT</td>
</tr>
<tr>
<td>split-extension</td>
<td>The administered extension for a split.</td>
<td>None</td>
</tr>
<tr>
<td>split-name</td>
<td>The administered name for a split/skill.</td>
<td>Split Report/Split Status: Split Name System Status: SPLIT</td>
</tr>
</tbody>
</table>
Agent and agent-extension data types (continued)

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Description</th>
<th>BCMS report: field name/column heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>split-number</td>
<td>The administered number for a split/skill.</td>
<td>Split Report/Split Status: Split Name System Status: SPLIT</td>
</tr>
<tr>
<td>split-objective</td>
<td>The administered objective for a split/skill.</td>
<td>None</td>
</tr>
<tr>
<td>split-oldest-call-waiting</td>
<td>The time the oldest call has been waiting for a specific split/skill.</td>
<td>System Status: OLDEST CALL</td>
</tr>
<tr>
<td>split-percent-in-service-level</td>
<td>For a specific split/skill, the percentage of calls answered within the administered service level on the hunt group form.</td>
<td>System Status/Split Report/Split Summary Report: % WITHIN SERVICE LEVEL</td>
</tr>
<tr>
<td>split-total-acd-talk-time</td>
<td>For a specified split/skill, the total time agents spent talking on split/skill calls and direct agent calls for this split.</td>
<td>None</td>
</tr>
<tr>
<td>split-total-after-call-time</td>
<td>The total time an agent spent in call-related ACW for this split/skill and non-call-related ACW for any split/skill during a specific time period, excluding time spent on incoming or outgoing extension calls while in ACW.</td>
<td>Split Report/Split Summary Report: TOTAL AFTER CALL</td>
</tr>
<tr>
<td>split-total-aux-time</td>
<td>The total time an agent spent in AUX mode for this split/skill.</td>
<td>Split Report/Split Summary Report: TOTAL AUX/OTHER</td>
</tr>
<tr>
<td>total-acd-call-time</td>
<td>The total talk time plus the total hold time for split/skill and Direct Agent ACD calls.</td>
<td>None</td>
</tr>
<tr>
<td>total-acd-talk-time</td>
<td>The total time agents spent talking on split/skill calls and direct agent calls.</td>
<td>None</td>
</tr>
<tr>
<td>total-after-call-time</td>
<td>The total time an agent spent in call-related or non-call-related ACW for any split during a specific time period, excluding time spent on incoming or outgoing extension calls while in ACW. (With EAS, all non-call related ACW time is associated with the first skill logged into.)</td>
<td>Agent Report/Agent Summary Report: TOTAL AFTER CALL</td>
</tr>
<tr>
<td>total-aux-time</td>
<td>The total time an agent spent in AUX work for all splits/skills (simultaneously) that the agent was logged into. If an agent entered AUX in one interval, but ended AUX in another, each of the intervals will reflect the appropriate amount of time spent in the interval (agent reports also include OTHER time).</td>
<td>Agent Report/Agent Summary Report: TOTAL AUX/OTHER</td>
</tr>
</tbody>
</table>
ACD contact center switch forms

Agent and agent-extension data types (continued)

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Description</th>
<th>BCMS report: field name/column heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>total-available-time</td>
<td>The time an agent was available in at least one split/skill.</td>
<td>Agent Report: TOTAL AVAIL TIME</td>
</tr>
<tr>
<td>total-hold-time</td>
<td>The total amount of time ACD calls were on hold at a specific agent’s phone.</td>
<td>Agent Report: TOTAL HOLD TIME</td>
</tr>
<tr>
<td>total-staffed-time</td>
<td>The total amount of time an agent was logged into one or more splits/skills during a specific period/day. An agent is clocked for staff time as long as he or she is logged into any split.</td>
<td>Agent Report: TOTAL TIME STAFFED</td>
</tr>
</tbody>
</table>

Split data types

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Description</th>
<th>BCMS report: field name/column heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>acceptable-service-level</td>
<td>The number of seconds within which calls must be answered to be considered acceptable. Identified on a per-hunt group basis. Timing begins when the call enters the hunt group queue.</td>
<td>Split Status/Split Report: Acceptable Service Level</td>
</tr>
<tr>
<td>acd-calls</td>
<td>Split calls and direct agent calls answered by an agent</td>
<td>Split status/VDN Status/Agent Report: ACD CALLS</td>
</tr>
<tr>
<td>after-call sessions</td>
<td>The number of times all agents have entered After Call Work (ACW).</td>
<td>None</td>
</tr>
<tr>
<td>agents-available</td>
<td>The number of agents currently available to receive ACD calls. This includes agents in Auto-In or Manual-In work mode.</td>
<td>Split Status: Avail</td>
</tr>
<tr>
<td>agents-in-after-call</td>
<td>The number of agents currently in ACW mode.</td>
<td>Split Status: ACW</td>
</tr>
<tr>
<td>agents-in-aux-1</td>
<td>The number of agents currently in Aux work mode for Reason Code 1 for the referenced skill.</td>
<td>None</td>
</tr>
<tr>
<td>agents-in-aux-2</td>
<td>The number of agents currently in Aux work mode for Reason Code 2 for the referenced skill.</td>
<td>None</td>
</tr>
<tr>
<td>VuStats data type</td>
<td>Description</td>
<td>BCMS report: field name/column heading</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>agents-in-aux-3</td>
<td>The number of agents currently in Aux work mode for Reason Code 3 for the referenced skill.</td>
<td>None</td>
</tr>
<tr>
<td>agents-in-aux-4</td>
<td>The number of agents currently in Aux work mode for Reason Code 4 for the referenced skill.</td>
<td>None</td>
</tr>
<tr>
<td>agents-in-aux-5</td>
<td>The number of agents currently in Aux work mode for Reason Code 5 for the referenced skill.</td>
<td>None</td>
</tr>
<tr>
<td>agents-in-aux-6</td>
<td>The number of agents currently in Aux work mode for Reason Code 6 for the referenced skill.</td>
<td>None</td>
</tr>
<tr>
<td>agents-in-aux-7</td>
<td>The number of agents currently in Aux work mode for Reason Code 7 for the referenced skill.</td>
<td>None</td>
</tr>
<tr>
<td>agents-in-aux-8</td>
<td>The number of agents currently in Aux work mode for Reason Code 8 for the referenced skill.</td>
<td>None</td>
</tr>
<tr>
<td>agents-in-aux-9</td>
<td>The number of agents currently in Aux work mode for Reason Code 9 for the referenced skill.</td>
<td>None</td>
</tr>
<tr>
<td>agents-in-aux-all</td>
<td>The number of agents currently in Aux work mode for all Reason Codes for the referenced split/skill.</td>
<td>Split Status: AUX</td>
</tr>
<tr>
<td>agents-in-aux-default</td>
<td>The number of agents currently in Aux work mode for the default Reason Code (code 0) for the referenced split/skill.</td>
<td>None</td>
</tr>
<tr>
<td>agents-in-aux-non-default</td>
<td>The number of agents currently in Aux work mode for Reason Codes 1 through 9 for the referenced skill.</td>
<td>None</td>
</tr>
<tr>
<td>agents-in-other</td>
<td>The number of agents who currently: are on a call for another split, are in ACW work mode for another split, have a call on hold but are not in another state, or have a call ringing at their terminal, or are dialing a number from AI/MI mode.</td>
<td>Split Status: Other</td>
</tr>
<tr>
<td>agents-on-acd-calls</td>
<td>The number of agents currently on split/skill or direct agent ACD calls for a specific split.</td>
<td>Split Status: ACD</td>
</tr>
</tbody>
</table>
Split data types (continued)

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Description</th>
<th>BCMS report: field name/column heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>agents-on-extension- calls</td>
<td>The number of agents in a specific split who are currently on non-ACD calls.</td>
<td>Split Status: Extn</td>
</tr>
<tr>
<td>agents-staffed</td>
<td>The number of agents currently logged into the specified split.</td>
<td>Split Status: Staffed</td>
</tr>
<tr>
<td>average-acd-talk-time</td>
<td>The average talk time for ACD calls during a specific period/day for a specified split.</td>
<td>System Status/Split Report: AVG TALK TIME</td>
</tr>
<tr>
<td>average-after-call-time</td>
<td>The average time for call-related ACW completed by agents in this split. Call-related ACW time is recorded when an agent leaves the ACW state. If an agent is in call-related ACW when an interval completes, all of the ACW time will be recorded for the interval in which the agent leaves ACW.</td>
<td>System Status: AVG AFTER CALL</td>
</tr>
<tr>
<td>average-speed-of-answer</td>
<td>The average speed for answering split/skill and direct agent ACD calls that have completed for a specified split/skill during a specified time. This includes queue time and ringing time for this split.</td>
<td>System Status/Split Report: AVG SPEED ANS</td>
</tr>
<tr>
<td>average-time-to-abandon</td>
<td>The average time calls waited before abandoning.</td>
<td>System Status/Split Report: AVG ABAND TIME</td>
</tr>
<tr>
<td>call-rate</td>
<td>The current rate of ACD calls handled per agent per hour for all split/skills.</td>
<td>none</td>
</tr>
<tr>
<td>calls-abandoned</td>
<td>The number of calls that abandoned.</td>
<td>System Status/Split Report: ABAND CALLS</td>
</tr>
<tr>
<td>calls-flowed-in</td>
<td>The total number of calls for a specific split that were received as a coverage point (intraflowed) from another internally-measured split, or were call-forwarded (interflowed) to the split. This does not include calls that were interflowed from a remote switch by the Look Ahead Interflow feature.</td>
<td>Split Report/Split Summary Report: FLOW IN</td>
</tr>
<tr>
<td>calls-flowed-out</td>
<td>The number of calls the split extended to its coverage point, calls that call-forward out or are answered by call pickup, calls that queued to this split as a primary split and were answered or abandoned from ringing in another split.</td>
<td>Split Report/Split Summary Report: FLOW OUT</td>
</tr>
</tbody>
</table>
Split data types (continued)

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Description</th>
<th>BCMS report: field name/column heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>calls-waiting</td>
<td>The number of calls that have encountered a split/skill but have not been answered, abandoned, or outflowed.</td>
<td>System Status: CALLS WAIT</td>
</tr>
<tr>
<td>oldest-call-waiting</td>
<td>The time the oldest call has been waiting in the split/skill. Timing begins when the call enters the split/skill.</td>
<td>System Status: OLDEST CALL</td>
</tr>
<tr>
<td>percent-in-service-level</td>
<td>The percentage of calls offered to the split that were answered within the service level administered on the hunt group form.</td>
<td>System Status/Split Report/Split Summary Report: % IN SERV LEVL</td>
</tr>
<tr>
<td>split-extension</td>
<td>The administered extension for a split.</td>
<td>None</td>
</tr>
<tr>
<td>split-name</td>
<td>The administered name for a split.</td>
<td>Split Report/Split Status: Split Name System Status: SPLIT</td>
</tr>
<tr>
<td>split-number</td>
<td>The administered number for a split.</td>
<td>Split Report/Split Status: Split Name System Status: SPLIT</td>
</tr>
<tr>
<td>split-objective</td>
<td>The administered objective for a split.</td>
<td>None</td>
</tr>
<tr>
<td>total-acd-talk-time</td>
<td>The total time agents spent talking on split/skill calls and direct agent calls for this split.</td>
<td>None</td>
</tr>
<tr>
<td>total-after-call-time</td>
<td>The total time agents spent in call-related or non-call-related ACW for any split during a specific time period.</td>
<td>Split Report/Split Summary Report: TOTAL AFTER CALL</td>
</tr>
<tr>
<td>total-aux-time</td>
<td>The total time agents spent in AUX work mode for all Reason Codes for the referenced split/skill during the administered period.</td>
<td>Split Report/Split Summary Report: TOTAL AUX/OTHER</td>
</tr>
</tbody>
</table>
ACD contact center switch forms

VDN data types

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Description</th>
<th>BCMS report: field name/column heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>acceptable-service-level</td>
<td>The number of seconds within which calls must be answered to be considered acceptable. Identified on a per-VDN basis. Timing begins when the call enters the vector.</td>
<td>VDN Status/VDN Report: Acceptable Service Level</td>
</tr>
<tr>
<td>acd-calls</td>
<td>Split calls and direct agent calls answered by an agent</td>
<td>VDN Status: ACD CALLS</td>
</tr>
<tr>
<td>average-acd-talk-time</td>
<td>The average talk time for ACD calls during a specific period/day for a specified VDN.</td>
<td>VDN Status/Split Report: AVG TALK HOLD</td>
</tr>
<tr>
<td>average-speed-of-answer</td>
<td>The average speed for answering ACD and CONNeCT calls that have completed for a specified VDN during a specified time. This includes time in vector processing.</td>
<td>VDN Status/VDN Report/VDN Summary Report: AVG SPEED ANS</td>
</tr>
<tr>
<td>average-time-to-abandon</td>
<td>The average time calls waited before abandoning.</td>
<td>VDN Status/VDN Report: AVG ABAND TIME</td>
</tr>
<tr>
<td>calls-abandoned</td>
<td>The number of calls that abandoned.</td>
<td>VDN Status/VDN Report/VDN Summary Report: ABAND CALLS</td>
</tr>
<tr>
<td>calls-flowed-out</td>
<td>The total number of calls for a specific VDN that successfully routed to another VDN or off the switch.</td>
<td>VDN Status/VDN Report/VDN Summary Report: FLOW OUT</td>
</tr>
<tr>
<td>calls-forced-busy-or-disc</td>
<td>The number of calls given forced busy or forced disconnect.</td>
<td>VDN Status/VDN Report/VDN Summary Report: CALLS BUSY/DISC</td>
</tr>
<tr>
<td>calls-offered</td>
<td>All calls offered to a VDN, including ACD calls, connected calls, abandoned calls, busy calls (calls that received a busy signal), disconnected calls (calls disconnected by the switch), and outflow calls (calls directed to another VDN or off-switch destination).</td>
<td>VDN Status/VDN Report/VDN Summary Report: CALLS OFFERED</td>
</tr>
<tr>
<td>calls-waiting</td>
<td>The number of calls that have encountered a VDN, but have not been answered, abandoned, or outflowed.</td>
<td>VDN Status: CALLS WAIT</td>
</tr>
<tr>
<td>non-acd-calls-connected</td>
<td>The number of non-ACD calls routed from a specific VDN that were connected to an extension.</td>
<td>VDN Status/VDN Report/VDN Summary Report: CONN CALLS</td>
</tr>
</tbody>
</table>
VDN data types (continued)

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Description</th>
<th>BCMS report: field name/column heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>oldest-calling-waiting</td>
<td>The time the oldest call has been waiting in the VDN. Timing begins when the call enters the vector.</td>
<td>VDN Status: OLDEST CALL</td>
</tr>
<tr>
<td>percent-in-service-level</td>
<td>The percentage of calls offered to the VDN that were answered within the service level administered for the VDN.</td>
<td>VDN Status/VDN Report/VDN Summary Report: % IN SERV LEVL</td>
</tr>
<tr>
<td>total-acd-talk-time</td>
<td>The total time agents spent talking on split/skill calls and direct agent calls.</td>
<td>None</td>
</tr>
<tr>
<td>vdn-extension</td>
<td>The extension of a vector directory number (VDN).</td>
<td>VDN Status/VDN Report: VDN EXT</td>
</tr>
<tr>
<td>vdn-name</td>
<td>The name of a vector directory number (VDN).</td>
<td>VDN Status/VDN Summary Report: VDN NAME</td>
</tr>
</tbody>
</table>

Trunk group data types

<table>
<thead>
<tr>
<th>VuStats data type</th>
<th>Description</th>
<th>BCMS report: field name/column heading</th>
</tr>
</thead>
<tbody>
<tr>
<td>average-incoming-call-time</td>
<td>Average holding time for incoming trunk calls.</td>
<td>Trunk Group: INCOMING TIME</td>
</tr>
<tr>
<td>average-outgoing-call-time</td>
<td>Average holding time for outgoing trunk calls.</td>
<td>Trunk Group: OUTGOING TIME</td>
</tr>
<tr>
<td>incoming-abandoned-calls</td>
<td>Incoming calls abandoned during a specified time period for a specified trunk group.</td>
<td>Trunk Group: INCOMING ABAND</td>
</tr>
<tr>
<td>incoming-calls</td>
<td>Incoming calls carried by a specified trunk group.</td>
<td>Trunk Group: INCOMING CALLS</td>
</tr>
<tr>
<td>incoming-usage</td>
<td>The total trunk holding time for incoming calls in hundred call seconds.</td>
<td>Trunk Group: INCOMING CCS</td>
</tr>
<tr>
<td>number-of-trunks</td>
<td>The number of trunks in a specified trunk group.</td>
<td>Trunk Group: Number of Trunks</td>
</tr>
<tr>
<td>outgoing-calls</td>
<td>The number of outgoing calls carried by a specified trunk group.</td>
<td>Trunk Group: OUTGOING CALLS</td>
</tr>
<tr>
<td>outgoing-completed-calls</td>
<td>The number of outgoing calls that received answer supervision or answer timeout.</td>
<td>Trunk Group: OUTGOING COMP</td>
</tr>
<tr>
<td>VuStats data type</td>
<td>Description</td>
<td>BCMS report: field name/column heading</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>outgoing-usage</td>
<td>The total trunk holding time for outgoing calls in hundred call seconds.</td>
<td>Trunk Group: OUTGOING CCS</td>
</tr>
<tr>
<td>percent-all-trunks-busy</td>
<td>The percent of time all the trunks in a specified trunk group were busy during a specified period/day. Timing for a call begins when the last trunk is seized.</td>
<td>Trunk Group: % ALL BUSY</td>
</tr>
<tr>
<td>percent-trunks-maint-busy</td>
<td>The percent of time trunks were busied out for maintenance during a specified period/day.</td>
<td>Trunk Group: % TIME MAINT</td>
</tr>
<tr>
<td>trunk-group-name</td>
<td>The name administered for a specific trunk group.</td>
<td>Trunk Group: Trunk Group Name</td>
</tr>
<tr>
<td>trunk-group-number</td>
<td>The number administered for a specific trunk group.</td>
<td>Trunk Group: Trunk Group Number</td>
</tr>
<tr>
<td>trunks-in-use</td>
<td>The number of trunks currently in use (not idle).</td>
<td>None</td>
</tr>
<tr>
<td>trunks-maint-busy</td>
<td>The number of trunks currently busied out for maintenance.</td>
<td>None</td>
</tr>
</tbody>
</table>
Chapter 4: Implementing the Time of Day Clock Synchronization feature

MultiVantage R11 (or later) includes a Time of Day (TOD) Clock Synchronization feature which allows you to maintain synchronous clock times across a multi-site contact center network. Maintenance of accurate TOD settings is important for many functions, such as:

- Creation of time stamps for items like error logs, Malicious Call trace records, Avaya BCMS and CMS data
- Scheduling of a large number of diverse task activities on the switch and its adjuncts

This chapter describes how to design and implement a TOD synchronization strategy that is appropriate for your contact center operation. Topics include:

- Tod synchronization methods on page 352
- Using NTP/SNTP to synchronize the switch to UTC time on page 353
- Using Avaya Site Administration to set up a TOD synchronization schedule on page 354
- About NTP/SNTP and Internet Time Servers on page 365
- Setting up ACD offset times for CMS reporting on page 367
TOD synchronization methods

TOD clock synchronization capabilities are available for all Avaya switches running any switch software release that supports Multiple Locations and Daylight Savings rules. TOD clock synchronization is implemented by either of two methods. The method that you choose depends on the type of Avaya switch platform that you need to synchronize.

Using NTP/SNTP to enable direct switch synchronization

In this method, which is available only for certain Avaya switch platforms, individual switches use either the Network Time Protocol (NTP) or Simple Network Time Protocol (SNTP) to synchronize their operating system (OS) clocks with highly accurate Coordinated Universal Time (UTC) from an Internet Time Server. The OS clock time is also used for the switch clock time.

This synchronization method is not described in detail in this document. An overview of the method, including information the switch Avaya switch platforms to which it applies, and where to find more detailed information, is provided in Using NTP/SNTP to synchronize the switch to UTC time on page 353.

This method of time synchronization applies to the following switch platforms:

- Avaya S8100 Media Server
- Avaya S8300 Media Server
- Avaya S8700 Media Server

Scheduling Time Synchronization tasks through Avaya Site Administration

In this method, which is available only for certain Avaya switch platforms, the Avaya Site Administration tool, is used to set up a regularly scheduled synchronization task for switches on a contact center network. The time used to synchronize the switch platforms is obtained from the system clock of the client PC. The recommended practice is to run NTP or SNTP software on the client so that it can be synchronized with UTC time obtained from an Internet Time Server.

This method of time synchronization applies to the following switch platforms:

- DEFINITY G3csi
- Avaya DEFINITY Server CSI
- DEFINITY G3si
- Avaya DEFINITY Server SI
- DEFINITY G3r
- Avaya DEFINITY Server R
Using NTP/SNTP to synchronize the switch to UTC time

Requirements, considerations and procedures associated with this method are described in detail in Using Avaya Site Administration to set up a TOD synchronization schedule on page 354.

Using NTP/SNTP to synchronize the switch to UTC time

This method applies to certain Avaya switches on which the platform OS (Linux or Windows 2000) uses either the Network Time Protocol (NTP) or Simple Network Time Protocol (SNTP) to obtain highly accurate UTC data from an Internet Time Server. The time on the operating system clock, which is continuously adjusted to match polled UTC time, also provides the basis for the switch clock time. This synchronization method is accurate on the order of fractions of a second.

TOD clock synchronization is enabled on the following communication servers when MultiVantage R11 (or later) or Communication Manager R11.3 (or later) are installed:

- IP600
- DEFINITY ONE
- Avaya S8100 Media Server
- Avaya S8300 Media Server
- Avaya S8700 Media Server

When a multi-site network includes switches that use this synchronization method, each of these switches maintains its own separate clock time. However, since all of the switches that use this method maintain settings based on UTC time, and thus essentially identical, clock synchronization is still achieved.

For requirements and procedures associated with this form of clock synchronization, see Administrator Guide for Avaya Communication Manager, 555-233-506.

For more information about NTP/SNTP software, see About NTP/SNTP and Internet Time Servers on page 365.
Implementing the Time of Day Clock Synchronization feature

Using Avaya Site Administration to set up a TOD synchronization schedule

This method for TOD clock synchronization, which applies to certain Avaya switch platforms, uses the Avaya Site Administration tool (release R1.10 or later) installed on a client PC to set up a synchronization task schedule.

In the recommended configuration, Avaya Site Administration is installed on the client PC along with NTP or SNTP software. The client PC is also connected to an Internet Time Server that it polls continuously to obtain UTC time for its system clock. The client clock time is then used to synchronize the clock time of switches on the network through the Avaya Site Administration Time Synchronization feature.

This method applies to the following switch systems:
- DEFINITY G3csi
- Avaya DEFINITY Server CSI
- DEFINITY G3si
- Avaya DEFINITY Server SI
- DEFINITY G3r
- Avaya DEFINITY Server R

On applicable switch platforms that are installed with R10 or earlier, the synchronization command is ignored if the minute time specified for the incoming time is the same as that currently being counted at the switch. Consequently, this synchronization method is only accurate to within 59 seconds or less on switch platforms that are installed with R10 or earlier.

On applicable switch platforms that are installed with R11 or later, if the minute time specified for the incoming synchronization command is the same as that being counted at the switch, the minute count on the switch is set back to the 0-second mark for the minute. When potential network delays are factored in, this method is accurate to within 5 seconds or less for switch platforms that are R11 or later.

Prerequisites, procedures, considerations and an example scenario that describes how to design a TOD synchronization schedule using Avaya Site Administration are described in the following sections:
- Prerequisites on page 355
- Things to know before you set up a synchronization schedule on page 355
- Designing a TOD clock synchronization schedule on page 358
Using Avaya Site Administration to set up a TOD synchronization schedule

- Creating dedicated switch connections on which to run TOD synchronization tasks on page 363
- Setting up a TOD synchronization task schedule in Avaya Site Administration on page 363

For more information about NTP/SNTP see About NTP/SNTP and Internet Time Servers on page 365.

Prerequisites

To implement a TOD clock synchronization schedule through Avaya Site Administration, the following prerequisite conditions must be met:

- Avaya Site Administration (Release R1.10 or later) must be installed on the client, and it must also be running on the client when synchronization runs are scheduled to occur.
- The client PC must be able to establish a LAN or dialup connection to target switch systems when synchronization runs are scheduled to occur.

⚠️ Important:
Before you set up TOD synchronization tasks in Avaya Site Administration, it is strongly recommended that you administer dedicated synchronization connections from Avaya Site Administration to each switch, as described in Creating dedicated switch connections on which to run TOD synchronization tasks on page 363.

- The client PC must have an appropriate SNTP/NTP software program installed, and be connected to an NTP Time Server over the internet. For more information, see About NTP/SNTP and Internet Time Servers on page 365.
- The client PC must be configured so that if Daylight Savings Time is in effect at the client location, the same rule also applies to the PC clock.

Things to know before you set up a synchronization schedule

You must understand the following details before you use Avaya Site Administration to set up a TOD clock synchronization schedule for switches on the network.

Specify offset values in Standard Time equivalents

When you set up a regular schedule for a time synchronization task in Avaya Site Administration, you specify an offset value that reflects the difference in local time between the client PC and a target switch location. Because of the way that Avaya Site Administration handles time synchronization settings, the derivation of offset values requires careful consideration.
Implementing the Time of Day Clock Synchronization feature

Avaya Site Administration uses the `set time` command to synchronize the switch clock time to the clock time of the Avaya Site Administration client. Avaya Site Administration always sends the `set time` command in Standard Time. Depending on the switch software version, one of the following results occur:

- if the receiving switch is installed with R11 (or later), the switch checks the Daylight Savings Rule specified in the `set time` command (which is always Standard Time), and compares it to the existing rule in effect for the switch. If a Daylight Savings Rule other than Standard Time is in effect at the switch, the switch adjusts the incoming synchronization time as necessary.

- if the receiving switch is installed with R10 or earlier, the switch checks the Daylight Savings Rule specified in the `set time` command (which is always Standard Time), and compares it to the existing rule in effect for the switch. If a Daylight Savings Rule other than Standard Time is in effect at the switch, the switch sends an error message back to Avaya Site Administration. When Avaya Site Administration receives the error message from the switch, it automatically corrects the synchronization time to comply with the Daylight Savings Rule on the local PC, and resends the adjusted time back to the switch.

When you calculate offset values to use as input in the Avaya Site Administration Time Synchronization feature, you must do the following:

- If either the client or target switches are located in a time zone where Daylight Savings Time rules are in effect, convert local times to reflect what the time would be if the Standard Time rule was in effect. The best practice is to always normalize switch and client times to Standard Time before you calculate offset values.

- After you normalize the location times to their Standard Time equivalents (if necessary), calculate the offset time as the difference between the local Standard Time at the client and the local Standard Time at the switch. This value is the offset between the PC client and switch that you specify when you use the Avaya Site Administration Time Synchronization feature.

For an example scenario that illustrates the offset calculation method, see Designing a TOD clock synchronization schedule on page 358.

Possible lag between synchronization start times on the client and actual run times at the switch

You can set up multiple TOD clock synchronization tasks to run simultaneously on the client PC. However, synchronization tasks are actually run in sequence. Actual synchronization run times at the switch may vary from the run time specified on the client by several minutes. However, the accuracy of the synchronization setting is not affected.
Expansion port network (EPN) locations do not require synchronization

EPN cabinets that are located in a different time zone from their connecting switch do not require separate TOD clock synchronization. EPNs obtain the synchronized clock time from the switch, which is adjusted according to any settings that are specified in the LOCATIONS administration form. You can use the change multiple locations command to access the LOCATIONS form.

Note:
CMS data is synchronized to the switch time for the ACD from which CMS data is generated. Any Daylight Savings Time rules applied to the switch are also applied to the CMS data.

For more information about the change multiple locations command, see Administrator Guide for Avaya Communication Manager, 555-233-506.

Run synchronization tasks during low-traffic periods

Avaya Site Administration uses the set time command to adjust the switch clock time. Since completion of the set time command can be delayed by heavy switch traffic, the clock synchronization task should be scheduled to run during a low-traffic period on each switch.

Run synchronization tasks in the middle of CMS archive intervals

Avaya CMS is designed to run archives at regular intervals of 15 minutes, 30 minutes, or 1 hour. Synchronization tasks should be scheduled so that they run near the middle of an archive interval. This approach minimizes potential redundancies in archive interval records for an ACD.

Consider a case for an archive interval that begins at 09:00. If a synchronization command is received at the switch and changes the switch clock time to 08:59, a second archive interval begins when the switch clock changes to 09:00 again. In this case, two archive intervals that have the same 09:00 time stamp are recorded. One interval extends from 09:00 to 09:01. The other interval also begins at 09:00, and extends for the normal duration that is specified for archive intervals on the ACD, which is either 15, 30, or 60 minutes.

To avoid situations such as that described above, always schedule synchronization tasks to be run near the middle the archive interval specified for each ACD.

To determine the CMS archive interval length specified for an ACD:

1. Start Avaya CMS Supervisor.
2. From the main menu, select:
 Tools > System Setup
 The CMS System Setup dialog is displayed.
Implementing the Time of Day Clock Synchronization feature

3. Do the following:
 a. In the **Operations** list, select **Storage Intervals**
 b. From the **ACD:** option box, select an ACD for which you want to obtain archive interval information.

4. Select **OK**.
Supervisor displays the **Storage Intervals** window, which includes the archive interval for the ACD.

Designing a TOD clock synchronization schedule

The following example scenario shows how to design an Avaya Site Administration Time Synchronization schedule for a multi-site call network that spans several time zones. The example sites and their respective time zones are shown in the following figure.

Example multi-site contact center network.

![Diagram of contact center network](image)

Notes:
1. Site is not on Daylight Savings Time
2. British Summer Time (BST) is UK Daylight Savings Time (GMT + 1)

The contact center network example in the figure shown above includes four switch locations that are located in different time zones. In this example, all switches and the client are on Daylight Savings Time, with the exception of Switch 2 (Phoenix).

Using Avaya Site Administration to create a TOD synchronization schedule requires careful planning and consideration. The steps described below for the example multi-site scenario represent the most error-free method you can use to design your synchronization schedule.
Determining location offset values

The Avaya Site Administration Time Synchronization feature sends synchronization messages to a switch that are specified in Standard Time using the `set time` command. To calculate offset values that represent the time difference between the Avaya Site Administration client PC and switch locations, all location times should be normalized to their Standard Time equivalents.

⚠️ Important:
Always calculate offset values based on comparisons between Standard Time equivalents. Otherwise, if Daylight Savings Time rules are not the same for the Avaya Site Administration PC client location and a target switch location, significant synchronization errors can result.

The following table uses the switch locations described in the example scenario to derive correct offset values for the client PC and switch locations.

Note:
The local times listed in the table are arbitrary in nature, and are intended only to illustrate the time differences between locations. You can use any set of relative location times for this purpose.

Example offset calculations used in Time Synchronization scheduling

<table>
<thead>
<tr>
<th>Local Time / Normalized Standard Time</th>
<th>Calculated offset value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avaya Site Administration Client PC (New York)</td>
<td>Switch 1 (New York)</td>
</tr>
<tr>
<td>Local time: 06:00 EDST</td>
<td>Local time: 06:00 EDST</td>
</tr>
<tr>
<td>Adjusted Standard Time: 05:00 EST</td>
<td>Adjusted Standard Time: 05:00 EST</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Client PC (New York)</td>
<td>Switch 2 (Denver)</td>
</tr>
<tr>
<td>Local time: 06:00 EDST</td>
<td>Local time: 04:00 MDST</td>
</tr>
<tr>
<td>Adjusted Standard Time: 05:00 EST</td>
<td>Adjusted Standard Time: 03:00 EST</td>
</tr>
<tr>
<td>-2</td>
<td></td>
</tr>
</tbody>
</table>
Example offset calculations used in Time Synchronization scheduling (continued)

<table>
<thead>
<tr>
<th>Local Time / Normalized Standard Time</th>
<th>Calculated offset value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client PC (New York)</td>
<td>Switch 3 (Phoenix)</td>
</tr>
<tr>
<td>Local time: 06:00 EDST</td>
<td>Local time: 03:00 MST</td>
</tr>
<tr>
<td>Adjusted Standard Time: 05:00 EST (New York)</td>
<td>Adjusted Standard Time: 03:00 MST</td>
</tr>
<tr>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>Client PC (New York)</td>
<td>Switch 4 (London)</td>
</tr>
<tr>
<td>Local time: 06:00 EDST</td>
<td>Local time: 11:00 BST</td>
</tr>
<tr>
<td>Adjusted Standard Time: 05:00 EST</td>
<td>Adjusted Standard Time: 10:00 BST</td>
</tr>
<tr>
<td>+5</td>
<td></td>
</tr>
</tbody>
</table>

The table shown above demonstrates the importance of normalizing all local times to Standard Time when calculating time offsets. The unadjusted time difference between Denver and New York is 2 hours, and the calculated offset is minus 2 hours.

However, despite the fact that the unadjusted time difference between New York and Phoenix is 3 hours, the calculated offset is also minus 2 hours - the same offset value that is calculated for New York and Denver.

Determining synchronization run times

After you have calculated accurate offset values, you can determine when the synchronization task should be scheduled to run on the Avaya Site Administration client PC. Again, the most reliable method is to normalize all local times to Standard Time equivalents.

The following table shows how to obtain synchronization task run times from the switch locations used in this example. The task run times represent the values that would be entered in the Scheduler dialog in Avaya Site Administration.
Note:
You should always establish clock synchronization run times on the basis of low-traffic time intervals for the switch. In the following example, a single local switch time is used as the synchronization run time for all of the switches. In actual practice, low-traffic periods for switches in a multi-site network may not always be the same for each switch location.

Example derivation of synchronization task run time on the Avaya Site Administration client PC

<table>
<thead>
<tr>
<th>Local Time / Normalized Standard Time for synchronization at switch location¹</th>
<th>Client / Switch Offset ²</th>
<th>Synchronization run time set on client PC³,⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch 1 (New York)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local synchronization run time:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:07 EDST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted Standard Time:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:07 EST</td>
<td>0</td>
<td>2:07 AM</td>
</tr>
<tr>
<td>Switch 2 (Denver)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local synchronization run time:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:00 MDST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted Standard Time:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:07 EST</td>
<td>-2</td>
<td>0:07 AM</td>
</tr>
<tr>
<td>Switch 3 (Phoenix)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local time:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:07 MST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted Standard Time:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:07 MST</td>
<td>-2</td>
<td>1:07 AM</td>
</tr>
</tbody>
</table>
Example derivation of synchronization task run time on the Avaya Site Administration client PC (continued)

<table>
<thead>
<tr>
<th>Local Time / Normalized Standard Time for synchronization at switch location(^1)</th>
<th>Client / Switch Offset (^2)</th>
<th>Synchronization run time set on client PC(^3,4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch 4 (London)</td>
<td>03:07 BST</td>
<td>8:07 AM</td>
</tr>
</tbody>
</table>

1. Synchronization run times should occur during low traffic periods at the switch. In this example, the simplifying assumption is made that a single low-traffic time (at the switch) is common to all switch locations. This assumption may not be true for all contact center operations.

2. Listed offset values are those that were derived in Example offset calculations used in Time Synchronization scheduling on page 359.

3. If the PC client clock is currently set to DST rules, add 1 hour to the synchronization start time that you specify in the Avaya Site Administration Schedule dialog. If the PC client and switch locations do not use the same DST rules, see Special considerations for synchronization start times on page 362.

4. Run times entered in the Schedule dialog of the Avaya Site Administration Time Synchronization feature must be specified in 12-hour, AM/PM time format.

Special considerations for synchronization start times

If the PC client and switch locations do not use the same DST rules, actual synchronization run times will vary by an hour over the course of the year. Depending on how DST rules between the switch and client PC vary, the actual synchronization run time at the switch will occur either one hour earlier or later than the time specified in Avaya Site Administration. The following basic rules apply:

Note:

The exceptions described below relate to synchronization start times, only. As long as offsets are calculated correctly, as described in Determining location offset values on page 359, the start time exceptions listed below have no effect on the accuracy of the synchronization.

- When DST is in effect at the switch, but not at the PC client, the actual synchronization run time at the switch will occur 1 hour later than the run time that is specified on the client PC.
Using Avaya Site Administration to set up a TOD synchronization schedule

- When DST is in effect at the PC client, but not at the switch, the actual synchronization run time at the switch will occur 1 hour earlier than the synchronization run time that is specified on the client PC.

Creating dedicated switch connections on which to run TOD synchronization tasks

Before you set up a TOD synchronization task, or any other kind of automated tasks, you should create dedicated connections from Avaya Site Administration to each target switch. After you set up a connection dedicated to run automatic tasks,

Setting up a TOD synchronization task schedule in Avaya Site Administration

To set up a TOD clock synchronization schedule for a switch on your contact center network:

1. Start Avaya Site Administration on the client PC, and select a switch from the pull-down list on the main toolbar.
2. In the browser pane located to the right side of the main application window, select the Fault & Performance tab.
3. Select the Time Synchronization option.
 The Time Synchronization - Properties dialog is displayed.
4. In the Time Synchronization - Properties dialog:
 - If the target switch is located in a different time zone, check the Offset option, and specify the time offset between the client PC and the switch.
 - Click Next.
 The Time Synchronization - Schedule dialog is displayed.
5. In the Time Synchronization - Schedule dialog:
 - Check the Schedule this task to run option.
 - Click the Schedule button.
 The Scheduler dialog is displayed.

Important:
When different Daylight Savings Time rules are in effect at the Avaya Site Administration client location and a target switch location, synchronization errors can result if you do not calculate offset values based on Standard Time equivalents. For a description of the method used to calculate accurate offset values, see Example offset calculations used in Time Synchronization scheduling on page 359.

Note the offset factor that you specify, which is also used in step 6.

- Click Next.
The Time Synchronization - Schedule dialog is displayed.
Implementing the Time of Day Clock Synchronization feature

6. Do the following in the **Scheduler** dialog:

⚠️ **Important:**

The synchronization task should be scheduled to run during a low-traffic period at the switch. Execution of the synchronization command can be delayed by heavy switch traffic.

a. In the **Date** field, click the arrow to pull down the calendar, and select a day on which the synchronization task will start.

b. In the **Time** field, enter the time of day that you want the synchronization task to run. The time you specify in this field is the PC client time, and not the time at the target switch. To determine the correct time to enter in the **Time** field, do the following:

i. Determine what the local time will be at the switch when the synchronization runs. If necessary, adjust this time to its Standard Time equivalent, as described in *Example derivation of synchronization task run time on the Avaya Site Administration client PC* on page 361.

ii. Subtract the offset factor that you used in step 4 from the switch run time that you derived in the preceding substep. The time you calculate is the run time on the client expressed in Standard Time. If Daylight Savings Time is in effect at the client PC, increase the time by 1 hour to account for Daylight Savings Time. For more information, see *Example derivation of synchronization task run time on the Avaya Site Administration client PC* on page 361.

Also, if the client PC and the target switch time use the same DST rules, see *Special considerations for synchronization start times* on page 362.

iii. Enter the calculated **Time** field.

c. Select a **Recurrence Pattern** option (Frequent, Weekly or Monthly) and provide the time parameters specified with that option.

Note:

If you select the **Frequent** option, the recommended practice is to set the task to run at 24 hour intervals.

d. Click **OK**.

The **Time Synchronization - Schedule** dialog is displayed again.

e. Verify the synchronization schedule information that you provided and click **Next**.

The **Time Synchronization - Summary** window is displayed.

f. Click **Finish**.

7. Repeat steps 1 through 6 for any other switches that need to be synchronized using this method.
About NTP/SNTP and Internet Time Servers

The Network Time Protocol (NTP) synchronizes the system time on a computer to that of an Internet Time Server that has been synchronized to a reference source, such as radio, Global Positioning Service (GPS) receiver that provides Coordinated Universal Time (UTC). Communication with the Internet Time Server is maintained either by a dialup modem or direct LAN connection.

The Simple Network Time Protocol (SNTP) is a basic version of NTP that allows for a greater degree of error, but can still deliver time to an accuracy on the order of fractions of a second.

SNTP on switch platforms that support direct synchronization

The following Avaya switch platforms can use SNTP software on the platform operating system to directly synchronize the switch clock to UTC time that is obtained from an Internet Time Server:

- Avaya IP600
- DEFINITY One
- Avaya S8000 Media Server
- Avaya S8300 Media Server
- Avaya S8700 Media Server

The platforms listed above include either Red Hat Linux or Windows 2000 as the platform operating system. The following recommendations and conditions are in effect for SNTP configuration on these systems:

- For Linux platforms, Avaya recommends that the IP addresses for at least three different Internet Time Servers be configured. The following web site provides a list of time servers:

 http://www.eecis.udel.edu/~mills/ntp/servers.htm

- For Linux platforms, go to the following web sites for information about how to obtain NTP/SNTP software:

 http://www.ubr.com/clocks/timesw/timesw.html
 http://www.ntp.org/software/index.html

- Linux platforms support the authentication/encryption mode provided in NTP/SNTP version 3 or later support. This capability is not enabled by default.

- Windows 2000 platforms can use only one SNTP client (W32Time), which limits UTC polling to one Internet Time Server IP address at a time. For more information, see the Microsoft Windows 2000 documentation. Search for the keywords “Window Time Service.”
Implementing the Time of Day Clock Synchronization feature

- Windows 2000 platforms use the W32Time service for SNTP functions. This service does not support an authentication/encryption mode for the SNTP protocol.
- W32Time service allows optional polling of a Microsoft network domain controller as the primary time server. Avaya does not support this configuration.

SNTP on platforms that synchronize through an Avaya Site Administration client PC

The following Avaya switch platforms must use the Avaya Site Administration Time Synchronization feature to maintain switch synchronization:
- DEFINITY G3csi
- DEFINITY G3si
- DEFINITY G3r
- Avaya S8100 Media Server
- Avaya S8200 Media Server
- Avaya S8500 Media Server

The following web site provides a list of time servers:
http://www.eecis.udel.edu/~mills/ntp/servers.htm

The following web sites provide information about how to obtain NTP/SNTP software for the Avaya Site Administration client PC:
http://www.ubr.com/clocks/timesw/timesw.html
http://www.ntp.org/software/index.html
Setting up ACD offset times for CMS reporting

The time stamp for CMS data is obtained from the local switch on which the data is generated. When a CMS system includes ACDs that are located in different time zones, time zone differences are reflected in CMS reports based on unadjusted data. However, you can use Avaya CMS Supervisor to adjust CMS data derived from remote ACDs in a way that allows you to view data from different time zones in a common time format. This provides you with a more convenient way to view and assess simultaneous contact center activity across time zones.

To adjust CMS data to reflect a common time format, you must:

- Designate a master ACD
- Determine the appropriate offsets for each remote ACD, as necessary
- Set the switch time zone offset values for each ACD in the CMS Supervisor Storage Windows dialog.

Offset procedure

To use Supervisor to set switch time zone offset values for CMS report times:

1. In the main Supervisor Controller window, select:
 Tools > System Setup
 The CMS System Setup Window is displayed.
2. In the CMS System Setup window, do the following:
 a. Select the Operations tab
 b. From the displayed list, select Storage Intervals
 c. In the ACD field, select an ACD
 d. Select OK
 The Storage Intervals window is displayed.
3. In the Switch time zone offset (-23 to +23) field, enter an offset value that reflects the time difference between the target ACD and the designated master ACD.

Note:

For instructions on specifying the master ACD, see “Changing the master ACD,” in “Chapter 10: Configuring CMS Settings” in Avaya CMS Administration, 585-215-515.
4. From the main menu, select:

 Actions > Modify

5. Repeat the procedure for any other ACDs for which a switch time zone offset is required.
Appendix A: Recorded announcements

The Recorded Announcement feature provides an announcement to callers under a variety of circumstances. For example, announcements let callers know that their call is in queue or that the lines are busy.

This appendix gives you extended information about using the recorded announcement feature of the switch. The main topics in this appendix are:

- Administering recorded announcements on page 370
- Recorded announcement types on page 371
- When to use recorded announcements on page 374
- About barge-in on page 375
- Integrated announcements and announcements recorded on external devices on page 376
- Procedures for recorded announcements (TN2501AP) on page 378
- Procedures for recorded announcements (TN750, TN750B, TN750C and TN2501AP circuit packs, and G700 VVAL) on page 379
- Recorded announcements, the ACD, and other contact center features on page 382
- Recorded announcements and automatic wakeup on page 382

Refer to the “Managing announcements” and “Recorded announcements” chapters in the Administrator Guide for Avaya Communication Manager, 555-233-506, for instructions on adding, recording, saving, copying, restoring, and deleting announcements.
Administering recorded announcements

The following table lists the forms that you will use to administer announcements.

Required forms

<table>
<thead>
<tr>
<th>Form</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Announcements/Audio Sources (includes Integrated Announcement Translations)</td>
<td>All</td>
</tr>
<tr>
<td>Feature Access Code (FAC)</td>
<td>Announcement Access Code</td>
</tr>
<tr>
<td>Station</td>
<td>COS</td>
</tr>
<tr>
<td>Data Modules (for Save/Restore/Copy)</td>
<td>All</td>
</tr>
<tr>
<td>Netcon Data Module</td>
<td></td>
</tr>
<tr>
<td>System Port Data Module (SAP)</td>
<td></td>
</tr>
<tr>
<td>announcement Data Module</td>
<td></td>
</tr>
<tr>
<td>Circuit Packs(^1)</td>
<td>All</td>
</tr>
<tr>
<td>Feature-Related System Parameters(^2)</td>
<td>DID/Tie/ISDN Intercept Treatment</td>
</tr>
<tr>
<td></td>
<td>Controlled Outward Restriction Intercept Treatment</td>
</tr>
<tr>
<td></td>
<td>Controlled Termination restriction (Do Not Disturb)</td>
</tr>
<tr>
<td></td>
<td>Controlled Station-to-Station Restriction</td>
</tr>
<tr>
<td>Hospitality(^2)</td>
<td>Announcement Type</td>
</tr>
<tr>
<td></td>
<td>Length of Time to Remain Connected to Announcement</td>
</tr>
<tr>
<td>Trunk Groups (All)(^2)</td>
<td>Incoming Destination</td>
</tr>
<tr>
<td>Coverage Path(^2)</td>
<td>Coverage Points</td>
</tr>
<tr>
<td>Hunt Group(^2)</td>
<td>First Announcement Extension</td>
</tr>
<tr>
<td></td>
<td>Second Announcement Extension</td>
</tr>
<tr>
<td>Call Vector(^2)</td>
<td>All fields that require announcements</td>
</tr>
</tbody>
</table>

1. You only need to complete the Circuit Pack form if you administer the Board Location on the Announcements/Audio sources form or Data Module form and do not have the circuit pack plugged in.

2. You only need to complete this form if you plan to use Recorded Announcements with the form’s associated feature. For example, if you want to use announcements with the Hospitality features, you need to complete the Hospitality form.
Recorded announcement types

The switch supports several recorded announcement types. Each support announcement type is described below.

Analog line types

If you are using an analog line, then it is required that you use an external announcement machine for recorded announcements. The external announcement machine must be connected by an analog line port.

Analog

The analog announcement type provides an analog voice terminal interface via an analog line port for use with an announcement/audio source device that emulates analog voice terminals. The switch starts playback by applying ringing; the device indicates playback has stopped by going on-hook (opening the loop). The switch does not indicate to the device to stop playback. Use the analog type for announcements that play for a specific period and then go on-hook at the end. When the device goes on-hook to indicate that the playback ended, the caller listening to the announcement hears a click. (See ds1, aux-trk, or integrated types for alternative types).

Analog-fd

Like the analog type, analog-fd provides an analog line interface and ringing starts the playback. However, a forward disconnect signal (open loop for about one-half second) is sent to the device to stop playback when there are no callers left to hear it.

Analog-m

Like the analog type, analog-m provides an analog line interface. However, ringing is not applied to start playback. Use this type for continuous playing music or audio sources. The device stays in an off-hook state when active and goes on-hook when it is not playing, is turned off, or is disconnected. This announcement type is used when the Q field is set to b to provide barge-in repeating or continuous-play announcements.

DS1 types

The DS1 types provide analog-like interfaces via DS1 line ports, which are called Line Side DS1 or Line Side T1. Each of these types indicate to the announcement, music, or audio-source device to start playback via the Line Side T1 equivalent of ringing. The DS1 types also expect off-hook from the device to indicate that the playback is active and on-hook to indicate that the playback is not active.
Recorded announcements

The ds1-id and ds1-sa types provide a forward disconnect via transitions of the “A” signaling bit to the device, which indicates when playback should be stopped. Callers listening to announcements do not hear clicks when the device disconnects (goes on-hook).

ds1-fd

The ds1-fd announcement type provides an EIA/TIA foreign-exchange (FX) type DS1 interface. The forward disconnect signal is a toggle of the “A” bit from 0 to 1 and then back to 0 after 600 msecs. This type is used for Conversant Line Side T1 ports when they are used as an analog-like announcement device and is the recommended method for interfacing.

ds1-sa

The ds1-sa announcement type provides an EIA/TIA special-access type DS1 interface. The forward disconnect signal is a toggle of the “A” bit from 1 to 0 and then back to 1 after 600 msecs.

ds1-ops

The ds1-ops announcement type provides an EIA/TIA off-premises-station type DS1 interface that is used when the device does not support forward disconnect.

Auxiliary trunk types

The Auxiliary Trunk announcement type supports an external announcement machine connected via a 4-wire auxiliary trunk interface, such as a 15A announcement system. The switch indicates to the device to start or stop the playback on the S lead; the device indicates that the playback is active on the S1 lead.

aux-trunk

Use the aux-trunk (auxiliary trunk) announcement type with a 4-wire interface external device when the playback is to be stopped and started by way of the S1 lead and S1 is used by the device to indicate playback started.

aux-trk-m

Use the aux-trk-m (auxiliary trunk music) with a 4-wire interface device for continuously playing music or audio sources that do not indicate that playback is active on the S1 lead. This announcement type is used when the Q field is set to b to provide barge-in repeating or continuous-play announcements.
Integrated types

The integrated announcement type stores announcements internally on the switch on an Integrated Announcement circuit pack (TN750, TN2501AP, or co-resident). Co-resident integrated announcement circuitry is included with the Avaya S8000 and S8300 media servers.

The TN750 circuit pack has 16 ports and the TN2501AP circuit pack has 31 ports that are available for playing announcements. This is the recommended source for VDN of Origin Announcements and other general and ACD announcement needs.

integrated

Use the integrated announcement type for announcements that are stored on the switch in TN750, TN2501AP, or co-resident announcement circuit packs. This announcement type is recommended for general, ACD, and vectoring announcements and for VDN of Origin Announcements.

integ-rep

The integ-rep (integrated-repeating) announcement type is used to provide integrated, repeating automatic wakeup announcements and is implemented along with the multi-integ hospitality announcement type setting.
When to use recorded announcements

The most common applications for recorded announcement include:

- DID calls cannot be completed as dialed.
- Incoming private-network access calls cannot be completed as dialed.
- Calls enter a split or skill (first announcement).
- DDC, UCD, or direct-agent calls have been in queue for an assigned interval.
- ACD and Call Vectoring calls have been in queue for an assigned interval.
- A call’s destination is a recorded-announcement extension.
- A call routes to a vector that contains an announcement step.
- An announcement extension is specified as a coverage point.
- An announcement is the incoming destination of a trunk group.
- VDN of Origin announcement.
- Security violation notification.
- The Hospitality Automatic Wakeup feature is in use.
About barge-in

Normally, the system connects multiple callers to the beginning of an announcement, regardless of announcement type. However, you can also administer auxiliary trunk announcements, DS1 announcements, and integrated announcement to allow callers to begin listening to an announcement after the system has begun playing its message. This capability is called “barge-in.”

Barge-in operational details

When you administer “barge-in” by setting the Q field to b, only one port plays the announcement at any one time. When the system routes a call to that announcement, the call immediately connects to the port and the caller hears the announcement as it is playing. Most administrators administer barge-in announcements to repeat continually while callers are connected to the port. In this way, the caller listens until the system plays the entire announcement.

Non-barge-in operational details

If an announcement port is available when a call arrives, the system connects the call to the announcement.

If an announcement port is not available and the announcement is administered with “no” as the queue option, the call does not enter the queue for the announcement and the caller hears busy or other feedback, depending upon how the announcement was accessed.

If an announcement port is not available and the announcement is administered with ‘yes” as the queue option, the call enters the announcement queue. When a port becomes available, the switch connects the calls waiting in the queue to the beginning of the announcement. The system first connects the call that has been waiting in queue the longest and then connects as many calls as it can.
Integrated announcements and announcements recorded on external devices

Recorded Announcement allows you to administer either integrated announcements or announcements recorded on external devices. The external devices connect to the switch via analog line circuit packs or auxiliary trunk interfaces, such as a TN2183 or a TN763.

The system stores an integrated announcement on a TN750, TN750B, TN750C, or TN2501AP integrated-announcement circuit pack. The system can store multiple announcements on each circuit pack up to the system capacity.

Note:
The TN750C is replaced with the TN2501AP effective with DEFINITY R9.5.
A mixture of TN750C and TN2501AP circuit packs is supported.

Each TN2501AP integrated-announcement circuit pack allows up to 1 hour of uncompressed voice storage, has 31 playback ports (can play up to 31 simultaneous announcements) and 1 dedicated port for telephone access to be used for recording and playback. The TN2501AP is connected to the customer LAN to enable announcement file transfers to take place by way of FTP from a computer. Announcements are RIFF wave files that are recorded as CCITT u-law/a-law, 8kHz, 8-bit mono files using a utility such as Microsoft’s Sound Recorder on a computer or using an Avaya switch telephone.

Each TN750 circuit pack has 16 ports and can play up to 16 simultaneous announcements. The switch can connect multiple users to each of these announcements.

Any announcement stored on a a circuit pack can play through any port on the circuit pack. Any announcement (not administered for barge-in) can play simultaneously through multiple ports. For instance, all 31 ports on the TN2501AP can play the same announcement at the same time.

You must set the Q field to y on the Announcements/Audio Sources form for each extension that you want to queue for Integrated Announcements. Calls that hear integrated announcements at extensions that have queue assigned only queue when all of the ports on the circuit pack that contains the announcement are busy. The TN750 has 16 ports and the TN2501AP has 31 ports. The same queueing pool is used over all boards. The switch controls the announcement queue length for integrated announcements, but you must set the queue length for analog or aux-trunk announcements.

Single integrated announcement boards

When your switch has one integrated announcement circuit pack, the circuit pack can be a TN2501AP, TN750, a TN750B, or a TN750C.
Integrated announcements and announcements recorded on external devices

TN750 and TN750B

You need to back up a TN750 or TN750B in the following situations:

- Before someone removes a TN750 or TN750B from the switch
- Before someone shuts down power to the switch.

In both situations, the system loses any announcements stored on the circuit pack. Therefore, you need to backup announcements stored on the TN750 or TN750B circuit packs to the Mass Storage System (MSS). When someone inserts or resets a circuit pack, or when someone powers up the system, the switch checks the circuit pack for announcements. If the system determines that there are no announcements on the circuit pack, then it automatically restores the announcements from the MSS. Only one TN750 can be stored in MSS.

⚠️ CAUTION:

The announcements from MSS that are automatically restored are the last announcement saved to MSS. If multiple circuit packs are used, MSS might not contain the announcement for the B or A circuit pack.

TN2501AP and TN750C

The TN750C circuit pack has on-board FLASH memory backup, which substantially reduces the time required for power-up restore and eliminates the need for a manual save of the circuit pack contents.

The system retains announcements on the circuit packs, even when someone removes the circuit pack or when the system loses power. Therefore, the TN2501AP and the TN750C do not require the save and restore procedure. However, you can still use the save and restore procedure to copy the contents of a TN750C to another circuit pack.

Note:

The contents of the TN2501AP cannot be saved to the MSS. To copy the contents of the TN2501AP, use FTP to transfer the information to a computer for storage.

Multiple integrated announcement circuit packs

Multiple integrated announcement circuit packs can be installed in Avaya switch platforms. However, only one of these circuit packs can be a TN750 or a TN750B. Any additional circuit packs must be TN2501AP or TN750C circuit packs.

⚠️ CAUTION:

Do not copy announcements from a TN750C to a TN750 or TN750B. This action may corrupt the announcement data.
Recorded announcements

Compression rates

Two options are available with the TN2501AP circuit pack, a high-end offer and a low-end offer. The offer is set by way of the VAL Full 1-Hour Capacity and the Maximum VAL Boards fields on the Customer Options form. Administrator Guide for Avaya Communication Manager, 555-233-506 for details.

With the high-end TN2501AP circuit pack offer, up to 1 hour of uncompressed recorded announcements can be stored on each circuit pack.

With the low-end TN2501AP circuit pack offer, up to 10 minutes of uncompressed recorded announcements can be stored on each circuit pack. Compression is not supported with the TN2501AP circuit pack.

The system stores integrated announcements on the TN750 at a compression rate of 32 Kbps. The system can store integrated announcements at one of three compression rates on the TN750B and TN750C circuit packs. You administer the compression rate separately for each announcement extension. In this way, the system can store announcements with different compression rates on the same circuit pack. During playback, the switch sets the port to the correct compression rate for the announcement that is playing.

- A 64-Kbps compression rate allows for 128 seconds of recorded announcement per circuit pack.
- A 32-Kbps compression rate allows for 256 seconds of recorded announcement per circuit pack. This is the default compression rate.
- A 16-Kbps compression rate allows for 512 seconds of recorded announcement per circuit pack. The 16-Kbps rate does not provide a high-quality recording. It is not recommended for customer announcements, but is adequate for VDN of Origin announcements.

Procedures for recorded announcements (TN2501AP)

You can transfer to and from a computer or delete announcement files over the LAN for the TN2501AP using the Voice Announcement over the LAN Manager software or using an FTP client in conjunction with SAT commands.

Announcements for the TN2501AP circuit pack can also be recorded using the procedures discussed below. For additional information, see Administrator Guide for Avaya Communication Manager, 555-233-506.
Use these procedures to record announcements on the TN750, TN750B, TN750C and TN2501AP circuit packs, as well as for G700 Gateway embedded VAL announcements (referred to herein as virtual VAL or VVAL).

You can record, play back, or delete integrated announcements by initiating an announcement session. To do this, you must have console permissions assigned to your Class of Service (COS) for the internal station or Remote Access barrier code in order to initiate an announcement session.

Announcement sessions always use port 0, which is also used for playing announcements, on the TN750 circuit packs. Announcement sessions always use port 1, which is dedicated for telephone access on the TN2501AP circuit packs. With the TN2501AP circuit pack or G700 VVAL, the port is only busy if another telephone access session is active to the same board.

To begin an announcement session, the user must dial the administered feature access code (FAC) followed by the announcement extension. If an announcement session is already in progress, or if a save or restore command is in progress, then the user hears reorder tone (fast busy) and the system drops the call.

If the telephone session port to an integrated board is in use, then the user hears reorder tone followed by silence. This indicates that the port will be reserved for an announcement session. The user should redial the FAC and extension every 45 seconds to gain access to the port.

Note:

For Multivantage Release 1 (or later), multiple telephone sessions are allowed, with one session associated with each active integrated announcement board.

Once an end user accesses an announcement session, the user can dial 1 to record an announcement, 2 to play an announcement, or 3 to delete an announcement. If the circuit pack memory is more than 90% full, then the switch gives stutter dial tone when the user gains access to an announcement session. Even if the user hears stutter tone, the user should begin speaking to record the announcement.
Recorded announcements

Record the announcement
If the you dial 1, the switch attempts to start a recording session and you will receive one of the following outcomes:

- If an announcement already exists and is protected (designated as protect = y), then you will hear an intercept tone. Hang up and record your announcement on an extension that is assigned to a different board.
- If the announcement is currently being played to callers, then you will hear the reorder tone.
- If the switch is starting the recording session, then you will hear a record tone and can begin recording the announcement.

Stop recording the announcement
Depending on the type of phone you are using, use one of the following methods to stop the recording after the announcement is complete:

If you are using a hybrid or digital telephone - Dial # to end the recording. Ending the recording with a # returns you to the dial tone, allowing a playback, delete, or record over operation to be requested. The # tones or a click sound produced when you hang up are not recorded. If the circuit pack memory becomes full during recording, you will hear a reorder tone, the system will drop you, and the announcement is not retained.

If you are using an analog telephone - Hang up. Otherwise, ending with a # puts the tone in the message. If you are using an analog telephone that is not connected via lineside T1 (DS1 type), then the system records a click when you hang up. After hanging up, you must redial the FAC plus announcement extension to start a new recording session. If the circuit pack memory becomes full during recording, you will hear a reorder tone, the system will drop you, and the announcement is not retained.

Play back the announcement
After you complete a recording and hang up, do not immediately dial the extension. The new announcement remains busy for approximately 15 seconds. The new announcement can be played back by dialing the FAC, the announcement extension, and 2 before the 15 second timer expires.

Upon completion of the recording session (drop), the switch sets a 15-second timer. During this interval, the system restricts you to one of two tasks: to listen to the announcement just recorded or to record another announcement.

If you want to listen to the announcement before it is available to others, then dial the FAC, the extension, and 2. The announcement plays and then generates dial tone. You can then perform another operation, such as record a message.
Delete the announcement

If you dial the FAC, the extension, and then 3, the switch deletes the announcement and you hear a confirmation tone. If the announcement is protected or is currently being played, then the system does not delete the announcement and you will hear a reorder tone.
Recorded announcements

Recorded announcements, the ACD, and other contact center features

Recorded announcements are used extensively for ACD, Call Vectoring, Call Prompting, Expert Agent Selection, VDN of Origin Announcement, Direct Department Calling, and UCD features. See the individual features for interaction details.

Recorded announcements and automatic wakeup

Recorded announcements allow Automatic Wakeup to use the built-in TN750B or later announcement circuit pack in place of the Audichron adjunct.

If you use an integrated, multiple integrated, or external type of announcement for Automatic Wakeup, then you can also administer the announcement to repeat (with the integ-rep announcement type) and to allow barge-in as a queue type. The benefit of repeating announcements and barge-in queues is that you do not need to use a separate port for each wakeup announcement. When guests go off-hook to receive an announcement at a particular time, they use only one port and the message repeats on the port until the last guest goes off-hook and the message ends.
Appendix B: Administering VRUs/IVRs as station ports

When Voice Response Units (VRUs) or Interactive Voice Response Units (IVRs) are used in a contact center as station ports in a hunt group or in an ACD split/skill, either as a non-vector controlled split or accessed via the converse, queue-to, or route-to command, the station ports must be administered on the station form with the “type” required by the VRU/IVR ports. The types for VRU/IVR ports supported by Avaya switches are:

<table>
<thead>
<tr>
<th>Type VRU/IVR ports</th>
<th>Forward disconnect needed</th>
<th>C&D tones(^1) support needed</th>
<th>Station type to use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>analog “T&R”</td>
<td>NA</td>
<td>no</td>
<td>2500</td>
<td>Standard station set interface(^2).</td>
</tr>
<tr>
<td>analog “T&R”</td>
<td>NA</td>
<td>yes</td>
<td>VRU</td>
<td>Provides standard station set interface(^2) with C&D tones support via the switch DTMF Feedback Signals feature.</td>
</tr>
<tr>
<td>lineside DS1/DS0 or lineside T1/E1(^3)</td>
<td>no</td>
<td>no</td>
<td>ops</td>
<td>OPS is a DS1 type that provides an EIA/TIA off-premises station type DS1 interface used where the device does not require or support forward disconnect.</td>
</tr>
<tr>
<td>lineside DS1/DS0 or lineside T1/E1</td>
<td>yes</td>
<td>no</td>
<td>ds1fd</td>
<td>ds1fd provides an EIA/TIA foreign-exchange (FX) type DS1 interface. The forward disconnect signal is a toggle of the “A” bit from 0 to 1 and then back to 0 after 600 msecs. This type is used for Conversant Line Side T1/E1 ports when used as an analog-like VRU device and is the recommended method for interfacing.</td>
</tr>
<tr>
<td>lineside DS1/DS0 or lineside T1/E1</td>
<td>yes</td>
<td>yes</td>
<td>VRUF D</td>
<td>VRUFD is the same as ds1fd, except C&D tone support is provided. This type of administration is not used for Conversant.</td>
</tr>
</tbody>
</table>
Administering VRUs/IVRs as station ports

<table>
<thead>
<tr>
<th>Type VRU/IVR ports</th>
<th>Forward disconnect needed</th>
<th>C&D tones (^1) support needed</th>
<th>Station type to use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lineside DS1/DS0 or lineside T1/E1</td>
<td>yes</td>
<td>no</td>
<td>ds1sa</td>
<td>ds1sa provides an EIA/TIA special-access type DS1 interface. The forward disconnect signal is a toggle of the "A" bit from 1 to 0 and then back to 1 after 600 msecs.</td>
</tr>
<tr>
<td>lineside DS1/DS0 or lineside T1/E1</td>
<td>yes</td>
<td>yes</td>
<td>VRUSA</td>
<td>VRUSA is the same as ds1sa, except C&D tone support is provided.</td>
</tr>
</tbody>
</table>

1. C&D (Connect and Disconnect) Tones support is provided via the DTMF Feedback Signals for VRU customer option which must be active for the installation before these station types (VRU, VRUFD, or VRUSA) can be assigned.

2. Uses Analog Line Circuit Packs, such as TN2135.

3. DS1 Circuit Packs (TN767E (or later) or TN464F (or later) must be equipped.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3B2 Message Server</td>
<td>A software application that combines voice and data messaging services for voice-terminal users whose extensions are connected to a system.</td>
</tr>
<tr>
<td>800 service</td>
<td>A service in the United States that allows incoming calls from certain areas to an assigned number for a flat-rate charge based on usage.</td>
</tr>
<tr>
<td>AA</td>
<td>Archangel. See angel on page 388.</td>
</tr>
<tr>
<td>AAC</td>
<td>ATM access concentrator</td>
</tr>
<tr>
<td>AAR</td>
<td>See Automatic Alternate Routing (AAR) on page 390.</td>
</tr>
<tr>
<td>abandoned call</td>
<td>An incoming call in which the caller hangs up before the call is answered.</td>
</tr>
<tr>
<td>Abbreviated Dialing (AD)</td>
<td>A feature that allows callers to place calls by dialing just one or two digits.</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating current. See Administered Connection (AC) on page 387.</td>
</tr>
<tr>
<td>AAR</td>
<td>Automatic Alternate Routing</td>
</tr>
<tr>
<td>ACA</td>
<td>See Automatic Circuit Assurance (ACA) on page 391.</td>
</tr>
<tr>
<td>ACB</td>
<td>See Automatic Callback (ACB) on page 390.</td>
</tr>
<tr>
<td>ACD</td>
<td>See Automatic Call Distribution (ACD) on page 390.</td>
</tr>
<tr>
<td>ACD agent</td>
<td>See agent on page 387.</td>
</tr>
<tr>
<td>ACU</td>
<td>See Automatic calling unit (ACU) on page 391</td>
</tr>
<tr>
<td>ACW</td>
<td>See after-call work (ACW) mode on page 387.</td>
</tr>
<tr>
<td>access code</td>
<td>A 1-, 2-, or 3-digit dial code used to activate or cancel a feature, or access an outgoing trunk.</td>
</tr>
<tr>
<td>access endpoint</td>
<td>Either a nonsignaling channel on a DS1 interface or a nonsignaling port on an analog tie-trunk circuit pack that is assigned a unique extension.</td>
</tr>
</tbody>
</table>
access tie trunk

A trunk that connects a main communications system with a tandem communications system in an electronic tandem network (ETN). An access tie trunk can also be used to connect a system or tandem to a serving office or service node. Also called access trunk.

access trunk

See access tie trunk on page 386.

ACCUNET

A trademarked name for a family of digital services offered by AT&T in the United States.

ACD

See Automatic Call Distribution (ACD) on page 390. ACD also refers to a work state in which an agent is on an ACD call.

ACD work mode

See work mode on page 433.

active-notification association

A link that is initiated by an adjunct, allowing it to receive event reports for a specific switch entity, such as an outgoing call.

active-notification call

A call for which event reports are sent over an active-notification association (communication channel) to the adjunct. Sometimes referred to as a monitored call.

active notification domain

VDN or ACD split extension for which event notification has been requested.

ACU

See Automatic calling unit (ACU) on page 391.

AD

See Abbreviated Dialing (AD) on page 385.

ADAP

AUDIX Data Acquisition Package

ADC

See analog-to-digital converter (ADC) on page 388.

adjunct

A processor that does one or more tasks for another processor and that is optional in the configuration of the other processor. See also application on page 389.

adjunct-control association

A relationship initiated by an application via Third Party Make Call, the Third Party Take Control, or Domain (Station) Control capabilities to set up calls and control calls already in progress.

adjunct-controlled call

Call that can be controlled using an adjunct-control association. Call must have been originated via Third Party Make Call or Domain (Station) Control capabilities or must have been taken control of via Third Party Take Control or Domain (Station) Control capabilities.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjunct-controlled split</td>
<td>An ACD split that is administered to be under adjunct control. Agents logged into such splits must do all telephony work, ACD login/logout, and changes of work mode through the adjunct (except for auto-available adjunct-controlled splits, whose agents may not log in/out or change work mode).</td>
</tr>
<tr>
<td>adjunct-monitored call</td>
<td>An adjunct-controlled call, active-notification call, or call that provides event reporting over a domain-control association.</td>
</tr>
<tr>
<td>Adjunct-Switch Application Interface (ASAI)</td>
<td>A recommendation for interfacing adjuncts and communications systems, based on the CCITT Q.932 specification for layer 3.</td>
</tr>
<tr>
<td>ADM</td>
<td>Asynchronous data module</td>
</tr>
<tr>
<td>administer</td>
<td>To access and change parameters associated with the services or features of a system.</td>
</tr>
<tr>
<td>Administered Connection (AC)</td>
<td>A feature that allows the switch to automatically establish and maintain end-to-end connections between access endpoints (trunks) and/or data endpoints (data modules).</td>
</tr>
<tr>
<td>administration group</td>
<td>See capability group on page 395.</td>
</tr>
<tr>
<td>administration terminal</td>
<td>A terminal that is used to administer and maintain a system. See also terminal on page 429.</td>
</tr>
<tr>
<td>Administration Without Hardware (AWOH)</td>
<td>A feature that allows administration of ports without associated terminals or other hardware.</td>
</tr>
<tr>
<td>ADU</td>
<td>See asynchronous data unit (ADU) on page 389.</td>
</tr>
<tr>
<td>Advocate</td>
<td>See Avaya Business Advocate.</td>
</tr>
<tr>
<td>AE</td>
<td>See access endpoint on page 385.</td>
</tr>
<tr>
<td>after-call work (ACW) mode</td>
<td>A mode in which agents are unavailable to receive ACD calls. Agents enter the ACW mode to perform ACD-related activities such as filling out a form after an ACD call.</td>
</tr>
<tr>
<td>AG</td>
<td>ASAI Gateway</td>
</tr>
<tr>
<td>agent</td>
<td>A member of an ACD hunt group, ACD split, or skill. Depending on the ACD software, an agent can be a member of multiple splits/skills.</td>
</tr>
<tr>
<td>agent report</td>
<td>A report that provides historical traffic information for internally measured agents.</td>
</tr>
<tr>
<td>AIM</td>
<td>Asynchronous interface module</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>AIOD</td>
<td>Automatic Identification of Outward Dialing</td>
</tr>
<tr>
<td>ALBO</td>
<td>Automatic Line Build Out</td>
</tr>
<tr>
<td>All trunks busy (ATB)</td>
<td>The state in which no trunks are available for call handling.</td>
</tr>
<tr>
<td>ALM-ACK</td>
<td>Alarm acknowledge</td>
</tr>
<tr>
<td>AMW</td>
<td>Automatic Message Waiting</td>
</tr>
<tr>
<td>AN</td>
<td>Analog</td>
</tr>
<tr>
<td>analog</td>
<td>The representation of information by continuously variable physical quantities such as amplitude, frequency, and phase. See also digital on page 401.</td>
</tr>
<tr>
<td>analog data</td>
<td>Data that is transmitted over a digital facility in analog (PCM) form. The data must pass through a modem either at both ends or at a modem pool at the distant end.</td>
</tr>
<tr>
<td>analog telephone</td>
<td>A telephone that receives acoustic voice signals and sends analog electrical signals along the telephone line. Analog telephones are usually served by a single wire pair (tip and ring). The model-2500 telephone set is a typical example of an analog telephone.</td>
</tr>
<tr>
<td>analog-to-digital converter (ADC)</td>
<td>A device that converts an analog signal to digital form. See also digital-to-analog converter (DAC) on page 401.</td>
</tr>
<tr>
<td>angel</td>
<td>A microprocessor located on each port card in a processor port network (PPN). The angel uses the control-channel message set (CCMS) to manage communications between the port card and the archangel on the controlling switch-processing element (SPE). The angel also monitors the status of other microprocessors on a port card and maintains error counters and thresholds.</td>
</tr>
<tr>
<td>ANI</td>
<td>See Automatic Number Identification (ANI) on page 391.</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute. A United States professional/technical association supporting a variety of standards.</td>
</tr>
<tr>
<td>answerback code</td>
<td>A number used to respond to a page from a code-calling or loudspeaker-paging system, or to retrieve a parked call.</td>
</tr>
<tr>
<td>AOL</td>
<td>Attendant-offered load</td>
</tr>
<tr>
<td>AP</td>
<td>Applications processor</td>
</tr>
</tbody>
</table>
APLT
Advanced Private-Line Termination

appearance
A software process that is associated with an extension and whose purpose is to supervise a call. An extension can have multiple appearances. Also called call appearance, line appearance, and occurrence. See also call appearance on page 394.

application
An adjunct that requests and receives ASAI services or capabilities. One or more applications can reside on a single adjunct. However, the switch cannot distinguish among several applications residing on the same adjunct and treats the adjunct, and all resident applications, as a single application. The terms application and adjunct are used interchangeably throughout this document.

applications processor
A micro-computer based, program controlled computer providing application services for the switch. The processor is used with several user-controlled applications such as traffic analysis and electronic documentation.

application service element
See capability group on page 395.

architecture
The organizational structure of a system, including hardware and software.

ARS
See Automatic Route Selection (ARS) on page 391.

ASAI
See Adjunct-Switch Application Interface (ASAI) on page 387

ASCII (American Standard Code for Information Interchange)
The standard code for representing characters in digital form. Each character is represented by an 8-bit code (including parity bit).

association
A communication channel between adjunct and switch for messaging purposes. An active association is one that applies to an existing call on the switch or to an extension on the call.

asynchronous data transmission
A method of transmitting data in which each character is preceded by a start bit and followed by a stop bit, thus permitting data characters to be transmitted at irregular intervals. This type transmission is advantageous when transmission is not regular (characters typed at a keyboard). Also called asynchronous transmission. See also synchronous data transmission on page 428.

asynchronous data unit (ADU)
A device that allows direct connection between RS-232C equipment and a digital switch.

asynchronous Transfer Mode (ATM)
A packet-like switching technology in which data is transmitted in fixed-size (53-byte) cells. ATM provides high-speed access for data communication in LAN, campus, and WAN environments.
ATB
See All trunks busy (ATB) on page 388.

ATD
See Attention dial (ATD) on page 390.

attendant
A person at a console who provides personalized service for incoming callers and voice-services users by performing switching and signaling operations. See also attendant console on page 390.

ATM
See asynchronous Transfer Mode (ATM) on page 389.

attendant console
The workstation used by an attendant. The attendant console allows the attendant to originate a call, answer an incoming call, transfer a call to another extension or trunk, put a call on hold, and remove a call from hold. Attendants using the console can also manage and monitor some system operations. Also called console. See also attendant on page 390.

Attention dial (ATD)
A command in the Hayes modem command set for asynchronous modems.

Audio Information Exchange (AUDIX)
A fully integrated voice-mail system. Can be used with a variety of communications systems to provide call-history data, such as subscriber identification and reason for redirection.

AUDIX
See Audio Information Exchange (AUDIX) on page 390.

auto-in trunk group
Trunk group for which the CO processes all of the digits for an incoming call. When a CO seizes a trunk from an auto-in trunk group, the switch automatically connects the trunk to the destination — typically an ACD split where, if no agents are available, the call goes into a queue in which callers are answered in the order in which they arrive.

Auto-In Work mode
One of four agent work modes: the mode in which an agent is ready to process another call as soon as the current call is completed.

Automatic Alternate Routing (AAR)
A feature that routes calls to other than the first-choice route when facilities are unavailable.

Automatic Callback (ACB)
A feature that enables internal callers, upon reaching a busy extension, to have the system automatically connect and ring both parties when the called party becomes available.

Automatic Call Distribution (ACD)
A feature that answers calls, and then, depending on administered instructions, delivers messages appropriate for the caller and routes the call to an agent when one becomes available.

Automatic Call Distribution (ACD) split
A method of routing calls of a similar type among agents in a call center. Also, a group of extensions that are staffed by agents trained to handle a certain type of incoming call.
<table>
<thead>
<tr>
<th>Automatic calling unit (ACU)</th>
<th>A device that places a telephone call.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Circuit Assurance (ACA)</td>
<td>A feature that tracks calls of unusual duration to facilitate troubleshooting. A high number of very short calls or a low number of very long calls may signify a faulty trunk.</td>
</tr>
<tr>
<td>Automatic Number Identification (ANI)</td>
<td>Representation of the calling number, for display or for further use to access information about the caller. Available with Signaling System 7.</td>
</tr>
<tr>
<td>Automatic restoration</td>
<td>A service that restores disrupted connections between access endpoints (nonsignaling trunks) and data endpoints (devices that connect the switch to data terminal and/or communications equipment). Restoration is done within seconds of a service disruption so that critical data applications can remain operational.</td>
</tr>
<tr>
<td>Automatic Route Selection (ARS)</td>
<td>A feature that allows the system to automatically choose the least-cost way to send a toll call.</td>
</tr>
<tr>
<td>automatic trunk</td>
<td>A trunk that does not require addressing information because the destination is predetermined. A request for service on the trunk, called a seizure, is sufficient to route the call. The normal destination of an automatic trunk is the communications-system attendant group. Also called automatic incoming trunk and automatic tie trunk.</td>
</tr>
<tr>
<td>AUX</td>
<td>Auxiliary</td>
</tr>
<tr>
<td>auxiliary equipment</td>
<td>Equipment used for optional system features, such as Loudspeaker Paging and Music-on-Hold.</td>
</tr>
<tr>
<td>auxiliary trunk</td>
<td>A trunk used to connect auxiliary equipment, such as radio-paging equipment, to a communications system.</td>
</tr>
<tr>
<td>Aux-Work mode</td>
<td>A work mode in which agents are unavailable to receive ACD calls. Agents enter Aux-Work mode when involved in non-ACD activities such as taking a break, going to lunch, or placing an outgoing call.</td>
</tr>
<tr>
<td>AVD</td>
<td>Alternate voice/data</td>
</tr>
<tr>
<td>AWOH</td>
<td>See Administration Without Hardware (AWOH) on page 387.</td>
</tr>
<tr>
<td>AWG</td>
<td>American Wire Gauge</td>
</tr>
<tr>
<td>AWT</td>
<td>Average work time</td>
</tr>
<tr>
<td>B8ZS</td>
<td>Bipolar Eight Zero Substitution.</td>
</tr>
</tbody>
</table>
bandwidth

The difference, expressed in hertz, between the defined highest and lowest frequencies in a range.

barrier code

A security code used with the Remote Access feature to prevent unauthorized access to the system.

baud

A unit of transmission rate equal to the number of signal events per second. See also bit rate on page 392 and bits per second (bps) on page 392.

BCC

See Bearer capability class (BCC) on page 392.

BCMS

Basic Call Management System

BCT

See business communications terminal (BCT) on page 393.

Bearer capability class (BCC)

Code that identifies the type of a call (for example, voice and different types of data). Determination of BCC is based on the caller’s characteristics for non-ISDN endpoints and on the Bearer Capability and Low-Layer Compatibility Information Elements of an ISDN endpoint. Current BCCs are 0 (voice-grade data and voice), 1 (DMI mode 1, 56 kbps data transmission), 2 (DMI mode 2, synchronous/asynchronous data transmission up to 19.2 kbps) 3 (DMI mode 3, 64 kbps circuit/packet data transmission), 4 (DMI mode 0, 64 kbps synchronous data), 5 (temporary signaling connection, and 6 (wideband call, 128–1984 kbps synchronous data).

BER

Bit error rate

BHCC

Busy-hour call completions

bit (binary digit)

One unit of information in binary notation, having two possible values: 0 or 1.

bits per second (bps)

The number of binary units of information that are transmitted or received per second. See also baud on page 392 and bit rate on page 392.

bit rate

The speed at which bits are transmitted, usually expressed in bits per second. Also called data rate. See also baud on page 392 and bits per second (bps) on page 392.

BLF

Busy Lamp Field

BN

Billing number

BOS

Bit-oriented signaling

BPN

Billed-party number

bps

See bits per second (bps) on page 392.
bridge (bridging) The appearance of a voice terminal's extension at one or more other voice terminals.

BRI The ISDN Basic Rate Interface specification.

bridged appearance A call appearance on a voice terminal that matches a call appearance on another voice terminal for the duration of a call.

BTU British Thermal Unit

buffer 1. In hardware, a circuit or component that isolates one electrical circuit from another. Typically, a buffer holds data from one circuit or process until another circuit or process is ready to accept the data.
 2. In software, an area of memory that is used for temporary storage.

bus A multiconductor electrical path used to transfer information over a common connection from any of several sources to any of several destinations.

business communications terminal (BCT) A digital data terminal used for business applications. A BCT can function via a data module as a special-purpose terminal for services provided by a processor or as a terminal for data entry and retrieval.

BX.25 A version of the CCITT X.25 protocol for data communications. BX.25 adds a fourth level to the standard X.25 interface. This uppermost level combines levels 4, 5, and 6 of the ISO reference model.

bypass tie trunks A 1-way, outgoing tie trunk from a tandem switch to a main switch in an ETN. Bypass tie trunks, provided in limited quantities, are used as a last-choice route when all trunks to another tandem switch are busy. Bypass tie trunks are used only if all applicable intertandem trunks are busy.

byte A sequence of (usually eight) bits processed together.

CACR Cancellation of Authorization Code Request

cabinet Housing for racks, shelves, or carriers that hold electronic equipment.

cable Physical connection between two pieces of equipment (for example, data terminal and modem) or between a piece of equipment and a termination field.

cable connector A jack (female) or plug (male) on the end of a cable. A cable connector connects wires on a cable to specific leads on telephone or data equipment.

CAG Coverage answer group
1. For the attendant console, six buttons, labeled a–f, used to originate, receive, and hold calls. Two lights next to the button show the status of the call appearance.
2. For the voice terminal, a button labeled with an extension and used to place outgoing calls, receive incoming calls, or hold calls. Two lights next to the button show the status of the call appearance.

Capabilities (Third Party Selective Hold, Third Party Reconnect, Third Party Merge) that can be used in either of the Third Party Call Control ASE (cluster) subsets (Call Control and Domain Control).

A feature that uses software and hardware to record call data (same as CDRU).

Software that collects, stores, optionally filters, and outputs call-detail records.

An application, running on an adjunct processor, that collects information from an ACD unit. CMS enables customers to monitor and manage telemarketing centers by generating reports on the status of agents, splits, trunks, trunk groups, vectors, and VDNs, and enables customers to partially administer the ACD feature for a communications system.

An identifier present in ISDN messages that associates a related sequence of messages. In ASAI, CRVs distinguish between associations.

A set of up to 15 vector commands to be performed for an incoming or internal call.

A call that automatically returns to a voice-terminal user who activated the Automatic Callback or Ringback Queuing feature.

A low-pitched tone identical to ringback tone except that the tone decreases in the last 0.2 seconds (in the United States). Call-waiting ringback tone notifies the attendant that the Attendant Call Waiting feature is activate and that the called party is aware of the waiting call. Tones in international countries may sound different.

A number, up to 16 digits, entered by ACD agents to record the occurrence of customer-defined events (such as account codes, social security numbers, or phone numbers) on ACD calls.

Centralized Automatic Message Accounting

An enclosed shelf containing vertical slots that hold circuit packs.

The amount of traffic served by traffic-sensitive facilities during a given interval.

Carrier Port and Power Unit for AC Powered Systems
<table>
<thead>
<tr>
<th>CAS</th>
<th>Centralized Attendant Service or Call Accounting System</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCS or hundred call seconds</td>
<td>A unit of call traffic. Call traffic for a facility is scanned every 100 seconds. If the facility is busy, it is assumed to have been busy for the entire scan interval. There are 3600 seconds per hour. The Roman numeral for 100 is the capital letter C. The abbreviation for call seconds is CS. Therefore, 100 call seconds is abbreviated CCS. If a facility is busy for an entire hour, then it is said to have been busy for 36 CCS. See also Erlang on page 405.</td>
</tr>
<tr>
<td>capability</td>
<td>A request or indication of an operation. For example, Third Party Make Call is a request for setting up a call; event report is an indication that an event has occurred.</td>
</tr>
<tr>
<td>capability group</td>
<td>Set of capabilities, determined by switch administration, that can be requested by an application. Capability groups denote association types. For example, Call Control is a type of association that allows certain functions (the ones in the capability group) to be performed over this type of association. Also referred to as administration groups or application service elements (ASEs).</td>
</tr>
<tr>
<td>CA-TSC</td>
<td>Call-Associated Temporary Signaling Connection</td>
</tr>
<tr>
<td>cause value</td>
<td>A value is returned in response to requests or in event reports when a denial or unexpected condition occurs. ASAI cause values fall into two coding standards: Coding Standard 0 includes any cause values that are part of AT&T and CCITT ISDN specifications; Coding standard 3 includes any other ASAI cause values. This document uses a notation for cause value where the coding standard for the cause is given first, then a slash, then the cause value. Example: CS0/100 is coding standard 0, cause value 100.</td>
</tr>
<tr>
<td>CBC</td>
<td>Call-by-call or coupled bonding conductor</td>
</tr>
<tr>
<td>CC</td>
<td>Country code</td>
</tr>
<tr>
<td>CCIS</td>
<td>Common-Channel Interoffice Signaling</td>
</tr>
<tr>
<td>CCITT</td>
<td>CCITT (Comittee Consultatif International Telephonique et Telegraphique), now called International Telecommunications Union (ITU). See International Telecommunications Union (ITU) on page 411.</td>
</tr>
<tr>
<td>CCMS</td>
<td>Control-Channel Message Set</td>
</tr>
<tr>
<td>CCS</td>
<td>See CCS or hundred call seconds on page 395.</td>
</tr>
<tr>
<td>CCSA</td>
<td>Common-Control Switching Arrangement</td>
</tr>
<tr>
<td>CDM</td>
<td>Channel-division multiplexing</td>
</tr>
<tr>
<td>CDOS</td>
<td>Customer-dialed and operator serviced</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>CDR</td>
<td>See Call Detail Recording (CDR) on page 394.</td>
</tr>
<tr>
<td>CDRP</td>
<td>Call Detail Record Poller</td>
</tr>
<tr>
<td>CDRR</td>
<td>Call Detail Recording and Reporting</td>
</tr>
<tr>
<td>CDRU</td>
<td>See Call Detail Recording utility (CDRU) on page 394.</td>
</tr>
<tr>
<td>CEM</td>
<td>Channel-expansion multiplexing</td>
</tr>
<tr>
<td>CSS</td>
<td>The central interface between the processor port network and expansion port networks in a CSS-connected system.</td>
</tr>
<tr>
<td>CO</td>
<td>The location housing telephone switching equipment that provides local telephone service and access to toll facilities for long-distance calling.</td>
</tr>
<tr>
<td>CO codes</td>
<td>The first three digits of a 7-digit public-network telephone number in the United States.</td>
</tr>
<tr>
<td>CO trunk</td>
<td>A telecommunications channel that provides access from the system to the public network through the local CO.</td>
</tr>
<tr>
<td>CEPT1</td>
<td>European Conference of Postal and Telecommunications Rate 1</td>
</tr>
</tbody>
</table>
| channel | 1. A circuit-switched call.
 2. A communications path for transmitting voice and data.
 3. In wideband, all of the time slots (contiguous or noncontiguous) necessary to support a call. Example: an H0-channel uses six 64-kbps time slots.
 4. A DS0 on a T1 or E1 facility not specifically associated with a logical circuit-switched call; analogous to a single trunk. |
| CI | Clock input |
| circuit | 1. An arrangement of electrical elements through which electric current flows.
 2. A channel or transmission path between two or more points. |
| circuit pack | A card on which electrical circuits are printed, and IC chips and electrical components are installed. A circuit pack is installed in a switch carrier. |
| CISPR | International Special Committee on Radio Interference |
Class of Restriction (COR) A feature that allows up to 64 classes of call-origination and call-termination restrictions for voice terminals, voice-terminal groups, data modules, and trunk groups. See also Class of Service (COS) on page 397.

Class of Service (COS) A feature that uses a number to specify if voice-terminal users can activate the Automatic Callback, Call Forwarding All Calls, Data Privacy, or Priority Calling features. See also Class of Restriction (COR) on page 397.

cm Centimeter

CM Connection Manager

CMDR Centralized Message Detail Recording

CMS Call Management System

CO See central office (CO) on page 396.

common-control switching arrangement (CCSA) A private telecommunications network using dedicated trunks and a shared switching center for interconnecting company locations.

communications system The software-controlled processor complex that interprets dialing pulses, tones, and keyboard characters and makes the proper connections both within the system and external to the system. The communications system itself consists of a digital computer, software, storage device, and carriers with special hardware to perform the connections. A communications system provides voice and data communications services, including access to public and private networks, for telephones and data terminals on a customer’s premises. See also switch on page 427.

confirmation tone A tone confirming that feature activation, deactivation, or cancellation has been accepted.

connectivity The connection of disparate devices within a single system.

console See attendant console on page 390.

contiguous Adjacent DS0s within one T1 or E1 facility or adjacent TDM or fiber time slots. The first and last TDM bus, DS0, or fiber time slots are not considered contiguous (no wraparound). For an E1 facility with a D-channel, DS0s 15 and 17 are considered contiguous.

control cabinet See control carrier on page 398.
control carrier

A carrier in a multicarrier cabinet that contains the SPE circuit packs and, unlike an R5r control carrier, port circuit packs. Also called control cabinet in a single-carrier cabinet. See also switch-processing element (SPE) on page 428.

controlled station

A station that is monitored and controlled via a domain-control association.

COR

See Class of Restriction (COR) on page 397.

COS

See Class of Service (COS) on page 397.

coverage answer group

A group of up to eight voice terminals that ring simultaneously when a call is redirected to it by Call Coverage. Any one of the group can answer the call.

coverage call

A call that is automatically redirected from the called party’s extension to an alternate answering position when certain coverage criteria are met.

coverage path

The order in which calls are redirected to alternate answering positions.

coverage point

An extension or attendant group, VDN, or ACD split designated as an alternate answering position in a coverage path.

covering user

A person at a coverage point who answers a redirected call.

CP

Circuit pack

CPE

Customer-premises equipment

CPN

Called-party number

CPN/BN

Calling-party number/billing number

CPTR

Call-progress-tone receiver

CRC

Cyclical Redundancy Checking

critical-reliability system

A system that has the following duplicated items: control carriers, tone clocks, EI circuit packs, and cabling between port networks and center-stage switch in a CSS-connected system. See also duplicated common control on page 403, and duplication on page 403.

CSA

Canadian Safety Association

CSCC

Compact single-carrier cabinet

CSCN

Center-stage control network
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSD</td>
<td>Customer-service document</td>
</tr>
<tr>
<td>CSM</td>
<td>Centralized System Management</td>
</tr>
<tr>
<td>CSS</td>
<td>See center-stage switch (CSS).</td>
</tr>
<tr>
<td>CSSO</td>
<td>Customer Services Support Organization</td>
</tr>
<tr>
<td>CSU</td>
<td>Channel service unit</td>
</tr>
<tr>
<td>CTS</td>
<td>Clear to Send</td>
</tr>
<tr>
<td>CWC</td>
<td>See call work code on page 394.</td>
</tr>
</tbody>
</table>
| DAC | 1. Dial access code or Direct Agent Calling
2. See digital-to-analog converter (DAC) on page 401. |
| data channel | A communications path between two points used to transmit digital signals. |
| data-communications equipment (DCE) | The equipment (usually a modem, data module, or packet assembler/disassembler) on the network side of a communications link that makes the binary serial data from the source or transmitter compatible with the communications channel. |
| data link | The configuration of physical facilities enabling end terminals to communicate directly with each other. |
| data module | An interconnection device between a BRI or DCP interface of the switch and data terminal equipment or data communications equipment. |
| data path | The end-to-end connection used for a data communications link. A data path is the combination of all elements of an interprocessor communication in a DCS. |
| data port | A point of access to a computer that uses trunks or lines for transmitting or receiving data. |
| data rate | See bit rate on page 392. |
| data service unit (DSU) | A device that transmits digital data on transmission facilities. |
| data terminal | An input/output (I/O) device that has either switched or direct access to a host computer or to a processor interface. |
| data terminal equipment (DTE) | Equipment consisting of the endpoints in a connection over a data circuit. In a connection between a data terminal and host, the terminal, the host, and their associated modems or data modules make up the DTE. |
dB

Decibel

dBA

Decibels in reference to amperes.

dBrnC

Decibels above reference noise with C filter.

DC

Direct current

DCE

Data-communications equipment

D-channel backup

Type of backup used with Non-Facility Associated Signaling (NFAS). A primary D-channel provides signaling for an NFAS D-channel group (two or more PRI facilities). A second D-channel, on a separate PRI facility of the NFAS D-channel group, is designated as backup for the D-channel. Failure of the primary D-channel causes automatic transfer of call-control signaling to the backup D-channel. The backup becomes the primary D-channel. When the failed channel returns to service, it becomes the backup D-channel.

DCO

Digital central office

DCP

Digital Communications Protocol

DCS

Distributed Communications System

DDC

Direct Department Calling

DDD

Direct Distance Dialing

delay-dial trunk

A trunk that allows dialing directly into a communications system (digits are received as they are dialed).

denying a request

Sending a negative acknowledgement (NAK), done by sending an FIE with a return error component (and a cause value). It should not be confused with the denial event report that applies to calls.

designated voice terminal

The specific voice terminal to which calls, originally directed to a certain extension, are redirected. Commonly used to mean the forwarded-to terminal when Call Forwarding All Calls is active.

dial-repeating trunks

A PBX tie trunk that is capable of handling PBX station-signaling information without attendant assistance.

dial-repeating tie trunk

A tie trunk that transmits called-party addressing information between two communications systems.

DID

Direct Inward Dialing
<table>
<thead>
<tr>
<th>digit conversion</th>
<th>A process used to convert specific dialed numbers into other dialed numbers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>digital</td>
<td>The representation of information by discrete steps. See also analog on page 388.</td>
</tr>
<tr>
<td>digital communications protocol (DCP)</td>
<td>A proprietary protocol used to transmit both digitized voice and digitized data over the same communications link. A DCP link is made up of two 64-kbps information (I-) channels and one 8-kbps signaling (S-) channel. Digital Communications Protocol. The DCP protocol supports 2 information-bearing channels, and thus two telephones/data modules. The I1 channel is the DCP channel assigned on the first page of the 8411 station form. The I2 channel is the DCP channel assigned on the analog adjunct page of the 8411 station form or on the data module page. Digital Communications Protocol. The DCP protocol supports 2 information-bearing channels, and thus two telephones/data modules. The I1 channel is the DCP channel assigned on the first page of the 8411 station form. The I2 channel is the DCP channel assigned on the analog adjunct page of the 8411 station form or on the data module page.</td>
</tr>
<tr>
<td>digital data endpoints</td>
<td>Devices such as the 510D terminal or the 515-type business communications terminal (BCT).</td>
</tr>
<tr>
<td>digital multiplexed interface (DMI)</td>
<td>An interface that provides connectivity between a communications system and a host computer or between two communications systems using DS1 24th-channel signaling. DMI provides 23 64-kbps data channels and 1 common-signaling channel over a twisted-pair connection. DMI is offered through two capabilities: bit-oriented signaling (DMI-BOS) and message-oriented signaling (DMI-MOS).</td>
</tr>
<tr>
<td>digital signal level 0 (DS0)</td>
<td>A single 64-kbps voice channel. A DS0 is a single 64-kbps channel in a T1 or E1 facility and consists of eight bits in a T1 or E1 frame every 125 microseconds.</td>
</tr>
<tr>
<td>digital signal level 1 (DS1)</td>
<td>A single 1.544-Mbps (United States) or 2.048-Mbps (outside the United States) digital signal carried on a T1 transmission facility. A DS1 converter complex consists of a pair, one at each end, of DS1 converter circuit packs and the associated T1/E1 facilities.</td>
</tr>
<tr>
<td>digital terminal data module (DTDM)</td>
<td>An integrated or adjunct data module that shares with a digital telephone the same physical port for connection to a communications system. The function of a DTDM is similar to that of a PDM and MPDM in that it converts RS-232C signals to DCP signals.</td>
</tr>
<tr>
<td>digital-to-analog converter (DAC)</td>
<td>A device that converts data in digital form to the corresponding analog signals. See also analog-to-digital converter (ADC) on page 388.</td>
</tr>
<tr>
<td>digital transmission</td>
<td>A mode of transmission in which information to be transmitted is first converted to digital form and then transmitted as a serial stream of pulses.</td>
</tr>
<tr>
<td>digital trunk</td>
<td>A circuit that carries digital voice and/or digital data in a telecommunications channel.</td>
</tr>
</tbody>
</table>
DIOD

DIOD Direct Inward and Outward Dialing

direct agent A feature, accessed only via ASAI, that allows a call to be placed in a split queue but routed only to a specific agent in that split. The call receives normal ACD call treatment (for example, announcements) and is measured as an ACD call while ensuring that a particular agent answers.

Direct Extension Selection (DXS) A feature on an attendant console that allows an attendant direct access to voice terminals by pressing a group-select button and a DXS button.

Direct Inward Dialing (DID) A feature that allows an incoming call from the public network (not FX or WATS) to reach a specific telephone without attendant assistance.

Direct Inward Dialing (DID) trunk An incoming trunk used for dialing directly from the public network into a communications system without help from the attendant.

disk drive An electromechanical device that stores data on and retrieves data from one or more disks.

distributed communications system (DCS) A network configuration linking two or more communications systems in such a way that selected features appear to operate as if the network were one system.

DIVA Data In/Voice Answer

DLC Data line circuit

DLDM Data-line data module

DMI Digital-multiplexed interface

DND Do not disturb

DNIS Dialed-Number Identification Service

DOD Direct Outward Dialing

domain VDNs, ACD splits, and stations. The VDN domain is used for active-notification associations. The ACD-split domain is for active-notification associations and domain-control associations. The station domain is used for the domain-control associations.

domain-control association A Third Party Domain Control Request capability initiates a unique CRV/link number combination, which is referred to as a domain-control association.

domain-controlled split A split for which Third Party Domain Control request has been accepted. A domain-controlled split provides an event report for logout.
domain-controlled station
A station for which a Third_Party_Domain_Control request has been accepted. A domain-controlled station provides event reports for calls that are alerting, connected, or held at the station.

domain-controlled station on a call
A station that is active on a call, and which provides event reports over one or two domain-control associations.

DOSS
Delivery Operations Support System

DOT
Duplication Option Terminal

DPM
Dial Plan Manager

DPR
Dual-port RAM

DS1
Digital Signal Level 1

DS1C
Digital Signal Level-1 protocol C

DS1 CONV
Digital Signal Level-1 converter

DSI
Digital signal interface

DSU
Data service unit

DTDM
Digital-terminal data module

DTE
Data-terminal equipment

DTGS
Direct Trunk Group Select

DTMF
Dual-tone multifrequency

DTS
Disk-tape system

duplicated common control
Two processors ensuring continuous operation of a communications system. While one processor is online, the other functions as a backup. The backup processor goes online periodically or when a problem occurs.

duplication
The use of redundant components to improve availability. When a duplicated subsystem fails, its backup redundant system automatically takes over.

duplication option
A system option that duplicates the following: control carrier containing the SPE, EI circuit packs in carriers, fiber-optic cabling between port networks, and center-stage switch in a CSS-connected system.
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DXS</td>
<td>Direct extension selection</td>
</tr>
<tr>
<td>Dynamic Percentage Adjustment</td>
<td>An Avaya Business Advocate feature that makes automatic adjustments to agents’ target allocations as needed to help meet the administered service level targets.</td>
</tr>
<tr>
<td>Dynamic Queue Position</td>
<td>An Avaya Business Advocate feature that gives you the ability to queue calls from multiple VDNs to a single skill, while maintaining different service objectives for those VDNs.</td>
</tr>
<tr>
<td>Dynamic Threshold Adjustment</td>
<td>An Avaya Business Advocate Service Level Supervisor feature that automatically adjusts overload thresholds to engage reserve agents a bit sooner or a bit later to meet the administered service levels.</td>
</tr>
<tr>
<td>E1</td>
<td>A digital transmission standard that carries traffic at 2.048 Mbps. The E1 facility is divided into 32 channels (DS0s) of 64 kbps information. Channel 0 is reserved for framing and synchronization information. A D-channel occupies channel 16.</td>
</tr>
<tr>
<td>E & M</td>
<td>Ear and mouth (receive and transmit)</td>
</tr>
<tr>
<td>EA</td>
<td>Expansion archangel</td>
</tr>
<tr>
<td>EAD-LOA</td>
<td>See Expert Agent Distribution-Least Occupied Agent.</td>
</tr>
<tr>
<td>EAD-MIA</td>
<td>See Expert Agent Distribution-Most Idle Agent.</td>
</tr>
<tr>
<td>EAL</td>
<td>Expansion archangel link</td>
</tr>
<tr>
<td>ear and mouth (E & M) signaling</td>
<td>Trunk supervisory signaling, used between two communications systems, whereby signaling information is transferred through 2-state voltage conditions (on the E and M leads) for analog applications and through a single bit for digital applications.</td>
</tr>
<tr>
<td>EEBCDIC</td>
<td>Extended Binary-Coded Decimal Interexchange Code</td>
</tr>
<tr>
<td>ECC</td>
<td>Error Correct Code</td>
</tr>
<tr>
<td>ECMA</td>
<td>European Computer Manufacturers Association</td>
</tr>
<tr>
<td>EFP</td>
<td>Electronic power feed</td>
</tr>
<tr>
<td>EI</td>
<td>Expansion interface</td>
</tr>
<tr>
<td>EIA</td>
<td>Electronic Industries Association</td>
</tr>
<tr>
<td>EIA-232</td>
<td>A physical interface specified by the EIA. EIA-232 transmits and receives asynchronous data at speeds of up to 19.2 kbps over cable distances of up to 50 feet. EIA-232 replaces RS-232 protocol in some switch applications.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>electronic tandem network (ETN)</td>
<td>A tandem tie-trunk network that has automatic call-routing capabilities based on the number dialed and the most preferred route available. Each switch in the network is assigned a unique private network office code (RNX), and each voice terminal is assigned a unique extension.</td>
</tr>
<tr>
<td>Electronics Industries Association (EIA)</td>
<td>A trade association of the electronics industry that establishes electrical and functional standards.</td>
</tr>
<tr>
<td>emergency transfer</td>
<td>If a major system failure occurs, automatic transfer is initiated to a group of telephones capable of making outgoing calls. The system operates in this mode until the failure is repaired and the system automatically returns to normal operation. Also called power-failure transfer.</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic interference</td>
</tr>
<tr>
<td>end-to-end signaling</td>
<td>The transmission of touch-tone signals generated by dialing from a voice terminal to remote computer equipment. These digits are sent over the trunk as DTMF digits whether the trunk signaling type is marked as tone or rotary and whether the originating station is tone or rotary. Example: a call to a voice-mail machine or automated-attendant service. A connection is first established over an outgoing trunk. Then additional digits are dialed to transmit information to be processed by the computer equipment.</td>
</tr>
<tr>
<td>enhanced private-switched communications service (EPSCS)</td>
<td>An analog private telecommunications network based on the No. 5 crossbar and 1A ESS that provides advanced voice and data telecommunications services to companies with many locations.</td>
</tr>
<tr>
<td>EPN</td>
<td>Expansion-port network</td>
</tr>
<tr>
<td>EPROM</td>
<td>Erasable programmable read-only memory</td>
</tr>
<tr>
<td>EPSCS</td>
<td>Enhanced Private Switched Communications Services</td>
</tr>
<tr>
<td>ERL</td>
<td>Echo return loss</td>
</tr>
<tr>
<td>Erlang</td>
<td>A unit of traffic intensity, or load, used to express the amount of traffic needed to keep one facility busy for one hour. One Erlang is equal to 36 CCS. See also CCS or hundred call seconds on page 395.</td>
</tr>
<tr>
<td>ESF</td>
<td>Extended superframe format</td>
</tr>
<tr>
<td>ESPA</td>
<td>European Standard Paging Access</td>
</tr>
<tr>
<td>ETA</td>
<td>Extended Trunk Access; also Enhanced Terminal Administration</td>
</tr>
<tr>
<td>ETN</td>
<td>Electronic tandem network</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>expansion archangel (EAA)</td>
<td>A network-control microprocessor located on an expansion interface (EI) port circuit pack in an expansion port network. The EA provides an interface between the EPN and its controlling switch-processing element.</td>
</tr>
<tr>
<td>expansion-archangel link (EAL)</td>
<td>A link-access function on the D-channel (LAPD) logical link that exists between a switch-processing element and an expansion archangel (EA). The EAL carries control messages from the SPE to the EA and to port circuit packs in an expansion port network.</td>
</tr>
<tr>
<td>expansion control cabinet</td>
<td>See expansion control carrier on page 406.</td>
</tr>
<tr>
<td>expansion control carrier</td>
<td>A carrier in a multicarrier cabinet that contains extra port circuit packs and a maintenance interface. Also called expansion control cabinet in a single-carrier cabinet.</td>
</tr>
<tr>
<td>expansion interface (EI)</td>
<td>A port circuit pack in a port network that provides the interface between a PN’s TDM bus/ packet bus and a fiber-optic link. The EI carries circuit-switched data, packet-switched data, network control, timing control, and DS1 control. In addition, an EI in an expansion port network communicates with the master maintenance circuit pack to provide the EPN’s environmental and alarm status to the switch-processing element.</td>
</tr>
<tr>
<td>expansion port network (EPN)</td>
<td>A port network (PN) that is connected to the TDM bus and packet bus of a processor port network (PPN). Control is achieved by indirect connection of the EPN to the PPN via a port-network link (PNL).</td>
</tr>
<tr>
<td>Expert Agent Distribution-Least Occupied Agent (EAD-LOA)</td>
<td>An agent selection method for delivery of calls. With EAD-LOA implemented, calls are delivered to the available agent with the highest skill level and the lowest percentage of work time since login (compared to other available agents with the same skill level).</td>
</tr>
<tr>
<td>Expert Agent Distribution-Most Idle Agent (EAD-MIA)</td>
<td>An agent selection method for delivery of calls. With EAD-MIA implemented, calls are delivered to the available agent with the highest skill level who has been idle the longest since their last ACD call (compared to other available agents with the same skill level).</td>
</tr>
<tr>
<td>extension-in</td>
<td>Extension-In (ExtIn) is the work state agents go into when they answer (receive) a non-ACD call. If the agent is in Manual-In or Auto-In and receives an extension-in call, it is recorded by CMS as an AUX-In call.</td>
</tr>
<tr>
<td>extension-out</td>
<td>The work state that agents go into when they place (originate) a non-ACD call.</td>
</tr>
<tr>
<td>external measurements</td>
<td>Those ACD measurements that are made by the External CMS adjunct.</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>external call</td>
<td>A connection between a communications system user and a party on the public network or on another communications system in a private network.</td>
</tr>
<tr>
<td>FAC</td>
<td>Feature Access Code</td>
</tr>
<tr>
<td>facility</td>
<td>A telecommunications transmission pathway and associated equipment.</td>
</tr>
<tr>
<td>facility-associated signaling (FAS)</td>
<td>Signaling for which a D-channel carries signaling only for those channels on the same physical interface.</td>
</tr>
<tr>
<td>FAS</td>
<td>Facility-associated signaling</td>
</tr>
<tr>
<td>FAT</td>
<td>Facility access trunk</td>
</tr>
<tr>
<td>FAX</td>
<td>Facsimile</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
</tr>
<tr>
<td>FEAC</td>
<td>Forced Entry of Account Codes</td>
</tr>
<tr>
<td>feature</td>
<td>A specifically defined function or service provided by the system.</td>
</tr>
<tr>
<td>feature button</td>
<td>A labeled button on a telephone or attendant console used to access a specific feature.</td>
</tr>
<tr>
<td>FEP</td>
<td>Front-end processor</td>
</tr>
<tr>
<td>FIC</td>
<td>Facility interface codes</td>
</tr>
<tr>
<td>fiber optics</td>
<td>A technology using materials that transmit ultrawideband electromagnetic light-frequency ranges for high-capacity carrier systems.</td>
</tr>
<tr>
<td>fixed</td>
<td>A trunk allocation term. In the fixed allocation scheme, the time slots necessary to support a wideband call are contiguous, and the first time slot is constrained to certain starting points.</td>
</tr>
<tr>
<td>flexible</td>
<td>A trunk allocation term. In the flexible allocation scheme, the time slots of a wideband call can occupy noncontiguous positions within a single T1 or E1 facility.</td>
</tr>
<tr>
<td>floating</td>
<td>A trunk allocation term. In the floating allocation scheme, the time slots of a wideband call are contiguous, but the position of the first time slot is not fixed.</td>
</tr>
<tr>
<td>FNPA</td>
<td>Foreign Numbering-Plan Area</td>
</tr>
</tbody>
</table>
foreign-exchange (FX) A CO other than the one providing local access to the public telephone network.

foreign-exchange trunk A telecommunications channel that directly connects the system to a CO other than its local CO.

foreign-numbering-plan area code (FNPAC) An area code other than the local area code, that must be dialed to call outside the local geographical area.

FRL Facilities Restriction Level

FX Foreign exchange

G3-MA Generic 3 Management Applications

G3-MT Generic 3 Management Terminal

G3r Generic 3, RISC (Reduced Instruction Set Computer)

generalized route selection (GRS) An enhancement to Automatic Alternate Routing/Automatic Route Selection (AAR/ARS) that performs routing based on call attributes, such as Bearer Capability Classes (BCCs), in addition to the address and facilities restriction level (FRL), thus facilitating a Uniform Dial Plan (UDP) that is independent of the type of call being placed.

glare The simultaneous seizure of a 2-way trunk by two communications systems, resulting in a standoff.

GM Group manager

GPTR General-purpose tone receiver

grade of service The number of call attempts that fail to receive service immediately. Grade of service is also expressed as the quantity of all calls that are blocked or delayed.

ground-start trunk A trunk on which, for outgoing calls, the system transmits a request for services to a distant switching system by grounding the trunk ring lead. To receive the digits of the called number, that system grounds the trunk tip lead. When the system detects this ground, the digits are sent.

GRS Generalized Route Selection

H0 An ISDN information transfer rate for 384-kbps data defined by CCITT and ANSI standards.

H11 An ISDN information transfer rate for 1536-kbps data defined by CCITT and ANSI standards.
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H12</td>
<td>An ISDN information transfer rate for 1920-kbps data defined by CCITT and ANSI standards.</td>
</tr>
<tr>
<td>handshaking logic</td>
<td>A format used to initiate a data connection between two data module devices.</td>
</tr>
<tr>
<td>hertz (Hz)</td>
<td>A unit of frequency equal to one cycle per second.</td>
</tr>
<tr>
<td>high-reliability system</td>
<td>A system having the following: two control carriers, duplicate expansion interface (EI) circuit packs in the PPN (in R5r with CSS), and duplicate switch node clock circuit packs in the switch node (SN) carriers. See also duplicated common control on page 403, duplication on page 403, duplication option on page 403, and critical-reliability system on page 398.</td>
</tr>
<tr>
<td>HNPA</td>
<td>See home numbering-plan area code (HNPA) on page 409.</td>
</tr>
<tr>
<td>holding time</td>
<td>The total length of time in minutes and seconds that a facility is used during a call.</td>
</tr>
<tr>
<td>home numbering-plan area code (HNPA)</td>
<td>The local area code. The area code does not have to be dialed to call numbers within the local geographical area.</td>
</tr>
<tr>
<td>hop</td>
<td>Nondirect communication between two switch communications interfaces (SCI) where the SCI message passes automatically without intermediate processing through one or more intermediate SCIs.</td>
</tr>
<tr>
<td>host computer</td>
<td>A computer, connected to a network, that processes data from data-entry devices.</td>
</tr>
<tr>
<td>hunt group</td>
<td>A group of extensions that are assigned the Station Hunting feature so that a call to a busy extension reroutes to an idle extension in the group. See also ACD work mode on page 386.</td>
</tr>
<tr>
<td>Hz</td>
<td>See hertz (Hz) on page 409.</td>
</tr>
<tr>
<td>I1</td>
<td>The first information channel of DCP.</td>
</tr>
<tr>
<td>I2</td>
<td>The second information channel of DCP.</td>
</tr>
<tr>
<td>IAS</td>
<td>Inter-PBX Attendant Service</td>
</tr>
<tr>
<td>ICC</td>
<td>Intercabinet cable or intercarrier cable</td>
</tr>
<tr>
<td>ICD</td>
<td>Inbound Call Director</td>
</tr>
<tr>
<td>ICDOS</td>
<td>International Customer-Dialed Operator Service</td>
</tr>
<tr>
<td>ICHT</td>
<td>Incoming call-handling table</td>
</tr>
</tbody>
</table>
ICI

Incoming call identifier

ICM

Inbound Call Management

IDDD

International Direct Distance Dialing

IDF

Intermediate distribution frame

IE

Information element

immediate-start tie trunk

A trunk on which, after making a connection with a distant switching system for an outgoing call, the system waits a nominal 65 ms before sending the digits of the called number. This allows time for the distant system to prepare to receive digits. On an incoming call, the system has less than 65 ms to prepare to receive the digits.

IMT

Intermachine trunk

in

Inch

INADS

Initialization and Administration System

incoming gateway

A switch that routes an incoming call on a trunk not administered for Supplementary Services Protocol B to a trunk not administered for Supplementary Services Protocol B.

information exchange

The exchange of data between users of two different systems, such as the switch and a host computer, over a LAN.

Information Systems Network (ISN)

A WAN and LAN with an open architecture combining host computers, minicomputers, word processors, storage devices, PCs, high-speed printers, and nonintelligent terminals into a single packet-switching system.

INS

ISDN Network Service

inside call

A call placed from one telephone to another within the local communications system.

Integrated Services Digital Network (ISDN)

A public or private network that provides end-to-end digital communications for all services to which users have access by a limited set of standard multipurpose user-network interfaces defined by the CCITT. Through internationally accepted standard interfaces, ISDN provides digital circuit-switched or packet-switched communications within the network and links to other ISDNs to provide national and international digital communications. See also [Integrated Services Digital Network Basic Rate Interface (ISDN-BRI)](#) on page 411 and [Integrated Services Digital Network Primary Rate Interface (ISDN-PRI)](#) on page 411.
in-use lamp

Integrated Services Digital Network Basic Rate Interface (ISDN-BRI)
The interface between a communications system and terminal that includes two 64-kbps B-channels for transmitting voice or data and one 16-kbps D-channel for transmitting associated B-channel call control and out-of-band signaling information. ISDN-BRI also includes 48 kbps for transmitting framing and D-channel contention information, for a total interface speed of 192 kbps. ISDN-BRI serves ISDN terminals and digital terminals fitted with ISDN terminal adapters. See also Integrated Services Digital Network (ISDN) on page 410 and Integrated Services Digital Network Primary Rate Interface (ISDN-PRI) on page 411.

Integrated Services Digital Network Primary Rate Interface (ISDN-PRI)
The interface between multiple communications systems that in North America includes 24 64-kbps channels, corresponding to the North American digital signal level-1 (DS1) standard rate of 1.544 Mbps. The most common arrangement of channels in ISDN-PRI is 23 64-kbps B-channels for transmitting voice and data and 1 64-kbps D-channel for transmitting associated B-channel call control and out-of-band signaling information. With nonfacility-associated signaling (NFAS), ISDN-PRI can include 24 B-channels and no D-channel. See also Integrated Services Digital Network (ISDN) on page 410 and Integrated Services Digital Network Basic Rate Interface (ISDN-BRI) on page 411.

intercept tone
An tone that indicates a dialing error or denial of the service requested.

interface
A common boundary between two systems or pieces of equipment.

internal call
A connection between two users within a system.

International Telecommunications Union (ITU)
Formerly known as International Telegraph and Telephone Consultative Committee (CCITT), ITU is an international organization that sets universal standards for data communications, including ISDN. ITU members are from telecommunications companies and organizations around the world. See also BX.25 on page 393.

International Telegraph and Telephone Consultative Committee
See International Telecommunications Union (ITU) on page 411.

interflow
The ability for calls to forward to other splits on the same PBX or a different PBX using the Call Forward All Calls feature.

intraflow
The ability for calls to redirect to other splits on the same PBX on a conditional or unconditional basis using call coverage busy, don’t answer, or all criteria.

internal measurements
BCMS measurements that are made by the system. ACD measurements that are made external to the system (via External CMS) are referred to as external measurements.

in-use lamp
A red light on a multiappearance voice terminal that lights to show which call appearance will be selected when the handset is lifted or which call appearance is active when a user is off-hook.
INWATS
Inward Wide Area Telephone Service

IO
Information outlet

ISDN
See Integrated Services Digital Network (ISDN) on page 410.

ISDN Gateway (IG)
A feature allowing integration of the switch and a host-based telemarketing application via a link to a gateway adjunct. The gateway adjunct is a 3B-based product that notifies the host-based telemarketing application of call events.

ISDN trunk
A trunk administered for use with ISDN-PRI. Also called ISDN facility.

ISDN-PRI terminal adapter
An interface between endpoint applications and an ISDN PRI facility. ISDN-PRI terminal adapters are currently available from other vendors and are primarily designed for video conferencing applications. Accordingly, currently available terminal adapters adapt the two pairs of video codec data (V.35) and dialing (RS-366) ports to an ISDN PRI facility.

IS/DTT
Integrated Services/digital tie trunk

ISN
Information Systems Network

ISO
International Standards Organization

ISV
Independent software vendor

ITP
Installation test procedure

ITU
International Telecommunications Union

IXC
Interexchange carrier code

kHz
Kilohertz

kbps
Kilobits per second

kbyte
Kilobyte

kg
Kilogram

LAN
Local area network

LAP-D
Link Access Procedure on the D-channel

LAPD
Link Access Procedure data
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATA</td>
<td>Local access and transport area</td>
</tr>
<tr>
<td>lb</td>
<td>Pound</td>
</tr>
<tr>
<td>LBO</td>
<td>Line buildout</td>
</tr>
<tr>
<td>LDN</td>
<td>Listed directory number</td>
</tr>
<tr>
<td>LDS</td>
<td>Long-distance service</td>
</tr>
<tr>
<td>LEC</td>
<td>Local exchange carrier</td>
</tr>
<tr>
<td>LED</td>
<td>See light-emitting diode (LED) on page 413.</td>
</tr>
<tr>
<td>light-emitting diode (LED)</td>
<td>A semiconductor device that produces light when voltage is applied. LEDs provide a visual indication of the operational status of hardware components, the results of maintenance tests, the alarm status of circuit packs, and the activation of telephone features.</td>
</tr>
<tr>
<td>lightwave transceiver</td>
<td>Hardware that provides an interface to fiber-optic cable from port circuit packs and DS1 converter circuit packs. Lightwave transceivers convert electrical signals to light signals and vice versa.</td>
</tr>
<tr>
<td>line</td>
<td>A transmission path between a communications system or CO switching system and a voice terminal or other terminal.</td>
</tr>
<tr>
<td>line appearance</td>
<td>See appearance on page 389.</td>
</tr>
<tr>
<td>line buildout</td>
<td>A selectable output attenuation is generally required of DTE equipment because T1 circuits require the last span to lose 15–22.5 dB.</td>
</tr>
<tr>
<td>line port</td>
<td>Hardware that provides the access point to a communications system for each circuit associated with a telephone or data terminal.</td>
</tr>
<tr>
<td>link</td>
<td>A transmitter-receiver channel that connects two systems.</td>
</tr>
<tr>
<td>link-access procedure on the D-channel (LAPD)</td>
<td>A link-layer protocol on the ISDN-BRI and ISDN-PRI data-link layer (level 2). LAPD provides data transfer between two devices, and error and flow control on multiple logical links. LAPD is used for signaling and low-speed packet data (X.25 and mode 3) on the signaling (D-) channel and for mode-3 data communications on a bearer (B-) channel.</td>
</tr>
<tr>
<td>LINL</td>
<td>Local indirect neighbor link</td>
</tr>
</tbody>
</table>
local area network (LAN)
A networking arrangement designed for a limited geographical area. Generally, a LAN is limited in range to a maximum of 6.2 miles and provides high-speed carrier service with low error rates. Common configurations include daisy chain, star (including circuit-switched), ring, and bus.

logical link
The communications path between a processor and a BRI terminal.

loop-start trunk
A trunk on which, after establishing a connection with a distant switching system for an outgoing call, the system waits for a signal on the loop formed by the trunk leads before sending the digits of the called number.

LSU
Local storage unit

LWC
Leave Word Calling

MAC
Medium access

MADU
Modular asynchronous data unit

main distribution frame (MDF)
A device that mounts to the wall inside the system equipment room. The MDF provides a connection point from outside telephone lines to the PBX switch and to the inside telephone stations.

main-satellite-tributary
A private network configuration that can either stand alone or access an ETN. A main switch provides interconnection, via tie trunks, with one or more subtending switches, called satellites; all attendant positions for the main/satellite configuration; and access to and from the public network. To a user outside the complex, a main/satellite configuration appears as one switch, with one listed directory number (LDN). A tributary switch is connected to the main switch via tie trunks, but has its own attendant positions and LDN.

maintenance
Activities involved in keeping a telecommunications system in proper working condition: the detection and isolation of software and hardware faults, and automatic and manual recovery from these faults.

management terminal
The terminal that is used by the system administrator to administer the switch. The terminal may also be used to access the BCMS feature.

major alarm
An indication of a failure that has caused critical degradation of service and requires immediate attention. Major alarms are automatically displayed on LEDs on the attendant console and maintenance or alarming circuit pack, logged to the alarm log, and reported to a remote maintenance facility, if applicable.

Manual-In work mode
One of four agent work modes: the mode in which an agent is ready to process another call manually. See Auto-In Work mode on page 390 for a contrast.

MAP
Maintenance action process
MA-UUI Message-Associated User-to-User Signaling
Mbps Megabits per second
M-Bus Memory bus
M-byte Megabyte
MCC Multicarrier cabinet
MCS Message Center Service
MCT Malicious Call Trace
MCU Multipoint control unit
MDF Main distribution frame
MDM Modular data module
MDR Message detail record
MEM Memory
memory A device into which information can be copied and held, and from which information can later be obtained.
memory shadowing link An operating-system condition that provides a method for memory-resident programs to be more quickly accessed, allowing a system to reboot faster.
message center An answering service that supplies agents to and stores messages for later retrieval.
message center agent A member of a message-center hunt group who takes and retrieves messages for voice-terminal users.
MET Multibutton electronic telephone
MF Multifrequency
MFB Multifunction board
MFC Multifrequency code
MHz Megahertz
MIM Management information message
minor alarm

Minor alarm
An indication of a failure that could affect customer service. Minor alarms are automatically displayed on LEDs on the attendant console and maintenance or alarming circuit pack, sent to the alarm log, and reported to a remote maintenance facility, if applicable.

MIPS
Million instructions per second

MIS
Management information system

MISCID
Miscellaneous identification

MMCS
Multimedia Call Server

MMCH
Multimedia call handling

MMI
Multimedia interface

MMS
Material Management Services

MO
Maintenance object

modem
A device that converts digital data signals to analog signals for transmission over telephone circuits. The analog signals are converted back to the original digital data signals by another modem at the other end of the circuit.

modem pooling
A capability that provides shared conversion resources (modems and data modules) for cost-effective access to analog facilities by data terminals. When needed, modem pooling inserts a conversion resource into the path of a data call. Modem pooling serves both outgoing and incoming calls.

modular processor data module (MPDM)
A processor data module (PDM) that can be configured to provide several kinds of interfaces (RS-232C, RS-449, and V.35) to customer-provided data terminal equipment (DTE). See also processor data module (PDM) on page 423.

modular trunk data module (MTDM)
A trunk data module that can be configured to provide several kinds of interfaces (RS-232, RS-449, and V.35) to customer-provided data terminal equipment.

modulator-demodulator
See modem on page 416.

monitored call
See active-notification call on page 386.

MOS
Message-oriented signaling

MPDM
Modular processor data module

MS
Message server
ms Millisecond

MS/T Main satellite/tributary

MSA Message servicing adjunct

MSG Message service

MSL Material stocking location

MSM Modular System Management

MSS Mass storage system

MSSNET Mass storage/network control

MT Management terminal

MTDM Modular trunk data module

MTP Maintenance tape processor

MTT Multitasking terminal

multiappearance voice terminal A terminal equipped with several call-appearance buttons for the same extension, allowing the user to handle more than one call on that same extension at the same time.

Multicarrier cabinet A structure that holds one to five carriers. See also single-carrier cabinet on page 426.

Multifrequency Compelled (MFC) Release 2 (R2) signaling A signal consisting of two frequency components, such that when a signal is transmitted from a switch, another signal acknowledging the transmitted signal is received by the switch. R2 designates signaling used in the United States and in countries outside the United States.

multiplexer A device used to combine a number of individual channels into a single common bit stream for transmission.

multiplexing A process whereby a transmission facility is divided into two or more channels, either by splitting the frequency band into a number of narrower bands or by dividing the transmission channel into successive time slots. See also time-division multiplexing (TDM) on page 429.

multirate The new N x DS0 service (see N x DS0).
MWL

Message-waiting lamp

N+1

Method of determining redundant backup requirements. Example: if four rectifier modules are required for a DC-powered single-carrier cabinet, a fifth rectifier module is installed for backup.

N x DS0

N x DS0, equivalently referred to as N x 64 kbps, is an emerging standard for wideband calls separate from H0, H11, and H12 ISDN channels. The emerging N x DS0 ISDN multirate circuit mode bearer service will provide circuit-switched calls with data-rate multiples of 64 kbps up to 1536 kbps on a T1 facility or up to 1920 kbps on an E1 facility. In the switch, N x DS0 channels will range up to 1984 kbps using NFAS E1 interfaces.

NANP

North American Numbering Plan

narrowband

A circuit-switched call at a data rate up to and including 64 kbps. All nonwideband switch calls are considered narrowband.

native terminal support

A predefined terminal type exists in switch software, eliminating the need to alias the terminal (that is, manually map call appearances and feature buttons onto some other natively supported terminal type).

NAU

Network access unit

NCA/TSC

Noncall-associated/temporary-signaling connection

NCOS

Network Control Operations Support Center

NCSO

National Customer Support Organization

NEC

National Engineering Center

NEMA

National Electrical Manufacturer’s Association

NETCON

Network-control circuit pack

network

A series of points, nodes, or stations connected by communications channels.

network-specific facility (NSF)

An information element in an ISDN-PRI message that specifies which public-network service is used. NSF applies only when Call-by-Call Service Selection is used to access a public-network service.

network interface

A common boundary between two systems in an interconnected group of systems.

NFAS

See Nonfacility-associated signaling (NFAS) on page 419.

NI

Network interface
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NID</td>
<td>Network Inward Dialing</td>
</tr>
<tr>
<td>NM</td>
<td>Network management</td>
</tr>
<tr>
<td>NN</td>
<td>National number</td>
</tr>
<tr>
<td>node</td>
<td>A switching or control point for a network. Nodes are either tandem (they receive signals and pass them on) or terminal (they originate or terminate a transmission path).</td>
</tr>
<tr>
<td>Nonfacility-associated signaling (NFAS)</td>
<td>A method that allows multiple T1 and/or E1 facilities to share a single D-channel to form an ISDN-PRI. If D-channel backup is not used, one facility is configured with a D-channel, and the other facilities that share the D-channel are configured without D-channels. If D-channel backup is used, two facilities are configured to have D-channels (one D-channel on each facility), and the other facilities that share the D-channels are configured without D-channels.</td>
</tr>
<tr>
<td>NPA</td>
<td>Numbering-plan area</td>
</tr>
<tr>
<td>NPE</td>
<td>Network processing element</td>
</tr>
<tr>
<td>NQC</td>
<td>Number of queued calls</td>
</tr>
<tr>
<td>NSE</td>
<td>Night-service extension</td>
</tr>
<tr>
<td>NSU</td>
<td>Network sharing unit</td>
</tr>
<tr>
<td>null modem cable</td>
<td>Special wiring of an RS-232-C cable such that a computer can talk to another computer (or to a printer) without a modem.</td>
</tr>
<tr>
<td>NXX</td>
<td>Public-network office code</td>
</tr>
<tr>
<td>OA</td>
<td>Operator assisted</td>
</tr>
<tr>
<td>occurrence</td>
<td>See appearance on page 389.</td>
</tr>
<tr>
<td>OCM</td>
<td>Outbound Call Management</td>
</tr>
<tr>
<td>offered load</td>
<td>The traffic that would be generated by all the requests for service occurring within a monitored interval, usually one hour.</td>
</tr>
<tr>
<td>ONS</td>
<td>On-premises station</td>
</tr>
<tr>
<td>OPS</td>
<td>Off-premises station</td>
</tr>
<tr>
<td>OPX</td>
<td>Off-premises extension</td>
</tr>
<tr>
<td>OQT</td>
<td>Oldest queued time</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Act</td>
</tr>
<tr>
<td>OSI</td>
<td>Open Systems Interconnect</td>
</tr>
<tr>
<td>OSS</td>
<td>Operations Support System</td>
</tr>
<tr>
<td>OSSI</td>
<td>Operational Support System Interface</td>
</tr>
<tr>
<td>OTDR</td>
<td>Optical time-domain reflectometer</td>
</tr>
<tr>
<td>othersplit</td>
<td>The work state that indicates that an agent is currently active on another split’s call, or in ACW for another split.</td>
</tr>
<tr>
<td>OTQ</td>
<td>Outgoing trunk queuing</td>
</tr>
<tr>
<td>outgoing gateway</td>
<td>A PBX that routes an incoming call on a trunk administered for Supplementary Services Protocol B to a trunk not administered for Supplementary Services Protocol B.</td>
</tr>
<tr>
<td>PACCON</td>
<td>Packet control</td>
</tr>
<tr>
<td>packet</td>
<td>A group of bits (including a message element, which is the data, and a control information element (IE), which is the header) used in packet switching and transmitted as a discrete unit. In each packet, the message element and control IE are arranged in a specified format. See also packet bus on page 420 and packet switching on page 420.</td>
</tr>
<tr>
<td>packet bus</td>
<td>A wide-bandwidth bus that transmits packets.</td>
</tr>
<tr>
<td>packet switching</td>
<td>A data-transmission technique whereby user information is segmented and routed in discrete data envelopes called packets, each with its own appended control information, for routing, sequencing, and error checking. Packet switching allows a channel to be occupied only during the transmission of a packet. On completion of the transmission, the channel is made available for the transfer of other packets. See also BX.25 on page 393 and packet on page 420.</td>
</tr>
<tr>
<td>paging trunk</td>
<td>A telecommunications channel used to access an amplifier for loudspeaker paging.</td>
</tr>
<tr>
<td>party/extension active on call</td>
<td>A party is on the call if he or she is actually connected to the call (in active talk or in held state). An originator of a call is always a party on the call. Alerting parties, busy parties, and tones are not parties on the call.</td>
</tr>
<tr>
<td>PBX</td>
<td>Private branch exchange</td>
</tr>
<tr>
<td>PC</td>
<td>See personal computer (PC) on page 421.</td>
</tr>
</tbody>
</table>
PCM
See pulse-code modulation (PCM) on page 423.

PCOL
Personal central-office line

PCOLG
Personal central-office line group

PCS
Permanent switched calls

PDM
See processor data module (PDM) on page 423.

PDS
Premises Distribution System

PE
Processing element

PEC
Price element code

PEI
Processor element interchange

personal computer (PC)
A personally controllable microcomputer.

PGATE
Packet gateway

PGN
Partitioned group number

PI
Processor interface

PIB
Processor interface board

pickup group
A group of individuals authorized to answer any call directed to an extension within the group.

PIDB
Product image database

PKTINT
Packet interface

PL
Private line

PLS
Premises Lightwave System

PMS
Property Management System

PN
Port network

PNA
Private network access

POE
Processor occupancy evaluation
Point of presence

A data- or voice-transmission access point on a device that is used for communicating with other devices.

A carrier in a multicarrier cabinet or a single-carrier cabinet containing port circuit packs, power units, and service circuits. Also called a port cabinet in a single-carrier cabinet.

The interconnection of port networks (PNs), regardless of whether the configuration uses direct or switched connectivity.

1. Parts per million
2. Periodic pulse metering

See processor port network (PPN) on page 423.

See Primary Rate Interface (PRI) on page 422.

The main extension associated with the physical voice or data terminal.

A standard ISDN frame format that specifies the protocol used between two or more communications systems. PRI runs at 1.544 Mbps and, as used in North America, provides 23 64-kbps B-channels (voice or data) and one 64-kbps D-channel (signaling). The D-channel is the 24th channel of the interface and contains multiplexed signaling information for the other 23 channels.

The wideband switching capability introduces PRI endpoints on switch line-side interfaces. A PRI endpoint consists of one or more contiguous B-channels on a line-side T1 or E1 ISDN PRI facility and has an extension. Endpoint applications have call-control capabilities over PRI endpoints.

A terminal that has its primary extension bridged on one or more other terminals.

A person to whom a telephone is assigned and who has message-center coverage.

A network used exclusively for the telecommunications needs of a particular customer.

The first three digits of a 7-digit private network number.

Processor

See control carrier on page 398.
<p>| processor data module (PDM) | A device that provides an RS-232C DCE interface for connecting to data terminals, applications processors (APs), and host computers, and provides a DCP interface for connection to a communications system. See also [modular processor data module (MPDM)] on page 416. |
| processor port network (PPN) | A port network controlled by a switch-processing element that is directly connected to that PN's TDM bus and LAN bus. |
| processor port network (PPN) control carrier | A carrier containing the maintenance circuit pack, tone/clock circuit pack, and SPE circuit packs for a processor port network (PPN) and, optionally, port circuit packs. |
| Property Management System (PMS) | A stand-alone computer used by lodging and health-services organizations for services such as reservations, housekeeping, and billing. |
| protocol | A set of conventions or rules governing the format and timing of message exchanges to control data movement and correction of errors. |
| PSC | Premises service consultant |
| PSDN | Packet-switch public data network |
| PT | Personal terminal |
| PTC | Positive temperature coefficient |
| PTT | Postal Telephone and Telegraph |
| public network | The network that can be openly accessed by all customers for local and long-distance calling. |
| pulse-code modulation (PCM) | An extension of pulse-amplitude modulation (PAM) in which carrier-signal pulses modulated by an analog signal, such as speech, are quantized and encoded to a digital, usually binary, format. |
| QPPCN | Quality Protection Plan Change Notice |
| quadrant | A group of six contiguous DS0s in fixed locations on an ISDN-PRI facility. Note that this term comes from T1 terminology (one-fourth of a T1), but there are five quadrants on an E1 ISDN-PRI facility (30B + D). |
| queue | An ordered sequence of calls waiting to be processed. |
| queuing | The process of holding calls in order of their arrival to await connection to an attendant, to an answering group, or to an idle trunk. Calls are automatically connected in first-in, first-out sequence. |
| RAM | See [random-access memory (RAM)] on page 424. |</p>
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>random-access memory (RAM)</td>
<td>A storage arrangement whereby information can be retrieved at a speed independent of the location of the stored information.</td>
</tr>
<tr>
<td>RBS</td>
<td>Robbed-bit signaling</td>
</tr>
<tr>
<td>RC</td>
<td>Radio controller</td>
</tr>
<tr>
<td>RCL</td>
<td>Restricted call list</td>
</tr>
<tr>
<td>read-only memory (ROM)</td>
<td>A storage arrangement primarily for information-retrieval applications.</td>
</tr>
<tr>
<td>recall dial tone</td>
<td>Tones signalling that the system has completed a function (such as holding a call) and is ready to accept dialing.</td>
</tr>
<tr>
<td>redirection criteria</td>
<td>Information administered for each voice terminal’s coverage path that determines when an incoming call is redirected to coverage.</td>
</tr>
<tr>
<td>Redirection on No Answer</td>
<td>An optional feature that redirects an unanswered ringing ACD call after an administered number of rings. The call is then redirected back to the agent.</td>
</tr>
<tr>
<td>remote home numbering-plan area code (RHNPA)</td>
<td>A foreign numbering-plan area code that is treated as a home area code by the Automatic Route Selection (ARS) feature. Calls can be allowed or denied based on the area code and the dialed CO code rather than just the area code. If the call is allowed, the ARS pattern used for the call is determined by these six digits.</td>
</tr>
<tr>
<td>Remote Operations Service Element (ROSE)</td>
<td>A CCITT and ISO standard that defines a notation and services that support interactions between the various entities that make up a distributed application.</td>
</tr>
<tr>
<td>REN</td>
<td>Ringer equivalency number</td>
</tr>
<tr>
<td>reorder tone</td>
<td>A tone to signal that at least one of the facilities, such as a trunk or a digit transmitter, needed for the call was not available.</td>
</tr>
<tr>
<td>report scheduler</td>
<td>Software that is used in conjunction with the system printer to schedule the days of the week and time of day that the desired reports are to be printed.</td>
</tr>
<tr>
<td>RFP</td>
<td>Request for proposal</td>
</tr>
<tr>
<td>RHNPA</td>
<td>See remote home numbering-plan area code (RHNPA) on page 424.</td>
</tr>
<tr>
<td>RINL</td>
<td>Remote indirect neighbor link</td>
</tr>
<tr>
<td>RISC</td>
<td>Reduced-instruction-set computer</td>
</tr>
<tr>
<td>RLT</td>
<td>Release-link trunk</td>
</tr>
</tbody>
</table>
RMATS Remote Maintenance, Administration, and Traffic System
RNX Route-number index (private network office code)
ROM See read-only memory (ROM) on page 424.
RPN Routing-plan number
RS-232C A physical interface specified by the Electronic Industries Association (EIA). RS-232C transmits and receives asynchronous data at speeds of up to 19.2 kbps over cable distances of up to 50 feet.
RS-449 Recommended Standard 449
RSC Regional Support Center
ROSE See Remote Operations Service Element (ROSE) on page 424.
S1 The first logical signalling channel of DCP. The channel is used to provide signaling information for DCP’s I1 channel.
S2 The second logical signalling channel of DCP. The channel is used to provide signaling information for DCP’s I2 channel.
SABM Set Asynchronous Balance Mode
SAC Send All Calls
SAKI See sanity and control interface (SAKI) on page 425.
sanity and control interface (SAKI) A custom VLSI microchip located on each port circuit pack. The SAKI provides address recognition, buffering, and synchronization between the angel and the five control time slots that make up the control channel. The SAKI also scans and collects status information for the angel on its port circuit pack and, when polled, transmits this information to the archangel.
SAT System access terminal
SCC 1. See single-carrier cabinet on page 426.
2. Serial communications controller
SCD Switch-control driver
SCI Switch communications interface
SCO System control office
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOTCH</td>
<td>Switch Conferencing for TDM Bus in Concentration Highway</td>
</tr>
<tr>
<td>SCSI</td>
<td>See small computer system interface (SCSI) on page 426.</td>
</tr>
<tr>
<td>SDDN</td>
<td>Software-Defined Data Network</td>
</tr>
<tr>
<td>SDI</td>
<td>Switched Digital International</td>
</tr>
<tr>
<td>SDLC</td>
<td>Synchronous data-link control</td>
</tr>
<tr>
<td>SDN</td>
<td>Software-defined network</td>
</tr>
<tr>
<td>SFRL</td>
<td>Single-frequency return loss</td>
</tr>
<tr>
<td>SID</td>
<td>Station-identification number</td>
</tr>
<tr>
<td>simplex system</td>
<td>A system that has no redundant hardware.</td>
</tr>
<tr>
<td>simulated bridged appearance</td>
<td>The same as a temporary bridged appearance; allows the terminal user (usually the principal) to bridge onto a call that had been answered by another party on his or her behalf.</td>
</tr>
<tr>
<td>single-carrier cabinet</td>
<td>A combined cabinet and carrier unit that contains one carrier. See also Multicarrier cabinet on page 417.</td>
</tr>
<tr>
<td>single-line voice terminal</td>
<td>A voice terminal served by a single-line tip and ring circuit (models 500, 2500, 7101A, 7103A).</td>
</tr>
<tr>
<td>SIT</td>
<td>Special-information tones</td>
</tr>
<tr>
<td>small computer system interface (SCSI)</td>
<td>An ANSI bus standard that provides a high-level command interface between host computers and peripheral devices.</td>
</tr>
<tr>
<td>SMDR</td>
<td>Station Message Detail Recording, also known as Call Detail Recording.</td>
</tr>
<tr>
<td>SN</td>
<td>Switch Node</td>
</tr>
<tr>
<td>SNA</td>
<td>Systems Network Architecture</td>
</tr>
<tr>
<td>SNC</td>
<td>Switch Node Clock</td>
</tr>
<tr>
<td>SNI</td>
<td>Switch Node Interface</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>software</td>
<td>A set of computer programs that perform one or more tasks.</td>
</tr>
<tr>
<td>SPE</td>
<td>Switch Processing Element</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>SPID</td>
<td>Service Profile Identifier</td>
</tr>
<tr>
<td>split</td>
<td>See ACD work mode on page 386.</td>
</tr>
<tr>
<td>split condition</td>
<td>A condition whereby a caller is temporarily separated from a connection with an attendant. A split condition automatically occurs when the attendant, active on a call, presses the start button.</td>
</tr>
<tr>
<td>split number</td>
<td>The split’s identity to the switch and BCMS.</td>
</tr>
<tr>
<td>split report</td>
<td>A report that provides historical traffic information for internally measured splits.</td>
</tr>
<tr>
<td>split (agent) status report</td>
<td>A report that provides real-time status and measurement data for internally measured agents and the split to which they are assigned.</td>
</tr>
<tr>
<td>SSI</td>
<td>Standard serial interface</td>
</tr>
<tr>
<td>SSM</td>
<td>Single-site management</td>
</tr>
<tr>
<td>SSV</td>
<td>Station service</td>
</tr>
<tr>
<td>ST3</td>
<td>Stratum 3 clock board</td>
</tr>
<tr>
<td>staffed</td>
<td>Indicates that an agent position is logged in. A staffed agent functions in one of four work modes: Auto-In, Manual-In, ACW, or AUX-Work.</td>
</tr>
<tr>
<td>STARLAN</td>
<td>Star-Based Local Area Network</td>
</tr>
<tr>
<td>Station Message Detail Recording (SMDR)</td>
<td>An obsolete term now called CDR — a switch feature that uses software and hardware to record call data. See Call Detail Recording (CDR) on page 394.</td>
</tr>
<tr>
<td>standard serial interface (SSI)</td>
<td>A communications protocol developed for use with 500-type business communications terminals (BCTs) and 400-series printers.</td>
</tr>
<tr>
<td>status lamp</td>
<td>A green light that shows the status of a call appearance or a feature button by the state of the light (lit, flashing, fluttering, broken flutter, or unlit).</td>
</tr>
<tr>
<td>stroke counts</td>
<td>A method used by ACD agents to record up to nine customer-defined events per call when CMS is active.</td>
</tr>
<tr>
<td>SVN</td>
<td>Security-violation notification</td>
</tr>
<tr>
<td>switch</td>
<td>Any kind of telephone switching system. See also communications system on page 397.</td>
</tr>
</tbody>
</table>
The buttons located under the receiver on a voice terminal.

A carrier containing a single switch node, power units, and, optionally, one or two DS1 converter circuit packs. An SN carrier is located in a center-stage switch.

The circuit pack in an SN carrier that provides clock and maintenance alarm functions and environmental monitors.

The basic building block of a switch node. An SNI circuit pack controls the routing of circuit, packet, and control messages.

The hardware that provides a bridge between two or more switch nodes. The SNL consists of the two SNI circuit packs residing on the switch nodes and the hardware connecting the SNIs. This hardware can include lightwave transceivers that convert the SNI’s electrical signals to light signals, the copper wire that connects the SNIs to the lightwave transceivers, a full-duplex fiber-optic cable, DS1 converter circuit cards and DS1 facilities if a company does not have rights to lay cable, and appropriate connectors.

A complex of circuit packs (processor, memory, disk controller, and bus-interface cards) mounted in a PPN control carrier. The SPE serves as the control element for that PPN and, optionally, for one or more EPNs.

Step-by-step

A method of sending data in which discrete signal elements are sent at a fixed and continuous rate and specified times. See also association on page 389.

System Access and Administration

The person who maintains overall customer responsibility for system administration. Generally, all administration functions are performed from the Management Terminal. The switch requires a special login, referred to as the system administrator login, to gain access to system-administration capabilities.

An optional printer that may be used to print scheduled reports via the report scheduler.

A report that provides historical traffic information for internally measured splits.

A report that provides real-time status information for internally measured splits.

A person responsible for specifying and administering features and services for a system.

A process that allows stored data to be written from a tape into the system memory (normally after a power outage).
T1
A digital transmission standard that in North America carries traffic at the DS1 rate of 1.544 Mbps. A T1 facility is divided into 24 channels (DS0s) of 64 kbps. These 24 channels, with an overall digital rate of 1.536 Mbps, and an 8-kbps framing and synchronization channel make up the 1.544-Mbps transmission. When a D-channel is present, it occupies channel 24. T1 facilities are also used in Japan and some Middle-Eastern countries.

TAAS
Trunk Answer from Any Station

TABS
Telemetry asynchronous block serial

TAC
Trunk-access code

tandem switch
A switch within an electronic tandem network (ETN) that provides the logic to determine the best route for a network call, possibly modifies the digits outpulsed, and allows or denies certain calls to certain users.

tandem through
The switched connection of an incoming trunk to an outgoing trunk without human intervention.

tandem tie-trunk network (TTTN)
A private network that interconnects several customer switching systems.

TC
Technical consultant

TCM
Traveling class mark

TDM
See time-division multiplexing (TDM) on page 429.

TDR
Time-of-day routing

TEG
Terminating extension group

terminal
A device that sends and receives data within a system. See also administration terminal on page 387.

tie trunk
A telecommunications channel that directly connects two private switching systems.

time-division multiplex (TDM) bus
A bus that is time-shared regularly by preallocating short time slots to each transmitter. In a PBX, all port circuits are connected to the TDM bus, permitting any port to send a signal to any other port.

time-division multiplexing (TDM)
Multiplexing that divides a transmission channel into successive time slots. See also multiplexing on page 417.

time interval
The period of time, either one hour or one-half hour, that BCMS measurements are collected for a reports.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>time slice</td>
<td>See time interval on page 429.</td>
</tr>
<tr>
<td>time slot</td>
<td>64 kbps of digital information structured as eight bits every 125 microseconds. In the switch, a time slot refers to either a DS0 on a T1 or E1 facility or a 64-kbps unit on the TDM bus or fiber connection between port networks.</td>
</tr>
<tr>
<td>time slot sequence</td>
<td>The situation whereby the N octets of a wideband call that are transmitted in one T1 or E1 frame arrive at the output in the same order that they were introduced.</td>
</tr>
<tr>
<td>integrity</td>
<td></td>
</tr>
<tr>
<td>to control</td>
<td>An application can invoke Third Party Call Control capabilities using either an adjunct-control or domain-control association.</td>
</tr>
<tr>
<td>to monitor</td>
<td>An application can receive event reports on an active-notification, adjunct-control, or domain-control association.</td>
</tr>
<tr>
<td>TOD</td>
<td>Time of day</td>
</tr>
<tr>
<td>tone ringer</td>
<td>A device with a speaker, used in electronic voice terminals to alert the user.</td>
</tr>
<tr>
<td>TOP</td>
<td>Task-oriented protocol</td>
</tr>
<tr>
<td>trunk</td>
<td>A dedicated telecommunications channel between two communications systems or COs.</td>
</tr>
<tr>
<td>trunk allocation</td>
<td>The manner in which trunks are selected to form wideband channels.</td>
</tr>
<tr>
<td>trunk-data module</td>
<td>A device that connects off-premises private-line trunk facilities and switches. The trunk-data module converts between the RS-232C and the DCP, and can connect to DDD modems as the DCP member of a modem pool.</td>
</tr>
<tr>
<td>trunk group</td>
<td>Telecommunications channels assigned as a group for certain functions that can be used interchangeably between two communications systems or COs.</td>
</tr>
<tr>
<td>TSC</td>
<td>Technical Service Center</td>
</tr>
<tr>
<td>TTI</td>
<td>Terminal translation initialization</td>
</tr>
<tr>
<td>TTR</td>
<td>Touch-tone receiver</td>
</tr>
<tr>
<td>TTT</td>
<td>Terminating trunk transmission</td>
</tr>
<tr>
<td>TTTN</td>
<td>See tandem tie-trunk network (TTTN) on page 429.</td>
</tr>
<tr>
<td>TTY</td>
<td>Teletypewriter</td>
</tr>
<tr>
<td>UAP</td>
<td>Usage-allocation plan</td>
</tr>
</tbody>
</table>
UART
Universal asynchronous transmitter

UCD
Uniform call distribution

UCD-LOA
See Uniform Call Distribution-Least Occupied Agent.

UCD-MIA
See Uniform Call Distribution-Most Idle Agent.

UCL
Unrestricted call list

UDP
See Uniform Dial Plan (UDP) on page 431.

UL
Underwriter Laboratories

UM
User manager

Uniform Call Distribution-Least Occupied Agent (UCD-LOA)
An agent selection method for delivery of calls. With UCD-LOA implemented, calls are delivered to the available agent with the lowest percentage of work time since login.

See also EAD-LOA, EAD-MIA, and UCD-MIA.

Uniform Call Distribution-Most Idle Agent (UCD-MIA)
An agent selection method for delivery of calls. With UCD-MIA implemented, calls are delivered to the available agent who has been idle the longest since their last ACD call.

See also EAD-LOA, EAD-MIA, and UCD-LOA.

Uniform Dial Plan (UDP)
A feature that allows a unique number assignment for each terminal in a multiswitch configuration such as a DCS or main-satellite-tributary system.

UNMA
Unified Network Management Architecture

UNP
Uniform numbering plan

UPS
Uninterruptible power supply

USOP
User service-order profile

UUCP
UNIX-to-UNIX Communications Protocol

UUI
User-to-user information

VAR
Value-added reseller

VDN
See vector directory number (VDN) on page 432.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector directory number (VDN)</td>
<td>An extension that provides access to the Vectoring feature on the switch. Vectoring allows a customer to specify the treatment of incoming calls based on the dialed number.</td>
</tr>
<tr>
<td>vector-controlled split</td>
<td>A hunt group or ACD split administered with the vector field enabled. Access to such a split is possible only by dialing a VDN extension.</td>
</tr>
<tr>
<td>VIS</td>
<td>Voice Information System</td>
</tr>
<tr>
<td>VLSI</td>
<td>Very-large-scale integration</td>
</tr>
<tr>
<td>VM</td>
<td>Voltmeter</td>
</tr>
<tr>
<td>VNI</td>
<td>Virtual nodepoint identifier</td>
</tr>
<tr>
<td>voice terminal</td>
<td>A single-line or multiappearance telephone.</td>
</tr>
<tr>
<td>WATS</td>
<td>See [Wide Area Telecommunications Service (WATS)] on page 432.</td>
</tr>
<tr>
<td>WCC</td>
<td>World-Class Core</td>
</tr>
<tr>
<td>WCR</td>
<td>World-Class Routing</td>
</tr>
<tr>
<td>WCTD</td>
<td>World-Class Tone Detection</td>
</tr>
<tr>
<td>WFB</td>
<td>Wireless fixed base</td>
</tr>
<tr>
<td>Wide Area Telecommunications Service (WATS)</td>
<td>A service in the United States that allows calls to certain areas for a flat-rate charge based on expected usage.</td>
</tr>
<tr>
<td>wideband</td>
<td>A circuit-switched call at a data rate greater than 64 kbps. A circuit-switched call on a single T1 or E1 facility with a bandwidth between 128 and 1536 (T1) or 1984 (E1) kbps in multiples of 64 kbps. H0, H11, H12, and N x DS0 calls are wideband.</td>
</tr>
<tr>
<td>wideband access endpoint</td>
<td>Access endpoints, extended with wideband switching to include wideband access endpoints. A wideband access endpoint consists of one or more contiguous DS0s on a line-side T1 or E1 facility and has an extension. The Administered Connections feature provides call control for calls originating from wideband access endpoints.</td>
</tr>
<tr>
<td>wink-start tie trunk</td>
<td>A trunk with which, after making a connection with a distant switching system for an outgoing call, the system waits for a momentary signal (wink) before sending the digits of the called number. Similarly, on an incoming call, the system sends the wink signal when ready to receive digits.</td>
</tr>
<tr>
<td>term</td>
<td>definition</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>work mode</td>
<td>One of four states (Auto-In, Manual-In, ACW, AUX-Work) that an ACD agent can be in. Upon logging in, an agent enters AUX-Work mode. To become available to receive ACD calls, the agent enters Auto-In or Manual-In mode. To do work associated with a completed ACD call, an agent enters ACW mode.</td>
</tr>
<tr>
<td>work state</td>
<td>An ACD agent may be a member of up to three different splits. Each ACD agent continuously exhibits a work state for every split of which it is a member. Valid work states are Avail, Unstaffed, AUX-Work, ACW, ACD (answering an ACD call), ExtIn, ExtOut, and OtherSpl. An agent’s work state for a particular split may change for a variety of reasons (example: when a call is answered or abandoned, or the agent changes work modes). The BCMS feature monitors work states and uses this information to provide BCMS reports.</td>
</tr>
<tr>
<td>write operation</td>
<td>The process of putting information onto a storage medium, such as a hard disk.</td>
</tr>
<tr>
<td>WSA</td>
<td>Waiting session accept</td>
</tr>
<tr>
<td>WSS</td>
<td>Wireless Subscriber System</td>
</tr>
<tr>
<td>ZCS</td>
<td>Zero Code Suppression</td>
</tr>
</tbody>
</table>
Index

Numerical
3-burst ringing .. 64

A
AAR and ARS interactions
Call Vectoring ... 132
Look Ahead (LAI) Interflow 173
AAR/ARS Partitioning interactions
VDN in a Coverage Path 251
AAS ... 285
Abandoned Call Search 55-56
AAS interactions
Call Management System (CMS) 56
Redirection on No Answer (RONA) 210
Abbreviated Dialing (AD) interactions
Agent Call Handling 70
Expert Agent Selection (EAS) 152
Reason Codes .. 204
ACD Login Identification Length 299
ACW .. 139
ACW Agents Considered Idle 298
ACW Considered Idle 139
Add/Remove Skills interactions
Expert Agent Selection (EAS) 152
Service Observing 235
forms ... 139
interactions
Auto Available Split (AAS) 58
Basic Call Management System (BCMS) 57, 58
Call Management System (CMS) 57
Expert Agent Selection (EAS) 57
Expert Agent Selection—preference handling distribution (EAS–PHD) 58
VuStats ... 57, 58
Adjunct CMS Release 299
adjuncts
Inbound Call Management (ICM) applications 158
processors ... 159
speech processing 160
adjust-by ... 109
Administration without Hardware (AWOH)
interactions
Expert Agent Selection (EAS) 153
after call work (ACW)
buttons ... 85
modes ... 63
states ... 58
Agent Call Handling 59-73
after call work (ACW) modes 63
agent sizing .. 67
agents assigned to hunt group and ACD calls ... 70
agents with automatic answer 70
answering options 62
Assist buttons/feature access codes (FAC) 65
Audio Difficulty buttons 65
auto-in modes .. 63
auto-answer .. 62
Automatic Call Distribution (ACD) work modes 62
auxiliary (AUX) work modes 61, 63
button assignments 69
CALLMASTER phones 61, 66
CALLMASTER voice terminals 70
cancelling timed after call work (ACW) 64
cancellations ... 69
description .. 60
expanded technical information 67
headsets .. 70
home agents ... 64
hunt group calls 70
interactions
Abbreviated Dialing (AD) 70
Auto Available Split (AAS) 71
Avaya CMS ... 69, 71
Bridged Call Appearance 71
Call Coverage ... 71
Call Forwarding .. 71
Call Pickup .. 71
call work codes (CWC) 66, 71
call work processors (CWC) 66, 71
CallVisor ASAI ... 59, 71
Conference—Attendant 72
Conference—Terminal 72
Expert Agent Selection (EAS) 72
Multiple Call Handling (MCH) 72
Transfer ... 72
VDN of Origin Announcement (VOA) 259
vector directory number (VDN) override 72
Voice Response Integration (VRI) 73
Agent Call Handling, (continued)

- **logins/logouts** .. 61
- **manual answer** .. 62
- **manual-in modes** .. 63
- **most idle agent (MIA) queues** 63
- **Release buttons** ... 69
- **splits** .. 63, 69, 70
- **stroke counts** .. 65, 66
- **supervisory assistance** 64
- **timed after call work (ACW)** 64, 69

Agent LoginID form 139, 282-287

agent selection methods 141

features that work together 145

Least Occupied Agent (LOA) 150

what happens during agent surplus conditions ... 142

agents

see also **most idle agents (MIA)**

ACD work modes 62, 210

answer options .. 62

automatic message waiting lights 87

capacities, see sizing considerations

- **Automatic Answer** 70
- **Automatic Call Distribution (ACD)** 70

data screen delivery applications 158

greatest need routing 150

home agents

- **Redirection on No Answer (RONA)** 207, 215
- **timed after call work (ACW)** 64
- **VDN of Origin Announcement (VOA)** 260

hunt group calls 70

logs, see under logs

logout, see under logouts

move agent requests 76, 181

multiple skills ... 204

origination and termination restrictions 87

pacing .. 64, 69

personal calls ... 152

sizing .. 67, 86

skill level routing 150

supervisory assistance 64

Voice Response Integration (VRI) 265

VuStats data ... 337

algorithms

- **Least Occupied Agent (LOA)** 150
- **Most Idle Agent (MIA)** 150

Allow VDN Override 316

AMD .. 313

ANI/II-Digits .. 303

announcements

see also **Recorded Announcement and VDN of Origin Announcement (VOA)**

- **delay announcements** 214
- **first** .. 81
- **forced first** .. 81
- **rules** .. 83
- **second** ... 82
- **splits** .. 80

Voice Response Integration (VRI) 268

Announcements/Audio Sources 129

answer supervision

- **Voice Response Integration (VRI)** 265

ASAI

interactions

- **VDN in a Coverage Path** 252

ATTendant

interactions

- **Redirection on No Answer (RONA)** 212

Attentant Call Waiting

call waiting tones 86

interactions

- **Automatic Call Distribution (ACD)** 89
- **Service Observing** 234

Attenant Control of Trunk Group Access

interactions

- **Call Vectoring** 131
- **Look Ahead Interflow (LAI)** 174

Attenant Display

interactions

- **Queue Status Indications** 200

Attenant Intrusion (Call Offer)

interactions

- **Automatic Call Distribution (ACD)** 89

Attenant Recall

interactions

- **Call Vectoring** 131

Attenant Vectoring 302, 316

Audio Difficulty buttons 65

audio transmission quality 65

audiotex applications 262

436 Communication Manager Guide to ACD Call Centers
Busy Verification of Terminals and Trunks (Verify)

- **Call Vectoring**: 132
- **Service Observing**: 233

button assignments

- **Agent Call Handling**: 69
- **VDN extensions**: 131

Call Center

- **Abandoned Call Search**: 55
- **Add/Remove Skills**: 57
- **Agent Call Handling**: 59
- **Auto Available Split (AAS)**: 74
- **Automatic Call Distribution (ACD)**: 77
- **AVX Reason Codes**: 201
- **Avaya Business Advocate**: 138
- **Basic Call Management System (BCMS)**: 91
- **Best Service Routing (BSR)**: 94
- **Call Management System (CMS)**: 119
- **Call Prompting**: 125
- **Call Vectoring**: 128
- **Expert Agent Selection (EAS)**: 147
- **Inbound Call Management (ICM)**: 156
- **Information Forwarding**: 163
- **Intraflow and Interflow**: 163
- **Look Ahead Interflow (LAI)**: 171, 183, 218
- **Multiple Call Handling (MCH)**: 177
- **Queue Status Indications**: 199
- **Redirection on No Answer (RONA)**: 205
- **Universal Call ID (UCID)**: 238
- **VDN in a Coverage Path (VICP)**: 238
- **VDN of Origin Announcement (VOA)**: 256
- **VuStats**: 271

Call Center features

- **Voice Response Integration (VRI)**: 262

Call Center System Parameters

- 293

Call Classification After Answer Supervision

- 297

Call Coverage

Call Park

- **Agent Call Handling**: 71
- **Automatic Call Distribution (ACD)**: 89
- **Call Vectoring**: 132
- **Expert Agent Selection (EAS)**: 153
- **Service Observing**: 233
- **VDN in a Coverage Path**: 253
- **Voice Response Integration (VRI)**: 266

Call Forwarding

- **call forwarding—all calls**
 - **Automatic Call Distribution (ACD)**: 89
 - **Redirection on No Answer (RONA)**: 213

Call Handling Preference

- **call handling preferences**: 85, 150
- **where administered**: 140

Call Management System (CMS)

- **CMS stroke counts**: 119-121

Call Detail Recording (CDR)

- **forced entry of account codes (FEAC)**
 - **Call Vectoring**: 134

Call Park

Call Coverage

- **Agent Call Handling**: 71
- **Automatic Call Distribution (ACD)**: 89
- **Intraflow and Interflow**: 170
- **Redirection on No Answer (RONA)**: 212
- **Service Observing**: 233
- **VDN in a Coverage Path**: 252
- **VDN of Origin Announcement (VOA)**: 260

Look Ahead Interflow (LAI)

- 171, 183, 218

Multiple Call Handling (MCH)

- 177

Queue Status Indications

- 200

Reason Codes

- 204

Redirection on No Answer (RONA)

- 208

Service Observing

- 234

Voice Response Integration (VRI)

- 266

VuStats

- 279
Call Pickup
- directed call pickup 154

interactions
- Agent Call Handling 71
- Expert Agent Selection (EAS) 154
- Redirection on No Answer (RONA) 213
- Service Observing 233
- VDN of Origin Announcement (VOA) 259
- Call Vectoring .. 128-137
- Call Vector ... 300
- Call Vector form 129
- Call Selection Override 140
- Call Selection Measurement 140, 298
- Call Selection ... 140
- Call Vector ... 141
- Call Vector form 129
- Call Vectoring .. 300

see also Look Ahead Interflow (LAI)
interactions
- Authorization Codes 126
- CallVisor ASAI .. 127
- Hold ... 127
- Inbound Call Management (ICM) 127, 162
- Look Ahead Interflow (LAI) 175
- Transfer .. 127
- Voice Response Integration (VRI) 264
- VuStats ... 278
- Call Selection .. 141
- Call Selection .. 141
- Call Selection Measurement 141
- Call Selection Override 140
- Call Vector ... 129
- Call Vector ... 129

Call Waiting Termination
interactions
- Call Selecting ... 133
- call work codes (CWC) 133
- AAR and ARS .. 132
- Attendant Control of Trunk Group Access 131
- Attendant Recall 131
- Authorization Codes 132
- Automatic Callback (ACB) 132
- Best Service Routing (BSR) 114
- Bridged Call Appearance 132
- Busy Verification of Terminals and Trunks
 (Verify) ... 132
- Call Coverage .. 132
- Call Detail Recording (CDR) 133
- Call Forwarding .. 132
- Call Park ... 133
- Call Waiting Termination 133
<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature compatibility</td>
<td>144</td>
</tr>
<tr>
<td>features that work together</td>
<td>145</td>
</tr>
<tr>
<td>Feature-Related System Parameters</td>
<td>129</td>
</tr>
<tr>
<td>Feature-Related System Parameters form</td>
<td>139, 300</td>
</tr>
<tr>
<td>fields that do not allow</td>
<td>129</td>
</tr>
<tr>
<td>first announcements</td>
<td>81</td>
</tr>
<tr>
<td>forced disconnects</td>
<td>82</td>
</tr>
<tr>
<td>forced first announcements</td>
<td>81</td>
</tr>
<tr>
<td>Format</td>
<td>328</td>
</tr>
<tr>
<td>Format Description</td>
<td>326</td>
</tr>
<tr>
<td>Format Number</td>
<td>325</td>
</tr>
<tr>
<td>G3V4 Adv Route</td>
<td>303</td>
</tr>
<tr>
<td>G3V4 Enhanced</td>
<td>303</td>
</tr>
<tr>
<td>Greatest Need</td>
<td>145</td>
</tr>
<tr>
<td>Greatest Need with Service Objective</td>
<td>142</td>
</tr>
<tr>
<td>Greatest Need without Service Objective</td>
<td>142</td>
</tr>
<tr>
<td>Hold</td>
<td>70</td>
</tr>
<tr>
<td>automatic answering</td>
<td>70</td>
</tr>
<tr>
<td>Historical Split report</td>
<td>208</td>
</tr>
<tr>
<td>Hold—Automatic interactions</td>
<td>90</td>
</tr>
<tr>
<td>Automatic Call Distribution (ACD)</td>
<td>127</td>
</tr>
<tr>
<td>Call Prompting</td>
<td>235</td>
</tr>
<tr>
<td>Service Observing</td>
<td>260</td>
</tr>
<tr>
<td>VDN of Origin Announcement (VOA)</td>
<td>267</td>
</tr>
<tr>
<td>Voice Response Integration (VRI)</td>
<td>156-162</td>
</tr>
<tr>
<td>individual Attendant Access</td>
<td>156, 161</td>
</tr>
<tr>
<td>adjuncts</td>
<td>158</td>
</tr>
<tr>
<td>applications</td>
<td>158</td>
</tr>
<tr>
<td>adjunct applications</td>
<td>158</td>
</tr>
<tr>
<td>agent data screen delivery</td>
<td>158</td>
</tr>
<tr>
<td>Call Prompting</td>
<td>158</td>
</tr>
<tr>
<td>Calling Party Number/Billing Number (CPN/BN)</td>
<td>158</td>
</tr>
<tr>
<td>direct agent calling (DAC)</td>
<td>158</td>
</tr>
<tr>
<td>voice response units (VRU)</td>
<td>158</td>
</tr>
<tr>
<td>configurations</td>
<td>159, 160</td>
</tr>
<tr>
<td>considerations</td>
<td>161</td>
</tr>
<tr>
<td>CONVERSANT voice information system (CVIS)</td>
<td>156</td>
</tr>
<tr>
<td>displays</td>
<td>156</td>
</tr>
<tr>
<td>forms</td>
<td>156</td>
</tr>
<tr>
<td>host applications</td>
<td>156</td>
</tr>
<tr>
<td>host routing</td>
<td>161</td>
</tr>
<tr>
<td>integration with speech delivery</td>
<td>160</td>
</tr>
<tr>
<td>interactions</td>
<td>127, 162</td>
</tr>
<tr>
<td>Call Prompting</td>
<td>127</td>
</tr>
<tr>
<td>direct agent calling (DAC)</td>
<td>162</td>
</tr>
<tr>
<td>Look Ahead Interflow (LAI)</td>
<td>175</td>
</tr>
<tr>
<td>Priority Calling</td>
<td>162</td>
</tr>
<tr>
<td>Redirection on No Answer (RONA)</td>
<td>215</td>
</tr>
<tr>
<td>Hold—Automatic interactions</td>
<td>180</td>
</tr>
<tr>
<td>Multiple Call Handling (MCH)</td>
<td>161</td>
</tr>
<tr>
<td>Voice Response Integration (VRI)</td>
<td>129</td>
</tr>
<tr>
<td>Holiday Table</td>
<td>139, 307</td>
</tr>
<tr>
<td>Holiday Table form</td>
<td>304, 305</td>
</tr>
<tr>
<td>host routing</td>
<td>161</td>
</tr>
<tr>
<td>Hunt Group</td>
<td>129</td>
</tr>
<tr>
<td>Hunt Group form</td>
<td>140</td>
</tr>
<tr>
<td>hunt group types</td>
<td>77</td>
</tr>
<tr>
<td>Integrated Directory</td>
<td>254</td>
</tr>
<tr>
<td>integrated Directory</td>
<td>261</td>
</tr>
<tr>
<td>integrated Directory</td>
<td>267</td>
</tr>
<tr>
<td>Inter-PBX Attendant Service (IAS)</td>
<td>135</td>
</tr>
<tr>
<td>Inter-PBX Attendant Service (IAS)</td>
<td>135</td>
</tr>
<tr>
<td>Inter-PBX Attendant Service (IAS)</td>
<td>135</td>
</tr>
<tr>
<td>Intercept Treatment</td>
<td>135</td>
</tr>
<tr>
<td>Intercept Treatment</td>
<td>135</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Minimum Agent-LoginID Password Length</td>
<td>294</td>
</tr>
<tr>
<td>most idle agents (MIA) across splits or skills</td>
<td>35</td>
</tr>
<tr>
<td>across splits/skills</td>
<td>86</td>
</tr>
<tr>
<td>MIA algorithm</td>
<td>150</td>
</tr>
<tr>
<td>queues</td>
<td>63</td>
</tr>
<tr>
<td>skills</td>
<td>151</td>
</tr>
<tr>
<td>splits</td>
<td>151</td>
</tr>
<tr>
<td>move agent requests</td>
<td>235</td>
</tr>
<tr>
<td>multiappearance phones</td>
<td>66</td>
</tr>
<tr>
<td>Multiappearance Preselection and Preference interactions</td>
<td></td>
</tr>
<tr>
<td>Automatic Call Distribution (ACD)</td>
<td>90</td>
</tr>
<tr>
<td>Multimedia</td>
<td>302</td>
</tr>
<tr>
<td>Multiple Call Handling (MCH)</td>
<td>177-182</td>
</tr>
<tr>
<td>applications</td>
<td>177</td>
</tr>
<tr>
<td>considerations</td>
<td>180</td>
</tr>
<tr>
<td>example</td>
<td>179</td>
</tr>
<tr>
<td>forms</td>
<td>177</td>
</tr>
<tr>
<td>interactions</td>
<td></td>
</tr>
<tr>
<td>Agent Call Handling</td>
<td>72</td>
</tr>
<tr>
<td>call work codes (CWC)</td>
<td>181</td>
</tr>
<tr>
<td>direct agent calling (DAC)</td>
<td>181</td>
</tr>
<tr>
<td>Expert Agent Selection (EAS)</td>
<td>177</td>
</tr>
<tr>
<td>Hold—Automatic</td>
<td>180</td>
</tr>
<tr>
<td>move agent while staffed</td>
<td>181</td>
</tr>
<tr>
<td>nonACD calls</td>
<td>181</td>
</tr>
<tr>
<td>queues</td>
<td>181</td>
</tr>
<tr>
<td>Redirection on No Answer (RONA)</td>
<td>182, 215</td>
</tr>
<tr>
<td>restricted line appearance</td>
<td>182</td>
</tr>
<tr>
<td>Service Observing</td>
<td>235</td>
</tr>
<tr>
<td>stroke counts</td>
<td>181</td>
</tr>
<tr>
<td>settings</td>
<td></td>
</tr>
<tr>
<td>many forced</td>
<td>179</td>
</tr>
<tr>
<td>on request splits/skills</td>
<td>178</td>
</tr>
<tr>
<td>one forced</td>
<td>178</td>
</tr>
<tr>
<td>one per skill MCH</td>
<td>178</td>
</tr>
<tr>
<td>work modes</td>
<td>180</td>
</tr>
<tr>
<td>multiple splits, see under splits</td>
<td></td>
</tr>
<tr>
<td>Music</td>
<td>129</td>
</tr>
<tr>
<td>music on delay</td>
<td>235</td>
</tr>
<tr>
<td>Music on Hold Access interactions</td>
<td></td>
</tr>
<tr>
<td>Redirection on No Answer (RONA)</td>
<td>215</td>
</tr>
<tr>
<td>Service Observing</td>
<td>235</td>
</tr>
<tr>
<td>Voice Response Integration (VRI)</td>
<td>268</td>
</tr>
<tr>
<td>Music/Tone on Hold</td>
<td>129</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>283, 289, 293, 301, 305, 316, 321</td>
</tr>
<tr>
<td>National Customer Care Center Support Line</td>
<td>16</td>
</tr>
<tr>
<td>NATO timers</td>
<td>217</td>
</tr>
<tr>
<td>Network Redirect</td>
<td>290</td>
</tr>
<tr>
<td>Next buttons</td>
<td>276</td>
</tr>
<tr>
<td>Next Format Number</td>
<td>325</td>
</tr>
<tr>
<td>Night Service</td>
<td></td>
</tr>
<tr>
<td>hunt group night service</td>
<td></td>
</tr>
<tr>
<td>Automatic Call Distribution (ACD)</td>
<td>90</td>
</tr>
<tr>
<td>interactions</td>
<td></td>
</tr>
<tr>
<td>Basic Call Management System (BCMS)</td>
<td>93</td>
</tr>
<tr>
<td>Call Vectoring</td>
<td>135</td>
</tr>
<tr>
<td>Service Observing</td>
<td>235</td>
</tr>
<tr>
<td>VDN in a Coverage Path</td>
<td>254</td>
</tr>
<tr>
<td>night station service</td>
<td></td>
</tr>
<tr>
<td>Redirection on No Answer (RONA)</td>
<td>216</td>
</tr>
<tr>
<td>nonACD calls</td>
<td>181</td>
</tr>
<tr>
<td>nonvector controlled splits, see under splits</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>289, 301, 305, 321, 322</td>
</tr>
<tr>
<td>Number of Intervals</td>
<td>326</td>
</tr>
<tr>
<td>number of queued calls (NQC)</td>
<td></td>
</tr>
<tr>
<td>hunt groups</td>
<td>200</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Object Type</td>
<td>325</td>
</tr>
<tr>
<td>Observe on Agent Answer</td>
<td>319</td>
</tr>
<tr>
<td>oldest queued times (OQT)</td>
<td>200</td>
</tr>
<tr>
<td>Overload Thresholds</td>
<td>140</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>287</td>
</tr>
<tr>
<td>PAD</td>
<td>139</td>
</tr>
<tr>
<td>Password</td>
<td>286</td>
</tr>
<tr>
<td>Path Replacement</td>
<td>117, 176</td>
</tr>
<tr>
<td>Percent Allocation</td>
<td>139, 142, 145, 287</td>
</tr>
<tr>
<td>where administered</td>
<td>139</td>
</tr>
<tr>
<td>Percent Allocation Distribution (PAD)</td>
<td>80, 142, 146</td>
</tr>
<tr>
<td>Period</td>
<td>328</td>
</tr>
<tr>
<td>Personal CO lines (PCOL) interactions</td>
<td></td>
</tr>
<tr>
<td>VDN in a Coverage Path</td>
<td>254</td>
</tr>
<tr>
<td>Phone Display interactions</td>
<td></td>
</tr>
<tr>
<td>Automatic Call Distribution (ACD)</td>
<td>91</td>
</tr>
<tr>
<td>phones</td>
<td></td>
</tr>
<tr>
<td>button assignments</td>
<td>69</td>
</tr>
</tbody>
</table>
Redirection on No Answer (RONA), interactions, (continued)

Multiple Call Handling (MCH) 182, 215
Music on Hold Access 215
Night Service 216
Queue Status Indications 216
Reason Codes 204
Service Observing 236
stations 216
VDN in a Coverage Path 255
VDN of Origin Announcement (VOA) ... 261
Voice Messaging Systems 212
Voice Response Integration (VRI) 216, 269
NATO timers 217
reports 208
returning AAS agents to service 209
ringing call timers 216
routing sequences 207
split lamp indicators 208
vector directory numbers (VDN) 205
voice response unit (VRU) applications 206
wait answer supervision timers (WAST) 217
regulations (for Service Observing) 223
Release buttons 69
Remote Access
Service Observing 226
remote service observing 225
Reserve Agents 140
Reserve Level 286
restricted line appearances 182
Return Destination 318
Ringback Queuing
interactions
Call Vectoring 136
ringing call timers 216
RL 286
route-to number vector commands 152
route-to number vector command service observing 236

S
second announcements 82
security alerts
Service Observing 229
Voice Response Integration (VRI) 264
Security Code 284
Send All Calls (SAC) interactions
Call Vectoring 136
Send UCID to ASAI 297
Service Level Supervisor 140
Service Level Supervisor Call Selection Override 298
Service Level Target 139, 140
Service Objective 284
Service Objective, Acceptable Service Level 317
Service Observing 223-237
activation allowed (after observe activated) 228
activation allowed (at time of activation) 228
button light indicators 226
button restrictions 229
conferenced calls 232
considerations 231
indicators (to observers) 226
ineligibility 231
interactions
Add/Remove Skills 235
assists 233
Attendant Call Waiting 234
Automatic Call Distribution (ACD) 87
Basic Call Management System (BCMS) 233
Bridged Call Appearance 233
Busy Verification of Terminals and Trunks (Verify) 233
Call Coverage 233
Call Management System (CMS) 234
Call Park 233
Call Pickup 233
call work codes (CWC) 234
CallVisor ASAI 233
conference 234
converse commands 234
converse-on command 234
dialed number identification service (DNIS) 234
direct agent calling (DAC) 234
Distributed Communications System (DCS) 234
Expert Agent Selection (EAS) 155
groups 236
Hold 235
Integrated Directory 234
Leave Word Calling (LWC) 235
Look Ahead Interflow (LAI) 235
move agents 235
Multiple Call Handling (MCH) 235
Music on Hold Access 235
Night Service 235
Recorded Announcement 235
Redirection on No Answer (RONA) 236
Route-to number vector command 236
Telephone Display 236

Issue 1.0 May 2003 447
Service Observing, interactions, (continued)

VDN of Origin Announcement (VOA) 236, 261
VOA 236
Voice Response Integration (VRI) 269
VuStats 237, 279
zip tones 237
logical agent IDs 224
multiple observers 232
observability 231
observing remotely 225
regulations 223
Remote Access 226
security alerts
 general security 229
 remote access security 230
 VDN call security 230
 vector initiated security 230
Service Observing buttons
 skills 231
 splits 231
 transferred calls 232
 trunk calls 231
 vector directory numbers (VDN) 223, 225, 226
warning tones 224
Service Observing interactions
 transfer 234
Service Observing Warning Tone 296, 297
SIT Ineffective Other 313
SIT Intercept 313
SIT No Circuit 313
SIT Reorder 313
SIT Treatment for Call Classification form 311-312
SIT Unknown 313
SIT Vacant Code 313
Skill 318
Skill Level 145, 287
Skill Level with Service Objective 142
Skill Level without Service Objective 142
Skill Number 286
skills
 agent skill level routing 150
 auxiliary (AUX) work modes 206
 call handling preferences 85
 converse skills 263
 multiple skills 204
 on request MCH settings 178
Reason Codes 204
Redirection on No Answer (RONA) 205, 207
Service Observing 231

Skills, (continued)

settings
 many forced MCH 179
 one forced MCH 178
 one per skill MCH 178
 vector controlled splits 270
 voice response units (VRU) 263
VuStats 278
SL 287
SN 286
Sort 321
speakerphones 70
special information tones (SIT) 311
speech processing adjuncts 160
splits 271
 ACD split queues 80
 ACD splits 70, 77, 87, 205
 adjunct controlled 210
 auxiliary (AUX) work modes 206
 bridging 71
 converse splits 260, 263
 login split numbers 61
 multiple splits
 Automatic Call Distribution (ACD) 70
 Redirection on No Answer (RONA) 210
nonvector controlled splits
 Agent Call Handling 69
 Automatic Call Distribution (ACD) 80
 Voice Response Integration (VRI) 268
 on request MCH settings 178
 queues 83
 Redirection on No Answer (RONA) 205, 207
Service Observing 231
settings
 many forced MCH 179
 one forced MCH 178
 supervisors 64, 77
 vector controlled splits 63, 88, 270
 voice response units (VRU) 263
splits/skills
 VuStats 271
 Start 305
 station ports 383
 stations
 Redirection on No Answer (RONA) 216
 statistics, see VuStats
 Status Poll VDN 290
stroke counts
 Call Management System (CMS) 65
 forced entry 66
 Multiple Call Handling (MCH) 181
Universal Call ID (UCID), (continued)

- tracking
 - complex conference: 241
 - incoming trunk calls: 240
 - outgoing trunk calls: 240
 - simple transfer or conference: 240
 - station-to-station calls: 240
- transmitting: 239
- Troubleshooting: 250
- Update Interval: 325

V

- Validate BCMS/VuStats Login IDs: 300
- VDN extension: 129
- VDN in a Coverage Path (VICP): 251-255
 - considerations: 251
- Interactions
 - AAR/ARS Partitioning: 251
 - ASAI: 252
 - Attendant: 252
 - AUDIX: 252
 - Automatic Call Distribution (ACD): 252
 - Call Coverage: 252
 - Call Forwarding: 252
 - Call Park: 253
 - Call Vectoring: 137, 253
 - Class of Restriction (COR): 254
 - Conference: 254
 - Consult: 254
 - Hunt Groups: 254
 - Look-Ahead Interflow: 254
 - Night Service: 254
 - Personal CO lines (PCOL): 254
 - Redirection on No Answer (RONA): 255
 - Terminating Extension Groups: 255
 - Transfer: 255
 - Voice Terminal Display: 255
- VDN in a Coverage Path (VICP): 251
- VDN of Origin Announcement (VOA): 256-261
 - auxiliary trunks (aux-trunks): 258
 - considerations: 258
 - detailed description: 257
 - distribution: 261
 - forms: 256

VDN of Origin Announcement (VOA), (continued)

- Interactions
 - Agent Call Handling: 259
 - Auto Available Split (AAS): 259
 - Automatic Wakeup: 260
 - Call Coverage: 260
 - Call Forwarding: 259
 - Call Pickup: 259
 - CallVisor ASAI adjunct routing: 259
 - Conference—Terminal: 259
 - converse splits: 260
 - Data Restriction: 260
 - direct agent calling (DAC): 260
 - Expert Agent Selection (EAS): 260
 - Hold: 260
 - home agents: 260
 - Hunt Groups: 261
 - Look Ahead Interflow (LAI): 261
 - Redirection on No Answer (RONA): 261
 - Service Observing: 236, 261
 - supervisor assists: 261
 - Transfer: 261
 - multiple announcement boards: 258
 - setting up VOAs: 257
 - vector directory number (VDN) override: 257
 - VOA Repeat buttons: 257

VDN Override

- Interactions
 - Look Ahead Interflow (LAI): 176
- VDN Timed ACW Interval: 318
- vector commands: 110, 112
 - Call Prompting: 125
 - Call Vectoring: 128
 - Inbound Call Management (ICM): 161
- Vector commands for multi-site BSR
 - multi-site BSR: 112
- Vector commands for single-site BSR
 - Single-site BSR: 110
- vector controlled splits, see under splits
- Vector Directory Number: 129
- Vector Directory Number form: 314-319
 - administration commands: 314
 - implementation notes—list: 319

450 Communication Manager Guide to ACD Call Centers
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent Call Handling override</td>
<td>72</td>
</tr>
<tr>
<td>Redirection on No Answer (RONA).</td>
<td>205</td>
</tr>
<tr>
<td>Service Observing</td>
<td>223, 225, 226</td>
</tr>
<tr>
<td>timed after call work (ACW).</td>
<td>64</td>
</tr>
<tr>
<td>VDN reports</td>
<td>208</td>
</tr>
<tr>
<td>VOA override</td>
<td>257</td>
</tr>
<tr>
<td>Voice Response Integration (VRI)</td>
<td>270</td>
</tr>
<tr>
<td>VuStats data types</td>
<td>348</td>
</tr>
<tr>
<td>Vector Disconnect Timer</td>
<td>129</td>
</tr>
<tr>
<td>Vector Number</td>
<td>316</td>
</tr>
<tr>
<td>Vector Routing Table Way</td>
<td>129</td>
</tr>
<tr>
<td>Vector Routing Table Form</td>
<td>320-321</td>
</tr>
<tr>
<td>Vector routing tables</td>
<td>320</td>
</tr>
<tr>
<td>Vectoring (ANI/II-Digits Routing)</td>
<td>129</td>
</tr>
<tr>
<td>Vectoring (Attendant Vectoring)</td>
<td>129</td>
</tr>
<tr>
<td>Vectoring (Basic)</td>
<td>129</td>
</tr>
<tr>
<td>Vectoring (G3V4 Advanced Routing)</td>
<td>129</td>
</tr>
<tr>
<td>Vectoring (G3V4 Enhanced)</td>
<td>129</td>
</tr>
<tr>
<td>Vectoring (Holiday Vectoring)</td>
<td>129</td>
</tr>
<tr>
<td>VOA service observing</td>
<td>236</td>
</tr>
<tr>
<td>Voice Messaging Systems</td>
<td></td>
</tr>
<tr>
<td>interactions</td>
<td></td>
</tr>
<tr>
<td>Redirection on No Answer (RONA).</td>
<td>212</td>
</tr>
<tr>
<td>Voice Response Integration (VRI)</td>
<td>265</td>
</tr>
<tr>
<td>Voice Response Integration (VRI), interactions (continued)</td>
<td></td>
</tr>
<tr>
<td>Expert Agent Selection (EAS)</td>
<td>267</td>
</tr>
<tr>
<td>Hold</td>
<td>267</td>
</tr>
<tr>
<td>Hold—Automatic</td>
<td>267</td>
</tr>
<tr>
<td>Hunt Groups</td>
<td>267</td>
</tr>
<tr>
<td>intraswitch CDR</td>
<td>267</td>
</tr>
<tr>
<td>ISDN</td>
<td>267</td>
</tr>
<tr>
<td>Look Ahead Interflow (LAI)</td>
<td>268</td>
</tr>
<tr>
<td>message centers</td>
<td>268</td>
</tr>
<tr>
<td>Music on Hold Access</td>
<td>268</td>
</tr>
<tr>
<td>nonvector controlled splits</td>
<td>268</td>
</tr>
<tr>
<td>queuing</td>
<td>268</td>
</tr>
<tr>
<td>R2 multifrequency compelled (MFC) signaling</td>
<td>268</td>
</tr>
<tr>
<td>recorded announcements</td>
<td>268</td>
</tr>
<tr>
<td>Redirection on No Answer (RONA)</td>
<td>216, 269</td>
</tr>
<tr>
<td>Service Observing</td>
<td>269</td>
</tr>
<tr>
<td>system measurements</td>
<td>269</td>
</tr>
<tr>
<td>T1 connectivity</td>
<td>267</td>
</tr>
<tr>
<td>touch tone dialing</td>
<td>269</td>
</tr>
<tr>
<td>Transfer</td>
<td>270</td>
</tr>
<tr>
<td>uniform call distribution (UCD)</td>
<td>270</td>
</tr>
<tr>
<td>VDN display override</td>
<td>270</td>
</tr>
<tr>
<td>vector controlled splits</td>
<td>270</td>
</tr>
<tr>
<td>Voice Messaging Systems</td>
<td>265</td>
</tr>
<tr>
<td>voice response units (VRU)</td>
<td></td>
</tr>
<tr>
<td>failures</td>
<td>206</td>
</tr>
<tr>
<td>Inbound Call Management (ICM).</td>
<td>158</td>
</tr>
<tr>
<td>Redirection on No Answer (RONA).</td>
<td>206</td>
</tr>
<tr>
<td>Voice Response Integration (VRI)</td>
<td>262</td>
</tr>
<tr>
<td>Voice Terminal Display</td>
<td></td>
</tr>
<tr>
<td>interactions</td>
<td></td>
</tr>
<tr>
<td>Expert Agent Selection (EAS)</td>
<td>154</td>
</tr>
<tr>
<td>Queue Status Indications, Telephone Display</td>
<td>200</td>
</tr>
<tr>
<td>Telephone interactions</td>
<td></td>
</tr>
<tr>
<td>VDN in a Coverage Path</td>
<td>255</td>
</tr>
<tr>
<td>voice terminals</td>
<td></td>
</tr>
<tr>
<td>auto answer terminals</td>
<td>75</td>
</tr>
<tr>
<td>VuStats</td>
<td>271-279</td>
</tr>
<tr>
<td>button light flashes</td>
<td>276</td>
</tr>
<tr>
<td>CALLMASTER display</td>
<td>271</td>
</tr>
<tr>
<td>considerations</td>
<td>278</td>
</tr>
<tr>
<td>data types</td>
<td>275</td>
</tr>
<tr>
<td>agents and agent extensions</td>
<td>337</td>
</tr>
<tr>
<td>trunk groups</td>
<td>349</td>
</tr>
<tr>
<td>vector directory numbers (VDN)</td>
<td>348</td>
</tr>
</tbody>
</table>
VuStats, (continued)
detailed description 275
display formats 276
display linking 276
how information appears 277
information displayed 275
interactions
Add/Remove Skills 57, 58
Basic Call Management System (BCMS) . 278
Call Management System (CMS) 279
Call Prompting 278
call work codes (CWC) 278
changing skills 278
Expert Agent Selection (EAS) 155
Expert Agent Selection–preference handling
distribution (EAS–PHD) 279
Integrated Directory 279
Queue Status Indications 279
Reason Codes 279
Service Observing 237, 279
Next buttons 276
statistical periods 276
text labels 276
thresholds 276
VuStats feature buttons 273
when information updates 277
VuStats Display Format form 323
administration commands 323
instructions 324
required and allowed field tables 330
VuStats feature
display formats
split data types 334
trunk group data types 336
VDN data types 336
VuStats Login ID 291

W
wait answer supervision timers (WAST) 217
warning tones
Service Observing 224
work modes
buttons 148
Expert Agent Selection (EAS) 153
Multiple Call Handling (MCH) 180

Z
zip tones
CALLMASTER voice terminals 70
data restricted agent extension 70
Expert Agent Selection (EAS) 152
Service Observing 237
VDN of Origin Announcement 261