Copyright 2005, Avaya Inc.
All Rights Reserved

Notice
Every effort was made to ensure that the information in this document was complete and accurate at the time of printing. However, information is subject to change.

Warranty
Avaya Inc. provides a limited warranty on this product. Refer to your sales agreement to establish the terms of the limited warranty. In addition, Avaya’s standard warranty language as well as information regarding support for this product, while under warranty, is available through the following Web site: http://www.avaya.com/support.

Preventing Toll Fraud
“Toll fraud” is the unauthorized use of your telecommunications system by an unauthorized party (for example, a person who is not a corporate employee, agent, subcontractor, or is not working on your company’s behalf). Be aware that there may be a risk of toll fraud associated with your system and that, if toll fraud occurs, it can result in substantial additional charges for your telecommunications services.

Avaya Fraud Intervention
If you suspect that you are being victimized by toll fraud and you need technical assistance or support, in the United States and Canada, call the Technical Service Center’s Toll Fraud Intervention Hotline at 1-800-643-2353.

Disclaimer
Avaya is not responsible for any modifications, additions or deletions to the original published version of this documentation unless such modifications, additions or deletions were performed by Avaya. Customer and/or End User agree to indemnify and hold harmless Avaya, Avaya’s agents, servants and employees against all claims, lawsuits, demands and judgments arising out of, or in connection with, subsequent modifications, additions or deletions to this documentation to the extent made by the Customer or End User.

How to Get Help
For additional support telephone numbers, go to the Avaya support Web site: http://www.avaya.com/support. If you are:

- Within the United States, click the Escalation Management link. Then click the appropriate link for the type of support you need.
- Outside the United States, click the Escalation Management link. Then click the International Services link that includes telephone numbers for the international Centers of Excellence.

Providing Telecommunications Security
Telecommunications security (of voice, data, and/or video communications) is the prevention of any type of intrusion to (that is, either unauthorized or malicious access to or use of) your company’s telecommunications equipment by some party.

Your company’s “telecommunications equipment” includes both this Avaya product and any other voice/data/video equipment that could be accessed via this Avaya product (that is, “networked equipment”). An “outside party” is anyone who is not a corporate employee, agent, subcontractor, or is not working on your company’s behalf. Whereas, a “malicious party” is anyone (including someone who may be otherwise authorized) who accesses your telecommunications equipment with either malicious or mischievous intent.

Such intrusions may be either through synchronous (time-multiplexed and/or circuit-based), or asynchronous (character-, message-, or packet-based) equipment, or interfaces for reasons of:

- Utilization (of capabilities special to the accessed equipment)
- Theft (such as, of intellectual property, financial assets, or toll facility access)
- Eavesdropping (privacy invasions to humans)
- Mischief (troubling, but apparently innocuous, tampering)
- Harm (such as harmful tampering, data loss or alteration, regardless of motive or intent)

Be aware that there may be a risk of unauthorized intrusions associated with your system and/or its networked equipment. Also realize that, if such an intrusion should occur, it could result in a variety of losses to your company (including but not limited to, human/data privacy, intellectual property, material assets, financial resources, labor costs, and/or legal costs).

Responsibility for Your Company’s Telecommunications Security
The final responsibility for securing both this system and its networked equipment rests with you - Avaya’s customer system administrator, your telecommunications peers, and your managers. Base the fulfillment of your responsibility on acquired knowledge and resources from a variety of sources including but not limited to:

- Installation documents
- System administration documents
- Security documents
- Hardware/software-based security tools
- Shared information between you and your peers
- Telecommunications security experts

To prevent intrusions to your telecommunications equipment, you and your peers should carefully program and configure:

- Your Avaya-provided telecommunications systems and their interfaces
- Your Avaya-provided software applications, as well as their underlying hardware/software platforms and interfaces
- Any other equipment networked to your Avaya products

TCP/IP Facilities
Customers may experience differences in product performance, reliability and security depending upon network configurations/design and topologies, even when the product performs as warranted.

Standards Compliance
Avaya Inc. is not responsible for any radio or television interference caused by unauthorized modifications of this equipment or the substitution or attachment of connecting cables and equipment other than those specified by Avaya Inc. The correction of interference caused by such unauthorized modifications, substitution or attachment will be the responsibility of the user. Pursuant to Part 15 of the Federal Communications Commission (FCC) Rules, the user is cautioned that changes or modifications not expressly approved by Avaya Inc. could void the user’s authority to operate this equipment.

Product Safety Standards
This product complies with and conforms to the following international Product Safety standards as applicable:

- Safety of Information Technology Equipment, IEC 60950, 3rd Edition, or IEC 60950-1, 1st Edition, including all relevant national deviations as listed in Compliance with IEC for Electrical Equipment (IECEE) CB-96A.
- One or more of the following Mexican national standards, as applicable: NOM 001 SCFI 1993, NOM SCFI 016 1993, NOM 019 SCFI 1998.

The equipment described in this document may contain Class 1 LASER Device(s). These devices comply with the following standards:

- EN 60825-1, Edition 1.1, 1998-01
- 21 CFR 1040.10 and CFR 1040.11
- 21 CFR 1040.10 and CFR 1040.11.

The LASER devices used in Avaya equipment typically operate within the following parameters:

Typical Center Wavelength Maximum Output Power
830 nm - 860 nm -1.5 dBm
1270 nm - 1380 nm -3.0 dBm
1540 nm - 1570 nm -5.0 dBm

Luokan 1 Laserlaite
Klass 1 Laser Apparat

Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposures. Contact your Avaya representative for more laser product information.
Electromagnetic Compatibility (EMC) Standards

This product complies with and conforms to the following international EMC standards and all relevant national deviations:

- Information Technology Equipment — Immunity Characteristics — Limits and Methods of Measurement, CISPR 24:1997 and EN55024:1998, including:
 - Electrostatic Discharge (ESD) IEC 61000-4-2
 - Radiated Immunity IEC 61000-4-3
 - Electrical Fast Transient IEC 61000-4-4
 - Lightning Effects IEC 61000-4-5
 - Conducted Immunity IEC 61000-4-6
 - Mains Frequency Magnetic Field IEC 61000-4-8
 - Voltage Dips and Variations IEC 61000-4-11

Power Line Emissions, IEC 61000-3-3: Electromagnetic compatibility (EMC) — Part 3-3: Limits — Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems.

Federal Communications Commission Statement

Part 15:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at their own expense.

Part 68: Answer-Supervision Signaling

Allowing this equipment to be operated in a manner that does not provide proper answer-supervision signaling is in violation of Part 68 rules. This equipment returns answer-supervision signals to the public switched network when:

- answered by the called station,
- answered by the attendant, or
- routed to a recorded announcement that can be administered by the customer premises equipment (CPE) user.

This equipment returns answer-supervision signals on all direct inward dialed (DID) calls forwarded back to the public switched telephone network. Permissible exceptions are:

- A call is unanswered.
- A busy tone is received.
- A reorder tone is received.

Avaya attests that this registered equipment is capable of providing users access to interstate providers of operator services through the use of access codes. Modification of this equipment by call aggregators to block access dialing codes is a violation of the Telephone Operator Consumers Act of 1990.

REN Number

For MCC1, SCC1, CMC1, G600, and G650 Media Gateways:

This equipment complies with Part 68 of the FCC rules. On either the rear or inside the front cover of this equipment is a label that contains, among other information, the FCC registration number, and ringer equivalence number (REN) for this equipment. If requested, this information must be provided to the telephone company.

For G350 and G700 Media Gateways:

This equipment complies with Part 68 of the FCC rules and the requirements adopted by the ACTA. On the rear of this equipment is a label that contains, among other information, a product identifier in the format US:AAAEQ##TXXXX. The digits represented by ## are the ringer equivalence number (REN) for this equipment. If requested, this number must be provided to the telephone company.

For all media gateways:

The REN is used to determine the quantity of devices that may be connected to the telephone line. Excessive RENs on the telephone line may result in devices not ringing in response to an incoming call. In most, but not all areas, the sum of RENs should not exceed 5.0. To be certain of the number of devices that may be connected to a line, as determined by the total RENs, contact the local telephone company.

REN is not required for some types of analog or digital facilities.

Means of Connection

Connection of this equipment to the telephone network is shown in the following tables.

For MCC1, SCC1, and CMC1, G600, and G650 Media Gateways:

<table>
<thead>
<tr>
<th>Manufacturer’s Port Identifier</th>
<th>FIC Code</th>
<th>SOC/REN/A.S. Code</th>
<th>Network Jacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off premises station</td>
<td>OL13C</td>
<td>9.0F</td>
<td>RJ2GX, RJ21X, RJ11C</td>
</tr>
<tr>
<td>DID trunk</td>
<td>02RV2-T</td>
<td>0.0B</td>
<td>RJ2GX, RJ21X</td>
</tr>
<tr>
<td>CO trunk</td>
<td>02G52</td>
<td>0.3A</td>
<td>RJ21X</td>
</tr>
<tr>
<td>Tie trunk</td>
<td>TL31M</td>
<td>9.0F</td>
<td>RJ2GX</td>
</tr>
<tr>
<td>Basic Rate Interface</td>
<td>02IS5</td>
<td>6.0F, 6.0Y</td>
<td>RJ49C</td>
</tr>
<tr>
<td>1.544 digital interface</td>
<td>04DU9-BN</td>
<td>6.0F</td>
<td>RJ48C, RJ48M</td>
</tr>
<tr>
<td></td>
<td>04DU9-1K</td>
<td>6.0F</td>
<td>RJ48C, RJ48M</td>
</tr>
<tr>
<td></td>
<td>04DU9-1S</td>
<td>6.0F</td>
<td>RJ48C, RJ48M</td>
</tr>
<tr>
<td>120A4 channel service unit</td>
<td>04DU9-DN</td>
<td>6.0Y</td>
<td>RJ48C</td>
</tr>
</tbody>
</table>

For G350 and G700 Media Gateways:

<table>
<thead>
<tr>
<th>Manufacturer’s Port Identifier</th>
<th>FIC Code</th>
<th>SOC/REN/A.S. Code</th>
<th>Network Jacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Start CO trunk</td>
<td>02G52</td>
<td>1.0A</td>
<td>RJ11C</td>
</tr>
<tr>
<td>DID trunk</td>
<td>02RV2-T</td>
<td>A5.0</td>
<td>RJ11C</td>
</tr>
<tr>
<td>Loop Start CO trunk</td>
<td>02LS2</td>
<td>0.5A</td>
<td>RJ11C</td>
</tr>
<tr>
<td>1.544 digital interface</td>
<td>04DU9-BN</td>
<td>6.0Y</td>
<td>RJ48C</td>
</tr>
<tr>
<td></td>
<td>04DU9-DN</td>
<td>6.0Y</td>
<td>RJ48C</td>
</tr>
<tr>
<td></td>
<td>04DU9-1K</td>
<td>6.0Y</td>
<td>RJ48C</td>
</tr>
<tr>
<td></td>
<td>04DU9-1S</td>
<td>6.0Y</td>
<td>RJ48C</td>
</tr>
<tr>
<td>Basic Rate Interface</td>
<td>02IS5</td>
<td>6.0F</td>
<td>RJ49C</td>
</tr>
</tbody>
</table>

For all media gateways:

If the terminal equipment (for example, the media server or media gateway) causes harm to the telephone network, the telephone company will notify you in advance that temporary discontinuance of service may be required. But if advance notice is not practical, the telephone company will notify the customer as soon as possible. Also, you will be advised of your right to file a complaint with the FCC if you believe it is necessary.

The telephone company may make changes in its facilities, equipment, operations or procedures that could affect the operation of the equipment. If this happens, the telephone company will provide advance notice in order for you to make necessary modifications to maintain uninterrupted service.

If trouble is experienced with this equipment, for repair or warranty information, please contact the Technical Service Center at 1-800-242-2121 or contact your local Avaya representative. If the equipment is causing harm to the telephone network, the telephone company may request that you disconnect the equipment until the problem is resolved.

A plug and jack used to connect this equipment to the premises wiring and telephone network must comply with the applicable FCC Part 68 rules and requirements adopted by the ACTA. A compliant telephone cord and modular plug is provided with this product. It is designed to be connected to a compatible modular jack that is also compliant. It is recommended that repairs be performed by Avaya certified technicians.

The equipment cannot be used on public coin phone service provided by the telephone company. Connection to party line service is subject to state tariffs. Contact the state public utility commission, public service commission or corporation commission for information.

This equipment, if it uses a telephone receiver, is hearing aid compatible.

Canadian Department of Communications (DOC) Interference Information

This Class A digital apparatus complies with Canadian ICES-003. Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.

This equipment meets the applicable Industry Canada Terminal Equipment Technical Specifications. This is confirmed by the registration number. The abbreviation, IC, before the registration number signifies that registration was performed based on a Declaration of Conformity indicating that Industry Canada technical specifications were met. It does not imply that Industry Canada approved the equipment.
Installation and Repairs

Before installing this equipment, users should ensure that it is permissible to be connected to the facilities of the local telecommunications company. The equipment must also be installed using an acceptable method of connection. The customer should be aware that compliance with the above conditions may not prevent degradation of service in some situations.

Repairs to certified equipment should be coordinated by a representative designated by the supplier. Any repairs or alterations made by the user to this equipment, or equipment malfunctions, may give the telecommunications company cause to request the user to disconnect the equipment.

Declarations of Conformity

United States FCC Part 68 Supplier’s Declaration of Conformity (SDoC)

Avaya Inc. in the United States of America hereby certifies that the equipment described in this document and bearing a TIA TSB-168 label identification number complies with the FCC’s Rules and Regulations 47 CFR Part 68, and the Administrative Council on Terminal Attachments (ACTA) adopted technical criteria.

Avaya further asserts that Avaya handset-equipped terminal equipment described in this document complies with Paragraph 68.316 of the FCC Rules and Regulations defining Hearing Aid Compatibility and is deemed compatible with hearing aids.

Copies of SDoCs signed by the Responsible Party in the U. S. can be obtained by contacting your local sales representative and are available on the following Web site: http://www.avaya.com/support.

All Avaya media servers and media gateways are compliant with FCC Part 68, but many have been registered with the FCC before the SDoC process was available. A list of all Avaya registered products may be found at: http://www.part68.org by conducting a search using “Avaya” as manufacturer.

European Union Declarations of Conformity

Copies of these Declarations of Conformity (DoCs) can be obtained by contacting your local sales representative and are available on the following Web site: http://www.avaya.com/support.

Japan

This is a Class A product based on the standard of the Voluntary Control Council for Interference by Information Technology Equipment (VCCI). If this equipment is used in a domestic environment, radio disturbance may occur, in which case, the user may be required to take corrective actions.

To order copies of this and other documents:

Call: Avaya Publications Center
Voice 1.800.457.1235 or 1.207.866.6701
FAX 1.800.457.1764 or 1.207.626.7299

Write: Globalware Solutions
200 Ward Hill Avenue
Haverhill, MA 01835 USA
Attention: Avaya Account Management

E-mail: totalware@gwsmail.com

For the most current versions of documentation, go to the Avaya support Web site: http://www.avaya.com/support.
Contents

About this Book
- Overview .. 21
- Audience .. 21
- Using this book ... 21
- Conventions .. 22
- Downloading this book and updates from the Web. ... 22
 - Downloading this book 23
- Related resources .. 23
- Technical assistance 24
 - Within the US ... 24
 - International ... 24
- Trademarks ... 24
- Sending us comments 25

Chapter 1: User Levels and Contexts
- User Levels ... 28
- Contexts ... 28
 - Interface contexts 28
 - Entering an Interface 29
- Command line prompts 30
- Available contexts 30

Chapter 2: CLI Commands
- About the CLI .. 33
- Logging in to the CLI 33
- Using the CLI ... 34
 - Using Help. ... 34
 - Using auto-complete 34
 - Abbreviating commands. 34
- Alphabetical listing of CLI commands
 - area ... 35
 - arp ... 35
 - arp timeout ... 37
 - async mode interactive 37
 - async mode terminal 38
 - async modem-init-string 38
 - async modem-type 39
 - async reset-modem 40
 - async reset-modem 40
 - authentication 41
 - autoneg .. 41
 - backup delay ... 42
 - backup interface 42
 - bandwidth ... 43
 - banner login .. 44
 - banner post-login 45
Contents

- bc out .. 45
- be out .. 46
- bootfile ... 47
- busyout voip-dsp 48
- cablelength long 48
- cablelength short 49
- capture buffer-mode 50
- capture buffer-size 50
- capture filter-group 51
- capture interface 52
- capture max-frame-size 52
- capture start .. 53
- capture stop ... 54
- capture-service 55
- channel-group .. 55
- cir out .. 56
- class-identifier 57
- clear arp-cache 58
- clear cam .. 59
- clear capture-buffer 59
- clear controller counters 60
- clear counters ... 60
- clear crypto isakmp 61
- clear crypto sa all 62
- clear crypto sa counters 63
- clear dot1x config 64
- clear fragment .. 64
- clear frame-relay counters 65
- clear ip dhcp-server binding 65
- clear ip dhcp server statistics 66
- clear ip route ... 67
- clear ip rtp header-compression 68
- clear ip tcp header-compression 68
- clear ip traffic ... 69
- clear logging file 70
- clear logging server 70
- clear mgc list .. 71
- clear port mirror 72
- clear port static-vlan 72
- clear radius authentication server 73
- clear screen .. 74
- clear snmp trap .. 74
- clear ssh-client known-hosts 75
- clear sync interface 76
- clear utilization cpu 76
- clear vlan ... 77
- client-identifier 78
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>clock source</td>
<td>79</td>
</tr>
<tr>
<td>composite-operation</td>
<td>80</td>
</tr>
<tr>
<td>controller</td>
<td>80</td>
</tr>
<tr>
<td>cookie</td>
<td>81</td>
</tr>
<tr>
<td>copy capture-file ftp</td>
<td>82</td>
</tr>
<tr>
<td>copy capture-file scp</td>
<td>83</td>
</tr>
<tr>
<td>copy capture-file tftp</td>
<td>83</td>
</tr>
<tr>
<td>copy dhcp-binding ftp</td>
<td>84</td>
</tr>
<tr>
<td>copy dhcp-binding scp</td>
<td>85</td>
</tr>
<tr>
<td>copy dhcp-binding tftp</td>
<td>86</td>
</tr>
<tr>
<td>copy ftp EW_archive</td>
<td>86</td>
</tr>
<tr>
<td>copy ftp license-file</td>
<td>87</td>
</tr>
<tr>
<td>copy ftp module</td>
<td>88</td>
</tr>
<tr>
<td>copy ftp phone-image</td>
<td>89</td>
</tr>
<tr>
<td>copy ftp phone-script</td>
<td>89</td>
</tr>
<tr>
<td>copy ftp startup-config</td>
<td>90</td>
</tr>
<tr>
<td>copy ftp SW_imageA</td>
<td>91</td>
</tr>
<tr>
<td>copy ftp SW_imageB</td>
<td>92</td>
</tr>
<tr>
<td>copy phone-script ftp</td>
<td>92</td>
</tr>
<tr>
<td>copy phone-script scp</td>
<td>93</td>
</tr>
<tr>
<td>copy phone-script tftp</td>
<td>94</td>
</tr>
<tr>
<td>copy running-config ftp</td>
<td>95</td>
</tr>
<tr>
<td>copy running-config scp</td>
<td>96</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>97</td>
</tr>
<tr>
<td>copy running-config tftp</td>
<td>97</td>
</tr>
<tr>
<td>copy scp phone-script</td>
<td>98</td>
</tr>
<tr>
<td>copy scp startup-config</td>
<td>99</td>
</tr>
<tr>
<td>copy startup-config ftp</td>
<td>100</td>
</tr>
<tr>
<td>copy startup-config scp</td>
<td>101</td>
</tr>
<tr>
<td>copy startup-config tftp</td>
<td>102</td>
</tr>
<tr>
<td>copy tftp EW_archive</td>
<td>103</td>
</tr>
<tr>
<td>copy tftp license-file</td>
<td>103</td>
</tr>
<tr>
<td>copy tftp module</td>
<td>104</td>
</tr>
<tr>
<td>copy tftp phone-image</td>
<td>105</td>
</tr>
<tr>
<td>copy tftp phone-script</td>
<td>106</td>
</tr>
<tr>
<td>copy tftp startup-config</td>
<td>107</td>
</tr>
<tr>
<td>copy tftp SW_imageA</td>
<td>107</td>
</tr>
<tr>
<td>copy tftp SW_imageB</td>
<td>108</td>
</tr>
<tr>
<td>copy scp license-file</td>
<td>109</td>
</tr>
<tr>
<td>cos</td>
<td>110</td>
</tr>
<tr>
<td>crypto ipsec df-bit</td>
<td>111</td>
</tr>
<tr>
<td>crypto ipsec minimal-pmtu</td>
<td>112</td>
</tr>
<tr>
<td>crypto ipsec transform-set</td>
<td>112</td>
</tr>
<tr>
<td>crypto isakmp invalid-spi-recovery</td>
<td>114</td>
</tr>
<tr>
<td>crypto isakmp peer</td>
<td>114</td>
</tr>
<tr>
<td>crypto isakmp policy</td>
<td>115</td>
</tr>
<tr>
<td>crypto isakmp suggest-key</td>
<td>116</td>
</tr>
</tbody>
</table>
crypto key generate ... 116
crypto map .. 117
de pre-mark .. 118
de-buffer-size ... 119
default-metric .. 119
default-metric .. 120
default-metric .. 121
default-router ... 122
description ... 122
description ... 123
description ... 124
description ... 125
destination-ip .. 125
dir ... 126
disable link encryption 127
disable media encryption 128
disconnect ssh .. 128
distribution-list .. 129
dns-server ... 130
domain-name .. 131
dscp ... 131
dscp-table ... 132
ds-mode .. 133
duplex ... 134
dynamic-cac ... 134
capsulation .. 135
capsulation pppoe .. 136
encryption ... 137
end-ip-addr ... 138
erase phone-image .. 139
erase phone-script ... 139
erase startup-config 140
exit ... 140
fair-queue-limit ... 141
fair-voice-queue .. 141
fdl ... 142
fragment chain ... 143
fragment size .. 144
fragment timeout .. 144
frame-relay class-dlci 145
frame-relay interface-dlci 146
frame-relay lmi-n391dte 147
frame-relay lmi-n392dte 148
frame-relay lmi-n393dte 148
frame-relay lmi-type 149
frame-relay priority-dlci-group 150
frame-relay traffic-shaping 151
Contents

- `ip netmask-format` .. 187
- `ip next-hop-list` .. 188
- `ip ospf authentication` ... 189
- `ip ospf authentication-key` 189
- `ip ospf cost` .. 190
- `ip ospf dead-interval` ... 191
- `ip ospf hello-interval` .. 192
- `ip ospf message-digest-key` 192
- `ip ospf network point-to-multipoint` 193
- `ip ospf priority` ... 194
- `ip ospf router-id` .. 195
- `ip pbr-group` .. 195
- `ip pbr-list` .. 196
- `ip policy-list-copy` .. 197
- `ip proxy-arp` ... 198
- `ip qos-group` ... 198
- `ip qos-list` ... 199
- `ip redirects` .. 200
- `ip rip authentication key` ... 200
- `ip rip authentication mode` .. 201
- `ip rip default-route-mode` ... 202
- `ip rip poison-reverse` .. 203
- `ip rip rip-version` .. 203
- `ip rip send-receive-mode` .. 204
- `ip rip split-horizon` .. 205
- `ip route` .. 205
- `ip routing` .. 207
- `ip rtp compression-connections` 207
- `ip rtp header-compression` .. 208
- `ip rtp max-period` ... 208
- `ip rtp max-time` .. 209
- `ip rtp non-tcp-mode` .. 210
- `ip rtp port-range` ... 211
- `ip simulate` ... 211
- `ip snmp-server` ... 213
- `ip ssh` .. 213
- `ip tcp decompression-connections` 214
- `ip telnet` ... 215
- `ip telnet-client` .. 216
- `ip tftp-server` .. 217
- `ip tftp-server file-system size` 217
- `ip vrrp` ... 218
- `ip vrrp address` .. 218
- `ip vrrp auth-key` .. 219
- `ip vrrp override addr owner` 220
- `ip vrrp preempt` .. 221
- `ip vrrp primary` .. 221
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip vrrp priority</td>
<td>222</td>
</tr>
<tr>
<td>ip vrrp timer</td>
<td>223</td>
</tr>
<tr>
<td>ip-fragments-in</td>
<td>224</td>
</tr>
<tr>
<td>ip-option-in</td>
<td>224</td>
</tr>
<tr>
<td>ip-protocol</td>
<td>225</td>
</tr>
<tr>
<td>ip-rule</td>
<td>226</td>
</tr>
<tr>
<td>ip-rule</td>
<td>227</td>
</tr>
<tr>
<td>isakmp-policy</td>
<td>227</td>
</tr>
<tr>
<td>keepalive</td>
<td>228</td>
</tr>
<tr>
<td>keepalive</td>
<td>229</td>
</tr>
<tr>
<td>keepalive failure-retries</td>
<td>230</td>
</tr>
<tr>
<td>keepalive interval</td>
<td>230</td>
</tr>
<tr>
<td>keepalive source-address</td>
<td>231</td>
</tr>
<tr>
<td>keepalive success-retries</td>
<td>232</td>
</tr>
<tr>
<td>keepalive timeout</td>
<td>233</td>
</tr>
<tr>
<td>lease</td>
<td>233</td>
</tr>
<tr>
<td>lifetime</td>
<td>234</td>
</tr>
<tr>
<td>line</td>
<td>235</td>
</tr>
<tr>
<td>linecode</td>
<td>236</td>
</tr>
<tr>
<td>linecode</td>
<td>236</td>
</tr>
<tr>
<td>load-interval</td>
<td>237</td>
</tr>
<tr>
<td>local-address</td>
<td>238</td>
</tr>
<tr>
<td>loopback diag</td>
<td>239</td>
</tr>
<tr>
<td>loopback local</td>
<td>239</td>
</tr>
<tr>
<td>loopback remote</td>
<td>240</td>
</tr>
<tr>
<td>map-class frame-relay</td>
<td>241</td>
</tr>
<tr>
<td>mtu</td>
<td>242</td>
</tr>
<tr>
<td>name</td>
<td>243</td>
</tr>
<tr>
<td>network</td>
<td>243</td>
</tr>
<tr>
<td>network</td>
<td>244</td>
</tr>
<tr>
<td>next-hop</td>
<td>245</td>
</tr>
<tr>
<td>next-hop-interface</td>
<td>246</td>
</tr>
<tr>
<td>next-hop-ip</td>
<td>247</td>
</tr>
<tr>
<td>next-server</td>
<td>247</td>
</tr>
<tr>
<td>nrzi-encoding</td>
<td>248</td>
</tr>
<tr>
<td>nvram initialize</td>
<td>249</td>
</tr>
<tr>
<td>option</td>
<td>249</td>
</tr>
<tr>
<td>owner</td>
<td>250</td>
</tr>
<tr>
<td>passive-interface</td>
<td>251</td>
</tr>
<tr>
<td>ping</td>
<td>252</td>
</tr>
<tr>
<td>pmi</td>
<td>253</td>
</tr>
<tr>
<td>ppp authentication</td>
<td>253</td>
</tr>
<tr>
<td>ppp chap hostname</td>
<td>254</td>
</tr>
<tr>
<td>ppp chap password</td>
<td>255</td>
</tr>
<tr>
<td>ppp chap refuse</td>
<td>256</td>
</tr>
<tr>
<td>ppp chap-secret</td>
<td>256</td>
</tr>
<tr>
<td>ppp pap refuse</td>
<td>257</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppp pap-sent username</td>
<td>258</td>
</tr>
<tr>
<td>ppp timeout ncp</td>
<td>258</td>
</tr>
<tr>
<td>ppp timeout retry</td>
<td>259</td>
</tr>
<tr>
<td>pppoe-client persistent delay</td>
<td>260</td>
</tr>
<tr>
<td>pppoe-client persistent max-attempts</td>
<td>260</td>
</tr>
<tr>
<td>pppoe-client service-name</td>
<td>261</td>
</tr>
<tr>
<td>pppoe-client wait-for-ipcp</td>
<td>262</td>
</tr>
<tr>
<td>pre-classification</td>
<td>263</td>
</tr>
<tr>
<td>pre-shared-key</td>
<td>263</td>
</tr>
<tr>
<td>priority-queue</td>
<td>264</td>
</tr>
<tr>
<td>protect crypto map</td>
<td>264</td>
</tr>
<tr>
<td>queue-limit</td>
<td>265</td>
</tr>
<tr>
<td>redistribute</td>
<td>266</td>
</tr>
<tr>
<td>redistribute</td>
<td>267</td>
</tr>
<tr>
<td>release voip-dsp</td>
<td>268</td>
</tr>
<tr>
<td>remote</td>
<td>268</td>
</tr>
<tr>
<td>reset</td>
<td>269</td>
</tr>
<tr>
<td>restatus</td>
<td>270</td>
</tr>
<tr>
<td>rmon alarm</td>
<td>270</td>
</tr>
<tr>
<td>rmon event</td>
<td>272</td>
</tr>
<tr>
<td>rmon history</td>
<td>273</td>
</tr>
<tr>
<td>router ospf</td>
<td>274</td>
</tr>
<tr>
<td>router rip</td>
<td>274</td>
</tr>
<tr>
<td>router vrrp</td>
<td>274</td>
</tr>
<tr>
<td>rtp-stat clear</td>
<td>275</td>
</tr>
<tr>
<td>rtp-stat event-threshold</td>
<td>275</td>
</tr>
<tr>
<td>rtp-stat fault</td>
<td>277</td>
</tr>
<tr>
<td>rtp-stat min-stat-win</td>
<td>278</td>
</tr>
<tr>
<td>rtp-stat qos-trap</td>
<td>279</td>
</tr>
<tr>
<td>rtp-stat qos-trap-rate-limit</td>
<td>279</td>
</tr>
<tr>
<td>rtp-stat service</td>
<td>280</td>
</tr>
<tr>
<td>rtp-stat threshold</td>
<td>281</td>
</tr>
<tr>
<td>sat</td>
<td>283</td>
</tr>
<tr>
<td>server-name</td>
<td>283</td>
</tr>
<tr>
<td>session</td>
<td>284</td>
</tr>
<tr>
<td>set boot bank</td>
<td>285</td>
</tr>
<tr>
<td>set contact-closure admin</td>
<td>286</td>
</tr>
<tr>
<td>set contact-closure pulse-duration</td>
<td>287</td>
</tr>
<tr>
<td>set dot1x max-req</td>
<td>287</td>
</tr>
<tr>
<td>set dot1x quiet-period</td>
<td>288</td>
</tr>
<tr>
<td>set dot1x re-authperiod</td>
<td>289</td>
</tr>
<tr>
<td>set dot1x server-timeout</td>
<td>289</td>
</tr>
<tr>
<td>set dot1x supp-timeout</td>
<td>290</td>
</tr>
<tr>
<td>set dot1x system-auth-control disable</td>
<td>291</td>
</tr>
<tr>
<td>set dot1x system-auth-control enable</td>
<td>291</td>
</tr>
<tr>
<td>set dot1x tx-period</td>
<td>292</td>
</tr>
<tr>
<td>set dscp</td>
<td>292</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>set etr</td>
<td>293</td>
</tr>
<tr>
<td>set icc-monitoring</td>
<td>294</td>
</tr>
<tr>
<td>set logging file</td>
<td>295</td>
</tr>
<tr>
<td>set logging server access-level</td>
<td>296</td>
</tr>
<tr>
<td>set logging server</td>
<td>297</td>
</tr>
<tr>
<td>set logging server condition</td>
<td>298</td>
</tr>
<tr>
<td>set logging server facility</td>
<td>299</td>
</tr>
<tr>
<td>set logging server enable/disable</td>
<td>300</td>
</tr>
<tr>
<td>set logging session</td>
<td>301</td>
</tr>
<tr>
<td>set logout</td>
<td>302</td>
</tr>
<tr>
<td>set mediaserver</td>
<td>303</td>
</tr>
<tr>
<td>set mgc list</td>
<td>303</td>
</tr>
<tr>
<td>set peer</td>
<td>304</td>
</tr>
<tr>
<td>set pfs</td>
<td>305</td>
</tr>
<tr>
<td>set port auto-negotiation-flowcontrol-advertisement</td>
<td>306</td>
</tr>
<tr>
<td>set port classification</td>
<td>307</td>
</tr>
<tr>
<td>set port disable</td>
<td>308</td>
</tr>
<tr>
<td>set port dot1x initialize.</td>
<td>309</td>
</tr>
<tr>
<td>set port dot1x port-control</td>
<td>309</td>
</tr>
<tr>
<td>set port dot1x re-authenticate</td>
<td>310</td>
</tr>
<tr>
<td>set port dot1x re-authentication</td>
<td>311</td>
</tr>
<tr>
<td>set port duplex</td>
<td>312</td>
</tr>
<tr>
<td>set port edge admin state</td>
<td>313</td>
</tr>
<tr>
<td>set port enable</td>
<td>313</td>
</tr>
<tr>
<td>set port flowcontrol</td>
<td>314</td>
</tr>
<tr>
<td>set port level</td>
<td>316</td>
</tr>
<tr>
<td>set port mirror</td>
<td>317</td>
</tr>
<tr>
<td>set port name</td>
<td>318</td>
</tr>
<tr>
<td>set port negotiation</td>
<td>319</td>
</tr>
<tr>
<td>set port point-to-point admin status</td>
<td>320</td>
</tr>
<tr>
<td>set port powerinline</td>
<td>321</td>
</tr>
<tr>
<td>set port powerinline priority</td>
<td>321</td>
</tr>
<tr>
<td>set port powerinline type</td>
<td>322</td>
</tr>
<tr>
<td>set port redundancy</td>
<td>323</td>
</tr>
<tr>
<td>set port redundancy on</td>
<td>off</td>
</tr>
<tr>
<td>set port redundancy-intervals</td>
<td>325</td>
</tr>
<tr>
<td>set port spantree</td>
<td>326</td>
</tr>
<tr>
<td>set port spantree cost</td>
<td>327</td>
</tr>
<tr>
<td>set port spantree force-protocol-migration</td>
<td>328</td>
</tr>
<tr>
<td>set port spantree priority</td>
<td>328</td>
</tr>
<tr>
<td>set port speed</td>
<td>329</td>
</tr>
<tr>
<td>set port static-vlan</td>
<td>330</td>
</tr>
<tr>
<td>set port trap</td>
<td>331</td>
</tr>
<tr>
<td>set port vlan</td>
<td>332</td>
</tr>
<tr>
<td>set port vlan-binding-mode</td>
<td>333</td>
</tr>
<tr>
<td>set powerinline trap disable</td>
<td>335</td>
</tr>
<tr>
<td>set powerinline trap enable</td>
<td>335</td>
</tr>
</tbody>
</table>
set qos bearer .. 336
set qos control .. 337
set qos rsvp ... 338
set qos rtcp ... 339
set qos signal .. 340
set radius authentication ... 341
set radius authentication retry-number 341
set radius authentication retry-time 342
set radius authentication secret 343
set radius authentication server 343
set radius authentication udp-port 344
set reset-times .. 345
set security-association lifetime 346
set snmp community .. 347
set snmp retries ... 347
set snmp timeout ... 348
set snmp trap .. 349
set spantree default-path-cost 350
set spantree enable/disable ... 351
set spantree forward-delay ... 352
set spantree hello-time ... 353
set spantree max-age .. 354
set spantree priority ... 355
set spantree tx-hold-count ... 355
set spantree version .. 356
set sync interface ... 357
set sync source ... 358
set sync switching .. 359
set system contact .. 359
set system location ... 360
set system name ... 361
set terminal recovery password 362
set transform-set ... 362
set trunk .. 363
set utilization cpu .. 364
set vlan ... 365
set web aux-files-url ... 366
show application-memory ... 367
show banner login ... 367
show banner post-login ... 368
show boot bank ... 368
show cam .. 369
show cam mac .. 370
show cam vlan .. 371
show capture .. 371
show capture-buffer hex ... 372
show composite-operation .. 373
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show contact-closure</td>
<td>374</td>
</tr>
<tr>
<td>show controllers</td>
<td>375</td>
</tr>
<tr>
<td>show controllers remote</td>
<td>376</td>
</tr>
<tr>
<td>show copy status</td>
<td>377</td>
</tr>
<tr>
<td>show crypto ipsec sa</td>
<td>378</td>
</tr>
<tr>
<td>show crypto ipsec transform-set</td>
<td>380</td>
</tr>
<tr>
<td>show crypto isakmp peer</td>
<td>381</td>
</tr>
<tr>
<td>show crypto isakmp policy</td>
<td>382</td>
</tr>
<tr>
<td>show crypto isakmp sa</td>
<td>383</td>
</tr>
<tr>
<td>show crypto map</td>
<td>385</td>
</tr>
<tr>
<td>show csu loopbacks</td>
<td>387</td>
</tr>
<tr>
<td>show csu status</td>
<td>385</td>
</tr>
<tr>
<td>show dev log file</td>
<td>387</td>
</tr>
<tr>
<td>show dot1x</td>
<td>387</td>
</tr>
<tr>
<td>show download license-file status</td>
<td>388</td>
</tr>
<tr>
<td>show download phone-script-file status</td>
<td>389</td>
</tr>
<tr>
<td>show download software status</td>
<td>390</td>
</tr>
<tr>
<td>show download status</td>
<td>391</td>
</tr>
<tr>
<td>show dscp-table</td>
<td>391</td>
</tr>
<tr>
<td>show ds-mode</td>
<td>393</td>
</tr>
<tr>
<td>show dynamic-cac</td>
<td>393</td>
</tr>
<tr>
<td>show erase status</td>
<td>394</td>
</tr>
<tr>
<td>show etr</td>
<td>395</td>
</tr>
<tr>
<td>show faults</td>
<td>395</td>
</tr>
<tr>
<td>show flows</td>
<td>396</td>
</tr>
<tr>
<td>show fragment</td>
<td>397</td>
</tr>
<tr>
<td>show frame-relay fragment</td>
<td>398</td>
</tr>
<tr>
<td>show frame-relay lmi</td>
<td>398</td>
</tr>
<tr>
<td>show frame-relay map</td>
<td>400</td>
</tr>
<tr>
<td>show frame-relay pvc</td>
<td>401</td>
</tr>
<tr>
<td>show frame-relay pvc brief</td>
<td>402</td>
</tr>
<tr>
<td>show frame-relay traffic</td>
<td>403</td>
</tr>
<tr>
<td>show icc-monitoring</td>
<td>403</td>
</tr>
<tr>
<td>show icc-vlan</td>
<td>404</td>
</tr>
<tr>
<td>show image version</td>
<td>404</td>
</tr>
<tr>
<td>show interfaces</td>
<td>405</td>
</tr>
<tr>
<td>show interface usb-modem</td>
<td>407</td>
</tr>
<tr>
<td>show ip access-control-list</td>
<td>408</td>
</tr>
<tr>
<td>show ip access-control-list</td>
<td>409</td>
</tr>
<tr>
<td>show ip active-lists</td>
<td>411</td>
</tr>
<tr>
<td>show ip active-pbr-lists</td>
<td>412</td>
</tr>
<tr>
<td>show ip arp</td>
<td>413</td>
</tr>
<tr>
<td>show ip capture-list</td>
<td>414</td>
</tr>
<tr>
<td>show ip crypto-list</td>
<td>415</td>
</tr>
<tr>
<td>show ip dhcp-pool</td>
<td>415</td>
</tr>
<tr>
<td>show ip dhcp-pool</td>
<td>416</td>
</tr>
<tr>
<td>show ip dhcp-pool</td>
<td>417</td>
</tr>
<tr>
<td>show ip dhcp-server bindings</td>
<td>421</td>
</tr>
</tbody>
</table>
Contents

show ip dhcp-server statistics ... 421
show ip distribution access-lists .. 422
show ip icmp ... 423
show ip interface ... 423
show ip interface brief ... 425
show ip next-hop-list ... 426
show ip ospf ... 426
show ip ospf database ... 427
show ip ospf interface .. 428
show ip ospf neighbor .. 429
show ip pbr-list ... 430
show ip protocols ... 431
show ip qos-list ... 432
show ip qos-list ... 433
show ip reverse-arp .. 434
show ip route .. 435
show ip route best-match .. 436
show ip route static ... 436
show ip route summary .. 437
show ip rtp header-compression ... 438
show ip rtp header-compression brief 440
show ip ssh ... 441
show ip tcp header-compression ... 442
show ip tcp header-compression brief 443
show ip tftp-server files .. 444
show ip traffic .. 445
show ip vrrp .. 446
show ip-rule ... 448
show isdn bri link ... 449
show isdn link summary ... 450
show isdn pri link ... 451
show keepalive .. 451
show license status .. 452
show list .. 453
show logging file condition .. 453
show logging file content ... 454
show logging server condition ... 455
show logging session condition ... 456
show logout .. 457
show map-class frame-relay ... 457
show mediaserver ... 458
show mg list_config .. 458
show mgc ... 459
show mgc list ... 460
show mm ... 461
show module ... 462
show next-hop ... 463

16 Avaya G350 Media Gateway CLI Reference
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show pmi</td>
<td>464</td>
</tr>
<tr>
<td>show port</td>
<td>464</td>
</tr>
<tr>
<td>show port auto-negotiation-flowcontrol-advertisement</td>
<td>466</td>
</tr>
<tr>
<td>show port classification</td>
<td>466</td>
</tr>
<tr>
<td>show port dot1x</td>
<td>467</td>
</tr>
<tr>
<td>show port dot1x statistics</td>
<td>468</td>
</tr>
<tr>
<td>show port edge state</td>
<td>469</td>
</tr>
<tr>
<td>show port flowcontrol</td>
<td>470</td>
</tr>
<tr>
<td>show port mirror</td>
<td>471</td>
</tr>
<tr>
<td>show port point-to-point status</td>
<td>472</td>
</tr>
<tr>
<td>show port redundancy</td>
<td>473</td>
</tr>
<tr>
<td>show port trap</td>
<td>473</td>
</tr>
<tr>
<td>show port vlan-binding-mode</td>
<td>474</td>
</tr>
<tr>
<td>show powerinline</td>
<td>475</td>
</tr>
<tr>
<td>show ppp authentication</td>
<td>476</td>
</tr>
<tr>
<td>show protocol</td>
<td>477</td>
</tr>
<tr>
<td>show qos-rtcp</td>
<td>479</td>
</tr>
<tr>
<td>show queue</td>
<td>480</td>
</tr>
<tr>
<td>show queueing</td>
<td>481</td>
</tr>
<tr>
<td>show radius authentication</td>
<td>482</td>
</tr>
<tr>
<td>show recovery</td>
<td>483</td>
</tr>
<tr>
<td>show restart-log</td>
<td>484</td>
</tr>
<tr>
<td>show rmon alarm</td>
<td>484</td>
</tr>
<tr>
<td>show rmon event</td>
<td>485</td>
</tr>
<tr>
<td>show rmon history</td>
<td>486</td>
</tr>
<tr>
<td>show rmon statistics</td>
<td>487</td>
</tr>
<tr>
<td>show rtp-stat config</td>
<td>488</td>
</tr>
<tr>
<td>show rtp-stat detailed</td>
<td>490</td>
</tr>
<tr>
<td>show rtp-stat sessions</td>
<td>496</td>
</tr>
<tr>
<td>show rtp-stat summary</td>
<td>499</td>
</tr>
<tr>
<td>show rtp-stat thresholds</td>
<td>500</td>
</tr>
<tr>
<td>show running-config</td>
<td>501</td>
</tr>
<tr>
<td>show snmp</td>
<td>502</td>
</tr>
<tr>
<td>show snmp engineID</td>
<td>503</td>
</tr>
<tr>
<td>show snmp group</td>
<td>504</td>
</tr>
<tr>
<td>show snmp retries</td>
<td>504</td>
</tr>
<tr>
<td>show snmp timeout</td>
<td>505</td>
</tr>
<tr>
<td>show snmp user</td>
<td>506</td>
</tr>
<tr>
<td>show snmp usertogroup</td>
<td>507</td>
</tr>
<tr>
<td>show snmp user summary</td>
<td>508</td>
</tr>
<tr>
<td>show snmp view</td>
<td>508</td>
</tr>
<tr>
<td>show span-tree</td>
<td>509</td>
</tr>
<tr>
<td>show startup-config</td>
<td>510</td>
</tr>
<tr>
<td>show status</td>
<td>511</td>
</tr>
<tr>
<td>show sync timing</td>
<td>512</td>
</tr>
<tr>
<td>show system</td>
<td>513</td>
</tr>
<tr>
<td>show temp</td>
<td>513</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>show timeout</td>
<td>514</td>
</tr>
<tr>
<td>show trunk</td>
<td>515</td>
</tr>
<tr>
<td>show upload dhcp-binding-file status</td>
<td>516</td>
</tr>
<tr>
<td>show upload phone-script-file status</td>
<td>517</td>
</tr>
<tr>
<td>show upload status</td>
<td>518</td>
</tr>
<tr>
<td>show username</td>
<td>519</td>
</tr>
<tr>
<td>show utilization</td>
<td>519</td>
</tr>
<tr>
<td>show vlan</td>
<td>520</td>
</tr>
<tr>
<td>show voip-parameters</td>
<td>521</td>
</tr>
<tr>
<td>show voltages</td>
<td>522</td>
</tr>
<tr>
<td>show web aux-files-url</td>
<td>523</td>
</tr>
<tr>
<td>shutdown</td>
<td>523</td>
</tr>
<tr>
<td>shutdown</td>
<td>524</td>
</tr>
<tr>
<td>snmp trap link-status</td>
<td>525</td>
</tr>
<tr>
<td>snmp-server community</td>
<td>525</td>
</tr>
<tr>
<td>snmp-server dynamic-trap-manager</td>
<td>526</td>
</tr>
<tr>
<td>snmp-server enable notifications</td>
<td>527</td>
</tr>
<tr>
<td>snmp-server engineID</td>
<td>527</td>
</tr>
<tr>
<td>snmp-server group</td>
<td>528</td>
</tr>
<tr>
<td>snmp-server host</td>
<td>530</td>
</tr>
<tr>
<td>snmp-server informs</td>
<td>533</td>
</tr>
<tr>
<td>snmp-server remote-user</td>
<td>534</td>
</tr>
<tr>
<td>snmp-server user</td>
<td>535</td>
</tr>
<tr>
<td>snmp-server view</td>
<td>537</td>
</tr>
<tr>
<td>source-ip</td>
<td>538</td>
</tr>
<tr>
<td>speed</td>
<td>539</td>
</tr>
<tr>
<td>speed</td>
<td>539</td>
</tr>
<tr>
<td>start-ip-addr</td>
<td>540</td>
</tr>
<tr>
<td>subnet-mask</td>
<td>541</td>
</tr>
<tr>
<td>tcp destination-port</td>
<td>542</td>
</tr>
<tr>
<td>tcp established</td>
<td>543</td>
</tr>
<tr>
<td>tcp source-port</td>
<td>544</td>
</tr>
<tr>
<td>tech</td>
<td>545</td>
</tr>
<tr>
<td>telnet</td>
<td>546</td>
</tr>
<tr>
<td>terminal length</td>
<td>547</td>
</tr>
<tr>
<td>terminal width</td>
<td>547</td>
</tr>
<tr>
<td>test led</td>
<td>548</td>
</tr>
<tr>
<td>test voip-dsp</td>
<td>549</td>
</tr>
<tr>
<td>timeout absolute</td>
<td>549</td>
</tr>
<tr>
<td>timers basic</td>
<td>550</td>
</tr>
<tr>
<td>timers spf</td>
<td>551</td>
</tr>
<tr>
<td>traceroute</td>
<td>552</td>
</tr>
<tr>
<td>traffic-shape rate</td>
<td>552</td>
</tr>
<tr>
<td>transmitter-delay</td>
<td>553</td>
</tr>
<tr>
<td>tree</td>
<td>554</td>
</tr>
<tr>
<td>tunnel checksum</td>
<td>555</td>
</tr>
<tr>
<td>tunnel destination</td>
<td>555</td>
</tr>
</tbody>
</table>
tunnel dscp ... 556
 tunnel keepalive ... 557
 tunnel key ... 558
 tunnel mode ... 558
 tunnel path-mtu-discovery ... 559
 tunnel source .. 560
 tunnel ttl .. 561
 udp destination-port .. 562
 udp source-port .. 563
 username ... 564
 value ... 566
 vendor-specific-option ... 567
 voip-queue .. 567
 voip-queue-delay ... 568
 zeroize .. 569
About this Book

Overview

The Avaya G350 Media Gateway CLI Reference describes the commands used to configure and manage the Avaya G350 Media Gateway after it is already installed. For instructions on using these commands to configure and manage the G350, refer to Administration of the Avaya G350 Media Gateway, 555-245-501.

Audience

The information in this book is intended for use by Avaya technicians, provisioning specialists, business partners, and customers.

Using this book

This book describes how to use the G350 Command Line Interface (CLI) and provides a reference to the CLI commands. Each command description contains:

- The command name
- A short description of the purpose of the command
- The following sections:
 - **Syntax** - This section describes the correct syntax for the command.
 - **Parameters** - This section lists and describes elements of the command syntax, such as parameters, their definitions, and allowed values.
 - **User Level** - This section shows the lowest access level for which the command is accessible. There are three access levels: User (read-only), Configure (read-write), and Supervisor (admin).
 - **Context** - This section shows the contexts from which the command can be executed.
 - **Example** - This section provides an example of the use of a command, and, where applicable, the output display. This section does not appear if the syntax and output are simple.
 - **Output Fields** - This section describes the fields in the command output, if applicable.
About this Book

Conventions

The following are the conventions used in this book to represent syntax and examples:

<table>
<thead>
<tr>
<th>Display Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen Display text</td>
<td>Text represented in this format is displayed by the CLI.</td>
</tr>
<tr>
<td>User entered text</td>
<td>Text represented in this format is entered by the user.</td>
</tr>
<tr>
<td>Variable</td>
<td>This format indicates a variable argument as it is entered by the user.</td>
</tr>
<tr>
<td>Variable in text</td>
<td>This format indicates a variable argument discussed in the Parameters section.</td>
</tr>
<tr>
<td>[]</td>
<td>Syntax elements grouped by square brackets are optional.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>{}</td>
<td>These braces are used to group syntax elements, where necessary, to eliminate ambiguity in the syntax. For example, if a keyword and an argument together constitute one of a set of mutually exclusive elements, the keyword and argument are grouped with braces and separated from the other options with a pipe.</td>
</tr>
</tbody>
</table>

Downloading this book and updates from the Web

You can download the latest version of the Avaya G350 Media Gateway CLI Reference from the Avaya Web site. You must have access to the Internet, and a copy of Acrobat Reader must be installed on your personal computer.

Avaya makes every effort to ensure that the information in this book is complete and accurate. However, information can change after we publish this book. Therefore, the Avaya Web site might also contain new product information and updates to the information in this book. You can also download these updates from the Avaya Web site.
Downloading this book

To download the latest version of this book:

2. On the left side of the page, click Product Documentation.
 The system displays the Welcome to Product Documentation page.
3. On the right side of the page, type 555-245-202, and then click Search.
 The system displays the Product Documentation Search Results page.
4. Scroll down to find the latest issue number, and then click the book title that is to the right of
 the latest issue number.
5. On the next page, scroll down and click one of the following options:
 - PDF Format to download the book in regular PDF format
 - ZIP Format to download the book as a zipped PDF file

Related resources

For more information on the Avaya G350 Media Gateway and related features, see the following books:

<table>
<thead>
<tr>
<th>Title</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of the Avaya G350 Media Gateway</td>
<td>555-245-201</td>
</tr>
<tr>
<td>Installation and Upgrades for the Avaya G350 Media</td>
<td>03-300394</td>
</tr>
<tr>
<td>Gateway</td>
<td></td>
</tr>
<tr>
<td>Administration of the Avaya G350 Media Gateway</td>
<td>555-245-501</td>
</tr>
<tr>
<td>Avaya G350 Media Gateway Glossary</td>
<td>555-245-301</td>
</tr>
<tr>
<td>Quick Start for Hardware Installation for the Avaya G350 Media Gateway</td>
<td>03-300148</td>
</tr>
<tr>
<td>Maintenance of the Avaya G350 Media Gateway</td>
<td>555-245-105</td>
</tr>
</tbody>
</table>
Technical assistance

Avaya provides the following resources for technical assistance.

Within the US

For help with:

- Feature administration and system applications, call the Avaya DEFINITY Helpline at 1-800-225-7585
- Maintenance and repair, call the Avaya National Customer Care Support Line at 1-800-242-2121
- Toll fraud, call Avaya Toll Fraud Intervention at 1-800-643-2353

International

For all international resources, contact your local Avaya authorized dealer for additional help.

Trademarks

All trademarks identified by the ® or TM are registered trademarks or trademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective owners.
Sending us comments

Avaya welcomes your comments about this book. To reach us by:

- Mail, send your comments to:
 Avaya Inc.
 Product Documentation Group
 Room B3-H13
 1300 W. 120th Ave.
 Westminster, CO 80234 USA

- E-mail, send your comments to:
 document@avaya.com

- Fax, send your comments to:
 1-303-538-1741

Chapter 1: User Levels and Contexts

The G350 Command Line Interface (CLI) consists of commands that are divided into logical contexts. These contexts enable you to view and configure the G350 Media Gateway more efficiently. A context can be a particular interface of the media gateway, or it can be a specific function with all its related commands.

The contexts you can enter and the commands you can access, depend on the user level from which you log in to the CLI.

For example, you can use all `show` commands in User mode. To configure the Avaya G350 Media Gateway, you must be in Supervisor or Privileged mode.

The following figure illustrates the relationship between the user levels and the contexts.

Figure 1: Relationship between User Levels and Contexts

![Diagram of user levels and contexts]

After logging in, type `tree` to see a list of all the commands that are accessible at your user level. Type `help` to see the list of commands available in the current context.
User Levels

The following are the user levels that control access to the various parts of the CLI:

<table>
<thead>
<tr>
<th>Level</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>read-only</td>
<td>User level is a general access level used to display system parameter values. This level complies with the Read Only restrictions level.</td>
</tr>
<tr>
<td>Privileged</td>
<td>read-write</td>
<td>Privileged level is used to access configuration options. This level complies with the Read and Write restrictions level.</td>
</tr>
<tr>
<td>Supervisor</td>
<td>admin</td>
<td>Supervisor level is used for highly secured operations, such as adding a new user account, showing the PPP chap secret, and setting the device policy manager source.</td>
</tr>
</tbody>
</table>

Contexts

The CLI is divided into various contexts from which sets of related commands can be entered. Contexts are nested in a hierarchy, with each context accessible from another context, called the parent context. The top level of the CLI tree is called the root context. Commands that can be executed from any context in the system are listed as having the general context.

Interface contexts

Each interface has its own context in the CLI, which you use to manage the interface. The set of commands related to an interface are only accessible from its interface context. For example, in order to configure a Loopback interface, you must first enter the Loopback context. You enter the Loopback context using the interface command with an interface identifier such as `interface loopback 1`.

When an interface has only one sub-interface, the commands for the sub-interface are available from the context of the parent interface. This is called unified configuration. When there are multiple sub-interfaces, you must enter the context of a particular sub-interface in order to configure the sub-interface.
For example, when you create a new VLAN interface 1, the sub-interface VLAN 1.0 is also created. In this case, you can execute sub-interface context commands such as `ip admin-state` from the parent context. If you add a second sub-interface VLAN 1.1, then you can only execute sub-interface commands from the context of the sub-interface.

If you are in Supervisor or Privileged mode, you can enter any of the following interface contexts:

- Interface Console
- Interface USB
- Interface Fast Ethernet
- Interface VLAN
- Interface Serial
- Interface Loopback
- Interface Tunnel

Entering an Interface

You enter an interface context using the `interface` command, followed by the type of interface, and the interface specification. For the Console interface there is no interface specification.

Interface types include:

- FastEthernet
- Serial
- VLAN
- Loopback
- Console
- USB
- Tunnel

An interface is specified with the following syntax:

```
interface_num[.ip_interface] [if_link_type]
```

For a complete discussion of the `interface` command syntax, see the `interface` command description.
Command line prompts

The command line prompt is always prefixed with the hostname of the media gateway. If the media gateway is registered, then the prompt is `hostname-media_gateway_number`. Otherwise, the prompt is `hostname-???.`

The root context prompt reflects the logged-in user level.

- The Supervisor level prompt always ends with `(super)#`
- The Privileged level prompt ends with `#`
- The User level prompt ends with `>`

As you change contexts, the command line prompt changes to reflect the context path. For example, when you enter the `access-control-list` configuration context as a Privileged user, the prompt reads `(ACL 330)#`.

To enter a context from another context:

- Enter the name of the context. The prompt changes to indicate the context entered.

To leave a context:

- Enter `exit`. The user returns to the parent context.

Available contexts

The following table describes all the contexts in the CLI. The Context column provides the command to type in order to enter the context. The CLI prompt column is the prompt that you see once you have entered the context.

<table>
<thead>
<tr>
<th>Context</th>
<th>Description</th>
<th>CLI prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Log in as User)</td>
<td>Root Read Only context</td>
<td><code>></code></td>
</tr>
<tr>
<td>(Log in as Privileged User)</td>
<td>Root Read Write context</td>
<td><code>#</code></td>
</tr>
<tr>
<td>(Log in as Supervisor)</td>
<td>Root Admin context</td>
<td><code>(super)#</code></td>
</tr>
<tr>
<td>Interface Console</td>
<td>Configuring the Console interface</td>
<td><code>(if:Console)#</code></td>
</tr>
<tr>
<td>Interface USB</td>
<td>Configuring the USB interface</td>
<td><code>(if:USB-Modem)#</code></td>
</tr>
</tbody>
</table>

Table 1: List of CLI Contexts 1 of 3
Table 1: List of CLI Contexts 2 of 3

<table>
<thead>
<tr>
<th>Context</th>
<th>Description</th>
<th>CLI prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Serial</td>
<td>USP, E1/T1</td>
<td>(if:serial 2/1)#</td>
</tr>
<tr>
<td>Interface loopback</td>
<td>The loopback virtual interface</td>
<td>(if:loopback 1.0)#</td>
</tr>
<tr>
<td>Interface VLAN</td>
<td>G350 interfaces to VLANs</td>
<td>(if:vlan 1)#</td>
</tr>
<tr>
<td>Interface FastEthernet</td>
<td>An Ethernet port connected directly to the router</td>
<td>(if:fastEthernet 20/1)#</td>
</tr>
<tr>
<td>Interface Tunnel</td>
<td>A GRE tunnel interface. A GRE tunnel is a virtual point-to-point link between two routers at two ends of an Internet cloud.</td>
<td>(if:Tunnel 1)#</td>
</tr>
<tr>
<td>Banner login</td>
<td>For editing a text message that appears before users login</td>
<td>(super/login)#</td>
</tr>
<tr>
<td>Banner post login</td>
<td>For editing a text message that appears after users login</td>
<td>(super/post-login)#</td>
</tr>
<tr>
<td>Router OSPF</td>
<td>OSPF routing protocol configuration</td>
<td>(router:ospf)#</td>
</tr>
<tr>
<td>Router RIP</td>
<td>RIP routing protocol configuration</td>
<td>(router:rip)#</td>
</tr>
<tr>
<td>ip QoS-list <list#></td>
<td>QoS policy list</td>
<td>(QoS 401)#</td>
</tr>
<tr>
<td>rule <rule#></td>
<td>QoS policy list entry</td>
<td>(QoS 401/rule 4)#</td>
</tr>
<tr>
<td>composite-operation <cot#></td>
<td>QoS policy list match action</td>
<td>(QoS 401/CompOp 2)#</td>
</tr>
<tr>
<td>dscp-table <table#></td>
<td>QoS policy list DSCP to CoS map</td>
<td>(QoS 401/dscp 63)#</td>
</tr>
<tr>
<td>ip Access-Control-List <list#></td>
<td>Security Access list</td>
<td>(ACL 301)#</td>
</tr>
<tr>
<td>ip-rule <rule#></td>
<td>Security ACL entry</td>
<td>(ACL 301/ip rule 4)#</td>
</tr>
<tr>
<td>composite-operation <cot#></td>
<td>Security ACL match action</td>
<td>(ACL 301/CompOp 2)#</td>
</tr>
<tr>
<td>ip capture-list</td>
<td>Configure a capture list</td>
<td>(Cap 501)#</td>
</tr>
<tr>
<td>ip capture-list/ip-rule</td>
<td>Configure a capture list rule</td>
<td>(Cap 501/ip rule 22)#</td>
</tr>
<tr>
<td>ip dhcp pool</td>
<td>Configure a DHCP pool</td>
<td>(DHCP 5)#</td>
</tr>
</tbody>
</table>
Table 1: List of CLI Contexts 3 of 3

<table>
<thead>
<tr>
<th>Context</th>
<th>Description</th>
<th>CLI prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip dhcp pool/option</td>
<td>Configure a DHCP option</td>
<td>(DHCP 5/option 19)#</td>
</tr>
<tr>
<td>ip dhcp pool/vendor-specific-option</td>
<td>Configure a vendor specific DHCP option</td>
<td>(DHCP 5/vendor specific 1)#</td>
</tr>
<tr>
<td>ip next-hop-list</td>
<td>Configure a next hop list</td>
<td>(next hop list 1)#</td>
</tr>
<tr>
<td>ip pbr-list</td>
<td>Configure a PBR list</td>
<td>(PBR 801)#</td>
</tr>
<tr>
<td>ip pbr-list/ip-rule</td>
<td>Configure a PBR list rule</td>
<td>(PBR 801/ip rule 22)#</td>
</tr>
<tr>
<td>map-class frame-relay <name></td>
<td>Create a QoS template</td>
<td>(map-class)#</td>
</tr>
<tr>
<td>crypto isakmp policy</td>
<td>Create an ISAKMP policy</td>
<td>(config-isakmp:1)#</td>
</tr>
</tbody>
</table>
Chapter 2: CLI Commands

About the CLI

The Avaya G350 Media Gateway CLI Reference CLI is accessible directly via the serial console port, remotely via Telnet, or via the modem PPP interface. The CLI is command-line driven and does not have any menus. The CLI commands available, and the functions of those commands, depend on the context you are in when you issue the command. For a complete discussion of contexts, refer to Contexts on page 28.

This chapter lists all the CLI commands for the G350 Media Gateway.

Logging in to the CLI

To login to the CLI, you need a username and a password. Initially, there is only one user, named root (with password root), on the system. It is recommended to change the root user password to prevent unauthorized entry into the system. The root user has Administrative privileges. You can add more users with the username command.

When you open the CLI interface, you are prompted for a username. Enter the username and press Enter. Enter your password at the password prompt, and press Enter. Once you have logged in, you can execute all the CLI commands that are permitted at your user level. For a full discussion of user levels, refer to User Levels on page 28.
Using the CLI

To use a command, type the desired command at the prompt and press Enter.

Using Help

You can use the built-in Help feature to display the list of commands that are available to you. Type help to see the list of available commands in the present context. Type help followed by a word or part of a word to see a list of all commands starting with that word. For example, type help show to see a list of all commands using show. Type tree to see the full list of commands available at the current permission level.

Using auto-complete

If you are unsure of the spelling of a command, use the auto-complete feature. Type the first few letters of the command and then press the tab key. The system completes the command automatically. If more than one command begins with those letters, the system displays a list of commands matching those letters.

Abbreviating commands

You can abbreviate commands or parts of commands in the CLI. As long as the abbreviation uniquely identifies a command, the system executes that command. If the abbreviation is ambiguous, the system displays a list of possible matches.

For example, typing sh ban login is the same as typing show banner login. However, typing show m matches more than one command and is not executed. Instead the system displays a list such as:

Ambiguous Command. Possible commands are:
map-class mediaserver mg mgc mm module
area

Use the `area` command to configure the area ID of a router. Use the `no` form of the command to delete the area ID.

Syntax

```plaintext
[no] area area_id [stub]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>area_id</code></td>
<td>The IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>stub</code></td>
<td>Configure a stub area</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Router OSPF

Example

To configure an area for this OSPF interface with IP address 192.168.49.1:

```
G350-001(router:ospf)# area 192.168.49.1
```

To configure a stub area for this OSPF interface with IP address 176.1.13.12:

```
G350-001(router:ospf)# area 176.1.13.12 stub
```

To remove the area with IP address 192.168.49.1:

```
G350-001(router:ospf)# no area 192.168.49.1
```
Use the `arp` command to add a permanent entry to the Address Resolution Protocol (ARP) cache. Use the `no` form of this command to remove either a static entry or a dynamically learned entry from the ARP cache.

Syntax

```
arp ip_address mac_address
no arp ip_address
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip_address</code></td>
<td>IP address of the station</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>mac_address</code></td>
<td>Corresponding MAC address for this station</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To add a permanent entry for station 192.168.7.8 to the ARP cache:

```
G350-001# arp 192.168.7.8 00:40:0d:8c:2a:01
```

To remove an entry from the ARP cache for the station 192.168.13.76:

```
G350-001# no arp 192.168.13.76
```
arp timeout

Use the `arp timeout` command to configure the amount of time, in seconds, that an entry remains in the ARP cache. Entering the `arp timeout` command without a `seconds` parameter will display the current timeout value. Use the `no` form of this command to restore the default value (four hours).

Syntax

```
arp timeout [seconds]
no arp timeout
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seconds</code></td>
<td>The number of seconds that an entry remains in the ARP cache</td>
<td>60 – 604800</td>
<td>14400</td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To set the ARP timeout to one hour:

```
G350-001# arp timeout 3600
```

To restore the default value for ARP timeout:

```
G350-001# no arp timeout
```

async mode interactive

Use the `async mode interactive` command to enter modem mode every time the proprietary modem cable is plugged into the Console port.

Syntax

```
async mode interactive
```


CLI Commands

User level
read-write

Context
Interface: Console

async mode terminal

Use the `async mode terminal` command to disable interactive mode on the Console.

Syntax

```
async mode terminal
```

User level
read-write

Context
Interface: Console

async modem-init-string

Use the `async modem-init-string` command to change the default modem initialization string. Use the `no` form of the command to return the modem initialization string to its default value.

Syntax

```
async modem-init-string modem_string
no async modem-init-string
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>modem_string</code></td>
<td>The modem initialization string</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
admin

Context
Interface: Console, USB-modem

Example
To set the modem initialization string to ‘AT&FE0Q0V0X0&D2N0S37=6’:

G350-001(super-if:Console)# async modem-init-string
AT&FE0Q0V0X0&D2N0S37=6

async modem-type

Use the **async modem-type** command to set the type of modem being used. This command also sets the default modem parameter values such as default initialization string and escape sequence for the specified type of modem. Use the **no** form of the command to return modem type to its default value of **MultiTech-ZBA**.

Note:
If modem-type is specified as **none**, the system connects the PPP stack to the console port.

Syntax

async modem-type *modem_type*

no async *modem_type*

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>modem_type</td>
<td>The type of modem being used</td>
<td>MultiTech-ZBA, USR-Sportster, null</td>
<td></td>
</tr>
</tbody>
</table>

User level
admin

Context
Interface: Console
Example
To set the modem type to USR-Sportster:

G350-001(super-if:Console)# async modem-type USR-Sportster

async reset-modem

Use the async reset-modem command to reset the connected modem.

Syntax
async reset-modem

User level
read-write

Context
Interface: Console

async reset-modem

Use the async reset-modem command to reset the USB modem. This command resets the PPP stack, deactivates the DTR signal, issues an ATZ (reset) command to the USB modem, and reissues the Init string sequence. You can perform this command from within an active PPP session to close the session and allow the USB modem to accept a new call.

Syntax
async reset-modem

User level
read-write

Context
Interface: USB-modem
authentication

Use the `authentication` command to set the authentication of ISAKMP policy pre-shared secret.

Syntax

```
authentication pre-share
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre-share</td>
<td>The authentication of the ISAKMP policy pre-shared secret</td>
<td>pre-share</td>
<td>pre-share</td>
</tr>
</tbody>
</table>

User level

read-write

Context

crypto isakmp policy

Example

```
G350-001(config-isakmp:1)# authentication pre-share
Done!
```

autoneg

Use the `autoneg` command to set the port speed and duplex to auto-negotiation mode for the external Fast Ethernet port. Use the `no` form of this command to disable auto-negotiation mode.

Syntax

```
[no] autoneg
```

User level

read-write

Context

Interface: FastEthernet (L2, L2-L3)
backup delay

Use the `backup delay` command to set the time to wait before switching to the backup interface, in case of failure.

Syntax

```
backup delay failure_delay secondary_disable_delay
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>failure_delay</code></td>
<td>The delay before switching to the backup interface, in seconds</td>
<td>0 - 3600</td>
<td>0</td>
</tr>
<tr>
<td><code>secondary_disable_delay</code></td>
<td>The delay before reverting to the primary interface, in seconds</td>
<td>0 - 3600</td>
<td>0</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: FastEthernet (L2, L2-L3), Serial (DS1 PPP L2, DS1 PPP L2-L3, DS1 FR L2, DS1 FR-SUB L2, DS1 FR-SUB L2-L3, USP FR L2, USP PPP L2, USP PPP L2-L3), Tunnel (L2, L2-L3)

Example

To switch over immediately to the backup interface, in case of failure, and pause 60 seconds before reverting to the primary interface:

```
G350-001(if:FastEthernet 10/2)# backup delay 0 60
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface_type</td>
<td>The type of interface</td>
<td>Serial, FastEthernet</td>
<td></td>
</tr>
<tr>
<td>interface_number</td>
<td>The interface number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: FastEthernet (L2, L2-L3), Serial (DS1 PPP L2, DS1 PPP L2-L3, DS1 FR L2, DS1 FR-SUB L2, DS1 FR-SUB L2-L3, USP FR L2, USP PPP L2, USP PPP L2-L3), Tunnel (L2, L2-L3)

Example
To specify that Serial interface 2/1:1 is a backup interface for the current interface:
G350-001(if:Serial 2/1:2)# backup interface Serial 2/1:1

bandwidth

Use the bandwidth command to set the bandwidth parameter manually for this interface. Use the no form of this command to restore the bandwidth parameter to its default value. The manually specified bandwidth value overrides the dynamically calculated bandwidth during route cost calculations.

Syntax

```
bandwidth kilobits
no bandwidth
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kilobits</td>
<td>The bandwidth for the interface in kilobits per second</td>
<td>1 – 10000000</td>
<td>2048 (for Frame Relay)</td>
</tr>
</tbody>
</table>
CLI Commands

User level
read-write

Context
Interface: Serial (DS1 PPP L2, DS1 PPP L2-L3, DS1 FR L2, DS1 FR-SUB L2, DS1 FR-SUB L2-L3, USP PPP L2, USP PPP L2-L3, USP FR L2), Fast Ethernet (L2, L2-L3), VLAN (L2, L2-L3), Loopback (L2, L2-L3), Tunnel (L2, L2-L3)

Example
To manually set the bandwidth for the VLAN interface to 100 KB/s:

G350-001(if:Vlan 1)# bandwidth 100

Banner login

Use the `banner login` command to enter the login banner configuration mode. Use the `no` form of this command to set the login banner to its default value. The login banner displays before the user is prompted for the login name. To enter text for the login banner, refer to the command line on page 235.

Note: Before creating a new banner, delete the current banner using the `no banner login` command.

Syntax

```
[no] banner login
```

User level
admin

Context
general

Example
To enter login banner configuration mode:

G350-001(super)# banner login
G350-001(super/login)#
banner post-login

Use the `banner post-login` command to enter the post-login banner configuration mode. The post-login banner displays after the user has logged in successfully. Use the `no` form of this command to set the post-login banner to its default value. To enter text for the post-login banner, refer to the command line on page 235.

Note:
Before creating a new banner, delete the current banner using the `no banner post-login` command.

Syntax

```
[no] banner post-login
```

User level

`admin`

Context

`general`

Example

To enter the post-login banner configuration mode:

```
G350-001(super)# banner post-login
G350-001(super/post-login)#
```

bc out

Use the `bc out` command to configure the committed burst size in bits, for the outbound direction. Use the `no` form of this command to return the committed burst size to its default value.

Note:
The time interval used in the frame relay meter is: \((BC/CIR)\times1000\), where BC is the committed burst size, and CIR is the committed information rate. The minimum time interval is 10ms, and the device will prevent setting the BC and CIR in a way that violates this minimum.

Syntax

```
bc out bits
no bc out
```
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bits</td>
<td>The committed burst size in bits</td>
<td>8 – 39999999</td>
<td>7000</td>
</tr>
</tbody>
</table>

User level
read-write

Context
map-class frame-relay

Example
To configure outbound BC to be 64 Kbit:

G350-001(map-class)# bc out 64000

be out

Use the `be out` command to configure the excess burst size in bits, for the outbound direction. Use the `no` form of this command to return the excess burst size to its default value.

Note:
The Excess Information Rate (EIR) is equal to: (BC+BE)/Tc/1000, where Tc is the Frame Relay meter time interval in mSec, BC is the committed burst rate and BE is the excess burst size.

Syntax

`be out bits`

`no be out`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bits</td>
<td>The excess burst size in bits</td>
<td>0 – 39999999</td>
<td>7000</td>
</tr>
</tbody>
</table>

User level
read-write

46 Avaya G350 Media Gateway CLI Reference
bootfile

The bootfile provides startup parameters for the DHCP client device. Use the `bootfile` command to specify the file name to be used as boot file. Use the `no` form of this command to clear the boot file name.

Syntax

```
[no] bootfile file-name
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>file-name</code></td>
<td>The name of the file to be used as boot file.</td>
<td>string, 1-128 bytes</td>
<td>null string</td>
</tr>
</tbody>
</table>

User level

read-write

Context

dhcp pool

Example

To set the file “booter” as the bootfile:

G350-001(DHCP 5)# bootfile "booter"

To clear the bootfile definition:

G350-001(DHCP 5)# no bootfile
busyout voip-dsp

Use the `busyout voip-dsp` command to put the VoIP engine in busyout (not available) state for a Bit Transfer Rate test. For related VoIP testing commands, refer to the commands `test voip-dsp` on page 549, and `release voip-dsp` on page 268.

Note:
Status changes made during the test create SNMP traps.

Syntax

```
busyout voip-dsp
```

User level
read-write

Context
general

cablelength long

Use the `cablelength long` command to configure transmit and receive levels for a cable longer than 655 feet. Use the no form of the command to restore the transmit and receive levels to their default values.

Syntax

```
cablelength long rx_level tx_level
```
```
no cablelength long
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rx_level</code></td>
<td>The receive sensitivity</td>
<td><code>gain26, gain36</code></td>
<td><code>gain26</code></td>
</tr>
<tr>
<td><code>tx_level</code></td>
<td>The transmit attenuation</td>
<td><code>-15db, -22.5db, -7.5db, 0db</code></td>
<td><code>0db</code></td>
</tr>
</tbody>
</table>

User level
read-write
Context
Interface: Controller (T1)

Example
To set the receive and transmit values for the cable to gain36 and -7.5db:
G350-001(controller:5/1)# cablelength long gain36 -7.5db

cablelength short

Use the cablelength short command to configure transmit levels for a cable of length 655 feet or shorter. Use the no form of the command to restore the transmit level to its default value.

Note:
The transmit attenuation is configured using the loop length.

Syntax
cablelength short tx_value

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tx_value</td>
<td>The transmit level</td>
<td>133ft, 266ft, 399ft, 533ft, 655ft</td>
<td>133ft</td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Controller (T1)

Example
To set the transmit value for the cable to 399ft:
G350-001(controller:5/1)# cablelength short 399ft
capture buffer-mode

Use the *capture buffer-mode* command to specify the type of buffer used by the packet sniffer.

Syntax

capture buffer-mode {non_cyclic | cyclic}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>non_cyclic</td>
<td>Linear buffer that is used until it is filled up</td>
</tr>
<tr>
<td>cyclic</td>
<td>Circular buffer that overwrites the oldest records when it is filled up. Use a cyclic buffer to store the most recent history of packet activity.</td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
G350-001# capture buffer-mode cyclic

capture buffer-size

Use the *capture buffer-size* command to specify the maximum size of the packet sniffing buffer.

Note:
To activate the change in buffer size, you must run copy running-config startup-config, and reboot the device.

Syntax

capture buffer-size buffer_size
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>buffer_size</td>
<td>The maximum size of the packet sniffing buffer.</td>
<td>256-10000 (Kbytes)</td>
<td>1000</td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

G350-001# capture buffer-size 2000

capture filter-group

Use the `capture filter-group` command to apply the specified filter to the packet sniffer. When a capture filter is applied, packets must match the criteria for a rule whose action is 'capture' in order to be saved to the buffer.

Syntax

`capture filter-group capture_list_id`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>capture_list_id</td>
<td>The capture list number to apply</td>
<td>500-599</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

G350-001# capture filter-group 501
CLI Commands

capture interface

Use the `capture interface` command to specify the interface on which to run the packet sniffing service. Use the `no` form of the command to run packet sniffing on all routing interfaces.

Syntax

```
capture interface interface_name
```

```
no capture interface
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface_name</code></td>
<td>The name of the interface on which to run packet sniffing. If the interface name contains spaces, it must be enclosed in quotes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

```
G350-001> capture interface "FastEthernet 10/2"
```

capture max-frame-size

Use the `capture max-frame-size` command to specify the maximum number of bytes captured for each packet by the packet sniffer.

Syntax

```
capture max-frame-size max_frame_size
```

```
no capture max-frame-size
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>max_frame_size</td>
<td>The maximum number of bytes captured for each packet by the packet sniffer.</td>
<td>14 - 4096</td>
<td>128</td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example

G350-001# capture max-frame-size 68

capture start

Use the **capture start** command to start the packet sniffing service.

Note:
The capture start command resets the buffer before starting the sniffer.

Note:
In order to upload a capture file, you must first stop the packet sniffing service.

Syntax
capture start

User level
read-write

Context
general
CLI Commands

Examples
If the packet sniffing service has been enabled by the administrator:

G350-001> capture start
Starting the packet sniffing process

If the packet sniffing service has not been enabled by the administrator:
G350-001> capture start
The sniffing service is not available.
To re-enable, use the ‘capture-service’ command in supervisor mode.

capture stop

Use the capture stop command to stop the packet sniffing service.

Note:
This command is not saved in the startup configuration file.

Note:
In order to upload a capture file, you must first stop the packet sniffing service.

Syntax

capture stop

User level
read-write

Context
general

Examples
If the packet sniffing service has been enabled by the administrator:

G350-001> capture stop
110 packets captured.

If the packet sniffing service has not been enabled by the administrator:

G350-001> capture stop
The Packet sniffing process is not running.
capture-service

Use the `capture-service` command to enable the packet sniffing service. Use the `no` form of the command to disable the packet sniffing service. By disabling the service, the administrator can prevent users with read-write access from starting packet sniffing.

Note:
This command can only be executed by an admin user connected via the console port.

Syntax

```
[no] capture-service
```

User level

admin

Context

general

Example

To enable packet sniffing:

```
G350-001> capture-service
Packet sniffing service enabled
```

To disable packet sniffing:

```
G350-001> no capture-service
Packet sniffing service disabled
```

channel-group

Use the `channel-group` command to create a channel group logical interface for a PPP or Frame Relay session. Use the `no` form of the command to delete a channel group.

Note:
If you issue this command with an existing channel number, the timeslots you specify will replace any that already exist.

Syntax

```
channel-group channel_number timeslots ts_list speed speed_value
no channel-group channel_number
```
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_number</td>
<td>The ID number to identify the channel group</td>
<td>For T1: 0 – 23 For E1: 0 – 30</td>
<td></td>
</tr>
<tr>
<td>ts_list</td>
<td>The time slots to include in this channel group. Values can be separated either by a “–” for a range, or by commas for a list.</td>
<td>For T1: 1 – 24 For E1: 1 – 31</td>
<td></td>
</tr>
<tr>
<td>speed_value</td>
<td>The acceptable speed values</td>
<td>56, 64</td>
<td>56</td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Controller

Example
To create a new channel group number 2, with time slots 5, 6, and 8 and speed of 56:

G350-001(controller:5/1)# channel-group 2 timeslots 5-6,8 speed 56

cir out

Use the cir out command to configure the Committed Information Rate in bits per second, for the outbound direction. Use the no form of this command to return the CIR to its default value.

Note:
This command fails if the map class is currently associated with a DLCI.

Syntax
cir out cir
no cir out

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cir</td>
<td>The CIR in bits per second</td>
<td>0 – 399999999</td>
<td>56000</td>
</tr>
</tbody>
</table>
User level
read-only

Context
map-class frame-relay

Example
To configure outbound CIR to be 64 Kbps:
G350-001(map-class)# cir out 64000

class-identifier

Use the class-identifier command to set a vendor specific identifier string.

Syntax
[no] class-identifier string

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>Identifier string for vendor specific option</td>
<td>string, 1-255 bytes</td>
<td>null string</td>
</tr>
</tbody>
</table>

User level
read-write

Context
dhcp pool vendor specific

Example
To set an identifier string for vendor-specific option 1:
G350-001(DHCP 5/vendor specific 1)# class-identifier "ccp.avaya.com"
CLI Commands

clear arp-cache

Use the `clear arp-cache` command to delete all dynamic entries from the ARP cache.

Syntax

`clear arp-cache [interface|vlan_id|ip_address[mask]]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>The interface name for which to delete entries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vlan_id</td>
<td>The VLAN ID for which to delete entries</td>
<td>1 – 3071</td>
<td></td>
</tr>
<tr>
<td>ip_address</td>
<td>The host IP address to clear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mask</td>
<td>The IP mask of the subnet to clear</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To flush all ARP entries:

G350-001# clear arp-cache

Flushing all arp entries
Flushed 22 ARP entries.

To flush ARP entries for an interface named "FastEthernet 10/2":

G350-001# clear arp-cache "fastethernet 10/2"

Flushing ARP cache entries on ifName fastethernet 10/2
Flushed 1 ARP entries.

To flush ARP entries for one host address:

G350-001# clear arp-cache 156.16.11.32

Flushing ARP cache entry of host 156.16.11.32
Flushed 0 ARP entries.
To flush a range of ARP entries belonging to one subnet:

G350-001# clear arp-cache 156.3.2.33 255.255.255.0
Flushing ARP cache entries in the range [156.3.2.33, 255.255.255.0]
Flushed 0 ARP entries.

clear cam

Use the `clear cam` command to delete all entries from the Contents Address Memory (CAM) table.

Syntax

```
clear cam
```

User level
read-write

Context
general

Example
To clear the CAM table:

G350-001# clear cam
CAM table cleared.

clear capture-buffer

Use the `clear capture-buffer` command to clear the packet sniffing buffer.

Syntax

```
clear capture-buffer
```

User level
read-write

Context
general
Example

G350-001> clear capture-buffer
Done!

clear controller counters

Use the `clear controller counters` command to reset the controller counters.

Syntax

clear controller counters controller_number

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>controller_number</td>
<td>The controller module number and port number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To clear counters for controller 3, port 1:

G350-001# clear controller counters 3/1

clear counters

Use the `clear counters` command to clear counters for the selected interface or the entire device.

Syntax

clear counters [interface_type interface_identifier]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface_type</td>
<td>The type of interface</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| interface_identifier | The interface number. The format varies depending on the value of interface_type: | For FastEthernet: module/port
For Serial: module/port:channel-group
For Vlan: Vlan id
For LoopBack: Loopback number | For FastEthernet: 10/2
For Serial(USP): 2/1
For Serial (DS1): module/port: 2/1
 channel-group: E1: 0-30
 T1: 0-23
For VLAN: 1-3071
For Loopback: 1-99 |

User level
read-write

Context
general

Example
To clear counters on interface “Vlan 1“:
G350-001# clear counters Vlan 1

clear crypto isakmp

Use the clear crypto isakmp command to flush a specific ISAKMP SA or all the ISAKMP SAs.

Tip:
Use the command show crypto isakmp sa to display the connection IDs.

Tip:
It is recommended to use the command clear crypto sa all before running clear crypto isakmp.
CLI Commands

Syntax

clear crypto isakmp [C-id]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-id</td>
<td>The connection ID</td>
<td>0 – 32,766</td>
<td></td>
</tr>
</tbody>
</table>

Note: If you do not enter a connection ID, the entire database is flushed.

User level

read-write

Context

general

Example

To clear C-id 1:

G350-001# clear crypto isakmp 1

Done!

To clear the entire database:

G350-001# clear crypto isakmp

Done!

clear crypto sa all

Use the `clear crypto sa all` command to clear all or specific IPSec SAs (security association structures).

Syntax

`clear crypto sa [all | counters | list id | peer ip address | spi destination_address ipsec protocol_spi]`
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Keyword specifying that all IPSec SA counters should be cleared</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counters</td>
<td>Keyword specifying that all crypto IPSec SA counters should be cleared</td>
<td></td>
<td></td>
</tr>
<tr>
<td>list</td>
<td>Keyword specifying that all crypto IPSec SAs associated with crypto-list id should be cleared</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peer</td>
<td>Keyword specifying that all crypto IPSec SAs associated with crypto peer having the address ip address should be cleared</td>
<td></td>
<td></td>
</tr>
<tr>
<td>spi</td>
<td>Keyword specifying that specific IPSec by spi should be cleared</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Examples
G350-001# clear crypto sa all
Done!

G350-001(super)# clear crypto sa spi 1.0.0.2 esp 70045
Done!

clear crypto sa counters

Use the clear crypto sa counters command to clear the crypto SA counters.

Syntax
clear crypto sa counters
CLI Commands

User level
read-write

Context
general

Example
G350-001# clear crypto sa counters
Done!

clear dot1x config

Use the clear dot1x config command to disable 802.1x on all ports and return values to the default settings.

Syntax
clear dot1x config

User level
admin

Example
Console> clear dot1x config

clear fragment

Use the clear fragment command to clear the fragment database and restore its default values.

Note:
No IP reassembly is performed on packets in transit through the router.

Syntax
clear fragment

User level
read-write
clear frame-relay counters

Use the `clear frame-relay counters` command to clear the Frame Relay counters.

Syntax

`clear frame-relay counters [interface interface_name]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>Keyword specifying that the counters should be cleared on the specified interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface_name</td>
<td>The name of the interface</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To clear the Frame Relay counters:

```
G350-001> clear frame-relay counters
```

To clear a specific Frame Relay interface's counters:

```
G350-001> clear frame-relay counters interface "Serial 4/1.100"
```
When the DHCP server detects an IP address conflict after attempting to allocate an IP address that is already in use, the server locks the IP address for half an hour by marking the IP address with client-identifier 00:00:00:00:00:00:00. If you have solved the conflict before half an hour, you can use this command to free the IP address for reallocation.

Syntax

clear ip dhcp-server binding {ip-address|all}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>Clears any existing allocation of the specified IP address</td>
<td>1-32</td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>Clears all IP address allocations.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To clear the allocation of IP address 1.1.1.1:

G350-001# clear ip dhcp-server bindings 1.1.1.1

To clear all DHCP server IP address allocations:

G350-001# clear ip dhcp-server bindings all

clear ip dhcp server statistics

Use the `clear ip dhcp server statistics` command to clear the statistics of the DHCP server.

Syntax

clear ip dhcp server statistics

User level
read-write
clear ip route

Use the `clear ip route` command to delete all the dynamic routing entries from the routing table.

Syntax

`clear ip route * | {ip_addr [ip_mask]}`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Clear the entire routing table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ip_addr</code></td>
<td>The IP address of a specific dynamic routing entry to clear</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ip_mask</code></td>
<td>The IP mask of a specific dynamic routing subnet to clear</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To clear the entire routing table:

G350-001# clear ip route *

To clear a range of entries:

G350-001# clear ip route 192.168.49.1 255.255.255.0
clear ip rtp header-compression

Use the clear ip rtp header-compression command to clear IP RTP header compression statistics either for all enabled interfaces or for a specific interface. To clear IP RTP compression statistics for all enabled interfaces, do not enter an interface type and number.

Note:
There is no renegotiation of parameters.

Syntax

```
clear ip rtp header-compression [interface_type interface_number]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface_type</td>
<td>The type of interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface_number</td>
<td>The interface number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example
To clear header compression statistics for all interfaces:

```
G350-001# clear ip rtp header-compression
```

clear ip tcp header-compression

Use the clear ip tcp header-compression command to clear TCP compression statistics either for all enabled interfaces or for a specific interface. To clear TCP compression statistics for all enabled interfaces, do not enter an interface type and number.

Syntax

```
clear ip tcp header-compression [interface_type interface_number]
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface_type</td>
<td>The type of interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface_number</td>
<td>The interface number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example
To clear TCP compression statistics for all enabled interfaces:

G350-001> clear ip tcp header-compression

clear ip traffic

Use the `clear ip traffic` command to clear the IP counters.

Syntax
clear ip traffic

User level
read-only

Context
general
clear logging file

Use the `clear logging file` command to delete the message log file being stored in non-volatile memory (NVRAM), including the history log, and open a new, empty log file.

Syntax

```
clear logging file
```

User level

`read-write`

Context

`general`

Example

To delete the message log:

```
G350-001# clear logging file
Done!
```

clear logging server

Use the `clear logging server` command to delete the specified Syslog message server from the Syslog server table.

Syntax

```
clear logging server {ip_address | hostname}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip_address</code></td>
<td>The IP address of the Syslog server</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>The name of the Syslog server host</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Context
general

Example:
To delete the Syslog message server with IP address 176.15.4.25:
G350-001# clear logging server 176.15.4.25

clear mgc list

Use the clear mgc list command to remove entries from the Media Gateway Controller list. Multiple entries can be removed together, by specifying a list of IP addresses separated by commas. If no arguments are provided, all entries are removed.

Syntax

```
clear mgc list [ipaddress1,...]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipaddress1</td>
<td>The IP address of a call controller</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example
To remove two Media Gateway Controllers from the list, with IP addresses of 132.236.73.2 and 177.13.2.45:
G350-001(super)# clear mgc list 132.236.73.2, 177.13.2.45
clear port mirror

Use the clear port mirror command to delete a port mirroring pair.

Syntax

```
clear port mirror source_module/source_port dest_module/dest_port
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>source_module</td>
<td>The module number of the source (mirrored) port</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source_port</td>
<td>The port number of the source (mirrored) port</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dest_module</td>
<td>The module number of the destination port</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dest_port</td>
<td>The port number of the destination port</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To disable the mirroring of port 5/1 by port 5/3:

```
G350-001# clear port mirror 5/1 5/3
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port_range</td>
<td>The port number or range of port numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vlan_id</td>
<td>The VLAN ID to remove</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To remove VLAN 5 from port 3/10:

G350-001# clear port static-vlan 3/10 5
VLAN 5 is unbound from port 3/10

clear radius authentication server

Use the `clear radius authentication server` command to clear the primary or secondary RADIUS server IP address.

Syntax

`clear radius authentication server {primary|secondary}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary</td>
<td>Keyword specifying to clear the primary RADIUS server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>secondary</td>
<td>Keyword specifying to clear the secondary RADIUS server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

User level
admin

Context
general

Example
To clear the secondary RADIUS authentication server:
G350-001# clear radius authentication server secondary

clear screen

Use the clear screen command to clear the current terminal display.

Syntax
clear screen

User level
read-only

Context
general

clear snmp trap

Use the clear snmp trap command to clear an entry from the SNMP trap receiver table.

Syntax
clear snmp trap {rcvr_addr|all}
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rcvr_addr</td>
<td>The IP address of the trap receiver (the SNMP management station) to remove</td>
<td></td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>Keyword used to clear all entries in the SNMP trap receiver table</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To remove the SNMP trap server with IP address 192.122.173.82 from the table:

G350-001# clear snmp trap 192.122.173.82
SNMP trap receiver deleted.

clear ssh-client known-hosts

Use the clear ssh-client known-hosts command to clear the SSH known-host file content. This command is used to unlock the man-in-the-middle attack prevention mechanism, and allow SCP server authentication after an SCP server public key change.

Syntax
clear ssh-client known-hosts

User level
admin

Context
general

Example
G350-001(super)# clear ssh-client known-hosts
Done!
clear sync interface

Use the `clear sync interface` command to disassociate a previously specified interface as the primary or secondary clock synchronization source.

Note:
The primary interface must be disassociated before the secondary interface is disassociated.

Syntax
```
clear sync interface {primary | secondary}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary</td>
<td>Keyword specifying the primary clock synchronization source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>secondary</td>
<td>Keyword specifying the secondary clock synchronization source</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To disassociate the interface that is specified as the primary clock synchronization source:
```
G350-001# clear sync interface primary
```

clear utilization cpu

Use the `clear utilization cpu` command to disable CPU utilization measurements.

Syntax
```
clear utilization cpu module
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>The module for which to disable CPU utilization measurements</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To disable CPU utilization measurements for Module #10:
G350-001# clear utilization cpu 10

clear vlan

Use the clear vlan command to delete an existing VLAN and its interface. When you clear a VLAN, all ports assigned to that VLAN are returned to the default VLAN.

Syntax
clear vlan vlan_id | {name vlan_name}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan_id</td>
<td>The VLAN number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>Keyword specifying to identify the VLAN by the VLAN name.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vlan_name</td>
<td>The VLAN name. If you wish to enter a name which includes spaces, you must enclose the entire name in quotation marks, for example “new york”.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

User level
read-write

Context
general

Example
To delete VLAN 100:
G350-001# clear vlan 100
This command will assign all ports on vlan 100 to their default in the entire management domain - do you want to continue (Y/N)? y
VLAN 100 deletion successful

client-identifier

Use the client-identifier command to configure a reservation/manual pool. A reservation/manual pool reserves one IP address for a specific client. This command specifies a unique identifier for the client. The pool for which you configure a client identifier must contain one IP address only. This means that the start and end IP addresses of the pool must be equal. The DHCP server uses the client identifier to recognize the DHCP client and allocates the reserved IP address to the client. Use the no form of this command to clear a specified unique identifier for a DHCP client.

Syntax
[no] client-identifier unique-identifier

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>unique-identifier</td>
<td>A unique identifier for a DHCP client, in the format type:data</td>
<td>Hex string, any value. For Ethernet MAC use <type>:<data> format, where <type> is 01 and <data> is the MAC address of the device.</td>
<td>null hex string</td>
</tr>
</tbody>
</table>

User level
read-write
Context
dhcp pool

Example
To set the MAC address as a client identifier for an Ethernet MAC client with MAC address 00:11:22:33:44:55:
G350-001(DHCP 5)# client-identifier 01:00:11:22:33:44:55

clock source

Use the clock source command to configure the clock source for an E1/T1 controller. Use the no form of the command to return the clock source to the default value of line.

Syntax

```
clock source {line | internal}
no clock source
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>line</td>
<td>Keyword that specifies to use an external clock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>internal</td>
<td>Keyword that specifies to synchronize to the internal clock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Controller

Example
To specify that controller number 5 uses an external clock:
G350-001(controller:5/1)# clock source external
composite-operation

Use the `composite-operation` command to edit the specified composite operation. If the composite operation does not exist, it is created.

Syntax

`composite-operation index`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>The composite operation number</td>
<td>12 – 19</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

ip access-control-list/ip-rule, ip capture-list/ip-rule, ip qos-list, ip qos-list/dscp-table, ip qos-list/ip-rule

Example

To enter configuration mode for composite operation 13:

G350-001(QoS 440)# composite-operation 13

G350-001(QoS 440/CompOp 13)#

controller

Use the `controller` command to enter configuration mode for a specific controller.

Syntax

`controller {e1 | t1} module_number/port_number`
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module_number</td>
<td>The module number to configure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port_number</td>
<td>The port to configure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To enter configuration mode for a T1 controller on port 5/1:

G350-001# controller t1 5/1

cookie

Use the `cookie` command to set the cookie for the current list.

Syntax

```
cookie cookie_number
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cookie_number</td>
<td>The ID number of the cookie</td>
<td>0 – 268435455</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context

ip access-control-list, ip qos-list, ip capture-list, ip pbr-list, ip crypto-list
Example
To specify the cookie for QoS list 440 as 257:

G350-001(QoS 440)# cookie 257

copy capture-file ftp

Use the `copy capture-file ftp` command to upload the packet sniffing buffer to a file using the ftp protocol.

Note:
You must stop the packet sniffing service using the `capture stop` command before you can upload the buffer.

Syntax

`copy capture-file ftp filename ip`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filename</code></td>
<td>The file name on the FTP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ip</code></td>
<td>The IP address of the FTP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To upload the packet sniffing buffer to the g350.cap file on the FTP server at IP address 135.64.10.33:

G350-001# copy capture-file ftp g350.cap 135.64.10.33
copy capture-file scp

Use the `copy capture-file scp` command to upload the packet sniffing buffer to a file using the scp secure file transfer protocol.

Note:
You must stop the packet sniffing service using the `capture stop` command before you can upload the buffer.

Syntax

```
copy capture-file scp filename ip
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filename</code></td>
<td>The file name on the FTP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ip</code></td>
<td>The IP address of the FTP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To upload the packet sniffing buffer to the g350.cap file on the FTP server at IP address 135.64.10.33:

```
G350-001# copy capture-file scp g350.cap 135.64.10.33
```

copy capture-file tftp

Use the `copy capture-file tftp` command to upload the packet sniffing buffer to a file using the tftp protocol.

Note:
You must stop the packet sniffing service using the `capture stop` command before you can upload the buffer.
CLI Commands

Syntax

copy capture-file tftp filename ip

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The file name on the TFTP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>The IP address of the TFTP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To upload the packet sniffing buffer to the g350.cap file on the TFTP server at IP address 135.64.10.33:

G350-001# copy capture-file tftp g350.cap 135.64.10.33

copy dhcp-binding ftp

Use the copy dhcp-binding ftp command to copy the dhcp bindings file to a remote server using FTP.

Syntax

copy dhcp-binding ftp filename ip

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>File name with full path</td>
<td>string</td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>IP address of the host</td>
<td>IP address</td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
general

Example
To copy the binding file with file name dhcp_binding.txt to the host with IP address 192.168.49.10:

G350-001# copy dhcp-binding ftp dhcp_binding.txt 192.168.49.10

copy dhcp-binding scp

Use the \texttt{copy dhcp-binding scp} command to copy the dhcp bindings file to a remote server using FTP.

Syntax

\texttt{copy dhcp-binding scp filename ip}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{filename}</td>
<td>File name with full path</td>
<td>string</td>
<td></td>
</tr>
<tr>
<td>\textit{ip}</td>
<td>IP address of the host</td>
<td>IP address</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To copy the binding file with file name dhcp_binding.txt to the host with IP address 192.168.49.10:

G350-001# copy dhcp-binding scp dhcp_binding.txt 192.168.49.10
copy dhcp-binding tftp

Use the `copy dhcp-binding tftp` command to copy DHCP bindings file to a remote server, using TFTP.

Syntax

```
copy dhcp-binding tftp filename ip
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filename</code></td>
<td>File name with full path</td>
<td>string</td>
<td></td>
</tr>
<tr>
<td><code>ip</code></td>
<td>IP address of the host</td>
<td>IP address</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To copy the binding file with file name `dhcp_binding.txt` to the host with IP address 192.168.49.10:

```
G350-001# copy dhcp-binding tftp dhcp_binding.txt 192.168.49.10
```

copy ftp EW_archive

Use the `copy ftp EW_archive` command to download Avaya G350 Manager software from an FTP server. The FTP command prompts for the username and password after the command is entered.

Syntax

```
copy ftp EW_archive filename ip
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The file name on the FTP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>The IP address of the FTP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To download the g350.img file from the FTP server at IP address 135.64.10.33, using login dan:

G350-001# copy ftp EW_archive g350.img 135.64.10.33
Username: dan
Password:

copy ftp license-file

Use the `copy ftp license-file` command to download a VPN license from an FTP server.

Syntax

```
copy ftp license-file filename ip
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The filename of the VPN license, including the full path, on the FTP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>The IP address of the FTP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
admin
CLI Commands

Context
general

Example
To download the VPN license g350.lic from the FTP site at IP address 198.87.134.153:
G350-001(super)# copy ftp license-file g350.lic 198.87.134.153

copy ftp module

Use the `copy ftp module` command to download firmware from an FTP server into a media module. The FTP command prompts for the username and password after the command is entered.

Syntax
`copy ftp module module_number filename ip`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>module_number</code></td>
<td>The Media Module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>filename</code></td>
<td>The file name on the FTP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ip</code></td>
<td>The IP address of the FTP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To download the firmware file, mm.img, into media module 3 from the FTP site at IP address 135.64.10.33 using login dan:

G350-001# copy ftp module 3 mm.img 135.64.10.33
Username: dan
Password:
copy ftp phone-image

Use the `copy ftp phone-image` command to upload a phone script file to a remote server using FTP.

Syntax

```
copy ftp phone-imageA|phone-imageB|phone-imageC|phone-imageD <filename> <ip>
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filename</code></td>
<td>The name of the image file, including the full path.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ip</code></td>
<td>The IP address of the host.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

Read-write

Example

```
interface# > copy phone-imageA c:\IphoneRelease\4602sape1_8.bin 192.168.49.10
```

copy ftp phone-script

Use the `copy ftp phone-script` command to download a file to a phone script bank using FTP.

Syntax

```
copy ftp phone-scriptA|phone-scriptB <filename> <ip>
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The name of the configuration file, including the full path.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>The IP address of the host.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
Read-write

Context
general

Example
interface# > copy ftp phone-scriptA 46xxupgrade.txt 192.168.49.10

copy ftp startup-config

Use the `copy ftp startup-config` command to download a configuration file from an FTP server. The command prompts for the username and password.

Note:
After you download the configuration file, the new configuration is not active until you reset the device.

Syntax
`copy ftp startup-config filename ip`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The file name on the FTP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>The IP address of the FTP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write
copy ftp SW_imageA

Use the `copy ftp SW_imageA` command to download a software image from an FTP server into Bank A. The command prompts for the username and password.

Syntax

`copy ftp SW_imageA filename ip`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>File name on the FTP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>IP address of the FTP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To download the software image file, g350.img, from the FTP site at IP address 135.64.10.33 using login dan:

G350-001# copy ftp SW_imageA g350.img 135.64.10.33
Username: dan
Password: dan
G350-001# reset
CLI Commands

copy ftp SW_imageB

Use the `copy ftp SW_imageB` command to download a software image from an FTP server into Bank B. The command prompts for the username and password.

Syntax

```plaintext
copy ftp SW_imageB filename ip
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filename</code></td>
<td>File name on the FTP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ip</code></td>
<td>IP address of the FTP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To download the software image file, `g350.img`, from the FTP site at IP address 135.64.10.33 using login dan:

```
G350-001# copy ftp SW_imageB g350.img 135.64.10.33
Username: dan
Password:
```

copy phone-script ftp

Use the `copy phone-script ftp` command to upload a phone script file to a remote server using FTP.

Syntax

```plaintext
copy phone-scriptA|phone-scriptB ftp filename ip
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The name of the configuration file, including the full path.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>The IP address of the host.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
Read-write

Context
general

Example

```
interface# > copy phone-scriptA ftp 46xxupgrade.txt 192.168.49.10
Confirmation - do you want to continue (Y/N)? y
```

copy phone-script scp

Use the `copy phone-script scp` command to upload a phone script file to a remote server using SCP.

Syntax

```
copy phone-scriptA|phone-scriptB scp filename ip
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The name of the configuration file, including the full path.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>The IP address of the host.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
Read-write
copy phone-script tftp

Use the `copy phone-script` command to upload a phone script file to a remote server via TFTP.

Syntax

```plaintext
copy phone-scriptA | phone-scriptB tftp filename ip
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filename</code></td>
<td>The name of the configuration file, including the full path.</td>
</tr>
<tr>
<td><code>ip</code></td>
<td>The IP address of the host.</td>
</tr>
</tbody>
</table>

User level

Read-write

Context

general

Example

```plaintext
interface# > copy phone-scriptA tftp 46xxupgrade.txt 192.168.49.10
```
copy running-config ftp

Use the copy running-config ftp command to upload the current configuration to a file on an FTP server. The command prompts for the username and password. Uncommitted changes to the configuration are included.

Note:
After you change the configuration, run the copy running-config startup-config command to save the changes. If you do not save the changes, the device loses the changes when you reset it.

Syntax

copy running-config ftp filename ip

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>File name to create on the FTP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>IP address of the FTP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
genral

Example
To upload the current configuration to the g350.cfg file on the ftp server at IP address 135.64.10.33 using login dan:

G350-001# copy running-config ftp c:\config_files\router1.cfg 135.64.10.33
Username: dan
Password:
copy running-config scp

Use the `copy running-config scp` command to upload the current configuration using the SCP secure protocol. The command prompts for the username and password. Uncommitted changes to the configuration are included.

Note:
After you change the configuration, run the `copy running-config startup-config` command to save the changes. If you do not save the changes, the device loses the changes when you reset it.

Syntax

`copy running-config scp filename ip`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filename</code></td>
<td>File name to create on the SCP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ip</code></td>
<td>IP address of the SCP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

```
G350-001# copy running-config scp c:\config_files\router1.cfg
192.168.49.10
Username: dan
Password:
```
copy running-config startup-config

Use the `copy running-config startup-config` command to commit the current configuration to NVRAM.

Syntax

```
copy running-config startup-config
```

User level

read-write

Context

general

Example

```
G350-001# copy running-config startup-config
Beginning copy operation .................... Done!
```

copy running-config tftp

Use the `copy running-config tftp` command to upload the current configuration to a file on a TFTP server. Uncommitted changes to the configuration are included.

To use this command, you need to have an active TFTP server. If Avaya Network Manager is running, you do not require an additional TFTP server.

Note:

After you change the configuration, run the `copy running-config startup-config` command to save the changes. If you do not save the changes, the device loses the changes when you reset it.

Syntax

```
copy running-config tftp filename ip
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>Name of file to create on TFTP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>IP address of TFTP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To upload the current configuration to the g350.cfg file on the TFTP server at IP address 135.64.10.33:

G350-001# copy running-config tftp g350.cfg 135.64.10.33

copy scp phone-script

Use the `copy scp phone-script` command to download a file to a phone script bank using SCP.

Syntax

copy scp phone-scriptA|phone-scriptB <filename> <ip>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The name of the configuration file, including the full path.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>The IP address of the host.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
Read-write
Context
general

Example
interface# > copy scp phone-scriptA 46xxupgrade.txt 192.168.49.10
Confirmation - do you want to continue (Y/N)? y

copy scp startup-config

Use the `copy scp startup-config` command to download a startup-config file using the SCP secure protocol. The command prompts for the username and password. Uncommitted changes to the configuration are not included.

Note:

After you change the configuration, run the `copy running-config startup-config` command to save the changes. If you do not save the changes, the device loses the changes when you reset it.

Syntax

copy scp startup-config filename ip

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>Name of file to create on SCP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>IP address of SCP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context
general

Example

G350-001# copy scp startup-config c:\config_files\router1.cfg
192.168.49.10
copy startup-config ftp

Use the `copy startup-config ftp` command to upload the current configuration to a file on an FTP server. The command prompts for the username and password. Uncommitted changes to the configuration are not included.

Note:
After you change the configuration, run the `copy running-config startup-config` command to save the changes. If you do not save the changes, the device loses the changes when you reset it.

Syntax

`copy startup-config ftp filename ip`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>Name of file to create on the FTP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>IP address of the FTP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To upload the current configuration to the g350.cfg file on the FTP server at IP address 135.64.10.33:

```
G350-001# copy startup-config ftp g350.cfg 135.64.10.33
```
copy startup-config scp

Use the `copy startup-config scp` command to upload the current configuration to a file on an SCP server. The command prompts for the username and password. Uncommitted changes to the configuration are not included.

Note:
After you change the configuration, run the `copy running-config startup-config` command to save the changes. If you do not save the changes, the device loses the changes when you reset it.

Syntax

`copy startup-config scp filename ip`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>Name of file to create on the SCP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>IP address of the SCP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To upload the current configuration to the router1.cfg file on the SCP server at IP address 192.168.49.10:

```
G350-001# copy startup-config scp c:\config_files\router1.cfg 192.168.49.10
```
copy startup-config tftp

Use the `copy startup-config tftp` command to upload the current configuration to a file on a TFTP server. Uncommitted changes to the configuration are not included.

To use this command, you need to have an active TFTP server. If Avaya Network Manager is running, you do not require an additional TFTP server.

Note:

After you change the configuration, run the `copy running-config startup-config` command to save the changes. If you do not save the changes, the device loses the changes when you reset it.

Syntax

`copy startup-config tftp filename ip`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>Name of file to create on TFTP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>IP address of TFTP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To upload the current configuration to the g350.cfg file on the TFTP server at IP address 135.64.10.33:

```
G350-001# copy startup-config tftp g350.cfg 135.64.10.33
```
copy tftp EW_archive

Use the `copy tftp EW_archive` command to download the media gateway manager application into the media gateway via TFTP.

To use this command, you need to have an active TFTP server, and to create a file into which to download the data. If Avaya Network Manager is running, you do not require an additional TFTP server.

Syntax

`copy tftp EW_archive filename ip`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filename</code></td>
<td>The manager image file name (full path)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ip</code></td>
<td>The IP address of the host</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To download the media gateway manager software, with filename of `mgr.cfg`, from the TFTP server located at IP address 192.168.49.10:

```
G350-001# copy tftp EW_archive c:\G350\mgr.cfg 192.168.49.10
```

copy tftp license-file

Use the `copy tftp license-file` command to download a VPN license from a TFTP server.

Syntax

`copy tftp license-file filename ip`
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The filename of the VPN license, including the full path, on the TFTP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>The IP address of the TFTP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

admin

Context

general

Example

To download the VPN license g350.lic from the TFTP site at IP address 198.87.134.153:

G350-001(super)# copy tftp license-file g350.lic 198.87.134.153

copy tftp module

copy tftp module command to download a new version of module software into a particular media module from a saved file, via TFTP.

To use this command, you need to have an active TFTP server, and to create a file into which to download the software. If Avaya Network Manager is running, an additional TFTP server is not required.

Note:

Perform the nvram initialize command prior to the copy tftp module command.

Syntax

copy tftp module module_number filename ip
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module_number</td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>filename</td>
<td>The file name, including the full path</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>The IP address of the TFTP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To download the software file mm1.cfg for media module 5 from the TFTP server 192.168.49.10:
G350-001# copy tftp module 5 c:\config\mm1.cfg 192.168.49.10

copy tftp phone-image

Use the `copy tftp phone-image` command to download a file to phone image bank A, B, C, or D.

Syntax
`copy tftp phone-imageA | phone-imageB | phone-imageC | phone-imageD <filename> <ip>`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The name of the configuration file, including the full path.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>The IP address of the host.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

User level
Read-write

Context
general

Example
interface# > copy tftp phone-imageA c:\IpphoneRelease\4602sape1_8.bin 192.168.49.10

copy tftp phone-script

Use the copy tftp phone-script command to download a file to phone script bank A or B.

Syntax

copy tftp phone-scriptA | phone-scriptB <filename> <ip>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The name of the configuration file, including the full path.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>The IP address of the host.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
Read-write

Context
general

Example
interface# > copy tftp phone-scriptA file1.txt 135.64.100.205
Confirmation - do you want to continue (Y/N)? y
copy tftp startup-config

Use the `copy tftp startup-config` command to copy the media gateway configuration from the saved TFTP file to the Startup Configuration NVRAM.

To use this command, you need to have an active TFTP server, and to create a file into which to download the data. If Avaya Network Manager is running, an additional TFTP server is not required.

Syntax

```
copy tftp startup-config filename ip
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filename</code></td>
<td>The file name, including the full path</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ip</code></td>
<td>The IP address of the host</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To copy the configuration file `router1.cfg` from the TFTP server `192.168.49.10` into the startup configuration:

```
G350-001# copy tftp startup-config c:\G350\router1.cfg 192.168.49.10
```

copy tftp SW_imageA

Use the `copy tftp SW_imageA` command to update the software image in Bank A of the media gateway.

To use this command, you need to have an active TFTP server, and to create a file into which to download the data. If Avaya Network Manager is running, an additional TFTP server is not required.
CLI Commands

Syntax

```
copy tftp SW_imageA filename ip
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The file name, including the full path</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>IP address of the host</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example

To download the software file imgA.bin from the TFTP server 149.49.36.200 into boot bank A:

```
G350-001# copy tftp SW_imageA c:\imgA.bin 149.49.36.200
```

Beginning download operation ...
This operation may take a few minutes...
Please refrain from any other operation during this time.

copy tftp SW_imageB

Use the `copy tftp SW_imageB` command to update the software image in Bank B of the media gateway.

To use this command, you need to have an active TFTP server, and to create a file into which to download the data. If Avaya Network Manager is running, an additional TFTP server is not required.

Syntax

```
copy tftp SW_imageB filename ip
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The file name, including the full path</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>IP address of the host</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To download the software file imgB.bin from the TFTP server 149.49.36.200 into boot bank B:

G350-001# copy tftp SW_imageB c:\imgB.bin 149.49.36.200

Beginning download operation ...
This operation may take a few minutes...
Please refrain from any other operation during this time.

copy scp license-file

Use the copy scp license-file command to download a VPN license from an SCP server.

Syntax

copy scp license-file filename ip

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>The filename of the VPN license, including the full path, on the SCP server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>The IP address of the SCP server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

User level
admin

Context
general

Example
To download the VPN license g350.lic from the SCP site at IP address 198.87.134.153:

G350-001(super)# copy scp license-file g350.lic 198.87.134.153

COS

Use the cos command to set the priority value for the current composite operation. Use the no form of the command to reset the priority to the default value of no-change.

Syntax

cos {priority | no-change}
no cos

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
<td>The priority value of the composite operation</td>
<td>0 – 8</td>
<td></td>
</tr>
<tr>
<td>no-change</td>
<td>Keyword indicating that the priority is not changed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
ip qos-list composite-operation

Example
To set the priority for composite operation 12 to 3:

G350-001(QoS 440/CompOp 12)# cos 3
crypto ipsec df-bit

Use the `crypto ipsec df-bit` command to set the Don’t-Fragment bit to one of the following modes:

- **copy** – the DF bit of the encapsulated packet is copied from the original packet, and Path MTU Discovery (PMTUD) is maintained for the IPSec tunnel.
- **clear** – the DF bit of the encapsulated packet is never set, and PMTUD is not maintained for the IPSec tunnel.

Packets traversing an IPSec tunnel are pre-fragmented according to the MTU of the SA, regardless of their DF bit. In case packets are fragmented, the DF bit is copied to every fragment of the original packet.

Use the `no` form of the command to restore the Don’t-Fragment bit to the default value: `copy`.

Syntax

```
[no] crypto ipsec df-bit {clear | copy}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear</td>
<td>Clear the Don’t-Fragment bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>copy</td>
<td>Copy the Don’t-Fragment bit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

interface

Example

G350-001(if:Serial 5/1)# crypto ipsec df-bit clear

Done!
crypto ipsec minimal-pmtu

Use the `crypto ipsec minimal-pmtu` command to set the minimal PMTU value which can be applied to an SA when the G350 participates in Path MTU Discovery (PMTUD) for the tunnel pertaining to that SA. Use the `no` form of the command to restore the minimal PMTU to the default value: 300.

Syntax

```
[no] crypto ipsec minimal-pmtu bytes
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bytes</code></td>
<td>The length of the minimum PMTU</td>
<td>68-1400</td>
<td>300</td>
</tr>
</tbody>
</table>

User level

read-write

Context

interface

Example

```
G350-001(if:Serial 5/1)# crypto ipsec minimal-pmtu 128
Done!
```

crypto ipsec transform-set

Use the `crypto ipsec transform-set` command to enter the IKE phase 2 (IPSec) transform-set context and create or edit IPSec parameters for the VPN tunnel. Use the `no` form of the command to delete IKE phase 2 (IPSec) parameters for the VPN tunnel.

Syntax

```
[no] crypto ipsec transform-set name
  {{esp-des | esp-3des | esp-aes} | [{esp-md5-hmac | esp-sha-hmac}] | esp-null {esp-md5-hmac | esp-sha-hmac}}
```

Note:

If you want to enable authentication only, you must enter the `esp-null` parameter.
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The transform-set name</td>
<td>1-32 characters, no spaces</td>
<td></td>
</tr>
<tr>
<td>esp-des</td>
<td>Encryption type: Encapsulation Security Protocol and Data Encryption Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>esp-3des</td>
<td>Encryption type: Encapsulation Security Protocol and Triple Data Encryption Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>esp-null</td>
<td>Encryption type: Encapsulation Security Protocol without encryption. Note: This option is intended for lab testing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>esp-md5-hmac</td>
<td>Authentication type: Encapsulation Security Protocol, md5 hashing and keyed-hash mac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>esp-sha-hmac</td>
<td>Authentication type: Encapsulation Security Protocol, secure hash algorithm and keyed-hash mac</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Examples

Example 1001: To configure an IPSec transform set with encryption and authentication:

G350-001# crypto ipsec transform-set ts2 esp-des esp-md5-hmac
G350-001(config-transform:ts2)#

Example 2: To configure an IPSec transform set with authentication only:

G350-001# crypto ipsec transform-set ts3 esp-null esp-md5-hmac
G350-001(config-transform:ts3)#

Example 3: To enter the crypto IPSec transform-set context:

G350-001# crypto ipsec transform-set ts1
G350-001(config-transform:ts1)#
crypto isakmp invalid-spi-recovery

Use the `crypto isakmp invalid-spi-recovery` command to enable invalid SPI recovery (default setting). Use the `no` form of the command to disable invalid SPI recovery.

Syntax

```
[no] crypto isakmp invalid-spi-recovery
```

User level

read-write

Context

general

Example

```
G350-001# no crypto isakmp invalid-spi-recovery
Done!
```

crypto isakmp peer

Use the `crypto isakmp peer` command to enter the crypto ISAKMP peer context and create or edit an ISAKMP peer. Use the `no` form of the command to delete a remote VPN peer.

Note:

You cannot delete an ISAKMP peer that is referenced by a crypto map; you must first delete the peer from the crypto map by entering crypto map context using the `crypto map` command, and then delete the peer using the `no set peer` command.

Syntax

```
[no] crypto isakmp peer address peer-address
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>peer-address</td>
<td>The IP address of the ISAKMP peer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
crypto isakmp policy

Use the **crypto isakmp policy** command to enter the crypto ISAKMP policy context and create or edit IKE Phase 1 parameters.

Syntax

`crypto isakmp policy id`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>id</code></td>
<td>The identity of the ISAKMP policy</td>
<td>1-20</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

G350-001# crypto isakmp policy 1

G350-001(config-isakmp:1)#
crypto isakmp suggest-key

Use the `crypto isakmp suggest-key` command to generate a random string which you can use as a pre-shared key for IKE. You must use the same key on both peers.

Syntax

```
crypto isakmp suggest-key [key-length]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>key-length</td>
<td>The length of the key to be generated</td>
<td>8-127</td>
<td>32</td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Examples

G350-001# crypto isakmp suggest-key
The suggest key: GNpi1odGNBrB5z4GJLz156jDmRWAGFES

G350-001# crypto isakmp suggest-key 8
The suggest key: iEvKoQle

crypto key generate

Use the `crypto key generate` command to generate an SSH host key pair. You must generate the host key pair before the SSH service can be used. Stations that are currently active receive a warning message that the device public key has changed.

Note:

This command does not close active sessions.

Note:

This command can take several minutes to run (depending on CPU speed).
Syntax

crypto key generate dsa [key-size bit-number]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit-number</td>
<td>The number of bits in the key</td>
<td>512-2048</td>
<td>1024</td>
</tr>
</tbody>
</table>

User level

admin

Context

general

Example

G350-001(super)# crypto key generate
Generating DSA key, This command may take a few minutes
......
Key was created.
Key version: SSH2, DSA

root@avaya

crypto map

Use the crypto map command to enter crypto map context and create or edit a crypto map. Use the no form of the command to delete a specific crypto map.

Note:

You cannot delete a crypto map that is being used by an active crypto-list.

Syntax

[no] crypto map id
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>The crypto map ID</td>
<td>1-50</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Examples
G350-001# crypto map 10
G350-001(config-crypto:10)#

G350-001# no crypto map 10
Done!

de pre-mark

Use the de pre-mark command to specify the threshold, in percents of CIR, to begin marking non-high-priority packets (0-5) over the BC (committed burst) level and under the BE (excess burst) level as Delete Eligible (DE) packets. Use the no form of the command to return the threshold to its default value.

Syntax

de pre-mark threshold_percent
no de pre-mark

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>threshold_percent</td>
<td>The threshold percent</td>
<td>1 – 100</td>
<td>100 (no pre-mark)</td>
</tr>
</tbody>
</table>
User level
read-write

Context
map-class frame-relay

de-buffer-size

Use the `de-buffer-size` command to set the buffer size for frames marked as drop-eligible. Use the `no` form of the command to return the drop-eligible buffer to its default size.

Syntax

de-buffer-size size
no de-buffer-size

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>The drop-eligible (DE) buffer size, in packets</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Serial (DS1 FR L2, USP FR L2)

Example
To set the buffer size for drop-eligible frames to 200 packets:

G350-001(if:Serial 5/1:1)# de-buffer-size 200

default-metric

Use the `default-metric` command to set the default metric of redistributed routes for the OSPF protocol. Use the `no` form of this command to restore the default value.
CLI Commands

Syntax

default-metric default_metric

no default-metric

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>default_metric</td>
<td>The default metric of redistributed routes</td>
<td>1-65535</td>
<td>20</td>
</tr>
</tbody>
</table>

User level
read-write

Context
Router-OSPF

Example
To set the default metric for redistributed routes to 50:

G350-001(router:ospf)# default-metric 50

default-metric

Use the `default-metric` command to set the default metric of redistributed routes for the RIP protocol. Use the `no` form of this command to restore the default value.

Syntax

default-metric default_metric

no default-metric

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>default_metric</td>
<td>The interface RIP route metric value</td>
<td>1-16</td>
<td>1</td>
</tr>
</tbody>
</table>
User level
read-write

Context
Router-RIP

Example
To set the default metric for redistributed routes to 5:
G350-001(router:rip)# default-metric 5

default-metric

Use the `default-metric` command to set the interface Routing Information Protocol (RIP) route metric value. Use the `no` form of this command to restore the default value.

Syntax

```
default-metric number
no default-metric
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>The interface route metric value</td>
<td>1-15</td>
<td>1</td>
</tr>
</tbody>
</table>

User level
read-write

Context

Example
To set the default metric to 10:
G350-001(if:FastEthernet 10/2)# default-metric 10
default-router

Use the `default-router` command to set up to eight default router IP addresses in order of preference. Use the `no` form of this command to clear the default router IP address(es).

Syntax

```
[no] default-router ip-addr-list
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-addr-list</td>
<td>A list of up to eight IP addresses for the default router.</td>
<td>A list of IP addresses separated by spaces</td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>

User level

read-write

Context

dhcp pool

Example

To set 164.35.2.4 and 135.64.102.3 as default router IP addresses:

```
G350-001(DHCP 5)# default-router 164.35.2.4 135.64.102.3
```

description

Use the `description` command to configure a description for the current interface. Use the `no` form of this command to clear the description of the current interface.

Syntax

```
description string
no description
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>The description of the interface</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR L2, DS1 FR-SUB L2, DS1 FR-SUB L2-L3, USP PPP L2-L3, USP PPP L2, USP FR L2), FastEthernet (L2, L2-L3), VLAN (L2, L2-L3), Loopback (L2, L2-L3), Tunnel (L2, L2-L3)

Example
To specify the description for the VLAN 3 interface as "Marketing VLAN":

G350-001(if:Vlan 3)# description "Marketing VLAN"

description

Use the `description` command to enter a description for the crypto map. Use the `no` form of the command to clear a description for the crypto map.

Syntax

```
[no] description desc
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>desc</td>
<td>The description of the crypto map. Note: if you wish to include spaces in the description, you must enclose the string in quotation marks ("").</td>
<td>1-80 characters</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write
CLI Commands

Context
crypto map

Example
G350-001(config-crypto:10)# description "crypto map 1"
Done!

description

Use the `description` command to enter a description for the ISAKMP policy. Use the `no` form of the command to clear a description for the ISAKMP policy.

Syntax

```
[no] description desc
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>desc</code></td>
<td>The description of the ISAKMP policy. Note: If you wish to include spaces in the description, you must enclose the string in quotation marks (“”)</td>
<td>1-80 characters</td>
<td>1-80 characters</td>
</tr>
</tbody>
</table>

User level
read-write

Context
crypto isakmp policy

Example
G350-001(config-isakmp:1)# description "isakmp policy 1"
Done!
description

Use the **description** command to enter a description for the ISAKMP peer. Use the **no** form of the command to clear a description for the ISAKMP peer.

Syntax

```bash
[no] description desc
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>desc</td>
<td>The description of the ISAKMP peer. Note: if you wish to include spaces in the description, you must enclose the string in quotation marks ("")</td>
<td>1-80 characters</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

crypto isakmp peer

Example

```
G350-001(config-peer:135.64.102.109)# description "New York office"
Done!
```

destination-ip

Use the **destination-ip** command to specify the destination IP address of packets to which the current rule applies. Use the **no** form of the command to specify that the current rule will apply to all packets that do **not** have this destination IP address.

Syntax

```bash
[no] destination-ip {host ip} | any | {ip wildcard}
```
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>host</td>
<td>Keyword that specifies the current rule applies to a single host IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip</td>
<td>The destination IP address of the rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>any</td>
<td>Keyword that specifies the current rule applies to any address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wildcard</td>
<td>The range of IP addresses of the rule. The zero bits in the wildcard correspond to bits in the IP address that remain fixed. The one bits in the wildcard correspond to bits in the IP address that can vary. Note that this is the opposite of how bits are used in a netmask.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
ip capture-list/ip-rule, ip access-control-list/ip-rule, ip pbr-list/ip-rule, ip qos-list/ip-rule, ip crypto-list/ip-rule

Example
To specify that rule 22 applies to all packets having destination IP address 135.64.104.102:

G350-011(QoS 460/rule 22)# destination-ip host 135.64.104.102

To specify that rule 17 applies to packets whose destination IP address is in the range of 176.13.0.0 through 176.13.255.255:

G350-011(QoS 460/rule 17)# destination-ip 176.13.0.0 0.0.255.255

dir

Use the `dir` command to show the files that have been downloaded to the media gateway using the Avaya G350 Media Gateway Download interface and the SNMP MIB.

Syntax

dir
User level
read-only

Context
general

Example
To display a list of downloaded files:

G350-001> dir

<table>
<thead>
<tr>
<th>M#</th>
<th>file</th>
<th>ver num</th>
<th>file type</th>
<th>file location</th>
<th>file description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MM714</td>
<td>53</td>
<td>SW RT Image</td>
<td>Nv-Ram</td>
<td>MM714 - image</td>
</tr>
<tr>
<td>2</td>
<td>MM710</td>
<td>8</td>
<td>SW RT Image</td>
<td>Nv-Ram</td>
<td>MM710 - image</td>
</tr>
<tr>
<td>4</td>
<td>MM712</td>
<td>0</td>
<td>SW RT Image</td>
<td>Nv-Ram</td>
<td>MM712 - image</td>
</tr>
<tr>
<td>5</td>
<td>MM722</td>
<td>51</td>
<td>SW RT Image</td>
<td>Nv-Ram</td>
<td>MM722 - image</td>
</tr>
<tr>
<td>6</td>
<td>MM312</td>
<td>50</td>
<td>SW RT Image</td>
<td>Nv-Ram</td>
<td>MM312 - image</td>
</tr>
<tr>
<td>7</td>
<td>Analog</td>
<td>0</td>
<td>SW RT Image</td>
<td>Nv-Ram</td>
<td>Analog - image</td>
</tr>
<tr>
<td>10</td>
<td>startup-config</td>
<td>N/A</td>
<td>Startup Conf</td>
<td>Nv-Ram</td>
<td>Startup Config</td>
</tr>
<tr>
<td>10</td>
<td>running-config</td>
<td>N/A</td>
<td>Running Conf</td>
<td>Ram</td>
<td>Running Config</td>
</tr>
<tr>
<td>10</td>
<td>G350-A</td>
<td>0.11.1</td>
<td>SW Component</td>
<td>Flash Bank A</td>
<td>Software Image Bank A</td>
</tr>
<tr>
<td>10</td>
<td>G350-B</td>
<td>0.15.0</td>
<td>SW RT Image</td>
<td>Flash Bank B</td>
<td>Software Image Bank B</td>
</tr>
<tr>
<td>10</td>
<td>G350</td>
<td>N/A</td>
<td>SW Web Image</td>
<td>Nv-Ram</td>
<td>EmWeb application</td>
</tr>
<tr>
<td>10</td>
<td>G350-Boofer</td>
<td>21.12.0</td>
<td>SW BootImage</td>
<td>Nv-Ram</td>
<td>Booter Image</td>
</tr>
<tr>
<td>10</td>
<td>dhcp-binding</td>
<td>N/A</td>
<td>DHCP Binding</td>
<td>Nv-Ram</td>
<td>IP Address Binding</td>
</tr>
</tbody>
</table>

disable link encryption

Use the `disable link encryption` command to disable H.248 signalling encryption.

Syntax

`disable link encryption`

User level

admin
Context

general

Example

To disable H.248 signalling encryption:

G350-001(super)# disable link encryption
Done!

disable media encryption

Use the disable media encryption command to disable Avaya media encryption (SRTP, AEA, RTP/AES).

Syntax

disable media encryption

User level

admin

Context

general

Example

To disable Avaya media encryption:

G350-001(super)# disable media encryption
Done!

disconnect ssh

Use the disconnect ssh command to disconnect an existing SSH session.

Syntax

disconnect ssh session_id
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>session_id</td>
<td>The number of the SSH session to disconnect</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

admin

Context

general

distribution-list

Use the `distribution-list` command to apply a distribution policy rule for incoming or outgoing routing information in route updates. Use the `no` form of this command to deactivate the rule.

Syntax

```
[no] distribution-list access_list_number type [interface_type
interface_number|protocol]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>access_list_number</td>
<td>The number of the access list</td>
<td>1-99</td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>The type of the access list</td>
<td>in, out</td>
<td></td>
</tr>
<tr>
<td>interface_type</td>
<td>The interface type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface_number</td>
<td>The interface number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>protocol</td>
<td>The protocol. This parameter is only relevant for outgoing list entries.</td>
<td>static, ospf</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write
CLI Commands

Context
Router: rip

Example
To apply distribution policy rule 10 to incoming router updates on the VLAN 1 interface:
G350-001(router:rip)# distribution-list 10 in "Vlan 1"
To apply distribution policy rule 20 to outgoing router updates on the Serial 2/1:1 interface:
G350-001(router:rip)# distribution-list 20 out "Serial 2/1:1"
To apply distribution policy rule 40 to outgoing router updates from OSPF:
G350-001(router:rip)# distribution-list 40 out ospf

dns-server

Use the dns-server command to set up to eight Domain Name Server (DNS) IP addresses. Use the no form of this command to clear the DNS IP addresses.

Syntax
[no] dns-server ip-addr-list

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-addr-list</td>
<td>A list of up to eight IP addresses for the Domain Name Server</td>
<td>A list of IP addresses separated by spaces</td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>

User level
read-write

Context
dhcp pool

Example
To set 164.35.2.4 as the DNS IP address:
G350-001(DHCP 5)# dns-server 164.35.2.4
To set 164.35.2.4 and 135.64.102.3 as DNS IP addresses:
G350-001(DHCP 5)# dns-server 164.35.2.4 135.64.102.3
domain-name

Use the `domain-name` command to set a domain name string for the client. Use the `no` form of this command to clear the domain name.

Syntax

```
[no] domain-name domain name
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain name</td>
<td>The domain name</td>
<td>string, 1-255 bytes</td>
<td>null string</td>
</tr>
</tbody>
</table>

User level

read-write

Context

dhcp pool

Example

To set the domain name to “avaya.com”:

```
G350-001(DHCP 5)# domain-name avaya.com
```

dscp

Use the `dscp` command to specify the DSCP value that is set by the current policy operation. Use the `no` form of the command to set the current operation to the default.

Syntax

```
dscp {dscp_value | no-change}
```

```
no dscp
```
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dscp_value</td>
<td>The DSCP value</td>
<td>0-63</td>
<td></td>
</tr>
<tr>
<td>no-change</td>
<td>The DSCP value is left unchanged</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
ip qos-list composite-operation, ip capture-list ip-rule, ip pbr-list ip-rule

Note:
In ip-rule context, this command tests packets to see if they match the specified DSCP value, but does not change the DSCP value.

Example
To specify that composite operation 17 sets the DSCP value of packets to 55:
G350-001(QoS 440/CompOp 17)# dscp 55

dscp-table

Use the **dscp-table** command to enter the DSCP table entry context for a particular DSCP value for the current QoS list. If the specified DSCP table entry does not exist, the system creates it.

Syntax

dscp-table dscp_value

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dscp_value</td>
<td>The specific DSCP value to configure</td>
<td>0–63</td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
ip qos-list, capture-list

Example
To enter configuration mode for DSCP table entry 21:
G350-001(QoS 440)# dscp-table 21

ds-mode

Use the `ds-mode` command to specify the mode of the controller.

Note:
When you change the ds-mode, you must copy the running configuration to the startup configuration and reset the device.

Syntax

ds-mode {e1|t1}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1</td>
<td>Keyword specifying to set the mode to E1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t1</td>
<td>Keyword specifying to set the mode to T1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
admin

Context
geneneral

Example
To set the controller to operate in E1 mode:
G350-001(super)# ds-mode t1
To change ds-mode, copy the running configuration to the start-up configuration file, and reset the device.
CLI Commands

duplex

Use the **duplex** command to control the duplex setting for the current interface.

Note:
This command functions only in **no autoneg** mode.

Syntax

duplex {full|half}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>full</td>
<td>Keyword indicating that the interface is set</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to full duplex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>half</td>
<td>Keyword indicating that the interface is set</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to half duplex</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
Interface: FastEthernet (L2, L2-L3)

Example
To specify full duplex for the FastEthernet interface:

```
G350-001(super-if:FastEthernet 1.1)# duplex full
```

dynamic-cac

Use the **dynamic-cac** command to set the dynamic CAC bearer bandwidth limit for the current interface. You can also specify an activation priority for the interface. In case more than one interface with a BBL value is up, the G350 reports the BBL of the interface with the highest activation priority.

Syntax

dynamic-cac bbl [activation_priority]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bbl</td>
<td>The bearer bandwidth for the current interface</td>
<td>0 - 100,000,000 Kbits/sec</td>
<td>-1</td>
</tr>
<tr>
<td>activation_priority</td>
<td>The priority value of this interface</td>
<td>1 - 255</td>
<td>50</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR-SUB L2, DS1 FR-SUB L2-L3, USP PPP L2-L3, USP PPP L2), FastEthernet (L2, L2-L3), Tunnel (L2, L2-L3)

encapsulation

Use the encapsulation command to set the encapsulation mode for a serial interface. By default, the serial interface has PPP encapsulation. Use the no form of this command, which has no parameters, to return to the default.

Use the encapsulation frame-relay option to create a frame-relay interface of the IETF (RFC1490/RFC2427) type. This command deletes the PPP interface associated with the current serial interface. The PPP interface cannot be deleted if at least one IP interface is defined on it. Instead, the following message appears, “You cannot update this L2 interface since L3 interfaces are defined on it.”

Syntax

encapsulation {ppp | frame-relay type}

no encapsulation
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPP</td>
<td>Keyword indicating that the encapsulation be set to PPP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>frame-relay</td>
<td>Keyword indicating that the encapsulation be set to Frame Relay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>The value for the type of Frame Relay, ietf, for RFC 1490/RFC2427 encapsulation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Serial (DS1 PPP L2, DS1 PPP L2-L3, DS1 FR L2, USP PPP L2, USP PPP L2-L3, USP FR L2)

Example
To create a Frame-Relay interface:
G350-001(if:Serial 2/1:1)# encapsulation frame-relay ietf

encapsulation pppoe

Use the `encapsulation pppoe` command to enable the PPPoE client. Use the `no` form of the command to return to disable the PPPoE client.

Note:

The `encapsulation pppoe` command fails if:

1. ‘ip address’ is configured on the interface
2. The interface is part of a backup scheme
3. Dynamic CAC is configured on the interface

Syntax

```
encapsulation pppoe
no encapsulation
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pppoe</td>
<td>Keyword indicating that the encapsulation be set to PPP Power Over Ethernet.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Fast Ethernet

Example
To create a PPPoE interface:

G350-001(if:FastEthernet 10/2)# encapsulation pppoe

encryption

Use the `encryption` command to set the encryption algorithm for an ISAKMP policy. Use the `no` form of this command to clear the encryption algorithm.

Syntax

```
[no] encryption {des | 3des | aes}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>encryption</td>
<td>The encryption algorithm to be used: des – Data Encryption Standard - 56 bits 3des – Triple DES - 168 bits aes – Advanced Encryption Standard - 128 bits</td>
<td></td>
<td>des</td>
</tr>
</tbody>
</table>

User level
read-write
CLI Commands

Context
crypto isakmp policy

Example
G350-001(config-isakmp:1)# encryption 3des
Done!

end-ip-addr

Use the `end-ip-addr` command to set the end IP address of a DHCP pool IP address range. For manual/reservation leasing, set the end IP address to be identical to the start IP address.

Syntax

```
[no] end-ip-addr ip-addr
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip_addr</code></td>
<td>The end IP address of the DHCP pool IP address range</td>
<td>The end IP address must be larger than the start IP address. The number of IP addresses in one pool cannot exceed 256.</td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>

User level
read-write

Context
dhcp pool

Example
G350-001(DHCP 5)# end-ip-addr 135.64.120.4
erase phone-image

Use the **erase phone-script** command to delete a phone-image (A to D).

Syntax
```plaintext
erase phone-imageA|phone-imageB|phone-imageC|phone-imageD
```

User level
Read-write

Context
general

Example
```plaintext
interface# > erase phone-scriptA
Beginning erase operation .... Done!
```

erase phone-script

Use the **erase phone-script** command to delete phone-script A or phone-script B.

Syntax
```plaintext
erase phone-scriptA|phone-scriptB
```

User level
Read-write

Context
general

Example
```plaintext
interface# > erase phone-scriptA
Beginning erase operation .... Done!
```
erase startup-config

Use the **erase startup-config** command to reset the NVRAM parameters to the factory default values. This command is an alias for the command **nvram initialize** on page 249.

Syntax

```
erase startup-config
```

User level

read-write

Context

general

exit

Use the **exit** command to exit the current context. If you are in the root context, the **exit** command logs you out of the system.

Syntax

```
exit
```

User level

read-only

Context

all

Example

To exit the rule 22 configuration context, and then the access-control-list 330 context:

```
G350-001(ACL 330/ip rule 22)# exit
G350-001(ACL 330)# exit
G350-001#
```
fair-queue-limit

Use the `fair-queue-limit` command to specify the maximum number of packets that can be queued in the weighted fair queue. The allowable upper limit depends on the bandwidth configured for the interface.

Syntax

```
fair-queue-limit size
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>The maximum number of packets that can be queued in the weighted fair queue</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

`admin`

Context

Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR L2, USP FR L2, USP PPP L2, USP PPP L2-L3), FastEthernet (L2, L2-L3) - when traffic shaping is configured

Example

```
G350-001(super-if:FastEthernet 10/2)# fair-queue-limit 500
```

fair-voip-queue

Use the `fair-voip-queue` command to enable Weighted Fair VoIP Queuing (WFVQ) on the current interface. WFVQ provides more fair service for data packets, and improves response time for interactive data applications (such as Telnet). WFVQ is the default queuing mode for all Serial interfaces and all Fast Ethernet interfaces for which traffic-shaping is enabled. To disable WFVQ, you must enable another queuing mode, using either the `voip-queue` or the `priority-queue` command in interface context.

Note:

The commands `fair-voip-queue` and `voip-queue` are mutually exclusive, and cannot both appear in a configuration script.
CLI Commands

Syntax

```
fair-voip-queue
```

User level

admin

Context

Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR L2, USP FR L2, USP PPP L2, USP PPP L2-L3), FastEthernet (L2, L2-L3) - when traffic shaping is configured

Example

```
G350-001(super-if:FastEthernet 10/2)# fair-voip-queue
Done!
```

fdl

Use the `fdl` command to define the type of Facility Data Link loopback that the remote line is requested to enter. Use the `no` form of the command to disable FDL.

Note:

This command can only be used when ESF framing is defined.

Syntax

```
fdl fdl_mode
no fdl
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>fdl_mode</td>
<td>The FDL type</td>
<td>ansi, att, both</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Controller (T1)
Example
To set the FDL type to ansi:
G350-001(controller:5/1)# fdl ansi

fragment chain

Use the `fragment chain` command to set the maximum number of fragments that can comprise a single IP packet destined to the router. Use the `no` form of this command to set the fragment chain to its default value.

Note:
No IP reassembly is performed on packets in transit through the router.

Syntax

```
fragment chain chain_limit
no fragment chain
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chain_limit</code></td>
<td>The maximum number of fragments that can comprise a single IP packet</td>
<td>2 – 2048</td>
<td>64</td>
</tr>
</tbody>
</table>

User level
read-write

Context

general

Example
To set the maximum number of fragments for a single IP packet to 30:
G350-001# fragment chain 30
fragment size

Use the **fragment size** command to set the maximum number of fragmented IP packets to reassemble at any given time. Use the **no** form of this command to set the fragment size to its default value.

Note:
No IP reassembly is performed on packets in transit through the router.

Syntax

```plaintext
fragment size database_limit
no fragment size
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>database_limit</code></td>
<td>The maximum number of packets undergoing re-assembly at any given time</td>
<td>0-200</td>
<td>100</td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To set the maximum number of packets to reassemble to 150:

```
G350-001# fragment size 150
```

fragment timeout

Use the **fragment timeout** command to set the maximum number of seconds to reassemble a fragmented IP packet destined to the router. Use the **no** form of this command to set the fragment timeout to its default value.

Note:
No IP reassembly of packets in transit through the router is performed.
Syntax

```
fragment timeout timeout
no fragment timeout
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout</td>
<td>The maximum number of seconds to reassemble an IP packet</td>
<td>5-120</td>
<td>10</td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To set the maximum time to reassemble packets to be 30 seconds:

```
G350-001# fragment timeout 30
```

frame-relay class-dlci

Use the `frame-relay class-dlci` command to associate a Virtual Channel with a named QoS or Traffic shaping template (map-class). Traffic shaping only works if it is enabled on the frame relay interface.

Use the `no` form of this command to return to the default map class.

Note:
The VC must exist and be associated with the sub-interface.

Syntax

```
[no] frame-relay class-dlci DLCI_number map_class_name
```
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLCI_number</td>
<td>The VC Data Link Channel Identifier</td>
<td>16-1007</td>
<td></td>
</tr>
<tr>
<td>map_class_name</td>
<td>The name of a user defined map class default - the default map class</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Serial (DS1 FR-SUB L2, DS1 FR-SUB L2-L3)

Example
To associate Virtual Channel number 17 with the map-class frame-relay named “myVoIpClass”:
G350-001(super-if:Serial 2/1:1)#frame-relay class-dlci 17 myVoIpClass

frame-relay interface-dlci

Use the frame-relay interface-dlci command to associate a frame relay Virtual Channel with this interface. This VC will be in the primary role (that is, will determine the operational status of the interface).

Use the no form of this command to delete the association of the VC and the sub-interface. To replace the currently configured interface-DLCI, use the no form of the command.

Syntax
[no] frame-relay interface-dlci DLCI_number

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLCI_number</td>
<td>The Virtual Channel Data Link Channel Identifier</td>
<td>16-1007</td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
Interface: Serial (DS1 FR-SUB L2, DS1 FR-SUB L2-L3)

Example
The following example will create and associate DLCI number 17 with the current sub-interface. This VC will carry all traffic (if no priority dlcigroup is defined for this interface), and will be in the primary role.

G350-001(super-if:Serial 2/1:1)# frame-relay interface-dlci 17

frame-relay lmi-n391dte

Use the `frame-relay lmi-n391dte` command to set the number of status enquiry intervals that pass before issuing a full status enquiry message.

Use the `no` form of this command to set the number of status enquiry intervals to its default.

Syntax

```
[no] frame-relay lmi-n391dte polling_interval
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>polling_interval</td>
<td>Interval in seconds</td>
<td>1-255</td>
<td>6</td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Serial (DS1 FR L2, USP FR L2)

Example
To set the number of seconds between status enquiry messages to 17 seconds:

G350-001(if:Serial 2/1:1)# frame-relay lmi-n391dte 17
frame-relay lmi-n392dte

Use the `frame-relay lmi-n392dte` command to set the maximum number of unanswered status enquiries the equipment accepts before declaring the interface down.

Use the `no` form of this command to revert to the default value.

Syntax

```
[no] frame-relay lmi-n392dte threshold
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>threshold</td>
<td>Error threshold value</td>
<td>1-10</td>
<td>3</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Serial (DS1 FR L2, USP FR L2)

Example

To set the maximum number of unanswered status enquiries allowed to 5:

```
G350-001(if:Serial 2/1:1)# frame-relay lmi-n392dte 5
```

frame-relay lmi-n393dte

Use the `frame-relay lmi-n393dte` command to set the number of status polling intervals over which the error threshold is counted (the monitored event count). To set the error threshold, refer to `frame-relay lmi-n392dte` on page 148. In other words, if within `events` number of events the station receives `error_threshold` number of errors, the interface is marked as down.

Use the `no` form of this command to revert to the default value.

Syntax

```
[no] frame-relay lmi-n393dte events
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
</table>
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>events</td>
<td>The number of events</td>
<td>1-10</td>
<td>4</td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Serial (DS1 FR L2, USP FR L2)

Example
To set the number of events over which the error threshold is calculated to 5:
G350-001(if:Serial 2/1:1)# frame-relay lmi-n393dte 5

frame-relay lmi-type

Use the `frame-relay lmi-type` command to manually define the type of the Local Management Interface (LMI) to use.

Use the `no` form of this command to specify automatic detection of the LMI type (auto-sensing). If auto-sense fails, ANSI is used as the default.

Syntax

```
[no] frame-relay lmi-type lmi_type
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
</table>
| lmi_type | The type of local management interface | ansi - LMI according to ANSI T1.617 [9]
 | | | q933a - LMI according to ITU-T Q.933 [7] | |
| | | autosense | |
| | | lmi_rev1 | |
| | | disable | |

User level
read-write
CLI Commands

Context

Interface: Serial (DS1 FR L2, USP FR L2)

Example

To select the q933a LMI type:

```
G350-001(if:Serial 2/1:1)# frame-relay lmi-type q933a
```

frame-relay priority-dlci-group

Use the `frame-relay priority-dlci-group` command to assign Virtual Channels to priority classifications, for supporting traffic separation. The first DLCI is assigned to the high priority traffic. Other DLCIs are assigned to Medium (L2:4-5), Normal (L2:2-3), and Low (L2:0-1) priorities. When fewer than 4 DLCIs are specified, the last DLCI on the command line is assigned to all the remaining unassigned priority classes.

Use the `no` form of this command to clear the current priority DLCI group.

Syntax

```
[no] frame-relay priority-dlci-group DLCI1 [DLCI2 [DLCI3 [DLCI4]]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLCI1</td>
<td>The DLCI assigned to the High priority traffic</td>
<td>16-1007</td>
<td></td>
</tr>
<tr>
<td>DLCI2</td>
<td>The DLCI assigned to the Medium priority traffic</td>
<td>16-1007</td>
<td></td>
</tr>
<tr>
<td>DLCI3</td>
<td>The DLCI assigned to the Normal priority traffic</td>
<td>16-1007</td>
<td></td>
</tr>
<tr>
<td>DLCI4</td>
<td>The DLCI assigned to the Low priority traffic</td>
<td>16-1007</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Serial (DS1 FR-SUB L2, DS1 FR-SUB L2-L3)
Example

To assign VC number 17 to the High Priority traffic, VC number 18 to the Medium Priority traffic, and VC number 19 to the Normal to Low priority traffic:

G350-001(if:Serial 2/1:1.1)# frame-relay priority-dlci-group 17 18 19

frame-relay traffic-shaping

Use the frame-relay traffic-shaping command to turn on/off traffic shaping and Frame-Relay fragmentation. Virtual Channels that are not explicitly assigned to a map-class frame-relay, are assigned to the default map-class frame-relay.

Use the no form of this command to turn off traffic shaping.

Syntax

[no] frame-relay traffic-shaping

User level

read-write

Context

Interface: Serial (DS1 FR L2, USP FR L2)

Example

To enable traffic shaping on the interface:

G350-001(if:Serial 2/1:1)# frame-relay traffic-shaping

framing

Use the framing command to specify the frame type for an E1 or T1 data line. Use the no form of the command to restore the controller to the default frame type.

Syntax

framing frame_type

no framing
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>frame_type</td>
<td>The framing method to use</td>
<td>sf, esf, crc4, no-crc4, unframed</td>
<td>For T1: sf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For E1: crc4</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Controller

Example

To set the frame type to extended super frame:

G350-001(controller:5/1)# framing esf

group

Use the `group` command to set the Diffie-Hellman group for an ISAKMP policy. Use the `no` form of the command to set the Diffie-Hellman group to the default.

Syntax

`[no] group {1 | 2}`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The Diffie-Hellman group for the ISAKMP policy</td>
<td>1 or 2</td>
<td>1</td>
</tr>
</tbody>
</table>

User level

read-write

Context

crypto isakmp policy
Example

G350-001(config-isakmp:1)# group 1
Done!

hash

Use the hash command to set the hash method for an ISAKMP policy. Use the no form of the command to return the hash method to the default (sha).

Syntax

[no] hash {sha | md5}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash</td>
<td>The hash method for the ISAKMP policy: sha – Secure Hash Algorithm md5 – Message Digest algorithm 5</td>
<td>sha</td>
<td>sha</td>
</tr>
</tbody>
</table>

User level

read-write

Context

crypto isakmp policy

Example

G350-001(config-isakmp:1)# hash md5
Done!

hostname

Use the hostname command to change the Command Line Interface (CLI) prompt. The prompt is written as hostname-registration, where the hostname is the value entered with the hostname command, and registration is the media gateway registration information. If the device is registered, the current media gateway number appears. If the device is not registered, question marks are displayed.
CLI Commands

Use the `hostname` command with no parameters to display the current prompt value. Use the `no` form of this command to return the CLI prompt to the default.

Syntax

`hostname [hostname_string]`

`no hostname`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>hostname_string</code></td>
<td>The hostname</td>
<td>a string of up to 20 characters</td>
<td>G350</td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To set the CLI prompt to “GTW-HQ”:

```
G350-001# hostname GTW-HQ
GTW-HQ-001# hostname
Session hostname is ‘GTW-HQ’
```

To reset the CLI prompt to the default:

```
GTW-HQ-001# no hostname
G350-001#
```

icc-vlan

Use the `icc-vlan` command to set the current VLAN as the ICC-VLAN.

Syntax

`icc-vlan`
User level
read-write

Context
Interface: VLAN (L2, L2-L3)

Example
To set VLAN 2 as the ICC VLAN:
G350-001# interface vlan 2
G350-001(if:Vlan 2)# icc-vlan

icmp

Use the icmp command to specify that the current rule applies to a specific type of ICMP packet. Use the no form of this command to specify that the rule applies to all packets except those of the specified ICMP type.

Note:
The icmp command also sets the IP protocol to ICMP.

Syntax
[no] icmp {name | {icmp_type icmp_code}}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Specify that the rule applies to this ICMP name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>icmp_type</td>
<td>Specify that the rule applies to this icmp type</td>
<td>For an ip-rule: 0 – 256</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For a QoS rule: 0 – 65535</td>
<td></td>
</tr>
<tr>
<td>icmp_code</td>
<td>Specify that the rule applies to this icmp code</td>
<td>For an ip-rule: 0 – 256</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For a QoS rule: 0 – 65535</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write
CLI Commands

Context
ip capture-list/ip-rule, ip access-control-list/ip-rule, ip pbr-list/ip-rule, ip qos-list/ip-rule

Example
To specify that rule 33 applies to any ICMP packet type except type 1 code 2:
G350-001(ACL 333/ip rule 33)# no icmp 1 2
To specify that rule 27 applies to ICMP error-reply packets:
G350-001(ACL 333/ip rule 27)# icmp Echo-Reply

icmp in-echo-limit

Use the `icmp in-echo-limit` command to set the maximum number of echo requests that can be received in one second. Use the `no` form of the command to the limit to its default value.

Syntax
`icmp in-echo-limit size`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>The number of echo requests</td>
<td>1 – 10000</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To set the echo request limit at 500 packets per second:
G350-001# icmp in-echo-limit 500
idle-character

Use the `idle-character` command to set the bit pattern used to indicate an idle line. Use the `no` form of this command to restore the default value. For E1 and USP interfaces, the default value is `flags`. For T1 interfaces, the default is `marks`.

Syntax

```
idle-character {flags|marks}
no idle-character
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>flags</td>
<td>Keyword specifying that flags are transmitted to indicate an idle line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>marks</td>
<td>Keyword specifying that marks are transmitted to indicate an idle line</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

`read-write`

Context

Interface: Serial (DS1 PPP L2, DS1 PPP L2-L3, DS1 FR L2, USP PPP L2, USP PPP L2-L3, USP FR L2)

Example

To set the idle-character to marks:

```
G350-001(if:Serial 2/1)# idle-character marks
```

ignore dcd

Use the `ignore dcd` command to specify how the system monitors the line to determine if it is up or down. Specify `ignore dcd` to ignore DCD signals, and instead use DSR/CTS signals to determine the line’s status. Use the `no` form of the command to specify that DCD signals are used to determine line status.
CLI Commands

Syntax

[no] ignore dcd

User level

read-write

Context

Interface: Serial (USP FR-L2, USP PPP-L2, USP PPP L2-L3)

Example

To ignore DCD signals on an interface:

G350-001(if:Serial 2/1:1)# ignore dcd

interface Console

Use the `interface Console` command to enter the console interface configuration mode. The interface is created if it does not exist. Use the `no` form of this command to set the Console parameters to their default values.

Syntax

[no] interface Console

User level

read-write

Context

general

Example

To enter the Console interface context:

G350-001# interface Console
G350-001(if:Console)#
interface FastEthernet

Use the `interface FastEthernet` command to enter Interface FastEthernet configuration mode. Use the `no` form of this command to delete an IP interface.

If the specified interface does not exist, the system creates it and enters its configuration mode.

Syntax

```
[no] interface FastEthernet [module/port[.ip_interface]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>The module number of the interface</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>The port number of the interface</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ip_interface</td>
<td>The IP sub-interface number within this interface. A number of IP interfaces may be bound to a Layer 3 interface.</td>
<td>0-1024</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To create a FastEthernet interface and enter its context:

```
G350-001# interface FastEthernet 10/2
```

To create a Level 3 sub-interface on the FastEthernet interface:

```
G350-001# interface FastEthernet 10/2.1
```

To remove the Level 3 sub-interface:

```
G350-001# no interface FastEthernet 10/2.1
```
interface Loopback

Use the `interface Loopback` command to enter Interface Loopback configuration mode. Use the `no` form of this command to delete a loopback interface or sub-interface.

If the specified interface does not exist, the system creates it and enters its configuration mode.

Syntax

```
[no] interface Loopback [interface_number[.ip_interface]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface_number</code></td>
<td>The number of the interface</td>
<td>1-99</td>
<td></td>
</tr>
<tr>
<td><code>ip_interface</code></td>
<td>The IP sub-interface number within this interface. A number of IP interfaces may be bound to a Layer 3 interface.</td>
<td>0-1024</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To create Loopback interface 1 and enter its configuration mode:

```
G350-001# interface Loopback 1
```

To create a Layer 3 sub-interface:

```
G350-001# interface Loopback 1.1
```

To delete the Layer 3 sub-interface:

```
G350-001# no interface Loopback 1.0
```
interface serial

Use the `interface serial` command to enter serial interface or sub interface configuration mode. If the specified interface or sub interface does not exist, the system creates it and enters its configuration mode.

Use the `no` form of the command to delete the interface. The `no` form can only be used to delete sub L3 and sub frame relay interfaces. The command fails for USP interfaces and when higher or lower layers are defined for that interface.

Syntax

```
[no] interface Serial module/if_number [if_link_type]
```

For USP interfaces `if_number` has the syntax:

```
port[.ip_interface | {.sub_interface[.ip_interface]]
```

For DS1 interfaces `if_number` has the syntax:

```
port:channel_group[.ip_interface | {.sub_interface[.ip_interface]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>port</code></td>
<td>The port number of the interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>channel_group</code></td>
<td></td>
<td>For E1: 0-30</td>
<td></td>
</tr>
<tr>
<td><code>sub_interface</code></td>
<td></td>
<td>For T1: 0-23</td>
<td></td>
</tr>
<tr>
<td><code>ip_interface</code></td>
<td></td>
<td>1-127</td>
<td></td>
</tr>
<tr>
<td><code>if_link_type</code></td>
<td></td>
<td>0-1024</td>
<td>point-to-point</td>
</tr>
</tbody>
</table>

User level

read-write

Context

general, Interface: Serial (FR SUB)

Example

To create point to point sub-interface number 17 over channel group 2 over E1/T1 controller number 1:

```
G350-001# interface Serial 2/1:2.17 point-to-point
```
interface tunnel

Use the `interface tunnel` command to enter Interface Tunnel configuration mode. Use the `no` form of this command to delete an interface tunnel.

If the specified interface does not exist, the system creates it and enters its configuration mode.

Syntax

```
[no] interface tunnel tunnel_number
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tunnel_number</code></td>
<td>The number of the interface</td>
<td>1-99</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To create interface tunnel 1 and enter its configuration mode:

```
G350-001> interface tunnel 1
```

interface usb-modem

Use the `interface usb-modem` command to enter configuration context for the usb-modem. Use the `no` form of the command to reset the usb-modem settings to their factory defaults.

The usb-modem interface always exists, but is disabled by default. Use the `no shutdown` command to enable the interface.
The default settings for the usb-modem are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface status</td>
<td></td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td>10.3.0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netmask</td>
<td>255.255.255.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timeout</td>
<td>no timeout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPP speed</td>
<td>38400 bps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Async modem-init-string</td>
<td>"AT S7=45 S0=2 L1 V1 X4 &c1 E0 Q0"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

[no] interface usb-modem

User level

read-write

Context

general

interface vlan

Use the interface vlan command to enter Interface VLAN configuration mode. Use the no form of this command to delete the interface.

If the specified interface does not exist, the system creates it and enters its configuration mode.

Syntax

[no] interface vlan vlan_id[ip_interface]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan_id</td>
<td>The VLAN ID number of this interface</td>
<td>1-3071</td>
<td></td>
</tr>
<tr>
<td>ip_interface</td>
<td>The IP sub-interface number within this interface. A number of IP interfaces may be bound to a Layer 3 interface.</td>
<td>0-1024</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write
Context

`general`

Example

To create VLAN 2 and enter its configuration context:

```
G350-001# interface Vlan 2
```

To create a sub interface 1 on VLAN 2:

```
G350-001(if:Vlan 2)# interface Vlan 2.1
```

To delete sub interface 1 of VLAN 2:

```
G350-001# no interface Vlan 2.1
```

invert txclock

Use the `invert txclock` command to invert the transmit clock signal from the data communications equipment (DCE). Use the `no` form of the command to restore the signal to not inverted.

Syntax

```
[no] invert txclock
```

User level

`read-write`

Context

`Interface: Serial (USP FR L2, USP PPP L2, USP PPP L2-L3)`

Example

To invert the transmit clock signal on an interface:

```
G350-001(if:Serial 2/1:1)# invert txclock
```

ip access-control-list

Use the `ip access-control-list` command to enter configuration mode for the specified policy access control list. If the specified list does not exist, the system creates it and enters its configuration mode.
Syntax

ip access-control-list list_number

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list_number</td>
<td>The Access Control list number</td>
<td>300-399</td>
<td>300</td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To create access control list 320 and enter its configuration mode:

G350-001# ip access-control-list 320
G350-001(ACL 320)#

ip access-group

Use the ip access-group command to activate a specific Access Control list for a specific direction, on the current interface. Use the no form of this command to suspend the Access Control list for a specific direction.

Note:

You cannot edit the active Access Control list.

Syntax

ip access-group policy_list_number direction
no ip access-group direction
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy_list_number</td>
<td>The Access Control list number</td>
<td>300-399</td>
<td>300</td>
</tr>
<tr>
<td>direction</td>
<td>The direction of the packets to which the policy is applied.</td>
<td>in, out</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Serial (DS1 PPP L2, DS1 PPP L2-L3, DS1 FR-SUB L2, DS1 FR-SUB L2-L3, USP PPP L2, USP PPP L2-L3), Loopback (L2, L2-L3), FastEthernet (L2, L2-L3), Tunnel (L2, L2-L3), VLAN (L2, L2-L3)

Example

To enable access control list 310 for outbound packets on the FastEthernet interface:

G350-001(if:FastEthernet 10/2)# ip access-group 310 out

ip address

Use the `ip address` command to assign an IP address and mask to an interface. Use the `no` form of this command to delete an IP interface.

Syntax

`ip address ip_address mask [admin_state]`

`no ip address`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_address</td>
<td>The IP address assigned to the interface</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context

Example
To assign the IP address 192.168.22.33 with mask 255.255.255.0 to the Fast Ethernet interface:

```
G350-001(if:FastEthernet 10/2)# ip address 192.168.22.33 255.255.255.0
```

ip admin-state

Use the `ip admin-state` command to set the administrative state of an IP interface. The default state is `up`.

Syntax

```
ip admin-state up|down
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>up</td>
<td>Keyword specifying the administrative state of the IP interface is set to up (active)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>down</td>
<td>Keyword specifying the administrative state of the IP interface is set to down (inactive)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

User level
read-write

Context

ip bootp-dhcp network

Use the `ip bootp-dhcp network` command to select the network from which the BOOTP/DHCP server should allocate an address. This command is required only when there are multiple IP interfaces over the VLAN. Use the no form of this command to remove the specified network.

Note:
More than one network can be configured. For requests to servers, all configured networks are used. The networks are used on a round-robin basis.

Syntax

```
ip bootp-dhcp network ip_net
no ip bootp-dhcp network [ip_net]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip_net</code></td>
<td>The IP subnet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: FastEthernet (L2-L3, L2), VLAN (L2-L3, L2)

Example
To select the network 192.168.169.0 as the network from which an address should be allocated for BOOTP/DHCP requests:

```
G350-001(if:Vlan 1.20)# ip bootp-dhcp network 192.168.169.0
```
ip bootp-dhcp relay

Use the `ip bootp-dhcp relay` command to enable relaying of BOOTP and DHCP requests to the BOOTP/DHCP server. Use the `no` form of this command to disable relaying of BOOTP and DHCP requests.

Syntax

```
[no] ip bootp-dhcp relay
```

User level

read-write

Context

general

Example

To enable relaying of BOOTP and DHCP requests:

```
G350-001# ip bootp-dhcp relay
```

To disable relaying of BOOTP and DHCP requests:

```
G350-001# no ip bootp-dhcp relay
```

ip bootp-dhcp server

Use the `ip bootp-dhcp server` command to add a BOOTP/DHCP server to handle BOOTP/DHCP requests received by this interface. A maximum of two servers can be added to a single interface. Use the `no` form of this command to remove a server.

Syntax

```
[no] ip bootp-dhcp server ip_address
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip_address</code></td>
<td>The IP address of the server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

User level
read-write

Context
Interface: FastEthernet (L2-L3, L2), VLAN (L2-L3, L2)

Example
To add station 192.168.37.46 as a BOOTP/DHCP server to handle BOOTP/DHCP requests:
G350-001(if:Vlan 1.2)# ip bootp-dhcp server 192.168.37.46

ip broadcast-address

Use the `ip broadcast-address` command to update the interface broadcast address.

Syntax

```
ip broadcast-address  bc_addr
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bc_addr</td>
<td>The broadcast IP address</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context

Example
To set the broadcast address for the VLAN 1 interface to 192.168.255.255:
G350-001(if:Vlan 1)# ip broadcast-address 192.168.255.255
ip capture-list

Use the `ip capture-list` command to enter the specified capture-list context. If the specified capture-list does not exist, it is created.

Syntax

```
ip capture-list capture_list_id
no ip capture-list capture_list_id
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>capture_list_id</code></td>
<td>The capture list number</td>
<td>500-599</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context

general

Example

DR-006(super)# ip capture-list 501
DR-006(super/Cap 501)#

ip crypto-group

Use the `ip crypto-group` command to activate a crypto-list in the context of the interface on which the crypto-list is activated. The command applies to the following interfaces:

- Serial
- FastEthernet

Use the `no` form of the command to deactivate a crypto-list.

Note:

The `ip crypto-group` command applies also to the VLAN interface, but this option is not recommended.
Note: Most IPSec VPN parameters cannot be modified if they are linked to an active crypto-list. To modify a parameter linked to an active crypto-list, you must first deactivate the list using the `no ip crypto-group` command in the context of the interface on which the crypto-list is activated.

Syntax

```plaintext
[no] ip crypto-group crypto-list-id
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>crypto_list_id</td>
<td>The crypto-list number</td>
<td>901-999</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

interface

Examples

```plaintext
G350-001(if:Serial 5/1)# no ip crypto-group
Done!
G350-001(if:Serial 5/1)# ip crypto-group 901
Done!
```

ip crypto-list

Use the `ip crypto-list` command to enter crypto-list context and create or edit a crypto-list. Use the `no` form of the command to delete a crypto-list.

Note:

You cannot delete an active crypto-list. You must first deactivate the list, using the `no` form of the `ip crypto-group` command.

Syntax

```plaintext
[no] ip crypto-list index
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>The crypto-list number</td>
<td>901-999</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
G350-001# ip crypto-list 901
G350-001(Crypto 901)#

ip default-gateway

Use the `ip default-gateway` command to define a default gateway (router). Use the `no` form of this command to remove the default gateway.

Syntax

```
ip default-gateway {ip_address | {interface_type interface_number}} [cost] [preference] [permanent]
```

```
no ip default-gateway
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_address</td>
<td>The IP address of the router</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface_type</td>
<td>The interface type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface_number</td>
<td>The interface number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cost</td>
<td>The path cost</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>preference</td>
<td>The preference</td>
<td>High, Low</td>
<td>Low</td>
</tr>
<tr>
<td>permanent</td>
<td>Keyword that specifies not to disable the router if the interface is down</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

User level
read-write

Context
general

Example
To set the default gateway to the IP address 132.55.4.45, having a cost value of 4 with high preference:

G350-001# ip default-gateway 132.55.4.45 4 high

To set the default gateway to be the Serial interface:

G350-001# ip default-gateway Serial 5/1:1.1 permanent

To remove the default gateway:

G350-001# no ip default-gateway

ip dhcp activate pool

When you create a DHCP pool, the pool remains inactive until you activate it. This allows you to modify the pool configuration with no effect on network devices. Use the ip dhcp activate pool command to activate the pool. Use the no form of this command to deactivate the pool. When you deactivate a pool, the binding information of all IP addresses from the pool that were allocated is erased.

Syntax

[no] ip dhcp activate pool pool_id

User level
read-write

Context
general

Example
To activate DHCP pool 5:

G350-001# ip dhcp activate pool 5

To deactivate DHCP pool 5:

G350-001# no dhcp activate pool 5
ip dhcp pool

Use the ip dhcp pool to create a DHCP pool or to enter the context of a DHCP pool. Use the no form of this command to delete a DHCP pool.

Note:
You cannot delete an active DHCP pool. Use the no form of the dhcp-pool command to deactivate a pool. When you deactivate the pool, any associated binding information is erased.

Syntax

[no] ip dhcp pool pool-num

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pool-num</td>
<td>The DHCP pool index</td>
<td>1-32</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To enter the context of pool 5:
G350-001# ip dhcp pool 5
G350-001(DHCP 5)#

To delete pool 5:
G350-001# no ip dhcp pool 5
ip dhcp ping packets

Use the `ip dhcp ping packets` command to enable the sending of a ping packet by the DHCP server to check if the IP address it is about to allocate is already in use by another client. The purpose of this feature is to prevent IP address congestion. Use the `no` form of this command to disable the sending of these ping packets.

Note:
Sending a ping packet before each IP address allocation reduces the rate at which DHCP clients can get new IP addresses from the server. Therefore, by default, ping packets are not sent.

Syntax

```
[no] ip dhcp ping packets
```

User level
read-write

Context
general

Example

To configure the DHCP server not to send ping packets to an IP address before assigning the IP address to a requesting client:

```
G350-001(DHCP 5)# no ip dhcp ping packets
```

ip dhcp ping timeout

Use the `ip dhcp ping timeout` command to set the ping timeout. This is the time the DHCP server waits for a reply to a sent ping packet before allocating an IP address to a DHCP client. A lack of reply after the configured timeout indicates that the IP address is not in use and therefore can be allocated.

Syntax

```
ip dhcp ping timeout timeout
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout</td>
<td>The amount of time, in milliseconds, that the DHCP server waits for a ping reply before it stops attempting to reach a pool address for client assignment.</td>
<td>25-1000 ms</td>
<td>500</td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To set the ping timeout to one second:
G350-001(DHCP 5)# ip dhcp ping timeout 1000

ip dhcp-server

By default, DHCP server is inactive. Use the `dhcp-server` command to activate the DHCP server on the G350. Use the `no` form of this command to deactivate the DHCP server.

Syntax

```
[no] ip dhcp-server
```

User level
read-write

Context
general

Example
To enable DHCP server:
G350-001# ip dhcp-server
To disable DHCP server:
G350-001# no ip dhcp-server
ip directed-broadcast

Use the `ip directed-broadcast` command to enable net-directed broadcast forwarding. Use the `no` form of this command to disable net-directed broadcasts on an interface.

Syntax

```plaintext
[no] ip directed-broadcast
```

User level

read-write

Context

ip distribution access-default-action

Use the `ip distribution access-default-action` command to set the default action for a specific RIP distribution policy list.

Syntax

```plaintext
ip distribution access-default-action list_number default_action
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list_number</td>
<td>The distribution list number</td>
<td>1-99</td>
<td></td>
</tr>
<tr>
<td>default_action</td>
<td>The default action</td>
<td>default-action-deny, default-action-permit</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general
Example
To specify the default action for distribution policy list 1 is to deny packets:

G350-001# ip distribution access-default-action 1
default-action-deny

ip distribution access-list

Use the `ip distribution access-list` command to create a distribution Policy rule. Use the `no` form of this command to delete a distribution list rule. Apply the distribution rule using the `distribution-list` command.

Syntax

```
ip distribution access-list policy_list_number access_list_index action {{router_ip [router_wildcard]}|any}
no ip distribution access-list access_list_number [access_list_index]
```

Note:
If a list index is not given in the `no ip distribution access-list` command, all rules are deleted.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy_list_number</td>
<td>The policy list number</td>
<td>1-99</td>
<td></td>
</tr>
<tr>
<td>access_list_index</td>
<td>The access list index number</td>
<td>1–9999</td>
<td></td>
</tr>
<tr>
<td>action</td>
<td>The action to perform</td>
<td>permit, deny</td>
<td></td>
</tr>
<tr>
<td>router_ip</td>
<td>The IP router address of the network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>routerWildcard</td>
<td>The IP network wildcard address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>any</td>
<td>Keyword that specifies the value can be any IP address</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write
Context
general

Example
To create distribution list 1, whose default action is to discard information from the network 10.10.0.0:
G350-001# ip distribution access-list 1 23 deny 10.10.0.0 0.0.255.255
To configure RIP distribution access list number 2 permitting distribution and learning of router 10.1.1.1:
G350-001# ip distribution access-list 2 24 permit 10.1.1.1
To configure RIP distribution access list number 20 permitting distribution and learning of all networks:
G350-001# ip distribution access-list 20 4 permit any
To remove RIP distribution access list number 2:
G350-001# no ip distribution access-list 2 25

ip distribution access-list-cookie

Use the ip distribution access-list-cookie command to set the list cookie.

Syntax
ip distribution access-list-cookie list_id cookie

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list_id</td>
<td>The ID of the distribution list</td>
<td>1-99</td>
<td></td>
</tr>
<tr>
<td>cookie</td>
<td>The cookie number</td>
<td>integer</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general
Example
To set list 4 to have cookie 12345:
G350-001# ip distribution access-list-cookie 4 12345

ip distribution access-list-copy

Use the `ip distribution access-list-copy` command to copy the distribution access list.

Syntax

`ip distribution access-list-copy source_list destination_list`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source_list</code></td>
<td>The source distribution access list</td>
<td>1-99</td>
<td></td>
</tr>
<tr>
<td><code>destination_list</code></td>
<td>The destination distribution access list</td>
<td>1-99</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To copy distribution list 1 to list 3:
G350-001# ip distribution access-list-copy 1 3

ip distribution access-list-name

Use the `ip distribution access-list-name` command to set the distribution list name.

Syntax

`ip distribution access-list-name distribution_list_number name`
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>distribution_list_number</td>
<td>The number of the distribution list</td>
<td>1-99</td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>The distribution list name</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
To define a name that includes spaces, enclose the entire name in quotation marks (for example, “New York”).

User level
read-write

Context
general

Example
To name distribution access-list #5 as “evening”:
G350-001# ip distribution access-list-name 5 evening
To name distribution access-list #22 as “Daily Job”:
G350-001# ip distribution access-list-name 22 “Daily Job”

ip distribution access-list-owner

Use the ip distribution access-list-owner command to set the distribution list owner.

Syntax
ip distribution access-list-owner policy_list_number owner
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy_list_number</td>
<td>The distribution list number</td>
<td>1-99</td>
<td></td>
</tr>
<tr>
<td>owner</td>
<td>The distribution list owner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
To define a name that includes spaces, enclose the entire name in quotation marks (for example, “New York”).

User level
read-write

Context
general

Example
To specify Jane Wiley as the owner of distribution list 78:

```
G350-001# ip distribution access-list-owner 78 "Jane Wiley"
```

ip http

Use the `ip http` command to enable the HTTP server. Use the `no` form of the command to disable the HTTP server.

Syntax

```
ip http [port port_number]
[no] ip http
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>port_number</td>
<td></td>
<td>1-65535</td>
<td>80</td>
</tr>
</tbody>
</table>
User level

admin

Context

general

ip icmp

Use the ip icmp command to enable ICMP services. Use the no form of the command to disable ICMP services.

Syntax

`ip icmp [echo]`

`no ip icmp`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>echo</td>
<td>Enables ICMP only for echo packets and destination unreachable packets</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

ip icmp redirect

Use the ip icmp redirect command to enable the ICMP redirect service. If the ICMP service is down, the command fails and returns an error message. Use the no form of the command to disable the ICMP redirect service.

Syntax

`[no] ip icmp redirect`
ip icmp-errors

Use the `ip icmp-errors` command to set ICMP error messages to ON. Use the `no` form of this command to set ICMP error messages to OFF.

Syntax

```
[n] ip icmp-errors
```

User level

read-write

Context

general

ip max-arp-entries

Use the `ip max-arp-entries` command to specify the maximum number of ARP cache entries allowed in the ARP cache. Use the `no` form of this command to restore the default value. In order for this command to take effect, you must copy the running configuration to the startup configuration and reset the device.

Syntax

```
ip max-arp-entries value
no ip max-arp-entries
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The maximum number of entries allowed in the IP address table. When you decrease the number of entries, it may cause the table to be relearned more frequently. If you do not enter a value, the current ARP Cache size is displayed.</td>
<td>128-16384</td>
<td>4096</td>
</tr>
</tbody>
</table>

User level

read-write
Context
general

Example
To set the maximum number of ARP cache entries to 8000:
G350-001# ip max-arp-entries 8000
To restore the maximum number of ARP cache entries to the default value:
G350-001# no ip max-arp-entries

ip netbios-rebroadcast

Use the `ip netbios-rebroadcast` command to enable the forwarding of NETBIOS packets on an interface. If no value is provided for `direction`, the `both` option is applied as the default value.

Use the `no` form of this command to disable forwarding of NETBIOS packets on an interface.

Syntax

```
ip netbios-rebroadcast [direction]
no ip netbios-rebroadcast
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>direction</code></td>
<td>The NETBIOS rebroadcasts mode</td>
<td><code>both</code> - NETBIOS packets received on the interface are rebroadcast to other interfaces and NETBIOS packets received on other interfaces are rebroadcast to this interface. <code>disable</code> - NETBIOS packets are not rebroadcast in or out of this interface.</td>
<td><code>both</code></td>
</tr>
</tbody>
</table>

User level

read-write
Context

Example

To enable rebroadcasting of NETBIOS packets received by and sent from the FastEthernet interface:

G350-001(if:FastEthernet 10/2)# ip netbios-rebroadcast both

ip netmask-format

Use the `ip netmask-format` command to specify the format of netmasks in the `show` command output. Use the `no` form of this command to restore the format to the default format.

Syntax

`ip netmask-format mask_format`

`no ip netmask-format`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
</table>
| `mask_format` | The format of the netmasks | `bitcount` - Addresses are followed by a slash and the total number of bits in the netmask, such as 17.
 | | `decimal` |
| | | `decimal` - The network masks are in dotted decimal notation, such as 255.255.255.0.
 | | `hexadecimal` |
| | | `hexadecimal` - The network masks are in hexadecimal format as indicated by the leading 0X, such as 0XFFFFFF00.
 | | |

User level

read-write

Context

general
Example
To display netmasks in bitcount format:
G350-001# ip netmask-format bitcount

ip next-hop-list

Use the `ip next-hop-list` command to enter the context of the specified next hop list. If the list does not exist, it is created. Use the `no` form of this command to delete the specified next hop list.

Syntax

```
ip next-hop-list next_hop_number
no ip next-hop-list next_hop_number
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>next_hop_number</td>
<td>The number of the next hop list</td>
<td>1-20</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

G350-001# ip next-hop-list 2
G350-001(super-next hop list 2)#
ip ospf authentication

Use the `ip ospf authentication` command to specify the authentication type for an interface. Use the `no` form of the command to remove the authentication type for an interface.

Syntax

```
ip ospf authentication auth_type
no ip ospf authentication
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>auth_type</code></td>
<td>The type of authentication</td>
<td>message-digest, null</td>
<td>null</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Example

To set the OSPF authentication for the FastEthernet interface as “message-digest”:

```
G350-001(if:FastEthernet 10/2)# ip ospf authentication message-digest
```

ip ospf authentication-key

Use the `ip ospf authentication-key` command to configure the interface authentication password. Use the `no` form of this command to remove the OSPF password.

Syntax

```
ip ospf authentication-key key
no ip ospf authentication-key
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>key</td>
<td>The interface authentication password</td>
<td>string (1-8 chars)</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Example

To set the authentication password for the VLAN 1 interface as “my_pass”:

```
G350-001(if:Vlan 1)# ip ospf authentication-key my_pass
```

ip ospf cost

Use the `ip ospf cost` command to statically configure the interface cost metric. Use the `no` form of this command to return to dynamic calculation of the cost.

Syntax

```
ip ospf cost cost
no ip ospf cost
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cost</td>
<td>The price assigned to each interface for the purpose of determining the shortest path.</td>
<td>1-65535</td>
<td>1</td>
</tr>
</tbody>
</table>

User level

read-write
Context

Example

To set the cost metric for the VLAN 1 interface to 10:

G350-001(if:Vlan 1)# ip ospf cost 10

ip ospf dead-interval

Use the `ip ospf dead-interval` command to configure the interval before declaring the neighbor as dead. Use the `no` form of this command to set the dead-interval to its default value.

Syntax

`ip ospf dead-interval seconds`

`no ip ospf dead-interval`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seconds</code></td>
<td>The interval in seconds</td>
<td>1-415029</td>
<td>40</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Example

To specify an interval of 15 seconds to wait before declaring a neighbor dead:

G350-001(if:Vlan 1)# ip ospf dead-interval 15
ip ospf hello-interval

Use the `ip ospf hello-interval` command to specify the time interval between hello packets the router sends. Use the `no` form of this command to set the hello-interval to its default value.

Syntax

```
ip ospf hello-interval seconds
no ip ospf hello-interval
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seconds</code></td>
<td>The interval in seconds</td>
<td>1-65535</td>
<td>10</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Example

To specify an interval of five seconds between hello packets:

```
G350-001(if:Vlan 1)# ip ospf hello-interval 5
```

ip ospf message-digest-key

Use the `ip ospf message-digest-key` command to specify the message-digest key for the interface. This command enables OSPF MD5 authentication. Use the `no` form of the command to remove an old MD5 key.

Syntax

```
ip ospf message-digest-key key_id algorithm key
no ip ospf message-digest-key key_id
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>key_id</td>
<td>The OSPF key ID</td>
<td>1-255</td>
<td>10</td>
</tr>
<tr>
<td>algorithm</td>
<td></td>
<td>md5</td>
<td></td>
</tr>
<tr>
<td>key</td>
<td>The OSPF password</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context

Example
To specify the message-digest key to be 3 with password mypwd:
G350-001(if:FastEthernet 10/2)# ip ospf message-digest-key 3 md5 mypwd

ip ospf network point-to-multipoint

Use the `ip ospf network point-to-multipoint` command to specify the network type as point-to-multipoint for the interface, and to increase the OSPF timers appropriately. Use the `no` form of the command to return the interface to point-to-point topology.

Syntax

```
[no] ip ospf network point-to-multipoint
```

User level
read-write

Context
Example
To specify a network type of point-to-multipoint for the VLAN 1 interface:

G350-001(if:Vlan 1)# ip ospf network point-to-multipoint

ip ospf priority

Use the `ip ospf priority` command to configure interface priority, which is used during the
election of a designated router. Use the `no` form of this command to set the OSPF priority to its
default value.

Syntax

`ip ospf priority priority`
`no ip ospf priority`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
<td>The interface priority</td>
<td>0-255</td>
<td>1</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Serial (DS1 PPP L2-L3, DS1 PPP L3, DS1 FR-SUB L2-L3, DS1 FR-SUB L3,
USP PPP L2-L3, USP PPP L3), FastEthernet (L2-L3, L3), VLAN (L2-L3, L3), Loopback (L2-L3,
L3), Tunnel (L3, L2-L3)

Example
To set the interface OSPF priority to 17:

G350-001(if:Vlan 1)# ip ospf priority 17
ip ospf router-id

Use the `ip ospf router-id` command to configure the IP address of the router interface.

Syntax

```
ip ospf router-id router_id
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>router_id</code></td>
<td>The IP address of the router</td>
<td></td>
<td>lowest existing IP interface</td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To set the IP address of the router interface to 192.168.49.1:

```
G350-001# ip ospf router-id 192.168.49.1
```

ip pbr-group

Use the `ip pbr-group` command to apply the specified pbr list to the current interface. The pbr list is applied to ingress packets only. Use the `no` form of the command to disable the specified pbr list.

Syntax

```
ip pbr-group list_number
```
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list_number</td>
<td>The list number of the pbr list to be applied to ingress packets of the current interface</td>
<td>801-899</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Serial (DS1 PPP L2, DS1 PPP L2-L3, DS1 FR-SUB L2, DS1 FR-SUB L2-L3, USP PPP L2, USP PPP L2-L3), FastEthernet (L2, L2-L3), VLAN (L2, L2-L3), Loopback (L2, L2-L3), Tunnel (L2, L2-L3)

Example

G350-001> ip pbr-group 811

ip pbr-list

Use the `ip pbr-list` command to enter context of the specified pbr-list. If the list does not exist, it is created. Use the `no` form of the command to suspend the specified pbr-list.

Syntax

`ip pbr-list list_number`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list_number</td>
<td>The list number of the policy list being entered</td>
<td>801-899</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write
Context
general

Example
G350-001# ip pbr-list 802
G350-001(super-PBR 802)#

ip policy-list-copy

Use the `ip policy-list-copy` command to copy an existing policy list to a new list.

Note:
The source and destination lists must be of the same type. For example, you cannot copy an access control list to a QoS list.

Syntax

```
ip policy-list-copy source_list destination_list
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source_list</code></td>
<td>The list number of the policy list to copy</td>
<td>For access control lists: 300 – 399</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For QoS lists: 400 – 499</td>
<td></td>
</tr>
<tr>
<td><code>destination_list</code></td>
<td>The list number of the policy to copy to</td>
<td>For access control lists: 301 – 399</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For QoS lists: 401 – 499</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general
Example
To copy the settings of access control list 330 to list 340:
G350-001# ip policy-list-copy 330 340

ip proxy-arp

Use the `ip proxy-arp` command to enable proxy ARP on an interface. Use the `no` form of this command to disable proxy ARP on an interface.

Syntax

```
[no] ip proxy-arp
```

User level
read-write

Context
Interface: FastEthernet (L2-L3, L3), VLAN (L2-L3, L3)

Example
To disable proxy ARP on an interface:
G350-001(if:Vlan 1)# no ip proxy-arp

ip qos-group

Use the `ip qos-group` command to activate the specified QoS list on the given interface. You must first create the QoS list using the `ip qos-list` command.

Syntax

```
ip qos-group policy_list direction
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>policy_list</code></td>
<td>The policy list number</td>
<td>400-499</td>
<td>400</td>
</tr>
<tr>
<td><code>direction</code></td>
<td>The direction of packets to which the policy applies.</td>
<td>in, out</td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
Interface: Serial (DS1 PPP L2, DS1 PPP L2-L3, DS1 FR-SUB L2, DS1 FR-SUB L2-L3, USP PPP L2, USP PPP L2-L3), FastEthernet (L2, L2-L3), VLAN (L2, L2-L3), Loopback (L2, L2-L3), Tunnel (L2, L2-L3)

Example
To apply QoS list 440 to all incoming packets on the Vlan 1 interface:
```
G350-001(if:Vlan 1)# ip qos-group 440 in
```

ip qos-list

Use the `ip qos-list` command to enter configuration mode for the specified QoS list. If the QoS list does not exist, the system creates it and enters its configuration mode.

Syntax

`ip qos-list list_number`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list_number</td>
<td>The policy list number</td>
<td>400-499</td>
<td>400</td>
</tr>
</tbody>
</table>

User level
read-write

Context

general

Example
To create QoS list 440 and enter its configuration context:
```
G350-012# ip qos-list 440
G350-012(QoS 440)#
```
ip redirects

Use the `ip redirects` command to enable the sending of redirect messages on the current interface. Use the `no` form of this command to disable redirect messages. By default, sending of redirect messages on the interface is enabled.

Syntax

```
[no] ip redirects
```

User level

read-write

Context

ip rip authentication key

Use the `ip rip authentication key` command to set the authentication string used on the current interface. Use the `no` form of this command to clear the password.

Syntax

```
ip rip authentication key password
no ip rip authentication key
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>password</code></td>
<td>The authentication string for the interface</td>
<td>string</td>
<td>(1-16 chars)</td>
</tr>
</tbody>
</table>

User level

read-write
Context

Example

To set the authentication string on the VLAN 1 interface to “hush-hush”:

G350-001(if:Vlan 1)# ip rip authentication key hush-hush

ip rip authentication mode

Use the `ip rip authentication mode` command to specify the type of authentication used in RIP Version 2 packets. Use the `no` form of this command to restore the default value, none.

Syntax

```
ip rip authentication mode [simple|none]
no ip rip authentication mode
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple</td>
<td>Keyword indicating that the clear text authentication should be used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>Keyword indicating that no authentication should be used</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Example

To specify that RIP packets use simple authentication mode:

G350-001(if:FastEthernet 10/2)# ip rip authentication mode simple
ip rip default-route-mode

Use the `ip rip default-route-mode` command to enable learning of the default route received by the RIP protocol. Use the `no` form of this command to disable listening to default routes.

Syntax

`ip rip default-route-mode mode`

`no ip rip default-route-mode`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
</table>
| `mode` | The default mode | **talk-listen** — RIP sends and receives default route updates on the interface.
talk-only — RIP sends, but does not receive, default route updates on the interface. | `talk-listen` |

User level

`read-write`

Context

Example

To specify that the RIP protocol sends, but does not receive, default route updates on the VLAN 1 interface:

```
G350-001(if:Vlan 1)# ip rip default-route-mode talk-only
```

ip rip poison-reverse

Use the `ip rip poison-reverse` command to enable split-horizon with poison-reverse on the current interface. Use the `no` form of this command to disable the poison-reverse mechanism.

The split-horizon technique prevents information about routes from exiting the router interface through which the information was received. This prevents routing loops.

Poison-reverse updates explicitly indicate that a network or subnet is unreachable. Poison-reverse updates are sent to defeat large routing loops.

Syntax

`[no] ip rip poison-reverse`

User level

read-write

Context

ip rip rip-version

Use the `ip rip rip-version` command to specify the RIP version running on the interface basis.

Syntax

`ip rip rip-version [1|2]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Keyword indicating that RIP version 1 packets should be used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Keyword indicating that RIP version 2 packets should be used</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context

Example
To specify that RIP version 2 packets should be running on the Serial 2/1:1 interface:
G350-001(if:Serial 2/1:1)# ip rip rip-version 2

ip rip send-receive-mode

Use the ip rip send-receive-mode command to set the RIP send and receive modes on an interface. Use the no form of this command to set the RIP to talk (that is, send report).

Syntax
ip rip send-receive-mode mode [default_route_metric]
no ip rip send-receive-mode

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>The RIP send and receive mode</td>
<td>talk-listen – RIP receives and transmits updates on the interface. talkdefault-listen – RIP receives updates on the interface and sends only a default route. listen-only – RIP receives updates on the interface and does not transmit them.</td>
<td>talk-listen</td>
</tr>
<tr>
<td>default_route_metric</td>
<td>The route metric</td>
<td>1 - 15</td>
<td></td>
</tr>
</tbody>
</table>
Context

Example

To set the RIP protocol to receive and transmit update on the Serial interface:

G350-001(if:Serial 2/1:1)# ip rip send-receive-mode talk-listen

ip rip split-horizon

Use the `ip rip split-horizon` command to enable the split-horizon mechanism on the current interface. Use the `no` form of this command to disable the split-horizon mechanism. By default split-horizon is enabled.

The split-horizon mechanism prevents information about routes from exiting the router interface through which the information was received. This prevents routing loops.

Syntax

```
[no] ip rip split-horizon
```

User level

read-write

Context

ip route

Use the `ip route` command to establish a static route. Use the `no` form of this command to remove a static route.

Syntax

```
[no] ip route ip_addr mask {{next_hop [next_hop [next_hop]] | interface_type interface_number} [cost] [preference] [permanent] | Null0}
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_addr</td>
<td>The IP address of the network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mask</td>
<td>The mask of the static route</td>
<td></td>
<td></td>
</tr>
<tr>
<td>next_hop</td>
<td>The next hop address in the network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface_type</td>
<td>The interface type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface_number</td>
<td>The interface number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cost</td>
<td>The path cost</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>preference</td>
<td>The preference of the route</td>
<td>High, Low</td>
<td>Low</td>
</tr>
<tr>
<td>permanent</td>
<td>Keyword that specifies that the route is not</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>disabled if the interface is down</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Null0</td>
<td>Keyword that creates a static discard route</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To create a static route on IP address 132.55.0.0 with subnet mask 255.255.0.0 following the path 132.55.4.45, with cost of 3 and priority of high:

G350-001# ip route 132.55.0.0 255.255.0.0 132.55.4.45 3 high

To remove the static route defined for IP address 134.66.0.0:

G350-001# no ip route 134.66.0.0 255.255.0.0

To create a static discard route on IP address 134.66.0.0:

G350-001# ip route 134.66.0.0 255.255.0.0 Null0
Alphabetical listing of CLI commands

ip routing

Use the `ip routing` command to enable IP routing.

Syntax

```
ip routing
```

User level

read-write

Context

general

ip rtp compression-connections

Use the `ip rtp compression-connections` command to control the number of Real-Time Transport Protocol (RTP) connections supported on the current interface. Use the `no` form of this command to restore the default. This command also sets the number of connections in the non-TCP space, not just RTP.

Note:

This command automatically enables TCP header compression on the current interface.

Syntax

```
[no] ip rtp compression-connections number
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>number</code></td>
<td>The total number of connections in the non-TCP space to support on the current interface</td>
<td>3-1000</td>
<td>16</td>
</tr>
</tbody>
</table>

User level

read-write
ip rtp header-compression

Use the `ip rtp header-compression` command to enable RTP header compression on the current interface. Use the `no` form of this command to disable RTP compression on the current interface.

Syntax

```plaintext
[no] ip rtp header-compression
```

User level

read-write

Context

Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR-SUB L2-L3, DS1 FR-SUB L2, USP PPP L2, USP PPP L2-L3)

Example

To enable RTP header compression on a Serial interface:

```
G350-001(if:Serial 2/1:1.1) ip rtp header-compression
```

ip rtp max-period

Use the `ip rtp max-period` command to set the maximum number of compressed headers that can be sent between full headers.

Syntax

```plaintext
[no] ip rtp max-period number
```

Context

Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR-SUB L2-L3, DS1 FR-SUB L2, USP PPP L2, USP PPP L2-L3)

Example

To set the maximum number of compressed headers:

```
G350-001(if:Serial 2/1:1.1) ip rtp max-period 48
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>The maximum number of compressed headers that can be sent until a full header is sent</td>
<td>32-65535</td>
<td>256</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR-SUB L2-L3, DS1 FR-SUB L2, USP PPP L2, USP PPP L2-L3)

Example

To allow a maximum of 512 compressed headers to be sent before a full header must be sent:

G350-001(if:Serial 2/1:1.1)# ip rtp max-period 512

__

ip rtp max-time

Use the `ip rtp max-time` command to set the maximum number of seconds between full headers.

Syntax

`ip rtp max-time number`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>The maximum number of seconds between full headers</td>
<td>1-255</td>
<td>5</td>
</tr>
</tbody>
</table>

User level

read-write
CLI Commands

Context
Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR-SUB L2-L3, DS1 FR-SUB L2, USP PPP L2, USP PPP L2-L3)

Example
To allow no more than 15 seconds to pass between the sending of full headers:
G350-001(if:Serial 2/1:1.1)# ip rtp max-time 15

ip rtp non-tcp-mode

Use the `ip rtp non-tcp-mode` command to set the type of IP header compression to perform. When set to `ietf`, the command performs IP header compression according to IPHC RFCs. When set to `non-ietf`, the command performs IP header compression compatible with other vendors, which do not strictly follow the RFCs.

Note:
ietf mode is incompatible with non-ietf mode.

Syntax

```
ip rtp non-tcp-mode {ietf | non-ietf}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ietf</td>
<td>Keyword specifying ietf mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-ietf</td>
<td>Keyword specifying non-ietf mode</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR-SUB L2-L3, DS1 FR-SUB L2, USP PPP L2, USP PPP L2-L3)

Example
To set the Serial interface to perform IPHC RFC header compression:
G350-001(if:Serial 2/1:1.1)# ip rtp non-tcp-mode ietf
ip rtp port-range

Use the ip rtp port-range command to set the range of UDP ports considered as RTP on the current interface. Set the range to be identical to the peer's configuration.

Some vendors use port range 49,152 through 65,535. For interoperability, the same port range should be used.

Syntax

ip rtp port-range {min} {max}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>The starting port range to be considered RTP</td>
<td>1025-65535</td>
<td>2048</td>
</tr>
<tr>
<td>max</td>
<td>The ending port range to be considered RTP</td>
<td>1025-65535</td>
<td>65535</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR-SUB L2-L3, DS1 FR-SUB L2, USP PPP L2, USP PPP L2-L3)

Example

To specify that ports in the range 49,152 through 65535 are RTP ports:

G350-001(if:Serial 2/1:1.1)# ip rtp port-range 49152 65535

ip simulate

Use the ip simulate command to test the action of a policy on a simulated packet.

Syntax

ip simulate policy_list_number direction [priority] [dscp_value] source destination [protocol [source_port destination_port [established]]]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy_list_number</td>
<td>The number of the policy</td>
<td>300-499</td>
<td>For ACL: 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For Qos: 400</td>
</tr>
<tr>
<td>direction</td>
<td>The direction</td>
<td>in, out</td>
<td></td>
</tr>
<tr>
<td>priority</td>
<td>The priority</td>
<td>fwd0-fwd7</td>
<td></td>
</tr>
<tr>
<td>dscp_value</td>
<td></td>
<td>dscp0-dscp63</td>
<td></td>
</tr>
<tr>
<td>source</td>
<td>The source IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>destination</td>
<td>The destination IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>protocol</td>
<td>The protocol to use</td>
<td>ip, tcp, udp, 1-255</td>
<td></td>
</tr>
<tr>
<td>source_port</td>
<td>The source port of the</td>
<td>1-65535</td>
<td></td>
</tr>
<tr>
<td></td>
<td>simulated packet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>destination_port</td>
<td>The destination port of the</td>
<td>1-65535</td>
<td></td>
</tr>
<tr>
<td></td>
<td>simulated packet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>established</td>
<td>The value of the TCP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>established bit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Serial (DS1 PPP L2, DS1 PPP L2-L3, DS1 FR-SUB L2, DS1 FR-SUB L2-L3, USP PPP L2, USP PPP L2-L3), Loopback (L2, L2-L3), FastEthernet (L2-L3, L3), Tunnel (L2, L2-L3), VLAN (L2, L2-L3)

Example

To simulate the effects of applying access control list 330 to a packet entering the media gateway through the Fast Ethernet interface, from IP address 192.67.85.12 to IP address 192.67.54.25:

G350-001(if:FastEthernet 10/2)# ip simulate 330 in 192.67.85.12 192.67.54.25 ip
ip snmp-server

Use the `ip snmp-server` command to enable the SNMP agent for the G350. Use the `no` form of the command to disable the SNMP agent for the G350. Disabling the SNMP agent also blocks SNMP traps. However, users can change SNMP configuration settings even when the agent is disabled.

Syntax

```
ip snmp-server [volatile]
no ip snmp-server
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>volatile</td>
<td>specifies that the SNMP agent is only enabled temporarily, until the system is reset</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

admin

Context

general

Example

```
G350-001(ACL 330)> ip snmp-server volatile
```

ip ssh

Use the `ip ssh` command to enable the SSH service, and set configuration parameters. Use the `no` form of the command to disable the SSH service, and close any open connections currently using SSH. When disabling the service, the G350 issues a message listing all current management interfaces. If SSH is currently the only enabled management interface, the user is warned that the remote connection will be lost.

Note:

In order to enable SSH to be used, you must configure the server host key. See the `crypto-key generate` command.
Note:
Changing the port number does not break any active connections.

Syntax
ip ssh [port port_number]
no ip ssh

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>port_number</td>
<td>The new default value of the SSH port. Changing a port number does not tear down active connections so the operator that issued the request will stay connected and will not have to reopen an SSH session.</td>
<td>1-65535</td>
<td>22</td>
</tr>
</tbody>
</table>

User level
admin

Context
general

ip tcp decompression-connections

Use the `ip tcp decompression-connections` command to control the number of TCP connections that can be decompressed on the current interface. Use the `no` form of this command to restore the default. This command only exists in a PPP encapsulated interface.

Note:
The device is currently not capable of actively compressing TCP connections, rather it decompresses TCP connections compressed on the other side of the link.

Syntax

[no] ip tcp decompression-connections [number]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>The maximum number of compressed TCP connections received on this interface that can be decompressed</td>
<td>3-256</td>
<td>16</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Serial (DS1 PPP L2, DS1 PPP L2-L3, USP PPP L2, USP PPP L2-L3)

Example

To specify that a maximum of 20 TCP connections can be decompressed on the Serial interface:

```
G350-001(if:Serial 2/1:1)# ip tcp decompression-connections 20
```

ip telnet

Use the `ip telnet` command to enable the Telnet server. Use the `no` form of the command to disable the Telnet server.

Note:

For security reasons, this command can only be executed from the Console port.

Note:

The `ip telnet` command is a secured command and will not be displayed together with the running configuration (using the `show running-config` command). To see the status of this command, use the `show protocol` command (refer to `show protocol` on page 477).

Syntax

`ip telnet [port port_number]`

`no ip telnet`
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>port_number</code></td>
<td>Changes the default port of the Telnet server</td>
<td>1-65535</td>
<td>23</td>
</tr>
</tbody>
</table>

User level
admin

Context
general

ip telnet-client

Use the `ip telnet-client` command to enable the Telnet client. Use the `no` form of the command to disable the Telnet client.

Note:
For security reasons, this command can only be executed from the console port.

Note:
The `ip telnet` command is a secured command and will not be displayed together with the running configuration (using the `show running-config` command). To see the status of this command, use the `show protocol` command (refer to [show protocol](#) on page 477).

Syntax

```
[no] ip telnet-client
```

User level
admin

Context
general
ip tftp-server

Use the `ip tftp-server` command to enable the TFTP server. Use the `no ip tftp-server` command to disable the TFTP server.

Syntax

```
[no] ip tftp-server
```

User level

Read-write

Context

general

Example

```
interface# > ip tftp-server
```

ip tftp-server file-system size

Use the `ip tftp-server file-system-size` command to set the TFTP file system size. Use the `no ip tftp-server file-system-size` command to reset the TFTP file system size.

Syntax

```
[no] ip tftp-server file-system-size <size>
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>size</code></td>
<td>The TFTP server total file size in kb.</td>
<td>256 to 19456</td>
<td>18560</td>
</tr>
</tbody>
</table>

User level

Read-write

Context

general
Example

interface# > ip tftp-server file-system-size 18128

To change ip tftp-server file system size, copy the running configuration to the start-up configuration file, and reset the device.

ip vrrp

Use the `ip vrrp` command to create a virtual router on the current interface. Use the `no` form of this command to delete a virtual router.

Syntax

```
[no] ip vrrp vr_id
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vr_id</td>
<td>The virtual router ID</td>
<td>1-255</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: FastEthernet (L2-L3, L2), VLAN (L2-L3, L2)

Example

To create virtual router #1 on the Vlan 2 interface:

G350-001(if:Vlan 2)# ip vrrp 1

ip vrrp address

Use the `ip vrrp address` command to assign an IP address to the virtual router. Use the `no` form of this command to remove an IP address from a virtual router.

Syntax

```
[no] ip vrrp vr_id address ip_address
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vr_id</td>
<td>The virtual router ID number.</td>
<td>1-255</td>
<td></td>
</tr>
<tr>
<td>ip_address</td>
<td>The IP address to assign to the virtual router</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: FastEthernet (L2-L3, L2), VLAN (L2-L3, L2)

Example

To assign address 10.0.1.2 to virtual router 1:

G350-001(if:Vlan 2)# ip vrrp 1 address 10.0.1.2

ip vrrp auth-key

Use the `ip vrrp auth-key` command to set the virtual router simple password authentication for the virtual router ID. Use the `no` form of this command to disable simple password authentication for the virtual router instance.

Syntax

`[no] ip vrrp vr_id auth-key key_string`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vr_id</td>
<td>The virtual router ID</td>
<td>1-255</td>
<td></td>
</tr>
<tr>
<td>key_string</td>
<td>The password string</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write
CLI Commands

Context
Interface: FastEthernet (L2-L3, L2), VLAN (L2-L3, L2)

Example
To specify the password authentication for virtual router 1 as “sec01”:
G350-001(if:Vlan 2)# ip vrrp 1 auth-key sec01

ip vrrp override addr owner

Use the `ip vrrp override addr owner` command to accept packets addressed to the IP address associated with the virtual router, such as ICMP, SNMP, and Telnet (if it is not the IP address owner and it is the master). Use the `no` form of this command to discard these packets.

Syntax

```
[no] ip vrrp vr_id override addr owner
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vr_id</td>
<td>The virtual router ID</td>
<td>1-255</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: FastEthernet (L2-L3, L2), VLAN (L2-L3, L2)

Example
To specify that virtual router 1 accepts ICMP, SNMP, and Telnet packets:
G350-001(if:Vlan 2)# ip vrrp 1 override addr owner
ip vrrp preempt

Use the `ip vrrp preempt` command to configure the router to preempt a lower priority master for the virtual router ID. Use the `no` form of this command to disable preemption for the virtual router instance. By default, preemption is enabled.

Syntax

```
[no] ip vrrp vr_id preempt
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vr_id</code></td>
<td>The virtual router ID</td>
<td>1-255</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: FastEthernet (L2-L3, L2), VLAN (L2-L3, L2)

Example

To specify that virtual router 1 preempts a lower priority master:

```
G350-001(if:Vlan 2)# ip vrrp 1 preempt
```

ip vrrp primary

Use the `ip vrrp primary` command to set the primary address that is used as the source address of VRRP packets for the virtual router ID. Use the `no` form of this command to restore the default primary address for the virtual router instance. By default, the primary address is selected automatically by the device.

Syntax

```
[no] ip vrrp vr_id primary ip_address
```
CLI Commands

ip vrrp priority

Use the `ip vrrp priority` command to set the virtual router priority value used when selecting a master router. Use the `no` form of this command to restore the default value.

Syntax

```
[no] ip vrrp vr_id priority pri_value
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vr_id</code></td>
<td>The virtual router ID</td>
<td>1-255</td>
<td></td>
</tr>
<tr>
<td><code>pri_value</code></td>
<td>The priority value</td>
<td>1-254</td>
<td></td>
</tr>
</tbody>
</table>

User level

`read-write`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vr_id</code></td>
<td>The virtual router ID</td>
<td>1-255</td>
<td></td>
</tr>
<tr>
<td><code>ip_address</code></td>
<td>The primary IP address of the virtual router. This address should be one of the router addresses on the fabric.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

`read-write`
Context
Interface: FastEthernet (L2-L3, L2), VLAN (L2-L3, L2)

Example
To specify the priority of virtual router 1 as 10:
G350-001(if:Vlan 2)# ip vrrp 1 priority 10

ip vrrp timer

Use the `ip vrrp timer` command to set the virtual router advertisement timer value for the virtual router ID. Use the `no` form of this command to restore the default value.

Syntax

```
[no] ip vrrp vr_id timer value
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vr_id</td>
<td>The virtual router ID</td>
<td>1-255</td>
<td></td>
</tr>
<tr>
<td>value</td>
<td>The advertisement transmit time in seconds</td>
<td>1-255</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: FastEthernet (L2-L3, L2), VLAN (L2-L3, L2)

Example
To set the virtual router advertisement timer value for virtual router 3 to 2 seconds:
G350-001(if:Vlan 2)# ip vrrp 3 timer 2
ip-fragments-in

Use the `ip-fragments-in` command to specify the action taken on incoming IP fragmentation packets for the current access control list. Use the `no` form of the command to return to the default treatment of IP fragmentation packets.

Syntax

```
ip-fragments-in operation
no ip-fragments-in
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>operation</code></td>
<td>The name of the pre-defined composite operation to execute.</td>
<td>Deny, Deny-Notify-Rst, Permit, Deny-Notify, Deny-Rst</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

ip access-control-list

Example

To execute the Deny-Notify composite-operation when IP fragmentation packets are received:

```
G350-001(ACL 330)# ip-fragments-in Deny-Notify
```

ip-option-in

Use the `ip-option-in` command to specify the treatment of packets carrying an IP option that enter the current interface. Use the `no` form of the command to return to the default treatment of IP option packets.

Syntax

```
ip-option-in action
no ip-option-in
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>action</td>
<td>The action to take</td>
<td>permit, deny, deny-notify, deny-rst, deny-notify-rst</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

ip access-control-list

Example

To specify that incoming packets with an IP option are permitted:

G350-001(ACL 330)# ip-option-in permit

ip-protocol

Use the `ip-protocol` command to specify that the current rule applies to packets having the specified IP protocol. Use the `no` form of this command to specify that the current rule applies to all packets except those having the specified IP protocol.

Syntax

```
[no] ip-protocol protocol_name | protocol_number
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol_name</td>
<td>Name of the IP protocol to match</td>
<td></td>
<td></td>
</tr>
<tr>
<td>protocol_number</td>
<td>Number of the IP protocol to match</td>
<td>1-255</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write
Context

ip access-control-list/ip-rule, ip capture-list/ip-rule, ip pbr-list/ip-rule, ip qos-list/ip-rule

Example

To specify that rule 22 applies to all packets having an IP protocol of IGMP:

G350-001(ACL 330/ip rule 22)# ip-protocol igmp

ip-rule

Use the `ip-rule` command to enter configuration mode for the specified rule. If the specified rule does not exist, the system creates it and enters its configuration mode.

Syntax

```
ip-rule {rule_index | default}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rule_index</code></td>
<td>Number of the rule to edit</td>
<td>1 – 9999</td>
<td></td>
</tr>
<tr>
<td><code>default</code></td>
<td>ip-rule number 10,000 (last rule in the ordered list of rules)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

ip access-control-list, ip qos-list, ip capture-list, ip pbr-list

Example

To enter configuration mode for ip-rule 22:

G350-001(ACL 330)# ip-rule 22
G350-001(ACL 330/ip rule 22)#
ip-rule

Use the `ip-rule` command to enter ip-rule context and create or modify a specific rule. Use the `no` form of the command to delete a specific rule.

Syntax

```
[no] ip-rule {index | default}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>Number of the ip-rule</td>
<td>1 – 1000</td>
<td></td>
</tr>
<tr>
<td>default</td>
<td>ip-rule number 10,000 (last rule in the ordered list of rules)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

ip crypto-list

Example

```
G350-001(Crypto 901)# ip-rule 21
G350-001(Crypto 901/ip rule 21)#
```

isakmp-policy

Use the `isakmp-policy` command to set the ISAKMP policy for the ISAKMP peer. Use the `no` form of the command to delete the ISAKMP policy for the ISAKMP peer.

Note:

You cannot delete an ISAKMP policy that is referenced by an ISAKMP peer that is, in turn, referenced by an active crypto map.

Syntax

```
[no] isakmp-policy id
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>The ID of the ISAKMP policy</td>
<td>1 – 20</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
crypto isakmp peer

Example
G350-001(config-peer:149.49.70.1)# isakmp-policy 20
Done!

keepalive

Use the `keepalive` command to enable PPP keepalive, in order to maintain a persistent connection. Entering `keepalive` without a parameter returns the keepalive to its default value. Use the `no` form of this command to disable PPP keepalive.

Syntax

```
[no] keepalive [seconds]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>The number of seconds between PPP keepalive messages. Entering <code>keepalive 0</code> disables keepalive.</td>
<td>0-32767</td>
<td>10</td>
</tr>
</tbody>
</table>

User level
read-write
Context
Interface: Serial (DS1 PPP L2, DS1 PPP L2-L3, DS1 FR L2, USP PPP L2, USP PPP L2-L3, USP FR L2)

Example
To enable PPP keepalive, and generate a message every 300 seconds:

G350-001(if:Serial 2/1)# keepalive 300

keepalive

Use the keepalive command to enable the extended keepalive mechanism on an interface. Extended keepalive provides status information about the interface based on the IP state of the link. Use the no form of the command to disable extended keepalive on the interface.

Syntax
keepalive ip_address next_hop_mac_address
no keepalive

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_address</td>
<td>The destination address whose status is reported on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>next_hop_mac_address</td>
<td>The next hop address (for the Ethernet port only)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: FastEthernet (L2, L2-L3), Tunnel (L2, L2-L3)

Example
To enable extended keepalive on the FastEthernet 10/2 interface for destination IP address 192.15.6.34:

G350-001(if:FastEthernet 10/2)# keepalive 192.15.6.34
keepalive failure-retries

Use the `keepalive` failure-retries command to specify the number of keepalive packets that are sent without a response before the interface is declared to be down. Using this command without a parameter resets the failure-retry value to the default value of 4.

Syntax

```
keepalive failure-retries retries
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>retries</code></td>
<td>The number of retries</td>
<td>1-32</td>
<td>4</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: FastEthernet (L2, L2-L3), Tunnel (L2, L2-L3)

Example

To specify that the FastEthernet interface is declared down after 10 keepalive packets are sent without response:

```
G350-001(if:FastEthernet 10/2)# keepalive failure-retries 10
```

keepalive interval

Use the `keepalive interval` command to specify the interval in seconds between keepalive packets. Using this command without a parameter resets the interval value to its default.

Syntax

```
keepalive interval seconds
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>The interval between keepalive packets, in seconds.</td>
<td>1-36</td>
<td>5</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: FastEthernet (L2, L2-L3), Tunnel (L2, L2-L3)

Example

To set the interval between keepalive packets on the FastEthernet 10/2 interface to be 15 seconds:

G350-001(if:FastEthernet 10/2)# keepalive interval 15

keepalive source-address

Use the `keepalive source-address` command to specify the source IP address of the keepalive packets. Using this command with no parameter resets the source IP address value to the IP address of the interface.

Syntax

`keepalive source-address ip_address`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_address</td>
<td>The source IP address of the keepalive packets</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write
keepalive success-retries

Use the `keepalive success-retries` command to specify the number of keepalive packets that must be sent and successfully responded to before the interface is declared to be up. Using this command without a parameter resets the success-retry value to the default value.

Syntax

```
keepalive success-retries retries
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>retries</td>
<td>The number of successful keepalive packets to require</td>
<td>1-32</td>
<td>1</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: FastEthernet (L2, L2-L3), Tunnel (L2, L2-L3)

Example

To specify that 5 keepalive packets must be send and successfully responded to in order for the FastEthernet interface to be declared up:

```
G350-001(if:FastEthernet 10/2)# keepalive success-retries 5
```
keepalive timeout

Use the `keepalive timeout` command to specify the time in seconds within which a keepalive response must be received. Using this command without a parameter resets the keepalive service to its default timeout value.

Syntax

```
keepalive timeout seconds
```

no keepalive

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>The number of seconds to wait for a response</td>
<td>1-10</td>
<td>1</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: FastEthernet (L2, L2-L3), Tunnel (L2, L2-L3)

Example

To specify a timeout value of 6 seconds for keepalive packets on the FastEthernet interface:

```
G350-001(if:FastEthernet 10/2)# keepalive timeout 6
```
lifetime

Use the `lifetime` command to set the lifetime of the ISAKMP SA in seconds. Use the `no` form of the command to return the lifetime to the default value.

Note:

You cannot change the lifetime settings of an ISAKMP policy referenced by an ISAKMP peer that is linked to a crypto map.

Syntax

`[no] lifetime seconds`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seconds</code></td>
<td>The number of seconds defining the lifetime of the ISAKMP SA</td>
<td>60-86,400 (1 min. to 24 hrs)</td>
<td>86,400</td>
</tr>
</tbody>
</table>

User level

read-write

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seconds</code></td>
<td>The duration of the lease, in seconds</td>
<td>Unsigned integer 32</td>
<td>691200 (8 days)</td>
</tr>
<tr>
<td><code>infinite</code></td>
<td>Sets the lease to permanent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

dhcp pool

Example

To set a lease of 1 day:

```
G350-001(DHCP 5)# lease 86400
```
Context
crypto isakmp policy

Example
G350-001(config-isakmmp:1)# lifetime 100
Done!

line

Use the line command to add a line to the current banner message.

Syntax
line number [string]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>The line number to add the specified text</td>
<td>1–24</td>
<td></td>
</tr>
<tr>
<td>string</td>
<td>The text to display on the specified line</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
To define a string that includes spaces, enclose the entire string in quotation marks (for example, “New York”).

User level
admin

Context
banner login, banner post-login

Example
To specify text for the third line of the banner displayed after a successful login:

G350-001(super-banner-post-login)# line 3 “Welcome to the G350 Media Gateway CLI Interface”
linecode

Use the linecode command to specify the type of line-code transmission for the an E1 line. Use the no form of the command to restore the default line-code value of hbd3.

Note:
Normally the E1 service provider determines which type of line-code is required for your E1 circuit.

Syntax

linecode {ami|hdb3}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ami</td>
<td>Keyword that specifies the Alternate Mode Inversion line-code type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hbd3</td>
<td>Keyword that specifies the High-Density Bipolar 3 line-code type</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Controller (E1)

Example
To set the line-code type to ami:

G350-001(controller:5/1)# linecode ami

linecode

Use the linecode command to specify the type of line-code transmission for the a T1 line. Use the no form of the command to restore the default line-code value of b8zs.

Note:
Normally the T1 service provider determines which type of line-code is required for your T1 circuit.
Syntax

```
linecode {ami|b8zs}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ami</td>
<td>Keyword that specifies the Alternate Mode Inversion line-code type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b8zs</td>
<td>Keyword that specifies the B8ZS line-code type</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Controller (T1)

Example

To set the line-code type to ami:

```
G350-001(controller:5/1)# linecode ami
```

load-interval

Use the `load-interval` command to set the load calculation interval for an interface. Use the `no` form of the command to restore the load calculation to its default value.

Note:

The load interval must be in increments of 30 seconds.

Syntax

```
load-interval seconds
no load-interval
```
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>load-interval</td>
<td>The load calculation interval, in seconds. This parameter must be divisible by 30.</td>
<td>30-600</td>
<td>300</td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR L2, USP PPP L2-L3, USP PPP L2, USP FR L2), FastEthernet (L2, L2-L3), VLAN (L2-L3, L2), Loopback (L2-L3, L2), Tunnel (L2, L2-L3)

Example
To set the load calculation interval to 60 seconds:

G350-001(if:Serial 2/1:1)# load-interval 60

local-address

Use the local-address command to set the local IP address for the IPSec tunnels derived from the crypto-list. Use the no form of the command to delete the local IP address.

Note:
You must configure a local address before activating a list.

Note:
You cannot change or delete the local address of an active list.

Syntax

[no] local-address {ip-interface-address}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-interface-address</td>
<td>The local IP address.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
ip crypto-list

Example
G350-001(crypto 901)# local-address 192.168.49.1
Done!

loopback diag

Use the `loopback diag` command to activate a Loopback signal on the Serial interface. Use the `no` form of the command to deactivate the Loopback signal.

Syntax

```
[no] loopback diag
```

User level
read-write

Context
Interface: Controller

Example
To activate a Loopback signal on the current interface:

```
G350-001(if:Serial 5/1)# loopback diag
```

loopback local

Use the `loopback local` command to activate a Loopback signal on the Serial interface. Use the `no` form of the command to deactivate the Loopback signal.

Syntax

```
loopback local loopback_type
no loopback local
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>loopback_type</td>
<td>The type of information to loop back</td>
<td>line, payload</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Controller

Example
To activate a loopback signal with payload information:

G350-001(if:Serial 5/1)# loopback local payload

loopback remote

Use the `loopback remote` command to request a remote station to activate a Loopback signal on the Serial interface. Use the `no` form of the command to deactivate the Loopback signal.

Syntax

`loopback remote loopback_type`
`no loopback remote`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>loopback_type</td>
<td>The type of information to loop back</td>
<td>line, payload</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Controller (T1)
Example

To request that a loopback signal be sent with payload information:

G350-001(if:Serial 5/1)# loopback remote payload

map-class frame-relay

Use the map-class frame-relay command to create a QoS template named map_class_name, which can later be assigned to DLCIs.

Use the no form of this command to delete a map class.

Note:

This command fails if the map class is currently associated with a DLCI.

Syntax

[no] map-class frame-relay map_class_name

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>map_class_name</td>
<td>The name of a map class configured by the user</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

genral

Example

To create a map class named mySVoip1:

G350-011# map-class frame-relay mySVoip1
G350-011(map-class)#
mtu

Use the **mtu** command to set the current interface’s Maximum Transmission Unit (MTU). Use the **no** form of this command to restore the interface’s MTU to its default value.

Note:
The Size in bytes parameter specifies the Layer 3 packet size. Layer 2 headers are added to the packet afterwards. The Layer 2 headers vary in size, depending on the type of interface. Thus the total size of the MTU is the sum of the size_in_bytes value and the Layer 2 headers.

Syntax

```
[no] mtu size_in_bytes
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>size_in_bytes</td>
<td>The Maximum Transmission Unit in bytes</td>
<td>64-1500</td>
<td>1500</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR L2, USP FR L2, USP PPP L2, USP PPP L2-L3), FastEthernet (L2, L2-L3)

Example

To specify the Maximum Transmission Unit for the Serial 2/1:1 interface to be 1000 bytes:

```
G350-001(if:Serial 2/1:1)# mtu 1000
```
name

Use the `name` command to assign a name to the specified list or operation. Use the `no` form of the command to return the name to the default value.

Syntax

```
[no] name name
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of the list or operation. Note: if you wish to include spaces in the description, you must enclose the string in quotation marks ("").</td>
<td>String of 1-31 characters.</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

dhcp pool, dhcp pool vendor specific, dhcp pool option, ip qos-list, ip qos-list dscp-table, ip qos-list composite-operation, ip access-control-list, ip next-hop-list, ip capture-list, ip pbr-list.

Example

To specify the name of access control list 330 as “Admin13”:

```
G350-001(ACL 330)# name Admin13
```

network

Use the `network` command to specify a list of networks on which the RIP is running. Use the `no` form of this command to remove an entry.

Syntax

```
[no] network ip_address [wildcard_mask]
```
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_address</td>
<td>The IP address of the network of directly connected networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wildcard_mask</td>
<td>The wildcard mask address number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Router: RIP

Example
To specify that RIP is used on all interfaces connected to the network 192.168.37.0:

G350-001(router:rip)# network 192.168.37.0

network

Use the network command to enable OSPF in this network. Use the no form of this command to disable OSPF in this network. The default value is disabled.

Syntax

```
network net_addr [wildcard_mask [area area_id]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>net_addr</td>
<td>The IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wildcard_mask</td>
<td>The wildcard mask</td>
<td></td>
<td></td>
</tr>
<tr>
<td>area</td>
<td>Keyword specifying an area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>area_id</td>
<td>The area ID number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
Router: ospf

Example
To enable OSPF on the range of IP addresses from 192.168.0.0 to 192.168.255.255 in area ID 0.0.0.0:

G350-001(router:ospf)# network 192.168.0.0 0.0.255.255 area 0.0.0.0

next-hop

Use the `next-hop` command to specify the next-hop policy to use when the current rule is applied.

Syntax

`next-hop {list list_number | DBR}`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>list_number</code></td>
<td>The next-hop list to be used for the current rule</td>
<td>1-20</td>
<td></td>
</tr>
<tr>
<td><code>DBR</code></td>
<td>Use destination based routing (not policy based routing) for the current rule</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
ip-pbr-list/ip-rule

Examples

G350-001# next-hop list 1
G350-001# next-hop DBR
next-hop-interface

Use the `next-hop-interface` command to add the specified interface to the next hop path for this next-hop list. Use the `no` form of this command to delete an interface from the next-hop list.

Syntax

```
next-hop-interface {index | interface_name}
no next-hop-interface {index}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>index</code></td>
<td>The index in the array of next-hops belonging to the specific next-hop-list</td>
<td>1-20</td>
<td></td>
</tr>
<tr>
<td><code>interface_name</code></td>
<td>The specified next-hop interface name</td>
<td>The layer2 interfaces: (Serial, Gre Tunnel, null0).</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

ip next-hop-list

Example

```
G350-001> next-hop-interface 3 Serial5/1:0
```
next-hop-ip

Use the **next-hop-ip** command to add the specified ip address to the next hop path for this next-hop list. Use the **no** form of this command to delete an ip address from the next-hop list.

Syntax

```
next-hop-ip {index | ip_address}
no next-hop-ip {index}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>hop_number</td>
<td>The index in the array of next-hops belonging to the specific next-hop-list</td>
<td>1-20</td>
<td></td>
</tr>
<tr>
<td>ip_address</td>
<td>The specified next-hop IP address</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

ip next-hop-list

Example

```
G350-001> next-hop-ip 2 149.49.200.2
```

next-server

Use the **next-server** command to specify the IP address of the next server in the boot process of a DHCP client. Use the **no** form of this command to clear the next server IP address.

Syntax

```
[no] next-server ip-address
```
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>The IP address of the next server in the boot process of a DHCP client</td>
<td>IP address</td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>

User level
read-write

Context
dhcp pool

Example
To set 1.1.1.1 as the IP address of the next server in the boot process of a DHCP client:
G350-001(DHCP 5)# next-server 1.1.1.1
To clear the next server IP address:
G350-001(DHCP 5)# no next-server

nrzi-encoding

Use the `nrzi-encoding` command to enable the non-return-to-zero inverted (NRZI) line coding format on the specified interface. Use the `no` form of the command to disable NRZI encoding.

Syntax

```plaintext
[no] nrzi-encoding
```

User level
read-write

Context
Interface: Serial (USP FR L2, USP PPP L2, USP PPP L2-L3)
nvram initialize

Use the `nvram initialize` command to reset the NVRAM parameters to the factory default values. This command is an alias for `erase startup-config` (refer to `erase startup-config` on page 140).

Syntax

```
nvram initialize
```

User level

read-write

Context

general

Example

To reset the configuration parameters for the device:

```
G350-001# nvram initialize
This command will restore factory defaults, and can disconnect your telnet session
*** Reset *** - do you want to continue (Y/N)? Y
Connection closed by foreign host.
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>option-num</td>
<td>The index of the DHCP option</td>
<td>1-255 The following are exceptions: options configurable with specific commands and options that are part of the DHCP protocol, which are: 0, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 255.</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
dhcp pool

Example
To enter the context for option 42:
G350-001(DHCP 5)# option 42
G350-001(DHCP 5/option 42)#

owner

Use the owner command to specify the owner of the current list.

Syntax
owner owner_name

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>owner_name</td>
<td>Name of the owner</td>
<td>string</td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
ip access-control-list, ip qos-list, ip capture-list, ip pbr-list, ip crypto-list

Example
To set the owner of access control list 330 as “MGAdmin3”:
G350-001(ACL 330)# owner MGAdmin3

passive-interface

Use the `passive-interface` command to suppress OSPF routing updates on the interface.

Syntax

`passive-interface {interface_name | net_address}`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface_name</td>
<td>Name of the interface on which to suppress routing updates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>net_address</td>
<td>IP address of the interface on which to suppress routing updates</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
router ospf

Example
To suppress OSPF routing updates on the Fast Ethernet interface:
G350-001(router:ospf)# passive-interface FastEthernet 10/2.1
To suppress OSPF routing updates on the interface at IP address 192.168.1.1:
G350-001(router:ospf)# passive-interface 192.168.1.1
ping

Use the `ping` command to send ICMP packets to a target system. The ping command is useful for checking host reachability and network connectivity.

Syntax

```
ping host [interval [size[timeout[source_address]]]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>host</code></td>
<td>The IP address of the target system</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>interval</code></td>
<td>The number of seconds between successive ICMP packets</td>
<td>1-256</td>
<td>1</td>
</tr>
<tr>
<td><code>size</code></td>
<td>The size, in bytes, of the packet sent when pinging</td>
<td>22-65500</td>
<td>50</td>
</tr>
<tr>
<td><code>timeout</code></td>
<td>The timeout in seconds</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td><code>source_address</code></td>
<td>IP address from which to send the ICMP packets</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To send test 50-byte packets to IP address 192.168.49.1 from IP address 192.168.49.4 every three seconds, timing out after five seconds:

```
G350-001> ping 192.168.49.1 3 50 5 192.168.49.4
```
pmi

Use the `pmi` command to define this interface as the Primary Management Interface for the system.

Syntax

`pmi`

User level

read-write

Context

Example

To define the VLAN 1 interface as the Primary Management Interface:

```
G350-001# interface vlan 1
G350-001(if:Vlan 1)# pmi
```

ppp authentication

Use the `ppp authentication` command to select the authentication method used when closing a PPP server or client session.

Note:

The value set for `ppp authentication`, affects both the USB-modem and the Console interface, simultaneously.

Syntax

`ppp authentication {pap|chap|none}`
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pap</td>
<td>Keyword indicating the Password Authentication Protocol. An unencrypted password is sent for authentication. This is the default.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chap</td>
<td>Keyword indicating the Challenge Handshake Authentication Protocol. An encrypted password is sent for authentication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>Keyword indicating that no password is sent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Console, USB-modem

Example
To select the CHAP authentication protocol:

```
G350-001(if:CON)# ppp authentication chap
```

ppp chap hostname

Use the `ppp chap hostname` command to override the device hostname for PPP CHAP authentication.

Syntax

```
ppp chap hostname string
no ppp chap hostname
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>The username assigned by the broadband internet service provider</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

User level
Read-write

Context
Interface: Fast Ethernet

Example
G350-001(super-if:FastEthernet 10/2)# ppp chap hostname avaya32

ppp chap password

Use the `ppp chap password` command to set the CHAP password for authentication with a remote peer.

Note:
Executing the `copy running-config startup-config` command stores the configured CHAP password to the NVRAM and not to the 'startup-config' file.

Note:
This command sets the CHAP secret for cases where the device is a CHAP responder, and the console port `ppp chap-secret` command sets the CHAP secret for cases where the device is a CHAP initiator.

Syntax
`ppp chap password secret`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>secret</td>
<td>The CHAP password.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

User level
Read-write

Context
Interface: Fast Ethernet

Example
G350-001(super-if:FastEthernet 10/2)# ppp chap password 123456

ppp chap refuse

Use the `ppp chap refuse` command to prevent authentication with CHAP, even when a chap secret is configured.

Syntax

```
ppp chap refuse
no ppp chap refuse
```

User level
Read-write

Context
Interface: Fast Ethernet

Example
G350-001(super-if:FastEthernet 10/2)# ppp chap refuse

ppp chap-secret

Use the `ppp chap-secret` command to configure the shared secret used in PPP sessions with CHAP authentication.

Note:
The value set for `ppp chap-secret` affects both the USB-modem and the Console interface, simultaneously.

Syntax

```
ppp chap-secret chap_secret
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>chap_secret</td>
<td>The shared secret string</td>
<td>4-32 chars</td>
<td></td>
</tr>
</tbody>
</table>

User level
admin

Context
Interface: Console, USB-modem

Example
To set the shared secret to “mypwd3”:
G350-001(super-if:CON)# ppp chap-secret mypwd3
PPP shared secret for CHAP authentication is set

ppp pap refuse

Use the `ppp pap refuse` command to prevent authentication with PAP, even when a pap-sent password is configured.

Syntax

ppp pap refuse

no ppp pap refuse

User level
Read-write

Context
Interface: Fast Ethernet

Example
G350-001(super-if:FastEthernet 10/2)# ppp pap refuse
ppp pap-sent username

Use the `ppp pap-sent username` command to set the Password Authentication Protocol (PAP) password for authentication with the remote peer.

Note:
Executing the `copy running-config startup-config` command stores the configured username/password to the NVRAM and not to the 'startup-config' file.

Syntax

```
ppp pap-sent username <username> password <password>
no ppp pap-sent username
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>username</code></td>
<td>The remote peer PAP username</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>password</code></td>
<td>The remote peer PAP password</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
Read-write

Context
Interface: Fast Ethernet

Example

```
G350-001(super-if:FastEthernet 10/2)# ppp pap-sent username avaya32 password 123456
```

ppp timeout ncp

Use the `ppp timeout ncp` command to set the maximum time, in seconds, that PPP allows for negotiation of a network layer protocol. If no network protocol is negotiated within the given time, the connection is terminated. Use the `no` form of the command to disable the timeout feature.
Syntax

```plaintext
[no] ppp timeout ncp seconds
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seconds</code></td>
<td>The time in seconds that PPP allows for negotiation of a network layer protocol</td>
<td>1-65535</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, USP PPP L2-L3, USP PPP L2)

Example

To specify that PPP will allow 60 seconds for negotiation of a network protocol:

```
G350-001# ppp timeout ncp 60
```

ppp timeout retry

Use the `ppp timeout retry` command to set the maximum time to wait for a response during PPP negotiation. Use the `no` form of the command to restore the timeout value to its default.

Syntax

```
[no] ppp timeout retry seconds
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seconds</code></td>
<td>The authentication timeout in seconds</td>
<td>1-255</td>
<td>2</td>
</tr>
</tbody>
</table>

User level

read-write
CLI Commands

Context
Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, USP PPP L2-L3, USP PPP L2)

Example
To specify that PPP will wait up to 30 seconds for a response during negotiation:
G350-001# ppp timeout retry seconds

pppoe-client persistent delay

Use the `pppoe-client persistent delay` command to configure the interval between pppoe-client dial attempts.

Syntax

`pppoe-client persistent delay <seconds>`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>The time in seconds to wait.</td>
<td>5-10000</td>
<td>30</td>
</tr>
</tbody>
</table>

User level
Read-write

Context
Interface: Fast Ethernet

Example
G350-001(super-if:FastEthernet 10/2)# pppoe-client persistent delay 1

pppoe-client persistent max-attempts

Use the `pppoe-client persistent max-attempts` command to limit the number of consecutive connection establishment retries. When the number is reached, the PPPoE client stops trying to establish connections. To restart the connection attempts, use the `shutdown` and `no shutdown` command sequence.
Syntax

`pppoe-client persistent max-attempts number`

`no pppoe-client persistent max-attempts`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>number</code></td>
<td>The number of attempts.</td>
<td>0-10000</td>
<td>0 (no limit)</td>
</tr>
</tbody>
</table>

User level

Read-write

Context

Interface: Fast Ethernet

Example

```
G350-001(super-if:FastEthernet 10/2)# pppoe-client persistent max-attempts 0
```

pppoe-client service-name

Use the `pppoe-client service-name` command to set the PPPoE Client service-name. You can use the `pppoe-client service-name` command to force the PPPoE client to connect only to access concentrators that support a specific service-name. If not set, the PPPoE client attempts to automatically discover the service name by initiating PADI frames with a blank service name.

Syntax

`pppoe-client service-name string`

`no pppoe-client service-name string`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>string</code></td>
<td>The service name.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

User level
Read-write

Context
Interface: Fast Ethernet

Example
G350-001(super-if:FastEthernet 10/2)# pppoe-client service-name isp1

pppoe-client wait-for-ipcp

Use the `pppoe-client wait-for-ipcp` command to configure the amount of time between PPPoE tunnel establishment and IPCP tunnel establishment. The PPPoE client terminates the PPPoE tunnel if this time is exceeded.

Note:
The PPP stack has a somewhat similar command: `ppp timeout ncp`. However while this command only terminates the LCP, the `pppoe-client wait-for-ipcp` command terminates the PPPoE tunnel.

Syntax

`pppoe-client wait-for-ipcp seconds`

`no pppoe-client wait-for-ipcp seconds`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seconds</code></td>
<td>The number of seconds to wait.</td>
<td>5-10000</td>
<td>20</td>
</tr>
</tbody>
</table>

User level
Read-write

Context
Interface: Fast Ethernet

Example
G350-001(super-if:FastEthernet 10/2)# pppoe-client wait-for-ipcp 30
pre-classification

Use the `pre-classification` command to specify which priority tag the current QoS list uses for data flows. Use the `no` form of the command to reset the QoS list to use the default priority tag, `trust-cos-dscp`.

Syntax

```
pre-classification tag_type
no pre-classification
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tag_type</code></td>
<td>The type of priority tag used with data flows</td>
<td><code>untrusted, trust-cos, trust-dscp, trust-cos-dscp</code></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

ip qos-list

Example

To specify that the current QoS list uses the dscp priority tag:

```
G350-001(QoS 440)# pre-classification trust-dscp
```

pre-shared-key

Use the `pre-shared-key` CLI command to configure the IKE pre-shared key. Use the `no` form of the command to delete the IKE pre-shared key.

⚠️ **Tip:**

You can use the command `crypto isakmp suggest-key` on page 116 to generate a key.
Syntax

```
[no] pre-shared-key key
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>key</td>
<td>The pre-shared key</td>
<td>1-127 characters.</td>
<td>32 chars</td>
</tr>
</tbody>
</table>

User level
read-write

Context
crypto isakmp peer

Example

```
G350-001(config-peer:149.49.70.1)# pre-shared-key GNpi1odGNBrB5z4GJLzI56jDmRWAGFES
Done!
```

priority-queue

{TBD}

protect crypto map

Use the `protect crypto map` command to protect traffic that matches this rule, by applying the IPSec processing configured by the specific crypto map.

Use the `no protect` command to specify that traffic matching this IP rule should not be protected. Traffic that matches this rule bypasses IPSec processing, and continues unprotected.

Note:

You cannot enable or disable crypto map protection when the crypto-list is active. You must first deactivate the list using the `no ip crypto-group` command in the context of the interface on which the crypto-list is activated.
Syntax

`protect crypto map crypto-map-id`
`no protect`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>crypto-map-id</code></td>
<td>The ID of the crypto map</td>
<td>1-50</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

crypto map/ip-rule

Examples

G350-001(crypto 901/ip rule 21)# protect crypto map 5
Done!

G350-001(crypto 901/ip rule 22)# no protect
Done!

queue-limit

Use the `queue-limit` command to set the packet size of the various queues. Use the `no` form of the command to restore the packet size to its default value, using the interface bandwidth.

Note:

The `queue-limit` command is not applicable in fair-voip-queue mode.

Syntax

`queue-limit queue_id size`
`no queue-limit`
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>queue_id</td>
<td>The queue priority ID</td>
<td>1 (highest) - 4 (lowest)</td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>The size of the queue, in packets</td>
<td>The total number of packets in all queues cannot exceed 5000.</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR L2, USP PPP L2-L3, USP PPP L2), FastEthernet(L2-L3, L2)

Example
To specify a size of 200 for queue 1:
G350-001(if:Serial 2/1:1)# queue-limit 1 200

redistribute

Use the `redistribute` command to redistribute routing information from other protocols into OSPF. Use the `no` form of this command to disable redistribution by OSPF.

Syntax

```
[no] redistribute protocol
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol</td>
<td>The protocol to be used</td>
<td>static, connected, rip</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write
Context
Router: ospf

Example
To redistribute static routing information into OSPF:
G350-001(router:ospf)# redistribute static

redistribute

Use the `redistribute` command to redistribute routing information from another protocol into RIP. Use the `no` form of this command to restore the default value, disable redistribution by RIP.

Syntax

```
[no] redistribute protocol
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>protocol</code></td>
<td>The protocol to be used</td>
<td>static, OSPF</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Router-RIP

Example
To redistribute OSPF routing information into RIP:
G350-001(router:rip)# redistribute ospf
release voip-dsp

Use the `release voip-dsp` command to end a BTR test on the VoIP engine. See also: `busyout voip-dsp` on page 48, `test voip-dsp` on page 549.

Note:
Status changes that occur during the test create SNMP traps.

Note:
View the results of the most recent BTR test with the `show mm` command (refer to `show mm` on page 461).

Syntax

```plaintext
release voip-dsp
```

User level

read-write

Context

general

remote

Use the `remote` command to reset the far end counters on a T1 line.

Syntax

```plaintext
remote fdl_request_type
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fdl_request_type</code></td>
<td>The type of counters to reset</td>
<td>reset-performance-monitoring-counters, reset-errored-esf-data</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write
Context

Interface: Controller (T1)

Example

To reset performance monitoring counters:

G350-001(controller:5/1)# remote reset-performance-monitoring-counters

reset

Use the **reset** command to reset a specified system resource. The command performs a hard reset of the specified entity, returning any selectable parameters to their startup configuration values and setting all hardware and firmware to a known state.

Note:

If the Supervisor modules are in Active/Standby configuration, resetting the active supervisor causes the standby supervisor to take over and become active.

Note:

The reset command does not work while the configuration is being saved.

Syntax

```
reset [module module_number | voip | chassis]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Keyword indicating to reset a module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>module_number</td>
<td>The module to reset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>voip</td>
<td>Keyword indicating to reset the VoIP engine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chassis</td>
<td>Keyword indicating to reset the G350 and all its media modules</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general
Example
To reset the VoIP engine:

G350-001# reset voip
This command will perform a hard reset.
Do you want to continue (Y/N)? y

retstatus

Use the **retstatus** command to show whether or not the last CLI command you performed was successful.

Syntax

```
retstatus
```

User level

read-only

Context

general

Example

To display the status of the most recently executed command:

G350-001> retstatus
Succeeded
G350-001> retstatus
Failed

rmon alarm

Use the **rmon alarm** command to create an RMON alarm entry. Use the **no** form of this command to destroy a specific RMON alarm.

Note:

The **rising_event** and **falling_event** events must be defined before using the **rmon alarm** command (refer to **rmon event** on page 272).
Syntax

```
no rmon alarm alarm_num
```

```
Syntax

rmon alarm alarm_num variable interval sample_type
rising-threshold rising_threshold_value rising_event
falling-threshold falling_threshold_value falling_event
startup_alarm owner
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm_num</td>
<td>The index number of this alarm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>variable</td>
<td>The OID of the statistic to monitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interval</td>
<td>The number of seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sample_type</td>
<td>The type of sample used for the alarm</td>
<td>absolute, delta</td>
<td></td>
</tr>
<tr>
<td>rising_threshold_value</td>
<td>The value above which the rising_event will be triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rising_event</td>
<td>The event index to trigger when rising_threshold_value is exceeded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>falling_threshold_value</td>
<td>The value below which the falling_event will be triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>falling_event</td>
<td>The event index to trigger when falling_threshold_value is reached</td>
<td></td>
<td></td>
</tr>
<tr>
<td>startup_alarm</td>
<td>The prerequisite condition for triggering the alarm for the first time</td>
<td>rising, falling, risingOrFalling</td>
<td></td>
</tr>
<tr>
<td>owner</td>
<td>The username of the alarm owner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general
Example

To create an RMON alarm entry:

G350-003(super)# rmon alarm 1 1.3.6.1.2.1.16.1.1.1.5.16777216 20 delta rising-threshold 10000 32 falling-threshold 1000 32 risingOrFalling root
alarm 1 was created successfully

rmon event

Use the rmon event command to create an RMON event entry. The RMON event can then be triggered as part of an RMON alarm. To create an RMON alarm, refer to rmon alarm on page 270. Use the no form of this command to delete a specific RMON event entity.

Syntax

rmon event event_num event_type description description owner owner
no rmon event event_num

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>event_num</td>
<td>The index number of the event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>event_type</td>
<td>The type of event</td>
<td>log, trap, logAndTrap, none</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>The event description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>owner</td>
<td>The username of the event owner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example

To create an RMON event entry:

G350-001# rmon event 32 trap description resetTrap owner config
event 32 was created successfully
rmon history

Use the `rmon history` command to create an RMON history entry. Use the `no` form of this command to delete an existing history entry.

Syntax

```
rmon history history_index module/port interval interval buckets buckets owner owner
no rmon history history_index
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>history_index</code></td>
<td>The index of the history item</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>module</code></td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>port</code></td>
<td>The port on the specified module</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>interval</code></td>
<td>The bucket interval for the history item</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>buckets</code></td>
<td>The number of time intervals over which to save history data</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>owner</code></td>
<td>The username of the history item owner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To create an RMON history entry:

```
G350-001# rmon history 32 10/2 interval 20 buckets 100 owner config
history index 32 was created successfully
```
router ospf

Use the `router ospf` command to enable OSPF protocol on the system and to enter the router configuration context. Use the `no` form of this command to restore the default value, and disable OSPF globally.

Syntax

```
[no] router ospf
```

User level

read-write

Context

general

router rip

Use the `router rip` command to enable the RIP and to enter the router configuration context. Use the `no` form of this command to restore the default value, and disable RIP.

Syntax

```
[no] router rip
```

User level

read-write

Context

general

router vrrp

Use the `router vrrp` command to enable VRRP routing globally. Use the `no` form of this command to disable VRRP routing.

Note:

You cannot activate both VRRP and SRRP protocols at the same time.
Syntax

[no] router vrrp

User level

read-write

Context

general

rtp-stat clear

Use the rtp-stat clear command to reset the RTP statistics application. When you reset the application, all counters are reset and the RTP statistics history is erased.

Syntax

rtp-stat clear

User level

read-write

Context

General

Example

G350-001# rtp-stat clear

rtp-stat event-threshold

Use the rtp-stat event-threshold command to set thresholds on the QoS event counters incremented by the RTP statistics application. If one or more event threshold is exceeded during an RTP stream and the RTP statistics application is configured to generate QoS SNMP traps, a trap is generated upon termination of the RTP stream. Use the rtp-stat qos-trap command to configure the RTP statistics application to automatically generate QoS traps. Use the rtp-stat threshold command to configure the QoS metric thresholds. Event thresholds should be configured such that the sending of a trap corresponds to a customer’s actual experience of QoS problems during the stream.
CLI Commands

Syntax

```
rtp-stat event-threshold
   {all|codec-loss|codec-rtt|echo-return-loss|loss|remote-loss|rtt|
    jitter|remote-jitter|ssrc-change} num
```

```
o rtp-stat event-threshold
   {all|codec-loss|codec-rtt|echo-return-loss|loss|remote-loss|rtt|
    jitter|remote-jitter|ssrc-change}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Sets all event thresholds to the specified number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>codec-loss</td>
<td>Sets the event threshold for the codec-loss metric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>codec-rtt</td>
<td>Sets the event threshold for the codec-rtt metric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>echo-return-loss</td>
<td>Sets the event threshold for the echo-return-loss metric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>loss</td>
<td>Sets the event threshold for the loss metric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remote-loss</td>
<td>Sets the event threshold for the remote-loss metric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rtt</td>
<td>Sets the event threshold for the rtt metric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jitter</td>
<td>Sets the event threshold for the jitter metric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remote-jitter</td>
<td>Sets the event threshold for the remote-jitter metric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ssrc-change</td>
<td>Sets the event threshold for the ssrc-change metric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>num</td>
<td>The number of events</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write
Context
General

Example
To set rtp-stat event-thresholds:

G350-001(super)# rtp-stat event-threshold echo-return-loss 2
Done!

rtp-stat fault

Use the rtp-stat fault command to configure the RTP statistics application to send QoS fault and/or clear traps. A QoS fault trap is sent when a specified number of active RTP sessions have QoS indicators over the configured thresholds. A QoS clear trap is sent after a QoS fault trap when the number of active RTP sessions with QoS indicators over the configured thresholds reduces to a specified number.

Syntax

rtp-stat fault [fault [clear]]
[no] rtp-stat fault

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>fault</td>
<td>A minimum number of sessions suffering bad QoS to trigger the QoS fault condition</td>
<td>1-100</td>
<td></td>
</tr>
<tr>
<td>clear</td>
<td>A maximum number of sessions that suffer from bad QoS to clear the QOS fault condition</td>
<td>0-99</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
General
Example
To set fault/clear trap boundary:
G350-001(super)# rtp-stat fault 1 0

The fault trap boundary was set to 1 (default: 3)
The clear trap boundary was set to 0

rtp-stat min-stat-win

Use the rtp-stat min-stat-win command to set the minimum statistic window for the RTP statistics application. That is, the minimum number of observed RTP sequence increments for which the application evaluates packet loss. Use the no form of this command to reset the minimum statistic window.

The G350 VoIP engine evaluates the current received packet loss in fixed intervals of 6 to 12 seconds. The G350 VoIP engine postpones loss estimation to the next interval if the number of received packets is less than the minimum statistic window.

Syntax
[no] rtp-stat min-stat-win packets

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>packets</td>
<td>The minimum number of observed RTP sequence increments for which the application evaluates packet loss</td>
<td>10-1000</td>
<td></td>
</tr>
</tbody>
</table>

User Level
read-write

Example
To set the minimum statistic window to 50:
G350-001# rtp-stat min-stat-win 50
rtp-stat qos-trap

Use the `rtp-stat qos-trap` command to configure the RTP Statistics application to automatically send a QoS trap upon the termination of an RTP stream in which one or more QoS event counters exceeded their configured thresholds. The traps are sent by an SNMP agent to the SNMP trap manager on the CM server. They are converted to syslog messages and stored in the messages file on the CM server hard disk. Use the `no` form of this command to disable RTP statistic QoS traps.

Syntax

`[no] rtp-stat qos-trap`

User Level

read-write

Context

General

Example

To enable the RTP statistic QoS trap:

```
G350-001# rtp-stat qos-trap
```

The RTP statistics QoS trap is enabled

To disable the RTP statistic QoS trap:

```
G350-001# no rtp-stat qos-trap
```

The RTP statistics QoS trap is disabled.

rtp-stat qos-trap-rate-limit

Use the `rtp-stat qos-trap-rate-limit` command to configure the QoS trap rate limiter. The trap rate limiter limits the rate at which QoS traps are sent to the SNMP trap manager on the media server. The trap rate limiter uses a token bucket scheme, in which the maximum number of QoS traps that can be sent is stored as a number of tokens in a virtual bucket. The number increments by one at a specified interval and is limited to a maximum by a specified bucket size.

Syntax

`rtp-stat qos-trap-rate-limit token-interval bucket-size`
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>token-interval</td>
<td>The interval, in hundredths of seconds, between additions of a token to the bucket.</td>
<td>10-100000</td>
<td>1000</td>
</tr>
<tr>
<td>bucket-size</td>
<td>The maximum number of tokens stored in the bucket.</td>
<td>1-1000</td>
<td>5</td>
</tr>
</tbody>
</table>

User Level
read-write

Context
General

rtp-stat service

Use the `rtp-stat service` command to enable the RTP statistic application. Use the `no` form of this command to disable the RTP statistic application. By default, the RTP statistic application is disabled.

Syntax

```
[no] rtp-stat-service
```

User Level
Admin

Example

To enable the RTP statistic application:

```
G350-001 (super)# rtp-stat-service
The RTP statistics service is enabled.
```

To disable the RTP statistic application:

```
G350-001 (super)# no rtp-stat-service
The RTP statistics service is disabled.
```
rtp-stat threshold

Use the `rtp-stat threshold` command to set thresholds for QoS metrics sampled by the RTP statistics application. For each threshold, a counter increments every time the metric exceeds the threshold during the RTP stream. Thresholds are also configured on the event counters, using the `rtp-stat event-threshold` command.

Syntax

```
rtp-stat threshold
    {codec-loss|average-codec-loss|loss|average-loss|remote-loss|
     average-remote-loss} percentage
rtp-stat threshold {codec-rtt|rtt|jitter|remote-jitter} milliseconds
rtp-stat threshold echo-return-loss dbm
no rtp-stat threshold
    {all|codec-loss|average-codec-loss|codec-rtt|
     echo-return-loss|loss|average-loss|remote-loss|
     average-remote-loss|rtt|jitter|remote-loss|echo-return-loss}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>codec-loss</td>
<td>The percentage of time the codec plays fill frames due to lack of valid RTP frames</td>
<td></td>
<td></td>
</tr>
<tr>
<td>average-codec-loss</td>
<td>The average codec loss sampled during the RTP stream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>loss</td>
<td>The percentage of RTP packets lost in the network. The G350 VoIP engine evaluates the current</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>received packet loss in fixed intervals of 6 to 12 seconds. The G350 VoIP engine postpones</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>loss estimation until the next interval if the number of packets received is less than the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>minimum statistic window. The minimum statistic window is configured with the <code>rtp-stat</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>min-stat-win</code> command.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 of 2
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>average-loss</td>
<td>The average packet loss sampled during the RTP stream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remote-loss</td>
<td>The percentage of RTP packets lost in the network as experienced by the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>remote RTP receiver. The local RTP receiver learns about its remote peer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>statistics from RTCP packets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>average-remote-loss</td>
<td>The average network loss experienced by the remote RTP receiver sampled</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>during the RTP stream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>percentage</td>
<td></td>
<td>0.0-100.0</td>
<td></td>
</tr>
<tr>
<td>codec-rtt</td>
<td>The last estimation of the codec Round Trip Time (in milliseconds).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Round Trip Time is the time taken for a message to get to the remote peer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and back to the local receiver.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In order to reflect the round-trip-delay experienced by the user, this</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>metric includes the internal delay (including jitter buffer delay, codec</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>delay, and packetization delay) inside the G350 and the IP phone and an</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>estimation of the remote internal delay.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rtt</td>
<td>The network RTT. This metric does not include internal delay.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jitter</td>
<td>Variation in delay of packet delivery to the local peer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remote-jitter</td>
<td>Variation in delay of packet delivery to the remote peer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>milliseconds</td>
<td></td>
<td>0-5000</td>
<td></td>
</tr>
<tr>
<td>echo-return-loss</td>
<td>The echo cancellation loss on the TDM bus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>db</td>
<td></td>
<td>0-100</td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>Clears all configured thresholds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 of 2
User Level
read-write

Context
General

Example
To set rtp-stat thresholds:
G350-001(super)# rtp-stat threshold echo-return-loss 5
Done!

sat
Use the sat command to provide a shortcut method to access the System Access Terminal (SAT) so that Avaya Communication Manager translation work can be performed. See the description for session on page 284 for more information. The Media Server must configure the SAT port to 5023.

Syntax
sat

User level
read-only

Context
general

server-name
Use the server-name command to specify the optional server name in the boot process of a DHCP client. Use the no form of this command to clear the optional server name.

Syntax
[no] server-name server-name
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>server-name</td>
<td>A name for the optional server, enclosed in quotes</td>
<td>string, 1-64 bytes</td>
<td>null string</td>
</tr>
</tbody>
</table>

User level
read-write

Context
dhcp pool

Example
To set the optional server name to "avaya":
G350-001(DHCP 5)# server-name "avaya"
To clear the optional server name:
G350-001(DHCP 5)# no server-name

session

Use the **session** command to provide the means to establish a session with the active Media Gateway Controller, SAT, or the device. Specifying **session mgc** takes the user to the LINUX shell login. Specifying **session icc** accesses the S8300. Adding the **sat** parameter takes the user to the SAT login.

This is an alias to Telnet. The **mgc** option Telnets to the active Media Gateway Controller.

Note:
Note: for **session mgc sat**, and **session icc sat** to access the Media Server SAT terminal, the SAT port must be configured to 5023 on the Media Server. For **session mgc** and **session icc**, the Media Server should allow access to the Telnet port (23).

Syntax

```
session {mgc [sat] | icc [sat]}
```

User level
read-only
Context
general

Example
To establish a session with the active Media Gateway Controller:

```
G350-001> session mgc
```

set boot bank

Use the **set boot bank** command to set the system boot bank for the active Supervisor Module.

Syntax

```
set boot bank value
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Boot bank name</td>
<td>bank-a - set the boot bank to A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bank-b - set the boot bank to B</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To specify that the media gateway boots from boot bank A:

```
G350-001# set boot bank bank-A
boot bank set to bank-A
```
set contact-closure admin

Use the `set contact-closure admin` command to specify how the contact closure relay is controlled.

Note:

The `set contact-closure pulse-duration` command does not affect the `set contact-closure admin manual` command.

Syntax

```
set contact-closure admin module/port:relay
{mgc | manual-trigger | manual-off}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Module number of the contact closure port</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Port number of the contact closure port</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>relay</td>
<td>Contact closure relay</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>mgc</td>
<td>Contact closure is controlled by the call controller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>manual-trigger</td>
<td>Contact closure relay is triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>manual-off</td>
<td>Contact closure relay is not triggered</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To specify that contact closure for relay 2 of port 1 on module 10 is controlled by the call controller:

```
G350-001# set contact-closure admin 10/1:2 mgc
```
set contact-closure pulse-duration

Use the `set contact-closure pulse-duration` command to set the pulse duration for a contact closure relay. Pulse duration is the amount of time for the relay to return to normal after the call controller triggers it.

Syntax

```
set contact-closure pulse-duration module/port:relay time
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Module number of the contact closure port</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Port number of the contact closure port</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>relay</td>
<td>Relay number</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>time</td>
<td>Amount of time until the relay returns to normal, in seconds</td>
<td>1 – 60</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To set the pulse duration to 3 seconds for relay 2 of port 1 on module 10:

```
G350-001# set contact-closure pulse-duration 10/1:2 3
```

set dot1x max-req

Use the `set dot1x max-req` command to set the maximum number of times the port tries to retransmit requests to the Authenticated Station before the session is terminated.

Note:

Time period settings affect all external ports.
CLI Commands

Syntax

```plaintext
set dot1x max-req count
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>Number of attempts</td>
<td>1-10</td>
<td>2</td>
</tr>
</tbody>
</table>

User Level
admin

Context
general

Example

G350-001# set dot1x max-req 5

set dot1x quiet-period

Use the `set dot1x quiet-period` command to set the minimal time between authentication attempts.

Note:
Time period settings affect all external ports.

Syntax

```plaintext
set dot1x quiet-period seconds
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>Number of seconds.</td>
<td>0-65535</td>
<td>60</td>
</tr>
</tbody>
</table>

User Level
admin
Example
G350-001# set dot1x quiet-period 45

set dot1x re-authperiod

Use the `set dot1x re-authperiod` command to set the idle time between re-authentication attempts.

Note:
Time period settings affect all external ports.

Syntax

`set dot1x re-authperiod seconds`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>Number of seconds</td>
<td>0-65535</td>
<td>3600</td>
</tr>
</tbody>
</table>

User Level

admin

Context

general

Example

G350-001# set dot1x re-authperiod 7200

set dot1x server-timeout

Use the `set dot1x server-timeout` command to set the server retransmission timeout period for all ports. This is the maximum time that the port will wait for a reply from the Authentication Server.

Note:
Timeout settings affect all external ports.
CLI Commands

Syntax

```
set dot1x server-timeout seconds
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>Number of seconds</td>
<td>0-65535</td>
<td>30</td>
</tr>
</tbody>
</table>

User Level

admin

Context

general

Example

```
G350-001# set dot1x server-timeout 15
```

set dot1x supp-timeout

Use the `set dot1x supp-timeout` command to set the maximum time that the switch will wait for a reply from the Authenticated Station before the session is terminated.

Note:

Timeout settings affect all external ports.

Syntax

```
set dot1x supp-timeout seconds
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>Number of seconds</td>
<td>0-65535</td>
<td>30</td>
</tr>
</tbody>
</table>

User Level

admin
set dot1x system-auth-control disable

Use the `set dot1x system-auth-control disable` command to globally disable the PBNAC (802.1x) feature.

Syntax

```
set dot1x system-auth-control disable
```

User Level

`admin`

Context

`general`

Example

```
G350-001# set dot1x system-auth-control disable
```

set dot1x system-auth-control enable

Use the `set dot1x system-auth-control enable` command to globally enable the PBNAC (802.1x) feature.

Syntax

```
set dot1x system-auth-control enable
```

User Level

`admin`

Context

`general`
set dot1x tx-period

Use the set dot1x tx-period command to set the time interval between attempts to access the Authenticated Station.

Note:
Time period settings affect all external ports.

Syntax
set dot1x tx-period seconds

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>Number of seconds</td>
<td>0 to 65535</td>
<td>30</td>
</tr>
</tbody>
</table>

User Level
admin

Context
general

Example
G350-001 (super)# set dot1x tx-period 15

set dscp

Use the set dscp command to set the DSCP value in the tunneled packet. Use the no form of this command to take the DSCP value from the original header (default setting).

Syntax

[no] set dscp dscp-value
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dscp-value</code></td>
<td>The static DSCP value in the DS field of the tunneled packet. The default setting is <code>no set dscp</code>, which specifies that the DSCP is copied from the DS field of the original packet.</td>
<td>0-63</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
crypto map

Examples

G350-001(config-crypto:1)# set dscp 10
Done!

G350-001(config-crypto:1)# no set dscp
Done!

set etr

Use the `set etr` command to enable or disable Emergency Transfer Relay (ETR) mode, or to allow the gateway to control ETR mode automatically.

Note:
In ETR mode, the TRK and LINE 1 ports are connected. All other telephone ports stop operating.

Note:
If a call is in progress when the communications problem ends, the gateway does not turn off ETR mode automatically. If you specify `manual-off`, the call terminates.

Syntax

```
set etr module {auto | manual-on | manual-off}
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Module number</td>
<td>1-7</td>
<td></td>
</tr>
<tr>
<td>auto</td>
<td>Allow the gateway to control ETR mode automatically</td>
<td></td>
<td></td>
</tr>
<tr>
<td>manual-on</td>
<td>Set ETR mode to on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>manual-off</td>
<td>Set ETR mode to off</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To specify that the gateway will control ETR mode automatically on module 7:

G350-001# set etr 7 auto

set icc-monitoring

Use the `set icc-monitoring` command to control heartbeat monitoring of an Inter Carrier Cable (ICC) or Local Survivable Processor (LSP).

Syntax

```
set icc-monitoring {enable | disable}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enable heartbeat monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Disable heartbeat monitoring</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
general

set logging file

Use the `set logging file` command to manage the logging of system messages to non-volatile memory (NVRAM).

Syntax

```
set logging file {enable | disable | condition {all | MsgFacility} {none | severity}}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enable logging to the file sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disable logging to the file sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>condition</code></td>
<td>Define a filter rule for logging</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>all</code></td>
<td>Apply the filter condition to all MsgFacilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>MsgFacility</code></td>
<td>Apply the filter condition to a specific MsgFacility</td>
<td><code>boot, system, router, config, temp, filesystem, fan, supply, security, cascade, qos, switchfabric, lag, vlan, rip, ldap, snmp</code></td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
general

Example
To filter VLAN messages sending only those having a severity of critical or greater:
G350-001# set logging file condition vlan critical

set logging server access-level

Use the `set logging server access-level` command to define the access level associated with a Syslog server sink. You cannot specify an admission level higher than the assigned level.

Syntax

```
set logging server access-level admission_level {ip_address | hostname}
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>admission_level</td>
<td></td>
<td>read-only, read-write, admin</td>
<td></td>
</tr>
<tr>
<td>ip_address</td>
<td>The IP address of the Syslog server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hostname</td>
<td>The name of the Syslog server host</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To specify a read-write access level for the Syslog server at IP address 172.5.16.33:
```
G350-011# set logging server access-level read-write 172.5.16.33
```

set logging server

Use the `set logging server` command to define a new Syslog output server for remote logging of system messages. A maximum of three Syslog servers can be configured. A new Syslog server is created in disabled mode.

Syntax
```
set logging server ip_address
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_address</td>
<td>The IP address of the Syslog server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write
set logging server condition

Use the `set logging server condition` command to specify a filter for messages sent to the specified Syslog server. Messages can be filtered by source system, severity, or both.

Syntax

```
set logging server condition {all | Msgfacility} {none | severity} ip_address
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Apply this filter to all message facility systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MsgFacility</td>
<td>Apply this filter to messages produced by a specific system</td>
<td>boot, system, router, config, temp, filesystem, fan, supply, security, cascade, qos, switchfabric, lag, vlan, ospf, rip, ldap, snmp</td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>Do not log any messages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>severity</td>
<td>Only log messages whose severity level is equal to or more severe than the specified level (0 is the highest severity, 7 the lowest)</td>
<td>Use the text value or its numeric equivalent: emergency (0), alert (1), critical (2), error (3), warning (4), notification (5), informational (6), debugging (7)</td>
<td></td>
</tr>
<tr>
<td>ip_address</td>
<td>The IP address of the Syslog server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
general

Example
To filter fan messages for the Syslog server at IP address 168.23.1.15, so that only fan
messages of warning-level severity or greater are sent:
G350-001# set logging server condition fan warning 168.23.1.15

set logging server facility

Use the `set logging server facility` command to define an output facility for the
specified Syslog server.

Syntax
`set logging server facility facility ip_address`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>facility</code></td>
<td>The facility used in Syslog reports</td>
<td><code>auth</code> (Authorization), <code>daemon</code> (Background System Process), <code>clkd</code> (Clock Daemon), <code>clkd2</code> (Clock Daemon), <code>mail</code> (Electronic Mail), <code>local0</code> – <code>local7</code> (For Local Use), <code>ftpd</code> (FTP Daemon), <code>kern</code> (Kernel), <code>alert</code> (Log Alert), <code>audi</code> (Log Audit), <code>ntp</code> (NTP Subsystem), <code>lpr</code> (Printing), <code>sec</code> (Security), <code>syslog</code> (System Logging), <code>uucp</code> (Unix-to-Unix Copy Program), <code>news</code> (Usenet news), <code>user</code> (User Process)</td>
<td></td>
</tr>
<tr>
<td><code>ip_address</code></td>
<td>The IP address of the Syslog server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

User level
read-write

Context
general

Example
To specify that messages for the specified Syslog server be sent to the mail output facility:
G350-001# set logging server facility mail 168.12.1.15

set logging server enable/disable

Use the `set logging server enable/disable` command to enable or disable a specific Syslog server.

Syntax

```
set logging server {enable | disable} ip_address
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enable logging for the Syslog server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Disable logging for the Syslog server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip_address</td>
<td>The IP address of the Syslog server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To enable logging for the Syslog server at IP address 168.12.1.13:
G350-001# set logging server enable 168.12.1.13
set logging session

Use the `set logging session` command to manage message logging for the current console session.

Syntax

```
set logging session {enable | disable | condition {all | MsgFacility} {none | severity}}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enable logging to the console session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Disable logging to the console session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>condition</td>
<td>Define a filter rule for logging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>Apply the filter condition to all MsgFacilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>MsgFacility</code></td>
<td>Apply the filter condition to a specific MsgFacility</td>
<td><code>boot</code>, <code>system</code>, <code>router</code>, <code>config</code>, <code>temp</code>, <code>filesys</code>, <code>fan</code>, <code>supply</code>, <code>security</code>, <code>cascade</code>, <code>qos</code>, <code>switchfabric</code>, <code>lag</code>, <code>vlan</code>, <code>rip</code>, <code>ldap</code>, <code>snmp</code>, <code>isakmp</code>, <code>ipsec</code></td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>Do not log messages to the console session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>severity</td>
<td>Only log messages whose severity level is equal to or more severe than the specified level (0 is the highest severity, 7 the lowest)</td>
<td>Use the text value or its numeric equivalent: <code>emergency (0)</code>, <code>alert (1)</code>, <code>critical (2)</code>, <code>error (3)</code>, <code>warning (4)</code>, <code>notification (5)</code>, <code>informational (6)</code>, <code>debugging (7)</code></td>
<td>6</td>
</tr>
</tbody>
</table>
CLI Commands

User level
read-write

Context
general

Example
To filter config messages for the session, sending only those config messages of alert severity or greater:

G350-001# set logging session condition config alert

set logout

Use the set logout command to set the number of minutes until the system automatically disconnects an idle session.

Syntax
set logout [timeout]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout</td>
<td>Number of minutes until the system automatically disconnects an idle session. Setting the value to 0 disables the automatic disconnection of idle sessions.</td>
<td>0-99</td>
<td>15</td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To set the system to disconnect idle sessions automatically after 20 minutes:

G350-001# set logout 20

To disable the automatic disconnection of idle sessions:

G350-001# set logout 0
set mediaserver

Use the `set mediaserver` command to set media server management ports.

Syntax

```
set mediaserver ip_address1 ip_address2 port name
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_address1</td>
<td>Controller IP address used for registration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip_address2</td>
<td>Management interface IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Service port number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>Service type</td>
<td>telnet, sat</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To set media server management sat port 3023 to have a controller IP address of 135.6.8.99 and a management IP address of 135.34.54.2:

```
G350-563# set mediaserver 135.6.8.99 135.34.54.2 3023 sat
```

set mgc list

Use the `set mgc list` command to permit the creation of a list of valid Media Gateway Controller(s). The user can configure up to four IP addresses separated by commas.

Note:

The `set mgc list` command appends the new controllers to the existing list of controllers, if any.
CLI Commands

Syntax

set mgc list {ipaddress1,...}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipaddress1</td>
<td>The IP address of the call controller</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To specify two Media Gateway Controllers at IP addresses 132.236.73.2 and 119.52.3.27:

G350-001# set mgc list 132.236.73.2, 119.52.3.27

set peer

Use the set peer command to attach a peer to a crypto map. Use the no form of the command to remove a peer from the crypto map.

Note:

You can only change the peer of a crypto map when the map is inactive.

Syntax

set peer {ip-address}

no set peer

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>The remote peer IP address</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
set pfs

Use the `set pfs` command to specify whether each IKE phase 2 negotiation will employ PFS (Perfect Forward Secrecy), and if yes – which Diffie-Hellman group to employ. PFS ensures that even if someone were to discover the long-term secret(s), the attacker would not be able to recover the session keys, both past and present. In addition, the discovery of a session key compromises neither the long-term secrets nor the other session keys.

Use the `no` form of the command to disable PFS for IKE phase 2 (default setting).

Syntax

```
[no] set pfs [group1 | group 2]
```

Note:

Using `set pfs` with no parameters sets the pfs group to 1.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group1</code></td>
<td>Specifies that IKE employs the 768-bit Diffie-Hellman prime modulus group</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>group 2</code></td>
<td>Specifies that IKE employs the 1,024-bit Diffie-Hellman prime modulus group</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write
set port auto-negotiation-flowcontrol-advertisement

Use the `set port auto-negotiation-flowcontrol-advertisement` command to set the flowcontrol advertisement for the specified port when performing autonegotiation.

Syntax

```
set port auto-negotiation-flowcontrol-advertisement module/port
{no-flowcontrol|asym-tx-only|sym-only|sym-and-asym-rx}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>module</code></td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>port</code></td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>no-flowcontrol</code></td>
<td>The port will advertise no pause capabilities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>asym-tx-only</code></td>
<td>The port will advertise asymmetric Tx pause capabilities only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>sym-only</code></td>
<td>The port will advertise symmetric pause capabilities only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>sym-and-asym-rx</code></td>
<td>The port will advertise both symmetric and asymmetric Rx pause capabilities.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write
Context
general

Example
To specify that port 5 of module 2 will advertise asymmetric Tx pause capabilities only:

G350-011# set port auto-negotiation-flowcontrol-advertisement 2/5 asym-tx-only
Port 2/5 pause capabilities was set

set port classification

Use the set port classification command to set the port classification to either regular or valuable. Any change in the Spanning Tree state from Forwarding for a valuable port will erase all learned MAC addresses in the media gateway.

Syntax
set port classification module/port {regular | valuable}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>The port number. You can also specify a range of ports separated by a dash,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>regular</td>
<td>Keyword specifying that port classification be set to regular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>valuable</td>
<td>Keyword specifying that port classification be set to valuable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general
CLI Commands

Example
To set the port classification for port 3 of module 5 to valuable:

G350-001# set port classification 5/3 valuable
Port 5/3 classification has been changed.

set port disable

Use the `set port disable` command to disable a port or range of ports.

Syntax

`set port disable module/port`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>module</code></td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>port</code></td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To disable port 1 on module 4:

G350-001# set port disable 4/1
Port 4/1 disabled.
set port dot1x initialize

Use the `set port dot1x initialize` command to initialize 802.1x on a port.

Syntax

`set port dot1x initialize mod/port`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mod/port</code></td>
<td>Number of the module and port on the module</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

`admin`

Context

`general`

Example

```
Console> set port dot1x initialize 2/3
dot1x port 4/1 initializing...
dot1x initialized on port 4/1.
```

set port dot1x port-control

Use the `set port dot1x port-control` command to set the dot1x parameter per port.

Syntax

```
set port dot1x port-control mod/port {force-authorize | force-unauthorize | auto}
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mod/port</td>
<td>Number of the module and port on the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>force-authorize</td>
<td>The port is always in forwarding state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>force-unauthorize</td>
<td>The port is always in blocking state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>auto</td>
<td>Port blocking depends on authorization outcome</td>
<td>auto</td>
<td>auto</td>
</tr>
</tbody>
</table>

User level
admin

Context
general

Example
Console> set port dot1x port-control 1/2 auto
Port 4/1 dot1x port-control is set to auto.

set port dot1x re-authenticate

Use the `set port dot1x re-authenticate` command to set the port to re-authenticate.

Syntax
`set port dot1x re-authenticate mod/port`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mod/port</td>
<td>Number of the module and port on the module</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
admin

Context
general

Example
Console> set port dot1x re-authenticate 4/1
dot1x port 4/1 re-authenticating...
dot1x re-authentication successful...
dot1x port 4/1 authorized.

set port dot1x re-authentication

Use the `set port dot1x re-authentication` command to set the re-authentication mode per port.

Syntax
`set port dot1x re-authentication mod/port {enable | disable}`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mod/port</code></td>
<td>Number of the module and port on the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Keyword to enable automatic re-authentication</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Keyword to disable automatic re-authentication</td>
<td></td>
<td><code>disable</code></td>
</tr>
</tbody>
</table>

User level
admin

Context
general
CLI Commands

Example
Console> set port dot1x re-authentication 1/2 enable
Port 1/2 re-authentication enabled.

set port duplex

Use the **set port duplex** command to configure the duplex type of an Ethernet or Fast Ethernet port or range of ports. You can configure Ethernet and Fast Ethernet interfaces to either full duplex or half duplex.

The duplex status of a port in auto-negotiation mode is determined by auto-negotiation. An error message is generated if you try to set the transmission type of auto negotiation Fast Ethernet ports to half-duplex or full-duplex mode.

Syntax

set port duplex module/port {full|half}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>full</td>
<td>Set full-duplex transmission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>half</td>
<td>Set half-duplex transmission</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To set port 1 on module 4 to full duplex:
G350-001# set port duplex 4/1 full
Port 4/1 set to full-duplex.
set port edge admin state

Use the `set port edge admin state` command to specify whether or not a port is considered to be an edge port.

Syntax

`set port edge admin state module/port admin_state`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>module</code></td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>port</code></td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>admin_state</code></td>
<td>The type of the specified port</td>
<td><code>edge-port</code>, <code>non-edge-port</code></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To specify that port 3 of module 10 is an edge port:

```
G350-011# set port edge admin state 10/3 edge-port
```

set port enable

Use the `set port enable` command to enable a port or a range of ports.

Syntax

`set port enable [module/port]`
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To enable port 3 of module 10:
G350-147# set port enable 10/3
Port 10/3 enabled.

set port flowcontrol

Use the set port flowcontrol command to set the send/receive mode for flow-control frames (IEEE 802.3x or proprietary) for a full duplex port. Each direction (send or receive) can be configured separately.

Syntax
set port flowcontrol {receive | send | all} module/port {off | on | proprietary}
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>receive</td>
<td>Indicates whether the port can receive its administrative status from a remote device. This option is only available for Gigabit Ethernet modules with negotiation set to off.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>send</td>
<td>Indicates whether the local port can send its administrative status to a remote device. This option is only available for Gigabit Ethernet modules with negotiation set to off.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>Send and receive (symmetric flow control) Used with on indicates that the local port acts upon and sends flow control frames. Used with off indicates that the local port discards and does not send flow control frames.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>off</td>
<td>Used with receive to turn off an attached device’s ability to send flow-control packets to a local port. Used with send to turn off the local port’s ability to send administrative status to a remote device.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>on</td>
<td>Used with receive to specify that a local port receives administrative status from a remote device. Used with send, to specify that a local port sends administrative status to a remote device.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>proprietary</td>
<td>Used with all to indicate that the local port acts on and sends Avaya proprietary flow control frames</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general
CLI Commands

Example
To specify that port 1 receives administrative status from a remote device:

G350-147# set port flowcontrol receive 5/1 on
Port 5/1 flow control receive administration status set to on
(port will require far end to send flowcontrol)

To specify that port 1 cannot send administrative status to a remote device:

G350-147# set port flowcontrol send 5/1 off
Port 5/1 flow control send administration status set to off
(port will send flowcontrol to far end)

set port level

Use the set port level command to set the priority level of a port or range of ports on the
switching bus. Packets traveling through a port set at normal priority are served only after
packets traveling through a port set at high priority are served.

Syntax

set port level module/port [value]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>value</td>
<td>Priority level</td>
<td>0-7</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general
Example

To set the priority level of port 1 on module 3 to 5:

G350-147# set port level 3/1 5
Port 3/1 level set to 5

set port mirror

Use the `set port mirror` command to define a port mirroring source-destination pair. The second port receives a copy of all packets sent to and received by the first port.

Syntax

```
set port mirror source-port module/port mirror-port module/port sampling sampling_value direction direction_value
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>module</code></td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>port</code></td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>sampling_value</code></td>
<td>Specifies whether to allow or disable sampling of the transmissions</td>
<td><code>always, disable</code></td>
<td></td>
</tr>
<tr>
<td><code>direction_value</code></td>
<td>The direction of transmissions to mirror</td>
<td><code>rx, tx, both</code></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To set up port mirroring from port 3/1 to port 5/1 for all packets sent and received:

G350-001# set port mirror source-port 3/1 mirror-port 5/1 sampling always direction both
set port name

Use the set port name command to configure a name for a port. If you do not specify a name, the port name displays as NO NAME.

Syntax

set port name module/port [name]

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>The port name</td>
<td>maximum 16-character string</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To name port 21 of module 4 to “arthur”

G350-147# set port name 4/21 arthur

Port 4/21 name set.

Note:

If you wish to define a name which includes spaces, you must enclose the entire name in quotation marks, for example “new york”.

set port negotiation

Use the `set port negotiation` command to enable or disable auto-negotiation on the specified port. Auto-negotiation uses a link negotiation protocol to determine the highest connection parameters available to connected ports and configures the port speed and duplex setting of both ports. This command applies to Fast Ethernet or Gigabit Ethernet ports.

If negotiation is disabled, the user can set the speed and duplex of the Fast Ethernet ports.

Syntax

`set port negotiation module/port {enable|disable}`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>module</code></td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>port</code></td>
<td>Number of the port on the module. You can also specify a range of ports</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enable port negotiation protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disable port negotiation protocol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To disable autonegotiation on port 1, module 4:

```
G350-147# set port negotiation 4/1 disable
Link negotiation protocol disabled on port 4/1.
```
set port point-to-point admin status

Use the `set port point-to-point admin status` command to manage the connection type of the port.

Syntax

`set port point-to-point admin status module/port admin_status`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| admin_status | The connection type of the port | force-true — specify that the port is connected point-to-point
force-false — specify that this port is shared media
auto — try to automatically detect the connection type of the port | |

User level

read-write

Context

general

Example

To specify that the connection type of port 2 is automatically detected:

```
G350-001# set port point-to-point admin status 10/2 auto
```
set port powerinline

Use the `set port powerinline` command to enable or disable the load detection process on the port. The load detection process is used to power devices using Power over Ethernet (PoE).

Syntax

```
set port powerinline module_number/port_number {enable | disable}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>module_number</code></td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>port_number</code></td>
<td>The port number. A range of ports can also be specified. For example, to specify ports 1-3 on module 3, use the syntax 3/1-3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enable load detection on this port</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disable load detection on this port</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To enable load detection on ports 3/1, 3/2, and 3/3:

```
G350-001# set port powerinline 3/1-3 enable
```

set port powerinline priority

Use the `set port powerinline priority` command to configure the priority level of powering the port.

Note:

The order in which ports in the same priority group are powered is not sequential.
CLI Commands

Syntax

\texttt{set port powerinline priority module_number/port_number priority}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{module_number}</td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{port_number}</td>
<td>The port number. A range of ports can be specified. For example, to specify ports 1-3 on module 3, use the syntax 3/1-3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{priority}</td>
<td>The priority level of powering the port</td>
<td>Critical, High, Low</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To set powering priority to High for ports 3/1, 3/2, and 3/3:

\texttt{G350-001\# set port powerinline priority 3/1-3 high}

\texttt{set port powerinline type}

Use the \texttt{set port powerinline type} command to set the type of powered device connected to the PoE port.

Syntax

\texttt{set port powerinline type module/port_number string}
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port_number</td>
<td>Number of the port on the module.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>string</td>
<td>A description of the type of powered device connected to this port.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
admin

Context
general

Example
Console> set port powerinline type 6/1-3 telephone

set port redundancy

Use the `set port redundancy` command to globally enable or disable port redundancy on the device. Using this command does not delete existing redundancy entries.

Syntax

```
set port redundancy {enable|disable}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enable port redundancy on the device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Disable port redundancy on the device</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write
Context

general

Example

To enable port redundancy:

G350-147# set port redundancy enable

All redundancy schemes are now enabled

set port redundancy on|off

Use the `set port redundancy on|off` command to define or remove redundancy pairs. A redundancy port acts as a backup port in case the primary port fails. The port can be any port that does not belong to a LAG or a LAG interface. Ensure that there is no redundancy scheme already defined on any of the ports.

Syntax

```
set port redundancy prim_module/prim_port second_module/second_port {on|off} [redundancy_name]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>prim_module</td>
<td>The module number of the primary port</td>
<td></td>
<td></td>
</tr>
<tr>
<td>prim_port</td>
<td>Primary port of the redundancy scheme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>second_module</td>
<td>The module number of the backup port</td>
<td></td>
<td></td>
</tr>
<tr>
<td>second_port</td>
<td>Backup port of the redundancy scheme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>on</td>
<td>Keyword specifying to define the redundancy pair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>off</td>
<td>Keyword specifying to remove the redundancy pair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>redundancy_name</td>
<td>Name for the redundancy scheme</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write
Context

general

Example

To specify that port 12 of module 4 acts as a backup port for port 7 on module 3, and to name the redundancy pair red1:

G350-147# set port redundancy 3/7 4/12 on red1
red1: Port 4/12 is redundant to port 3/7.
Port redundancy is active – entry is effective immediately

Note:
If you wish to define a name which includes spaces, you must enclose the entire name in quotation marks, for example “new york”.

set port redundancy-intervals

Use the set port redundancy-intervals command to configure the two time constants that determine redundancy switchover parameters.

Syntax

set port redundancy-intervals min_time_between_switchovers
{switchback_interval | none}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>min_time_between_switchovers</td>
<td>The minimum time, in milliseconds, between redundancy switchovers for each pair</td>
<td>0 – 65000</td>
<td></td>
</tr>
<tr>
<td>switchback_interval</td>
<td>The period, in milliseconds, the primary port link has to be “up” before the system switches back Specify 0 to indicate the system never switches back Specify 1 to indicate that switchback occurs immediately after the primary port link returns</td>
<td>0 – 65000</td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>Do not switch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

User level
read-write

Context
general

Example
To specify a delay of 100 milliseconds before switching to the backup port, and a requirement that the primary port be up for 20 milliseconds before control is returned:

G350-147# set port redundancy-intervals 100 20

set port spantree

Use the set port spantree command to enable or disable spanning tree for specific ports.

Syntax

`set port spantree {enable|disable} [module/port]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Keyword specifying that spanning tree mode should be enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Keyword specifying that spanning tree mode should be disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>module</td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>The port number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general
Example
To enable spanning tree on port 1 of module 3:
P480-1# set port spantree enable 3/1
port 3/1 was enabled on spantree

set port spantree cost

Use the set port spantree cost command to set the spanning tree cost of a port. This value defines which port will be allowed to forward traffic if two ports with different costs cause a loop.

Syntax
set port spantree cost [module/port] [value]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>The port number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>value</td>
<td>Number representing the cost. A lower value specifies precedence of a port to forward traffic.</td>
<td>1-65535</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To set the spanning tree cost of port 4/2 to 4096:
G350-147# set port spantree cost 4/2 4096
port 4/2 spantree cost is 4096
set port spantree force-protocol-migration

Use the `set port spantree force-protocol-migration` command to force the port to send a rapid spanning tree hello packet (Bridge Protocol Data Unit).

Syntax
```
set port spantree force-protocol-migration module/port
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>module</code></td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>port</code></td>
<td>The port number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To force port 2 of module 10 to send a hello packet:
```
G350-001# set port spantree force-protocol-migration 10/2
```

set port spantree priority

Use the `set port spantree priority` command to set the Spanning Tree priority level of a port. This value defines the priority of a port to be blocked in case two ports with the same cost cause a loop.

Syntax
```
set port spantree priority module/port value
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>The port number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>value</td>
<td>Number representing the priority of the port. 0 is the highest priority. A port with a lower priority will be blocked.</td>
<td>0-240 (in multiples of 16)</td>
<td>128</td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To set the priority for port 4 of module 3 to 128:

G350-147# set port spantree priority 3/4 128
port 3/4 spantree priority is 128

set port speed

Use the set port speed command to configure the speed of a port or range of ports.

In auto-negotiation mode, the port’s speed is determined by auto negotiation. An error message is generated if you try to set the speed when auto negotiation is enabled

Syntax

set port speed module/port 10MB|100MB|1GB
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10MB</td>
<td>Keyword that sets the specified port to a speed of 10 Mbps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100MB</td>
<td>Keyword that sets the specified port to a speed of 100 Mbps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1GB</td>
<td>Keyword that sets the specified port to a speed of 1 Gbps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To configure port 1 on module 4 to 100 Mbps

G350-147# set port speed 4/1 100MB

Port 4/1 speed set to 100 Mbps.

set port static-vlan

Use the `set port static-vlan` command to assign a static VLAN to a port.

Syntax

`set port static-vlan module/port vlan_num`
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>The port or range of ports which are being bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vlan_num</td>
<td>VLAN to bind to the port</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To bind ports 4 through 6 of module 3 to VLAN 2:

G350-147# set port static-vlan 3/4-6 2
VLAN 2 is bound to port 3/4
VLAN 2 is bound to port 3/5
VLAN 2 is bound to port 3/6

set port trap

Use the set port trap command to enable or disable generic SNMP uplink or downlink traps from a port.

Syntax

set port trap module/port {enable|disable}
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enable uplink/downlink traps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Disable uplink/downlink traps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To enable uplink and downlink traps for port 2 of module 3:

G350-147# set port trap 3/2 enable
Port 3/2 up/down trap enabled.

set port vlan

Use the set port vlan command to set the port VLAN ID (PVID).

Note:
You need to define a VLAN before setting a port VLAN ID.

Syntax

set port vlan vlan_num module/port
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan_num</td>
<td>Number identifying the VLAN</td>
</tr>
<tr>
<td>module</td>
<td>The module number</td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To set the VLAN ID for port 3/5 to 2:

G350-147# set port vlan 2 3/5
VLAN 2 modified.
VLAN Mod/Ports

 | 2 3/5

set port vlan-binding-mode

Use the `set port vlan-binding-mode` command to define which VLANs will be bound to the specified port.

Syntax

```
set port vlan-binding-mode module/port_list value
```
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port_list</td>
<td>The port to bind to VLANs. A list of ports can be entered using the form n-m. For example, specify 5/4-8 to indicate module 5, ports 4 through 8.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| *value* | The type of VLAN binding | **static** - the port supports only the VLANs that are manually configured for this port
bind-to-configured - the port supports all the VLANs configured on the device | |

User level
read-write

Context
general

Example

To specify that ports 5 through 9 on module 5 will only support the VLANs manually configured for those ports:

G350-147# set port vlan-binding-mode 5/5-9 static
Set Port vlan binding method:5/5
Set Port vlan binding method:5/6
Set Port vlan binding method:5/7
Set Port vlan binding method:5/8
Set Port vlan binding method:5/9
set powerinline trap disable

Use the `set powerinline trap disable` command to disable PoE trap generation.

Syntax

`set port powerinline trap disable module`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

admin

Example

`Console> set powerinline trap disable 6`

set powerinline trap enable

Use the `set powerinline trap enable` command to enable the generation of PoE traps and configure the Usage Threshold value.

Syntax

`set port powerinline trap enable module [threshold]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>threshold</td>
<td>(Optional) Power consumption usage for generating traps, in percent.</td>
<td>1-99</td>
<td>99</td>
</tr>
</tbody>
</table>
set qos bearer

Use the **set qos bearer** command to permit the setting of VoIP QoS-bearer related parameters for the Media Gateway Processor and VoIP engines. Since Media Gateway Controller and VoIP engines share the same setup, local values are not set to entered values unless **set qos control local** has been executed (refer to **set qos control** on page 337).

Syntax

```
set qos bearer {bbedscp | efdscp | 802p | rtpmin | rtpmax} value
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bbedscp</td>
<td>Keyword specifying that the following value is the BBE differentiated services code point</td>
<td>0-63</td>
<td>43</td>
</tr>
<tr>
<td>efdscp</td>
<td>Keyword specifying that the following value is the EF differentiated services code point</td>
<td>0-63</td>
<td>46</td>
</tr>
<tr>
<td>802p</td>
<td>Keyword specifying that the following value is the 802 priority value</td>
<td>0-7</td>
<td>6</td>
</tr>
<tr>
<td>rtpmin</td>
<td>Keyword specifying that the following value is the RTP port min value. The rtpmin value must be an even number, and the difference between rtpmin and rtpmax must be at least 129.</td>
<td>2048-65406</td>
<td>2048</td>
</tr>
<tr>
<td>rtpmax</td>
<td>Keyword specifying that the following value is the RTP port max value. The rtpmax value must be an odd number and the difference between rtpmax and rtpmin must be at least 129.</td>
<td>2177-65535</td>
<td>65535</td>
</tr>
<tr>
<td>value</td>
<td>A value for the specified keyword</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
general

Example
To set the BBE differentiated services code point to 43:
G350-001# set qos bearer bbedscp 43

set qos control

Use the set qos control command to define the source for QoS control parameters. The source can be either local where the user configures the values via the CLI, or remote in which case the values are obtained from the Media Gateway Controller. The default value is remote.

Syntax
set qos control {local | remote}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Keyword that specifies to configure QoS values via the CLI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remote</td>
<td>Keyword that specifies to obtain QoS values from the media gateway controller</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To specify that QoS values are configured locally via the CLI:
G350-001# set qos control local
set qos rsvp

Use the `set qos rsvp` command to set the current values for the RSVP parameters of the VoIP engines. The parameters that can be set are enabled or disabled, refresh rate in seconds, failure retry yes or no, and service profile, guaranteed-service or controlled load service.

Note:

The `set qos rsvp` command will not take effect unless QoS source setup is local.

Syntax

`set qos rsvp {enable | disable} | {refresh secs} | {failure {retry | noretry}} | {profile {guaranteed | controlled}}`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>refresh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>secs</td>
<td>The refresh time in seconds</td>
<td>1-99</td>
<td>15</td>
</tr>
<tr>
<td>retry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>noretry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>guaranteed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>controlled</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general
Example
To set the refresh rate to 15 seconds:
G350-001# set qos rsvp refresh 15
To specify no retry upon failure:
G350-001# set qos rsvp failure noretry
To specify controlled load service:
G350-001# set qos rsvp profile controlled
To enable RSVP:
G350-001# set qos rsvp enable

set qos rtcp

Use the \texttt{set qos rtcp} command to permit the setup of RTCP parameters. The parameters that can be set are enabling or disabling RTCP reporting capability, setting the IP address of the monitor, setting the reporting period, and defining the listening port number.

Syntax
\texttt{set qos rtcp \{enable|disable\} | monIP ip address | reportper seconds | listenport portno}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Keyword that specifies to enable RTCP reporting capability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Keyword that specifies to disable RTCP reporting capability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip address</td>
<td>The IP address of the monitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>seconds</td>
<td>The reporting period in seconds</td>
<td>5-30</td>
<td>5</td>
</tr>
<tr>
<td>portno</td>
<td>The listening port number</td>
<td>1-65535</td>
<td>5005</td>
</tr>
</tbody>
</table>

User level
read-write
CLI Commands

Context
general

Example
To set the monitoring IP address to 132.123.23.12:

G350-001# set qos rtcp monip 132.123.23.12

To set the reporting period to 10 seconds:

G350-001# set qos rtcp reportper 10

To set the listening port number to 5000:

G350-001# set qos rtcp listenport 5000

To enable reporting capability:

G350-001# set qos rtcp enable

set qos signal

Use the `set qos signal` command to provide the means to set up QoS signaling parameters, DSCP or 802.1Q, for the Media Gateway Processor.

Syntax

```
set qos signal {dscp | 802p} value
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dscp</td>
<td>Keyword that specifies to setup DSCP parameters</td>
<td>0-63</td>
<td>34</td>
</tr>
<tr>
<td>802p</td>
<td>Keyword that specifies to setup 802.1Q parameters</td>
<td>0-7</td>
<td>7</td>
</tr>
<tr>
<td>value</td>
<td>Parameter value</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context
general
Example
To set up DSCP parameter 43:
G350-001# set qos signal dscp 43

set radius authentication

Use the `set radius authentication` command to enable or disable RADIUS authentication.

Syntax

```
set radius authentication {enable | disable}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Keyword specifying to enable RADIUS authentication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Keyword specifying to disable RADIUS authentication (default)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To enable RADIUS authentication:
G350-001# set radius authentication enable

set radius authentication retry-number

Use the `set radius authentication retry-number` command to set the number of times to resend an access request when there is no response.
CLI Commands

Syntax

set radius authentication retry-number number

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>The number of times to resend an access request if there is no response</td>
<td>1–65535</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To set the number of retries for RADIUS authentication to 3:

G350-147# set radius authentication retry-number 3

set radius authentication retry-time

Use the set radius authentication retry-time command to set the time to wait before resending an access request.

Syntax

set radius authentication retry-time seconds

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>The time in seconds to wait before resending an access request</td>
<td>1–65535</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write
set radius authentication secret

Use the `set radius authentication secret` command to enable secret authentication.

Syntax

```
set radius authentication secret string
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>string</code></td>
<td>The text password</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

admin

Context

general

Example

To set the RADIUS authentication password to `hush`:

```
G350-147# set radius authentication secret hush
```
CLI Commands

Syntax

set radius authentication server ip_addr {primary | secondary}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_addr</td>
<td>IP address of RADIUS authentication server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>primary</td>
<td>Keyword that specifies to set the primary authentication server (default)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>secondary</td>
<td>Keyword that specifies to set the secondary authentication server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To set the primary RADIUS authentication server IP address to be 192.40.12.36:

G350-147# set radius authentication server 192.40.12.36 primary

set radius authentication udp-port

Use the **set radius authentication udp-port** command to set the RFC 2138 approved UDP port number.

Normally, the UDP port number should be set to its default value of 1812. Some early implementations of the RADIUS server used port number 1645.

Syntax

set radius authentication udp-port number

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>The UDP port number</td>
<td></td>
<td>1812</td>
</tr>
</tbody>
</table>
User level
read-write

Context
general

Example
To set the UDP port number to 1645:

G350-147# set radius authentication udp-port number 1645

set reset-times

Use the `set reset-times` command to set reset times.

Syntax

```
set reset-times { {total-search | primary-search} minutes | transition-point value }
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>total-search</td>
<td>Set the total search timer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>primary-search</td>
<td>Set the primary search timer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>minutes</td>
<td>Number of minutes</td>
<td>1–60</td>
<td>total-search: 30 primary-search: 1</td>
</tr>
<tr>
<td>transition-point</td>
<td>Set the entry point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>value</td>
<td></td>
<td>1–4</td>
<td>1</td>
</tr>
</tbody>
</table>

User level
read-write

Context
general
CLI Commands

Example
To set the primary search timer to 20 minutes:

G350-011# set reset-times primary-search 20

set security-association lifetime

Use the `set security-association lifetime` command to set the IKE phase 2 (IPSec) SA (security-association) lifetime. Use the `no` form of the command to disable the SA lifetime.

Syntax

```
[no] set security-association lifetime { seconds seconds | kilobytes {kilobytes | disable} }
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>Specify the lifetime in seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>seconds</td>
<td>The lifetime, in seconds</td>
<td>120-86,400</td>
<td></td>
</tr>
<tr>
<td>kilobytes</td>
<td>Specify the lifetime by the amount of traffic that should pass through the IPSec tunnel before the security association should time out.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kilobytes</td>
<td>The amount of traffic, in kilobytes</td>
<td>2,560-536,870,912</td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Unlimited lifetime</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
crypto ipsec transform-set

Example

G350-001(config-transform:ts1)# set security-association lifetime seconds 300

Done!
set snmp community

Use the set snmp community command to set or modify the media gateway’s SNMP community strings.

Syntax

set snmp community read-only | read-write | trap [community_string]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>read-only</td>
<td>Keyword specifying the read-only access level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>read-write</td>
<td>Keyword specifying the read-write access level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trap</td>
<td>Keyword specifying an snmp trap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>community_string</td>
<td>Specifies the name of the SNMP community. If no community string is specified, the community string configured for that access type is cleared.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To set the read-only community string to 'read':

G350-001# set snmp community read-only read
SNMP read-only community string set

set snmp retries

Use the set snmp retries command to set the number of times to attempt to communicate with a particular node.
CLI Commands

set snmp retries number

Syntax

set snmp retries number

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>The number of retry attempts to make</td>
<td>1 – 100000</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To set the system to make 100 retry attempts:

G350-001# set snmp retries 100

set snmp timeout

Use the *set snmp timeout* command to specify the time to wait for a response before retrying the communication.

Syntax

set snmp timeout time

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>The number of seconds to wait</td>
<td>1 – 100000</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write
Context

general

Example

To set the system to wait 60 seconds before retrying communications:

G350-001# set snmp timeout 60

set snmp trap

Use the `set snmp trap` command to define an SNMPv1 trap receiver, or configure its settings.

Syntax

```
set snmp trap receiver {enable|disable} [categorylist]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>receiver</td>
<td>The IP address of the trap receiver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Keyword specifying that the trap</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>receiver is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Keyword specifying that the trap</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>receiver is disabled</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 of 2
set spantree default-path-cost

Use the `set spantree default-path-cost` command to set the version of the spanning tree default path cost used by this bridge.

Syntax

`set spantree default-path-cost pathcost`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>category list</td>
<td>List of trap categories to be enabled or disabled for the specified trap receiver.</td>
<td>All— all traps affected by enable/disable config fault, traffic_threshold, module_De-Enrollment, module_Enrollment, delete_SW_redundancy_entry, create_SW_redundancy_entry, temperature_warninggeneral_threshold, cam_change, duplicate_ip, ip_vlanViolation, link_aggregation_connection_fault, link_aggregation_connection_return, link_aggregation_partial_fault, link_aggregation_partial_return, delete_lag, create_new_lag, active_policy_list_change, policy_access_control_violation, BUPS_module_fault, BUPS_module_fault_return, BUPS_fans_module_fault, BUPS_fans_module_fault_return, fans_module_fault, fans_module_fault_return, cascade_up_connection_fault, cascade_up_connection_fault_return, cascade_down_connection_fault, cascade_down_connection_fault</td>
<td></td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
</table>
| **pathcost** | The version of the spanning tree default path cost| **common-spanning-tree** - compatible with IEEE802.1D standard
| | | **rapid-spanning-tree** - compatible with IEEE802.1W standard | |

User level

read-write

Context

general

Example

To use the rapid-spanning-tree default path cost:

```
G350-011# set spantree default-path-cost rapid-spanning-tree
```

Spanning tree default path costs is set to rapid spanning tree.

set spantree enable/disable

Use the `set spantree` command to enable or disable the spanning-tree algorithm for the media gateway.

Note:

When you disable spanning tree, blocking ports are disabled in order to prevent loops in the network. As a result, you need to wait 30 seconds before disabling spanning tree if you reset the media gateway, enable spanning tree, or insert a new station.

Syntax

```
set spantree {enable|disable}
```
 CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Keyword specifying to enable the spanning-tree algorithm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Keyword specifying to disable the spanning-tree algorithm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To enable spanning tree:
G350-147# set spantree enable
bridge spanning tree enabled.
To disable spanning tree:
G350-147# set spantree disable
bridge spanning tree disabled.

set spantree forward-delay

Use the `set spantree forward-delay` command to specify the time used when transferring the state of a port to the forwarding state.

Syntax

```
set spantree forward-delay seconds
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>The value must exceed (Bridge Max Age / 2). The recommended value is 15</td>
<td>4-30</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To specify a forward delay of 25 seconds:
G350-001# set spantree forward-delay 25
bridge forward delay is set to 25.

set spantree hello-time

Use the **set spantree hello-time** command to specify the time interval between the generation of configuration BPDU's by the root.

Syntax

```
set spantree hello-time seconds
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>The value must not exceed (Bridge Max Age / 2) - 1. The recommended value is 2</td>
<td>1-10</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write
set spantree max-age

Use the set spantree max-age command to specify the time to keep an information message before it is discarded.

Syntax

```
set spantree hello-time seconds
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>The value must be between 2 * (Bridge-hello-time + 1) and 2 * (Bridge-forward-delay - 1). The recommended value is 20</td>
<td>6-40</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To keep information messages for 20 seconds before discarding:

```
G350-011# set spantree max-age 20
bridge max age is set to 20.
```
set spantree priority

Use the set spantree priority command to set the bridge priority for the spanning tree.

Syntax

set spantree priority bridge_priority

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge_priority</td>
<td>The number representing the priority of the bridge</td>
<td>0 (high) - 65535 (low) in increments of 4096</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To set the bridge priority to 4096:

G350-001# set spantree priority 4096
Bridge priority set to 4096.

set spantree tx-hold-count

Use the set spantree tx-hold-count command to set the value in packets used by the spanning tree in order to limit the maximum number of BPDU’s transmitted during a hello-time period.

Syntax

set spantree tx-hold-count rate
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate</td>
<td>Recommended value is 3</td>
<td>1-10</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To limit the number of hello packets to 2:
G350-011# set spantree tx-hold-count 2
tx hold count is set to 2.

set spantree version

Use the set spantree version command to set the version of the spanning tree protocol used by the device.

Syntax
set spantree version version

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>Version of the spanning tree protocol</td>
<td>common-spanning-tree — compatible with IEEE802.1D standard</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write
set sync interface

Use the set sync interface command to define the specified module and port as a potential source for clock synchronization for the media gateway.

Syntax

set sync interface {primary | secondary} mmID [portID]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary</td>
<td>Keyword that specifies normal failover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>secondary</td>
<td>Keyword that specifies to override normal failover, generate a trap, and assert a fault</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mmID</td>
<td>The Media Module ID number of a stratum clock source, of the form “vn” where “n” is the slot number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>portID</td>
<td>Port or port range for an ISDN clock source candidate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To specify that ports 1, 3, 5, 6, 7, and 8 of Media Module 2 are used for normal failover:

G350-001# set sync interface primary v2 1,3,5-8
set sync source

Use the `set sync source` command to specify which clock source is the active clock source. The identity of the current synchronization source is not stored in persistent storage.

Syntax

```plaintext
set sync source {primary | secondary | local}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary</td>
<td>Keyword specifying to set the primary clock source to be active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>secondary</td>
<td>Keyword specifying to set the secondary clock source to be active, and the primary clock source on standby</td>
<td></td>
<td></td>
</tr>
<tr>
<td>local</td>
<td>Keyword specifying to set the local clock to be active</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To set the primary clock as the clock source:

```plaintext
G350-001# set sync source primary
```

If the secondary interface is not configured, the sync source set operation will fail.

```plaintext
G350-001# set sync source secondary
Operation Failed
Cannot set the secondary clock source to be the active clock source
```
set sync switching

Use the set sync switching command to toggle automatic sync source switching.

Syntax

set sync switching {enable | disable}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enable automatic sync source switching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Disable automatic sync source switching</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To enable sync source switching:

G350-001# set sync switching enable

set system contact

Use the set system contact command to set the contact information for this media gateway system.

Syntax

set system contact [string]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>The contact name string should be typed inside double quotes. The name is cleared if you leave this field blank.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To set the descriptive contact of the system to “Larry Williams”

G350-147# set system contact “Larry Williams”

*** Set system contact ***

system contact set

set system location

Use the `set system location` command to set the location information for this media gateway system.

Syntax

`set system location [string]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>The location name string should be typed inside double quotes. The location is cleared if you leave this field blank.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
general

Example
To set the descriptive location of the system to “tech-support”:

G350-147# set system location “tech-support”
*** Set system location ***

set system name

Use the set system name command to specify the name of this media gateway system.

Syntax

set system name [string]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>The system name string should be typed inside quotes. The name is cleared if you leave this field blank.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Examples
To set the descriptive name of the system to “G350-HQ”:

G350-001# set system name “G350-HQ”
*** Set system name ***

set system name set
set terminal recovery password

Use the `set terminal recovery password` command to enable or disable the recovery password.

Note:
This command can only be issued via the console port (not via a modem port).

Syntax

```
set terminal recovery password action
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>action</td>
<td>The state of the recovery password</td>
<td><code>enable, disable</code></td>
<td></td>
</tr>
</tbody>
</table>

User level

`admin`

Context

`general`

Example

To disable the recovery password:

```
G350-001(super)# set terminal recovery password disable
```

set transform-set

A crypto map object points to a single transform-set object, which contains the parameters required for IKE Phase 2 negotiation.

Use the `set transform-set` command to configure the transform-set. Use the `no` form of the command to remove the transform-set from the crypto map.

Note:
You cannot remove a transform-set from a crypto map that is being used by an active crypto-list. You must first de-activate the crypto-list, using the `no` form of the `ip crypto-group` command. See `ip crypto-group` on page 171.
Syntax

[no] set transform-set name

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of the transfer set</td>
<td>1-32 characters</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

crypto map

Example

G350-001(config-crypto:10)# set transform-set ts1
Done!

set trunk

Use the set trunk command to configure the VLAN tagging mode of a port.

Syntax

set trunk module/port {off|dot1q}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 of 2
User level

read-write

Context

general

Example

To configure 802.1q VLAN tagging for port 3 of module 3:

G350-001# set trunk 3/3 dot1q
Dot1Q VLAN tagging set on port 3/3.

set utilization cpu

Use the set utilization cpu command to enable CPU utilization measurements.

Syntax

set utilization cpu module

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 of 2
User level
read-write

Context
general

Example
To enable CPU utilization measurements on module 10:
G350-100# set utilization cpu 10
CPU utilization is set on module 10

set vlan

Use the set vlan command to create or modify a VLAN.

Syntax
set vlan vlan_id [name vlan_name]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan_id</td>
<td>The VLAN number</td>
<td>1 – 3071</td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>Keyword that allows naming or renaming the VLAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vlan_name</td>
<td>The VLAN name</td>
<td>string from 1 – 32 characters</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general
Example
To create VLAN number 3, named “gregory”:

G350-147# set vlan 3 name gregory
VLAN id 3, vlan-name gregory created.

Note:
If you wish to define a name which includes spaces, you must enclose the entire name in quotation marks, for example “new york”.

set web aux-files-url

Use the set web aux-files-url command to specify the URL of the Web server containing the online help files and Java plug-in.

Syntax
set web aux-files-url url

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>url</td>
<td>The IP address and directory name of the Web server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To set the URL of the Web server to 176.2.3.66/DMweb:

G350-001# set web aux-files-url http://176.2.3.66/DMweb
show application-memory

Use the `show application-memory` CLI command to show the configured and allocated application memory.

Syntax

`show application-memory`

User level

Read only

Context

general

Example

```
interface# > show application-memory

Application                                      Memory(KB)
----------------------------------------  ---------------------
Sniffer (capture buffer-size)                   1024       1024
TFTP (ip tftp-server file-system-size)         18560      18560
----------------------------------------  ---------------------
Total used memory                              19584      19584
Total free memory                              896        896
Total memory (fixed)                           20480
```

show banner login

Use the `show banner login` command to display the banner that is displayed before the login prompt.

Syntax

`show banner login`

User level

admin

Context

general
CLI Commands

Example
To display the banner that will be displayed before the login prompt:

G350-001(super)# show banner login
Welcome to G350 Media Gateway
FW version 0.11.0

show banner post-login

Use the `show banner post-login` command to display the banner displayed after a user logs in successfully.

Syntax

```
show banner post-login
```

User level
admin

Context
general

Example
To display the banner that will be shown after a successful login:

G350-001(super)# show banner post-login

*** Welcome to the G350 Media Gateway CLI Interface ***
For questions, please refer to the CLI Reference Guide

show boot bank

Use the `show boot bank` command to display the software bank from which the device boots at the next boot process.

Syntax

```
show boot bank
```

User level
read-only
Context
general

Example
To display the bank from which booting currently takes place:

G350-001> show boot bank
Boot bank set to bank-a

show cam

Use the `show cam` command to display the CAM table entries for a specific module and port. If no module or port is specified, the system displays all CAM table entries.

Note:
MACs associated with LAGs appear under the LAG ID, not under the LAG port.

Syntax

```
show cam [module[/port]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general
CLI Commands

Example

G350-001> show cam 3/33

Total Matching CAM Entries Displayed = 128

Dest MAC/Route Dest vlan Destination Ports

<table>
<thead>
<tr>
<th>Dest MAC/Route</th>
<th>Dest vlan</th>
<th>Destination Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00:20:c6:98:5f</td>
<td>1</td>
<td>3/33</td>
</tr>
<tr>
<td>08:00:20:c4:c8:51</td>
<td>1</td>
<td>3/33</td>
</tr>
<tr>
<td>00:00:5e:00:01:02</td>
<td>1</td>
<td>3/33</td>
</tr>
<tr>
<td>00:01:02:de:96:2f</td>
<td>1</td>
<td>3/33</td>
</tr>
<tr>
<td>00:02:2d:47:18:67</td>
<td>1</td>
<td>3/33</td>
</tr>
<tr>
<td>00:02:2d:48:18:29</td>
<td>1</td>
<td>3/33</td>
</tr>
<tr>
<td>00:04:0d:01:b0:00</td>
<td>1</td>
<td>3/33</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show cam mac

Use the `show cam mac` command to display a specific mac entry in the CAM table for a specific VLAN or for all VLANs.

Syntax

```
show cam mac mac_address [vlan_number]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac_address</td>
<td>The MAC entry to display</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vlan_number</td>
<td>The VLAN to display</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To display all entries in VLAN 1 that match the MAC address 00:40:c2:00:66:b0:

G350-001> show cam mac 00:40:c2:00:66:b0 1
show cam vlan

Use the `show cam vlan` command to display all MAC entries in the CAM table for a specific VLAN.

Syntax

`show cam vlan vlan_number`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan_number</td>
<td>VLAN for which to display the CAM table</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

show capture

Use the `show capture` command to display information about the currently configured settings for the packet sniffing service.

Note:

Timestamps in the capture file are based on the capture start time that is displayed in the output of the show capture command.

Syntax

`show capture`

User level

read-only

Context

general
Example

G350-001> show capture

The sniffing service is enabled
Capturing started at:
stopped at: not-stopped
Buffer size: 1000 KB
Buffer mode is cyclic
Maximum number of bytes captured from
each frame: 128
Packet filter: Capture List 503
Number of frames in buffer: 200
Size of capture file: 50 KB (5%)

show capture-buffer hex

Use the show capture-buffer hex command to display the contents of the packet sniffing buffer as a hex dump.

Syntax

show capture-buffer hex [frame_id]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>frame_id</td>
<td>The ID of the first packet to display in the output</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general
Example

G350-001> show capture-buffer hex 5
Frame number: 5
Frame time: 01/01/1970-23:45:09.10001
Time relative to first frame: 0, 0:0:3.021141
Frame Length: 68 bytes (0x44)
Capture Length: 68 bytes (0x44)

00000: d4c3 b2a1 0200 0400 0000 0000 0000 0000
00010: ffff 0000 0100 0000 348c 913e e5df 0e00>....
00020: 2800 0000 2800 0000 2053 4401 2053 (...(... SEND. S
00030: 454e 4401 c021 0100 001a 0506 0b87 16c2 END..!........
00040: 0d03 0611

Frame number: 6
Frame time: 01/01/1970-23:45:09.100012
Time relative to first frame: 0, 0:0:3.021142
Frame Length: 256 bytes (0x44)
Capture Length: 128 bytes (0x80)

0000000: d4c3 b2a1 0200 0400 0000 0000 0000 0000
0000010: ffff 0000 0100 0000 ea71 8e3e e6ed 0b00q.>....
0000020: e300 0000 e300 0000 ffff ffff ffff 0010
0000030: a498 97ab 0800 4500 00d5 3a7d 0000 8011E...:}....
0000040: ea9a 0a00 0002 0a00 00ff 008a 008a 00c1

--type q to quit or space key to continue--

Note:
The right side of the hex dump is the octets converted to characters using ascii code. Octets smaller than 32 or greater than 126 are displayed as a dot (.)

show composite-operation

Use the show composite-operation command to display information about a specific composite-operation. Use the command without a parameter to display information about all composite-operations.

Syntax

show composite-operation [composite_operation_index]
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>composite_operation_index</td>
<td>The composite-operation to display</td>
<td>0 – 19</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
ip access-control-list, ip access-control-list ip-rule, ip qos-list, ip qos-list ip-rule, ip qos-list composite-operation

Example
To display information about composite-operation 13:

G350-001 (QoS 440) # show composite-operation 13

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>CoS</th>
<th>DSCP</th>
<th>Trust</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>HSPackets</td>
<td>cos3</td>
<td>1</td>
<td>No</td>
</tr>
</tbody>
</table>

show contact-closure

Use the show contact-closure command to view the status of a contact closure relay. If no relay is specified, the status of all relays is displayed.

Syntax

`show contact-closure [module/port:relay]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module/port</td>
<td>Contact closure module/port to display</td>
<td>7/20</td>
<td></td>
</tr>
<tr>
<td>relay</td>
<td>Relay number</td>
<td>1,2</td>
<td></td>
</tr>
</tbody>
</table>
User level
read-only

Context
general

Example
To display information about all contact closure relays:

```
G350-001> show contact-closure
Module port relay admin           pulse-duration   status
------ ---- ----- --------------- ---------------  ------
7       20    1   call-controller 3 seconds        triggered
7       20    2   manual          toggle           off
```

To display information about contact closure relay 2:

```
G350-001> show contact-closure 7/20:2
Module port relay admin           pulse-duration   status
------ ---- ----- --------------- ---------------  ------
7       20    2   manual          toggle           off
```

show controllers

Use the `show controllers` command to display status information about a controller interface.

Syntax

```
show controllers module/port
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>The port number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write
CLI Commands

Context

general

Example

To display controller status information:

G350-001# show controllers

T1 5/1 is down.
Cable length is long gain 26 0 db.
Transmitter is sending remote alarm.
Receiver has loss of signal.
Framing is SF, Line Code is AMI, Clock Source is Line.
Data in current interval (802 seconds elapsed):
0 Line Code Violations, 0 Path Code Violations
0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins
0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 802 Unavail Secs
Total Data (last 4 15 minute intervals):
10 Line Code Violations, 0 Path Code Violations
0 Slip Secs, 0 Fr Loss Secs, 1 Line Err Secs, 0 Degraded Mins
0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 3600 Unavail Secs

show controllers remote

Use the `show controllers remote` command to display controller statistics from a peer station. If the Facility Data Link (FDL) for this controller is set to `att`, the system displays the status (up or down) of the line. Otherwise, the system displays statistics for the controller. To set the Facility Data Link, refer to `fdl` on page 142.

Syntax

`show controllers remote module/port fdl_data_type`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter | **Description** | **Possible Values** | **Default Value**
--- | --- | --- | ---
port | The port number | | |
fdl_data_type | The type of statistics to display | 1h-data, errored-esf-data, enhanced-1h, enhanced-c1-configuration | |

User level
read-write

Context
general

Example
To display 1h-data statistics for the T1 controller on port 1 of module 5:
```
G350-001# show controllers remote 5/1 1h-data
```

show copy status

Use the `show copy status` command to display the status of the `copy running-config startup-config` operation.

Syntax

`show copy status`

User level
read-write

Context
general
CLI Commands

Example

To display the status of the current copy operation:

G350-001# show copy status
Module #10
============
Module : 10
Source file : startup-config
Destination file : running-config
Host : -
Running state : Idle
Failure display : (null)
Last warning : No-warning

show crypto ipsec sa

Use the `show crypto ipsec sa` command to display the IPSec SA database status.

Syntax

`show crypto ipsec sa [list crypto-list-id [rule rule-id] | address] [detail]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>crypto-list-id</td>
<td>The crypto-list whose SA configuration should be displayed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rule-id</td>
<td>The ip-rule in the crypto-list whose SA configuration should be displayed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>address</td>
<td>Show SA configuration by peer IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>detail</td>
<td>Display detailed output</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only
Context

general

Example

G350-001> show crypto ipsec sa detail

Inbound pkts errors (global):
- Invalid spi 0
- Invalid interface 0

interface: Serial 5/1
 FastEthernet 10/1 (down)
 Crypto list id: 910, Local address: 1.0.0.1

 Rule: 15, Crypto map: 5, "Lincroft VPN"
 Local address: 1.0.0.1, Remote address: 1.0.0.2
 Local identity: 30.0.0.10/255.255.255.255
 Remote identity: 40.0.0.10/255.255.255.255
 Path mtu 1500, media mtu 1500
 Current outbound spi: 0x12345678

<table>
<thead>
<tr>
<th>SA Type</th>
<th>SPI</th>
<th>Transform</th>
<th>PFS</th>
<th>Secs left</th>
<th>KB left</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outound ESP</td>
<td>0x12345678</td>
<td>esp-md5-hmac</td>
<td>#2</td>
<td>14560</td>
<td>89630</td>
<td>Tunnel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>esp-3des</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inbound ESP</td>
<td>0x87654321</td>
<td>esp-md5-hmac</td>
<td>#2</td>
<td>60000</td>
<td>1569000</td>
<td>Tunnel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>esp-3des</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inbound packets</th>
<th>Outbound packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>Total OK</td>
<td>Total OK</td>
</tr>
<tr>
<td>Decrypt</td>
<td>Encrypt</td>
</tr>
<tr>
<td>Verify</td>
<td>Digest</td>
</tr>
<tr>
<td>Decaps</td>
<td>Encaps</td>
</tr>
<tr>
<td>Total discards</td>
<td>Total discards</td>
</tr>
<tr>
<td>Invalid len</td>
<td>No sa</td>
</tr>
<tr>
<td>Replay failed</td>
<td>Seg rollover</td>
</tr>
<tr>
<td>Sa expired</td>
<td>Sa expired</td>
</tr>
<tr>
<td>Auth failed</td>
<td></td>
</tr>
<tr>
<td>Bad padding</td>
<td></td>
</tr>
<tr>
<td>Invalid identity</td>
<td></td>
</tr>
<tr>
<td>Unprotected</td>
<td></td>
</tr>
<tr>
<td>Other discards</td>
<td>Other discards</td>
</tr>
</tbody>
</table>

Issue 3 January 2005 379
CLI Commands

show crypto ipsec transform-set

Use the `show crypto ipsec transform-set` command to display the configuration for the specified transform-set or all transform-sets.

Syntax

`show crypto ipsec transform-set [tag transform-set-name]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tag transform-set-name</code></td>
<td>The name of the transform set you wish to display. If you do not enter a value, all transform-sets are displayed.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
show crypto ipsec transform-set
```

```
Use the show crypto ipsec transform-set command to display the configuration for the specified transform-set or all transform-sets.
```
User level
read-only

Context
general

Example
G350-001> show crypto ipsec transform-set

<table>
<thead>
<tr>
<th>Name</th>
<th>ESP Encr</th>
<th>ESP Hash</th>
<th>PFS</th>
<th>Life sec</th>
<th>Life KB</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lincroft-Transform</td>
<td>3des</td>
<td>sha-hmac</td>
<td>#2</td>
<td>25000</td>
<td>3680010</td>
<td>Tunnel</td>
</tr>
<tr>
<td>Westminster-Transform</td>
<td>aes</td>
<td>sha-hmac</td>
<td>No</td>
<td>86400</td>
<td>5368702</td>
<td>Tunnel</td>
</tr>
</tbody>
</table>

show crypto isakmp peer

Use the `show crypto isakmp peer` command to display crypto ISAKMP peer configuration.

Syntax

`show crypto isakmp peer`

User level
read-only

Context
general

Example
G350-001> show crypto isakmp peer

Showing 1 rows

<table>
<thead>
<tr>
<th>Description</th>
<th>Peer identity</th>
<th>Auth</th>
<th>Plc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>135.64.102.109</td>
<td>psk</td>
<td>1</td>
</tr>
</tbody>
</table>
show crypto isakmp policy

Use the `show crypto isakmp policy` command to display ISAKMP policy configuration.

Syntax

```
show crypto isakmp policy
```

User level

read-only

Context

general

Example

```
G350-001> show crypto isakmp policy

<table>
<thead>
<tr>
<th>Id</th>
<th>Description</th>
<th>Encr</th>
<th>Hash</th>
<th>Authentication</th>
<th>DH group</th>
<th>life</th>
<th>sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lincroft ike</td>
<td>3des</td>
<td>md5</td>
<td>Preshared key</td>
<td>2</td>
<td>60000</td>
<td></td>
</tr>
</tbody>
</table>
```

show crypto isakmp sa

Use the `show crypto isakmp sa` command to display the ISAKMP SA database status.

Syntax

```
show crypto isakmp sa
```

User level

read-only

Context

general

Example

```
G350-001> show crypto isakmp sa
```
Showing 2 rows:

<table>
<thead>
<tr>
<th>C-id</th>
<th>Local</th>
<th>Remote</th>
<th>State</th>
<th>Hash</th>
<th>Auth</th>
<th>DH</th>
<th>Sec left</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>123.123.123.123</td>
<td>133.133.133.133</td>
<td>Ready</td>
<td>md5</td>
<td>psk</td>
<td>1</td>
<td>29600</td>
</tr>
<tr>
<td>2</td>
<td>222.123.123.123</td>
<td>111.133.133.133</td>
<td>Ready</td>
<td>sha</td>
<td>psk</td>
<td>2</td>
<td>12690</td>
</tr>
<tr>
<td>5</td>
<td>1.1.1.1</td>
<td>2.2.2.2</td>
<td>MM Neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.1.1.1</td>
<td>3.3.3.3</td>
<td>No-Srvc</td>
<td>sha</td>
<td>psk</td>
<td>2</td>
<td>80000</td>
</tr>
<tr>
<td>17</td>
<td>123.1.2.1</td>
<td>135.34.3.2</td>
<td>Delete</td>
<td>sha</td>
<td>psk</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

Output fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-id</td>
<td>Connection ID (set using the <code>crypto map</code> command)</td>
</tr>
<tr>
<td>Local</td>
<td>IP address of local peer</td>
</tr>
<tr>
<td>Remote</td>
<td>IP address of remote peer</td>
</tr>
</tbody>
</table>
| State | The state of the ISAKMP SA
 | Ready – ready to pass ISAKMP information
 | MM Neg – Main Mode Negotiation
 | No-Srvc – in Deactivate process
 | Delete – in Delete process |
| Hash | The hashing algorithm used: md5 or sha |
| Auth | The authentication type |
| DH | The Diffie-Hellman group |
| Sec left | Time left for SA (set using the `lifetime` command in `crypto isakmp policy context`). |

show crypto map

Use the `show crypto map` command to display all or specific crypto map configurations.

Syntax

`show crypto map [id]`
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>The ID of the crypto map for which to display configuration information. If you do not enter a value then all crypto map configurations are displayed.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example
G350-001> show crypto map

Showing 2 rows:

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Remote Peer</th>
<th>Transform-set</th>
<th>DSCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Lincroft VPN</td>
<td>1.0.0.2</td>
<td>Lincroft-Transform</td>
<td>copy</td>
</tr>
<tr>
<td>10</td>
<td>Westminster VPN</td>
<td>2.1.1.2</td>
<td>Westminster-Transform</td>
<td>10</td>
</tr>
</tbody>
</table>

Output fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Crypto map ID (set using the crypto map command)</td>
</tr>
<tr>
<td>Description</td>
<td>Crypto map description</td>
</tr>
<tr>
<td>Remote peer</td>
<td>IP address of remote peer</td>
</tr>
<tr>
<td>Transform-set</td>
<td>The name of the transform-set</td>
</tr>
<tr>
<td>DSCP</td>
<td>The DSCP configuration</td>
</tr>
</tbody>
</table>
show csu loopbacks

Use the `show csu loopbacks` command to view the state of the server SAT-controlled CSU loopbacks on a media module.

Syntax

```
show csu loopbacks mmID
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmID</td>
<td>The Media Module ID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To view the state of loopbacks on Module v2:

```
G350-001>show csu loopbacks v2
CSU LOOPBACK STATUS
-----------------------------------
Towards DTE Port-
Digital Diagnostics: OFF
Towards Network-
Payload: OFF
Line : OFF
```

show csu status

Use the `show csu status` command to view the status of the CSU on a media module.

Syntax

```
show csu status mmID
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmID</td>
<td>The Media Module ID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To display the status of the CSU on module 4:

G350-001# show csu status v4

TI version of csu status:

CSU NETWORK INTERFACE STATUS

--
LOS:ON00F:OFF
EER:OFFL00PD:OFF
AIS:OFFPDV:OFF
LOF:OFFYEL:ON

El version of csu status:

CSU NETWORK INTERFACE STATUS

--
LOS:ON00F:OFF
EER:OFFL00PD:OFF
AIS:OFFPDV:OFF
LOF:OFFLMA:OFF
RMA:OFFLCM:ON

Output fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS</td>
<td>Loss of signal</td>
</tr>
<tr>
<td>OOF</td>
<td>Out of frame</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>EER</td>
<td>Excessive error rate</td>
</tr>
<tr>
<td>LOF</td>
<td>Loss of frame</td>
</tr>
<tr>
<td>AIS</td>
<td>Alarm indication signal</td>
</tr>
<tr>
<td>YEL</td>
<td>Yellow</td>
</tr>
<tr>
<td>PDV</td>
<td>Pulse density violation (same as BPV)</td>
</tr>
<tr>
<td>LOOPD</td>
<td>Looped</td>
</tr>
<tr>
<td>LMA</td>
<td>Local multiframe alignment</td>
</tr>
<tr>
<td>RMA</td>
<td>Remote multiframe alignment</td>
</tr>
<tr>
<td>LCM</td>
<td>Loss of CRC multiframe</td>
</tr>
</tbody>
</table>

show dev log file

Use the **show dev log file** command to display the encrypted device’s log file.

Syntax

```
show dev log file
```

User level

read-write

Context

general

show dot1x

Use the **show dot1x** command to display the system dot1x capabilities, protocol version, and timer values.

Syntax

```
show dot1x
```
CLI Commands

User level
admin

Context
general

Example

Console> show dot1x
PAE Capabilities Authenticator Only
Protocol Version 1
system-auth-control disabled
*** Warning : Authentication server is disabled/not-exist and so, no authentication can be made

show download license-file status

Use the show download license-file status command to display the status of the download process of the VPN license to the device.

Syntax
show download license-file status

User level
read-only

Context
general

Example

G350-001> show download license-file status
Module #10

Module : 10
Source file : /home/llevinsk/EI2/03IS70594996.xml
Destination file : license-file
Host : 135.64.103.112
Running state : Idle
Failure display : (null)
Last warning : (null)
Bytes Downloaded : 0
show download phone-script-file status

Use the `show download phone-script-file status` command to check the status of the download phone-script file.

Syntax

`show download phone-script-file`

User level

Read only

Context

general

Example

`interface# > show download phone-script-file status`

- If no download has been performed:

  ```
  Module #10
  =============
  No dest file for download operation - no download operation was done.
  ```

- If a download has been performed:

  ```
  Module #10
  =============
  Module        : 10
  Source file   : /home/p46xx-script
  Destination file : phone-ScriptA
  Host          : 135.64.103.116
  Running state : Idle
  Failure display : (null)
  Last warning  : No-warning
  Bytes Downloaded : 27
  ```
show download software status

Use the `show download software status` command to display the status of the current Device Manager software download process as the software is being loaded into the module.

Syntax

`show download software status [module_number]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module_number</td>
<td>The number of the module for which to display information</td>
<td>0 – 10</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To display the status of a device software download into module #1:

G350-001> show download software status 1

Module #1
==========
Module : 1
Source file : d:\p340sw\gt-ml\3.5.18\p340.web
Destination file : EW_Archive
Host : 149.49.70.61
Running state : Writing ...
Failure display : (null)
Last warning : No-warning
show download status

Use the `show download status` command to display the status of the current configuration file download process, as the file is being loaded into the device.

Syntax

```
show download status [module_number]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module_number</td>
<td>The number of the module for which to display information</td>
<td>1 – 10</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To display the status of a configuration file download for module 10:

```
G350-001> show download status 10
```

show dscp-table

Use the `show dscp-table` command to display a specific entry in the DSCP table. If no DSCP index is specified, the entire DSCP table is displayed.

Syntax

```
show dscp-table [index]
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>The DSCP entry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
ip qos-list, ip qos-list dscp-table, ip qos-list ip-rule

Example
To display the entire DSCP table:

G350-011(QoS 444)# show dscp-table

Trust configuration is trust-cos

<table>
<thead>
<tr>
<th>DSCP</th>
<th>Action</th>
<th>Precedence</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No-Change</td>
<td>mandatory</td>
<td>DSCP#0</td>
</tr>
<tr>
<td>1</td>
<td>No-Change</td>
<td>mandatory</td>
<td>DSCP#1</td>
</tr>
<tr>
<td>2</td>
<td>No-Change</td>
<td>mandatory</td>
<td>DSCP#2</td>
</tr>
<tr>
<td>3</td>
<td>No-Change</td>
<td>mandatory</td>
<td>DSCP#3</td>
</tr>
<tr>
<td>4</td>
<td>No-Change</td>
<td>mandatory</td>
<td>DSCP#4</td>
</tr>
<tr>
<td>5</td>
<td>No-Change</td>
<td>mandatory</td>
<td>DSCP#5</td>
</tr>
<tr>
<td>6</td>
<td>No-Change</td>
<td>mandatory</td>
<td>DSCP#6</td>
</tr>
<tr>
<td>7</td>
<td>No-Change</td>
<td>mandatory</td>
<td>DSCP#7</td>
</tr>
<tr>
<td>8</td>
<td>No-Change</td>
<td>mandatory</td>
<td>DSCP#8</td>
</tr>
<tr>
<td>9</td>
<td>No-Change</td>
<td>mandatory</td>
<td>DSCP#9</td>
</tr>
<tr>
<td>10</td>
<td>No-Change</td>
<td>mandatory</td>
<td>DSCP#10</td>
</tr>
<tr>
<td>11</td>
<td>No-Change</td>
<td>mandatory</td>
<td>DSCP#11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>No-Change</td>
<td>mandatory</td>
<td>DSCP#63</td>
</tr>
</tbody>
</table>
show ds-mode

Use the `show ds-mode` command to display the current mode of the controller.

Syntax

`show ds-mode`

User level

read-only

Context

general

Example

To display the ds-mode:

```
G350-001> show ds-mode
Current ds-mode: T1
Configured ds-mode: T1
```

show dynamic-cac

Use the `show dynamic-cac` command to display information about the most recent dynamic CAC event.

Syntax

`show dynamic-cac`

User level

read-only

Context

general

Example

```
G350-001> show dynamic-cac
Current RBBL : 256 kbps
event : 0 Days, 1:21:00
Last event BBL : 256 kbps
```
show erase status

Use the `show erase status` command to display the status of the `erase startup-config` operation.

Syntax

```
show erase status
```

User level

read-write

Context

general

show etr

Use the `show etr` command to view the status of Emergency Transfer Relay (ETR) mode.

Note:

In ETR mode, the TRK and LINE 1 ports are connected. All other telephone ports stop operating.

Syntax

```
show etr
```

User level

read-only

Context

general

Example

To display the ETR status:

```
G350-001> show etr
Module: 7
Admin State: auto
Module status: in service
Trunk line line status
----- ----  -----------
1 2    off hook
```
show faults

Use the `show faults` command to display the active faults for the media gateway.

Syntax

`show faults`

User level

read-only

Context

general

Example

To display the current fault list:

```
G350-001> show faults
CURRENTLY ACTIVE FAULTS

-- Hardware Faults --
    + Multiple fans outage, 01/01-18:26:35.00
    + PSU fan brief outage, 01/01-18:26:35.00

-- MGP Faults --
    + No controller found, 01/01-00:00:01.00
```

show flows

Use the `show flows` command to display information about the real-time status of micro-flows within output queues for the current interface.

Note:

This command is only applicable in fair-voip-queue mode.

Syntax

`show flows type identifier`
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>The type of interface</td>
<td>Fast Ethernet</td>
<td></td>
</tr>
<tr>
<td>identifier</td>
<td>The identifier depends on the interface type:</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For Fast Ethernet: \textit{module/port}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For Serial: \textit{module/port:channel-group}</td>
<td>channel-group:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E1: 0-30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1: 0-23</td>
<td></td>
</tr>
</tbody>
</table>

User level
read

Context
Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR L2, USP FR L2, USP PPP L2, USP PPP L2-L3), FastEthernet (L2, L2-L3) - when traffic shaping is configured

Examples
G350-001> show flows FastEthernet 10/2
G350-001> show flows Serial 3/1:2

\textbf{show fragment}

Use the \texttt{show fragment} command to display information about IP packets that are passing from or to the router.

\textbf{Note:}
No IP reassembly is performed on packets in transit through the router.

Syntax
\texttt{show fragment}

User level
read-only
Context

general

Example

To display fragmented IP packets information:

G350-001> show fragment

Max number of concurrently reassembled packets is 100
Max number of fragments per packet is 64
Fragment timeout is 10 sec
Number of packets waiting to be reassembled is 0
Number of successfully reassembled packets is 11954
Number of packets which failed to be reassembled is 0
Number of packets which overflowed the database is 0

show frame-relay fragment

Use the `show frame-relay fragment` command to display frame-relay fragmentation statistics and configuration on all PVCs, all PVCs associated with an interface, or a specific PVC.

Note:

When statistics for multiple PVCs are shown, they are sorted first by interface type and number, and then by DLCI.

Syntax

```
show frame-relay fragment [interface interface_name|dlci_number]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface_name</code></td>
<td>Type and identifier of the interface enclosed in quotes</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>dlci_number</code></td>
<td>The PVC identifier</td>
<td>16-1007</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only
Context

general

Example

To show details on configuration and statistics for fragmentation on all PVCs associated with a Serial interface:

G350-001> show frame-relay fragment interface “Serial 5/1”

show frame-relay lmi

Use the `show frame-relay lmi` command to display LMI statistics for a particular interface or for all interfaces. The output displayed differs depending on the type of interface.

Syntax

`show frame-relay lmi [interface interface_name]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface_name</code></td>
<td>The name of the interface</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To display LMI statistics for all interfaces:

G350-001# show frame-relay lmi

LMI Statistics for interface Serial 1 (Frame Relay DTE)

<table>
<thead>
<tr>
<th>LMI TYPE</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI Annex D</td>
<td>Invalid Unnumbered info</td>
<td>0, Invalid</td>
<td></td>
</tr>
<tr>
<td>Prot Disc</td>
<td>Invalid dummy Call Ref</td>
<td>0, Invalid</td>
<td></td>
</tr>
<tr>
<td>Msg Type</td>
<td>Invalid Status Message</td>
<td>0, Invalid</td>
<td></td>
</tr>
<tr>
<td>Lock Shift</td>
<td>Invalid Information ID</td>
<td>0, Invalid</td>
<td></td>
</tr>
<tr>
<td>Report IE Len</td>
<td>Invalid Report Request</td>
<td>0, Invalid</td>
<td></td>
</tr>
<tr>
<td>Keep IE Len</td>
<td>Num Status Enq. Sent</td>
<td>0, Num Status</td>
<td></td>
</tr>
</tbody>
</table>
Alphabetical listing of CLI commands

msgs Rcvd 0 Num Update Status Rcvd 0, Num Status
Timeouts 0

LMI Statistics for interface Serial 2 (Frame Relay DTE)

<table>
<thead>
<tr>
<th>LMI TYPE = Auto Detect Mode</th>
<th>Invalid Unnumbered info 0,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid Prot Disc</td>
<td>0 Invalid dummy Call Ref 0,</td>
</tr>
<tr>
<td>Invalid Msg Type</td>
<td>0 Invalid Status Message 0,</td>
</tr>
<tr>
<td>Invalid Lock Shift</td>
<td>0 Invalid Information ID 0,</td>
</tr>
<tr>
<td>Invalid Report IE Len</td>
<td>0 Invalid Report Request 0,</td>
</tr>
<tr>
<td>Invalid Keep IE Len</td>
<td>0 Num Status Enq. Sent 0,</td>
</tr>
<tr>
<td>Num Status msgs Rcvd</td>
<td>0 Num Update Status Rcvd 0,</td>
</tr>
</tbody>
</table>
| Num Status Timeouts | 0

Output Fields

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMI Statistics</td>
<td>Signaling or LMI specification: ANSI, or ITU-T.</td>
</tr>
<tr>
<td>Invalid Unnumbered info</td>
<td>Number of received LMI messages with invalid unnumbered information field.</td>
</tr>
<tr>
<td>Invalid Prot Disc</td>
<td>Number of received LMI messages with invalid protocol discriminator.</td>
</tr>
<tr>
<td>Invalid dummy Call Ref</td>
<td>Number of received LMI messages with invalid dummy call references.</td>
</tr>
<tr>
<td>Invalid Msg Type</td>
<td>Number of received LMI messages with invalid message type.</td>
</tr>
<tr>
<td>Invalid Status Message</td>
<td>Number of received LMI messages with invalid status message.</td>
</tr>
<tr>
<td>Invalid Lock Shift</td>
<td>Number of received LMI messages with invalid lock shift type.</td>
</tr>
<tr>
<td>Invalid Information ID</td>
<td>Number of received LMI messages with invalid information identifier.</td>
</tr>
<tr>
<td>Invalid Report IE Len</td>
<td>Number of received LMI messages with invalid Report IE Length.</td>
</tr>
<tr>
<td>Invalid Report Request</td>
<td>Number of received LMI messages with invalid Report Request.</td>
</tr>
<tr>
<td>Invalid Keep IE Len</td>
<td>Number of received LMI messages with invalid Keep IE Length.</td>
</tr>
<tr>
<td>Num Status Enq. Sent</td>
<td>Number of LMI status inquiry messages sent.</td>
</tr>
<tr>
<td>Num Status Msks Rcvd</td>
<td>Number of LMI status messages received.</td>
</tr>
<tr>
<td>Num Update Status Rcvd</td>
<td>Number of LMI asynchronous update status messages received.</td>
</tr>
</tbody>
</table>
Use the `show frame-relay map` command to display a summary table of Frame Relay sub-interfaces and DLCIs associated with the sub-interfaces.

Syntax

```
show frame-relay map
```

User level

read-only

Context

general

Example

To display information about the Frame Relay sub-interfaces:

```
G350-001> show frame-relay map
Showing 2 frame-relay map entries
Interface State Interface Type DLCI DLCI Type DLCI State
-------------- ----- ------------------ ---- ------------ ----------
Serial 1.1 down point-to-point 17 broadcast deleted
Serial 1.1 down point-to-point 18 broadcast deleted
```
show frame-relay pvc

Use the `show frame-relay pvc` command to display detailed PVC information. The information can be shown for all PVCs known to the device, for all PVCs learned on an interface, or for a specific PVC (DLCI). Note that in this case, all PVCs with the same DLCI are displayed. When statistics for multiple PVCs are shown, they are sorted first by interface type and number, and then by DLCI.

Syntax

`show frame-relay pvc [interface interface_name | dlci_number]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface_name</code></td>
<td>Type and identifier of the interface enclosed in quotes</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>dlci_number</code></td>
<td>The PVC identifier</td>
<td>16-1007</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To show details on configuration and statistics for all PVCs associated with interface “Serial 1.1”:

```
G350-001> show frame-relay pvc interface "Serial 1.1"
Showing 1 PVC Statistics for interface Serial 1 (Frame Relay DTE)
DLCI = 17, USAGE = LOCAL ,
PVC STATUS = DELETED ,
INTERFACE = Serial 1.1
  input pkts          0 ,
  output pkts         0 ,
  dropped pkts        0
  in bytes            0 ,
  out bytes           0
  in FECN pkts        0
  in BECN pkts        0
```
CLI Commands

pvc create time 00:05:17,
last time pvc status changed 00:05:07 traffic-shaping configured by
map-class foobar

cir 70000,
bc 7000,
be 0 interval 100,
current bc 7000,
current be 0 pkts 0,
delayed pkts 0,
dropped pkts 0 bytes 0,
delayed byts 0,
dropped byts 0 de pre mark is on,
threshold is 20% of bc end-to-end fragmentation is on,
fragment size is 88

PVC Statistics for interface Serial 2 (Frame Relay DTE)

show frame-relay pvc brief

Use the `show frame-relay pvc brief` command to display information on all PVCs known to the device, in a table form.

Syntax

`show frame-relay pvc brief`

User level

read-only

Context

general

Example

To show a table of all PVCs known to the device:

G350-011> show frame-relay pvc brief
show frame-relay traffic

Use the show frame-relay traffic command to display frame-relay protocol statistics, including ARP requests and replies sent and received over Frame Relay interfaces.

Syntax

show frame-relay traffic

User level

read-only

Context

general

Example

To display frame-relay statistics:

G350-001> show frame-relay traffic
Frame Relay statistics:
ARP requests sent 0, ARP replies sent 0
ARP requests recvd 0, ARP replies recvd 0

show icc-monitoring

Use the show icc-monitoring command to display the state of the icc-monitoring process.

Syntax

show icc-monitoring

User level

read-only

Context

general

Example

To display ICC monitoring status:

G350-001> show icc-monitoring
show icc-vlan

Use the show icc-vlan command to view the ICC-VLAN.

Syntax

```
show icc-vlan
```

User level

read-only

Context

general

Example

To display the ICC VLAN:

```
G350-001> show icc-vlan
VLAN 1
```

show image version

Use the show image version command to display the software version of the image on both memory banks of the device.

Syntax

```
show image version
```

User level

read-only

Context

general

Example

To display the current software versions:

```
G350-001> show image version
Bank   Version
    ----  -------
```
show interfaces

Use the `show interfaces` command to display interface configuration and statistics for a particular interface or all interfaces. The Frame Relay sub-interface only includes the following counters:

- packets & bytes in
- packets & bytes out
- input errors
- output drops

Syntax

`show interfaces [interface_type interface_identifier]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface_type</code></td>
<td>The type of interface</td>
<td>FastEthernet, Serial, Vlan, Loopback, Console, Tunnel, USB-modem</td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

User level
read-write

Context
general

Example
To show information about all the interfaces:

G350-011# show interfaces
Vlan 1 is up, line protocol is up
Physical address is 00.04.0d.29.c5.11.
Internet address is 172.16.1.139, mask is 255.255.255.240
Primary management interface
MTU 1500 bytes. Bandwidth 100000 kbit.
Reliability 255/255 txLoad 1/255 rxLoad 1/255
Encapsulation ARPA, ICC-VLAN
Link status trap disabled
Full-duplex, 100Mb/s
ARP type: ARPA, ARP Timeout 04:00:00
Last input 00:00:30, Last output 00:00:30
Last clearing of ‘show interface’ counters never.
5 minute input rate 144 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
0 input drops, 0 output drops, 0 unknown protocols
3425 packets input, 323518 bytes
3425 broadcasts received, 0 giants
0 input errors, 0 CRC
32 packets output, 896 bytes
0 output errors, 0 collisions

FastEthernet 10/2 is up, line protocol is down
Physical address is 00.04.0d.29.c5.10.
MTU 1500 bytes. Bandwidth 10000 kbit.
Reliability 1/255 txLoad 255/255 rxLoad 255/255
Encapsulation ARPA
Link status trap disabled
Half-duplex, 10Mb/s, 10BaseTX
ARP type: ARPA, ARP Timeout 04:00:00
Dynamic CAC BBL: 1500 kbps
Dynamic CAC activation priority: 50
Dynamic CAC interface status: active
Last input never, Last output never
Last clearing of ‘show interface’ counters never.
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
show interface usb-modem

Use the `show interface usb-modem` command to display the status and settings of the usb-modem.

Syntax

`show interface usb-modem`

User level

`read-only`
cli commands

context

general

example

g350-011# show interface usb-modem
usb modem is present
admin status is no-shutdown
internet address is 10.0.1.20 mask is 255.255.0.0
mtu 1500 bytes, ppp baud rate is 38400,
line protocol is up
modem type: mt5634zba-usb
init string: at s7=45 s0=2 l1 v1 x4 &c1 e0 q0,
init string status is ok
ppp authentication is pap
session inactivity timeout is 2 minutes

show ip access-control-list

use the show ip access-control-list command to display the attributes of a specific
access control list on the current interface.

syntax

show ip access-control-list {list_number | all | active-list-in | active-list-out | active-list-in-out} [detailed]

parameters

<table>
<thead>
<tr>
<th>parameter</th>
<th>description</th>
<th>possible values</th>
<th>default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list_number</td>
<td>the access control list to display</td>
<td></td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>keyword specifying to display all access control lists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>active-list-in</td>
<td>keyword specifying to display lists for the in direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>active-list-out</td>
<td>keyword specifying to display lists for the out direction</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 of 2
User level
read-write

Context
Interface: Serial (DS1 PPP L2, DS1 PPP L2-L3, DS1 FR-SUB L2, DS1 FR-SUB L2-L3, USP PPP L2, USP PPP L2-L3), FastEthernet (L2, L2-L3), VLAN (L2, L2-L3), Loopback (L2, L2-L3), Tunnel (L2, L2-L3)

Example
To display detailed information about all access control lists on the VLAN 1 interface:

G350-011(if:Vlan 1)# show ip access-control-list all detailed

List Number: 300

List Name: Default ACL List
Default Action: permit
Owner: other

List Number: 320

List Name: Sync1
Default Action: permit
Owner: x9393

List Number: 330

List Name: Admin13
Default Action: permit
Owner: Charlie

show ip access-control-list

Use the show ip access-control-list command to display the attributes of a specific access control list or all lists.
CLI Commands

Syntax

show ip access-control-list {list_number | all} [detailed]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list_number</td>
<td>The access control list to display</td>
<td></td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>Keyword specifying to display attributes for all access control lists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>detailed</td>
<td>Keyword specifying to display detailed information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

general

Example

To display detailed information about all access control lists:

G350-011# show ip access-control-list all detailed

List Number: 300

List Name: Default ACL List
Default Action: permit
Owner: other

List Number: 320

List Name: Sync1
Default Action: permit
Owner: x9393

List Number: 330

List Name: Admin13
Default Action: permit
Owner: Charlie
To display attributes of access control list 330:

G350-001# show ip access-control-list 330

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>330</td>
<td>list #330</td>
<td>other</td>
</tr>
</tbody>
</table>

ip options: Permit
ip fragments: Permit

<table>
<thead>
<tr>
<th>Index</th>
<th>Protocol</th>
<th>IP</th>
<th>Wildcard</th>
<th>Port</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>tcp</td>
<td>Src</td>
<td>Any</td>
<td>Any</td>
<td>Permit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dst</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deflt</td>
<td>Any</td>
<td>Src</td>
<td>Any</td>
<td>Any</td>
<td>Permit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dst</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show ip active-lists

Use the `show ip active-lists` command to display information about a specific policy list or all lists.

Syntax

`show ip active-lists [list_index | list_type]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list_index</td>
<td>The index of the policy list to view</td>
<td>300 – 499</td>
<td></td>
</tr>
<tr>
<td>list_type</td>
<td>The type of list: ACL, Crypto, PBR, QoS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general
Example

```
G350-001> show ip active-lists
```

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Dir.</th>
<th>Type</th>
<th>Idx</th>
<th>List Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastEthernet 10/2</td>
<td>In</td>
<td>ACL</td>
<td>300</td>
<td>Default ACL List</td>
</tr>
<tr>
<td>FastEthernet 10/2</td>
<td>In</td>
<td>QoS</td>
<td>400</td>
<td>Default QoS List</td>
</tr>
<tr>
<td>FastEthernet 10/2</td>
<td>Out</td>
<td>ACL</td>
<td>300</td>
<td>Default ACL List</td>
</tr>
<tr>
<td>FastEthernet 10/2</td>
<td>Out</td>
<td>QoS</td>
<td>400</td>
<td>Default QoS List</td>
</tr>
<tr>
<td>FastEthernet 10/2</td>
<td>----</td>
<td>Crypto</td>
<td>901</td>
<td>list #901</td>
</tr>
<tr>
<td>Vlan 1</td>
<td>In</td>
<td>ACL</td>
<td>300</td>
<td>Default ACL List</td>
</tr>
<tr>
<td>Vlan 1</td>
<td>In</td>
<td>QoS</td>
<td>400</td>
<td>Default QoS List</td>
</tr>
<tr>
<td>Vlan 1</td>
<td>Out</td>
<td>ACL</td>
<td>300</td>
<td>Default ACL List</td>
</tr>
<tr>
<td>Vlan 1</td>
<td>Out</td>
<td>QoS</td>
<td>400</td>
<td>Default QoS List</td>
</tr>
</tbody>
</table>

show ip active-pbr-lists

Use the `show ip active-pbr-lists` command to display details about a specific pbr list or all pbr lists.

Syntax

```
show ip active-pbr-lists {list_number}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list_number</td>
<td>The pbr list to view.</td>
<td>800-899</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general
Example
To display information about all pbr lists:

G350-001> show ip active-pbr-lists

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Index</th>
<th>List Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan 1</td>
<td>801</td>
<td>Voice PBR List</td>
</tr>
<tr>
<td>Vlan 2</td>
<td>803</td>
<td>Data PBR List</td>
</tr>
</tbody>
</table>

show ip arp
Use the show ip arp command to display the Address Resolution Protocol (ARP) cache.

Syntax

show ip arp [interface|ip_interface|ip_addr[ip_mask] | static]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>The interface name, in quotes</td>
<td>string (1-32 chars)</td>
<td></td>
</tr>
<tr>
<td>ip_interface</td>
<td>The IP interface name, in quotes</td>
<td>string (1-32 chars)</td>
<td></td>
</tr>
<tr>
<td>ip_addr</td>
<td>The IP address of the station(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip_mask</td>
<td>The IP mask of the routes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>static</td>
<td>Keyword that specifies to display static IP ARP information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example
To display all ARP mappings:

G350-001> show ip arp

To display one host ARP mapping:
CLI Commands

G350-001> show ip arp 192.168.49.1
To display a range of ARP mappings:
G350-001> show ip arp 192.168.49.1 255.255.255.0
To display ARP mappings for the VLAN 1 interface:
G350-001> show ip arp “Vlan 1”
To display static ARP mapping:
G350-001> show ip arp static

Note:
When specifying an interface name that includes spaces, enclose the entire name in quotation marks (for example, “New York”).

show ip capture-list

Use the `show ip capture-list` command to display details about capture lists.

Syntax

```
show ip capture-list { list-number | all } [detailed]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list_number</td>
<td>The capture list to view.</td>
<td>800-899</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To display information about all capture lists:
G350-001> show ip capture-list all

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>Default Capture List</td>
<td>other</td>
</tr>
<tr>
<td>501</td>
<td>list #5021</td>
<td>other</td>
</tr>
</tbody>
</table>
show ip crypto-list

Use the `show ip crypto-list` command to display all or specific crypto-list configurations.

Syntax

`show ip crypto-list {list-number | all} [detail]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>list-number</code></td>
<td>The ID of the crypto-list for which to display configuration information</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>all</code></td>
<td>Show all crypto-lists</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>detailed</code></td>
<td>Display detailed configuration information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context

general

Examples

1. To display the configuration of a specific crypto-list:

```
G350-001> show ip crypto-list 901
```

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
<th>Status</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>Gregory</td>
<td>invalid</td>
<td>other</td>
</tr>
</tbody>
</table>

Local address: 12.12.1.2 [Interface Serial 5/1:1]

Rules:

<table>
<thead>
<tr>
<th>Index</th>
<th>IP</th>
<th>Wildcard</th>
<th>Action</th>
<th>Crypto map</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Src 171.121.231.123</td>
<td>255.255.255.255</td>
<td>Protect 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dst 1.1.1.1</td>
<td>0.0.0.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Src 21.23.12.12</td>
<td>255.255.255.0</td>
<td>Protect 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dst 12.1.1.1</td>
<td>0.0.0.255</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
25 Src 3.1.2.2 255.255.255.0 Protect 15
 Dst 2.1.1.1 0.0.0.255
Deflt Src Any Bypass -
 Dst Any

Applicable crypto maps:

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Remote Peer</th>
<th>Transform-set</th>
<th>DSCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Lincroft VPN</td>
<td>1.0.0.2</td>
<td>Lincroft-Transform</td>
<td>copy</td>
</tr>
<tr>
<td>10</td>
<td>Westminster VPN</td>
<td>2.1.1.2</td>
<td>Westminster-Transform12</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>*** Crypto map does not exist ***</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. To display all crypto-lists:

G350-001> show ip crypto-list

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
<th>Status</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>Default Crypto List</td>
<td>valid</td>
<td>other</td>
</tr>
<tr>
<td>901</td>
<td>list #901</td>
<td>valid</td>
<td>other</td>
</tr>
</tbody>
</table>

show ip dhcp-pool

Use the show ip dhcp-pool command to display the configuration of a pool.

Syntax

```
show ip dhcp-pool
```

User level

read only

Context

dhcp pool
Example

To display the configuration of the current DHCP pool:

G350-001(DHCP 5)# show ip dhcp-pool

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>DHCP pool #5</td>
</tr>
</tbody>
</table>

Mode: Inactive

Start IP Address Range: 1.1.1.1
End IP Address Range: 1.1.1.20

Lease Time: 8 days 0 hours 0 minutes 0 seconds

BootFile: N/A
Next-Server: N/A
Client-Identifier: N/A
Server-Name: N/A

DHCP options

<table>
<thead>
<tr>
<th>Option Num</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>subnet-mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>3</td>
<td>default-router</td>
<td>1.1.1.1</td>
</tr>
</tbody>
</table>

Vendor Specific Information

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ccp.avaya.com</td>
</tr>
</tbody>
</table>

show ip dhcp-pool

Use the show ip dhcp-pool command to display DHCP pool configurations.

Syntax

```
show ip dhcp-pool {pool index|all} [detailed]
```
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pool index</td>
<td>The index of a specific pool</td>
<td>1-32</td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>Displays all DHCP pools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>detailed</td>
<td>Displays detailed configuration information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read only

Context

general

Example

To display the configuration of DHCP pool 5:

Sanity_G350-001# show ip dhcp-pool 5

Index Name
------ ------------------
5 DHCP pool #5

Mode: Inactive
Start IP Address Range: 1.1.1.1
End IP Address Range: 1.1.1.20
Lease Time: 8 days 0 hours 0 minutes 0 seconds
BootFile: N/A
Next-Server: N/A
Client-Identifier: N/A
Server-Name: N/A

DHCP options

Option Num Name Value
---------- ----------------------- -------
1 subnet-mask 255.255.255.0

Option Num Name Value
---------- ----------------------- -------
3 default-router

418 Avaya G350 Media Gateway CLI Reference
To display the names and statuses of all configured DHCP pools:
Sanity_G350-001# show ip dhcp-pool all

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>DHCP pool #5</td>
<td>Inactive</td>
</tr>
<tr>
<td>6</td>
<td>DHCP pool #6</td>
<td>Inactive</td>
</tr>
</tbody>
</table>

To display configuration information for all configured DHCP pools:
Sanity_G350-001# show ip dhcp-pool all detailed

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>DHCP pool #5</td>
</tr>
</tbody>
</table>

Mode: Inactive

Start IP Address Range: 1.1.1.1
End IP Address Range: 1.1.1.20
Lease Time: 8 days 0 hours 0 minutes 0 seconds
BootFile: N/A
Next-Server: N/A
Client-Identifier: N/A
Server-Name: N/A

DHCP options
Option Num 1 Name subnet-mask
CLI Commands

Value 255.255.255.0

Option Num 3 Name default-router
Value 1.1.1.1

Option Num 176 Name SSON
Value This is an example

Vendor Specific Information
Index 1 Name ccp.avaya.com
Class-Identifier (null)
Value This is an example too

Index Name
------- -------------------
6 DHCP pool #6

Mode: Inactive
Start IP Address Range: 2.2.2.2
End IP Address Range: 2.2.2.20
Lease Time: 8 days 0 hours 0 minutes 0 seconds
BootFile: N/A
Next-Server: N/A
Client-Identifier: N/A
Server-Name: N/A

DHCP options
Option Num 1 Name subnet-mask
Value 255.255.255.248

Option Num 6 Name dns-server
Value 1.1.1.1 2.2.2.2
show ip dhcp-server bindings

A binding is an assignment of an IP address to a client. Use the `show ip dhcp-server bindings` command to display bindings.

Syntax
```
show ip dhcp-server bindings
```

Parameters

User level
read only

Context
general

Example
To display all IP address allocations to clients:
```
G350-001# show ip dhcp-server bindings
```

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Lease Expiration (seconds)</th>
<th>Type</th>
<th>Client-Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3.2</td>
<td>Infinite</td>
<td>Automatic</td>
<td>01:00:11:22:33:44:55:67</td>
</tr>
<tr>
<td>3.3.3.3</td>
<td>303244</td>
<td>Manual</td>
<td>01:00:11:22:33:44:55:66</td>
</tr>
</tbody>
</table>

show ip dhcp-server statistics

Use the `show ip dhcp-server statistics` command to display DHCP server statistics.

Syntax
```
show ip dhcp-server statistics
```

User level
read only

Context
general
Example
To display DHCP server statistics:

G350-001# show ip dhcp-server statistics

<table>
<thead>
<tr>
<th>Counter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOTP Requests</td>
<td>1</td>
</tr>
<tr>
<td>DHCP Discovers</td>
<td>2</td>
</tr>
<tr>
<td>DHCP Requests</td>
<td>3</td>
</tr>
<tr>
<td>DHCP Declines</td>
<td>4</td>
</tr>
<tr>
<td>DHCP Releases</td>
<td>5</td>
</tr>
<tr>
<td>DHCP Informs</td>
<td>6</td>
</tr>
<tr>
<td>BOOTP Replies</td>
<td>7</td>
</tr>
<tr>
<td>DHCP Offers</td>
<td>8</td>
</tr>
<tr>
<td>DHCP Acks</td>
<td>9</td>
</tr>
</tbody>
</table>

show ip distribution access-lists

Use the `show ip distribution access-lists` command to display the contents of all current distribution lists or of a specific list.

Syntax

`show ip distribution access-lists [distribution_list_number]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>distribution_list_number</td>
<td>The distribution list number</td>
<td>1-99</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general
Example
To display the content of distribution list number 1:
G350-001> show ip distribution access-lists 1
To display the content of all current distribution lists:
G350-001> show ip distribution access-lists

show ip icmp

Use the `show ip icmp` command to display the status of ICMP error messages.

Syntax

```
show ip icmp
```

User level
read-only

Context
general

Example
To display ICMP error message status:
G350-555> show ip icmp
ICMP error messages status is ENABLE

show ip interface

Use the `show ip interface` command to display information about an IP interface.

Syntax

```
show ip interface [interface_name|ip_interface|ip_address]
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface_name</code></td>
<td>The name of the interface whose information you want to display</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ip_interface</code></td>
<td>The name of the IP interface whose information you want to display</td>
<td>string</td>
<td>(1-32 chars)</td>
</tr>
<tr>
<td><code>ip_address</code></td>
<td>The IP address of the interface whose information you want to display</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
When specifying an interface name that includes spaces, enclose the entire name in quotation marks (for example, "FastEthernet 10/2").

User level
read-only

Context
general

Example
To display information for the FastEthernet interface:
G350-001> show ip interface "FastEthernet 10/2"
To display information for the sub-interface 0 of the FastEthernet interface:
G350-001> show ip interface "FastEthernet 10/2.0"
To display all IP interfaces:
G350-001> show ip interface
Showing 2 Interfaces
Serial 1:1 is down
Internet address is 2.2.2.2 , subnet mask is 255.255.255.0
Advertised IPCP address
Broadcast address is 2.2.2.255
Directed broadcast forwarding is disabled
Proxy ARP is disabled
Primary management IP interface

FastEthernet 10/2 is up
Internet address is 149.49.75.71 , subnet mask is 255.255.255.0
Broadcast address is 149.49.75.255
Directed broadcast forwarding is disabled
Proxy ARP is disabled

show ip interface brief

Use the `show ip interface brief` command to display a summary of the information for a specific interface or for all of the interfaces.

Syntax

```
show ip interface brief [interface_name|ip_interface|ip_address]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface_name</td>
<td>The name of the interface whose information you want to display</td>
<td>string (1-32 chars)</td>
<td></td>
</tr>
<tr>
<td>ip_interface</td>
<td>The name of the IP interface whose information you want to display</td>
<td>string (1-32 chars)</td>
<td></td>
</tr>
<tr>
<td>ip_address</td>
<td>The IP address of the interface whose information you want to display</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

When specifying an interface name that includes spaces, enclose the entire name in quotation marks (for example, “FastEthernet 10/2”).

User level

read-only

Context

general

Example

To display concise information about the FastEthernet interface:

```
G350-001> show ip interface brief “FastEthernet 10/2”
```

Showing 1 Interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>Address</th>
<th>Mask</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastEth 10/2</td>
<td>172.16.1.139</td>
<td>16</td>
<td>up</td>
</tr>
</tbody>
</table>
show ip next-hop-list

Use the `show ip next-hop-list` command to show the details of the next-hop list.

Syntax

```
show ip next-hop-list {next_hop_number | all}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>next_hop_number</td>
<td>The index number of the entry in the next-hop list</td>
<td>1-20</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context

`ip pbr-list ip-rule`

Examples

G350-001> show ip next-hop-list all
Index Name
----- --------
1 list #1
3 list #3
G350-001> show ip next-hop-list 3
next hop list does not exist

show ip ospf

Use the `show ip ospf` command to display general information about OSPF routing.

Syntax

```
show ip ospf
```

User level
read-only
Context
gen

Example
To display IP OSPF routing information:

G350-001> show ip ospf

Routing Process OSPF with ID 149.49.75.71
Number of areas in this router is 1
Area 0.0.0.0
Number of Interfaces in this area 0
SPF algorithm executed 1 times
SPF hold time is 3 sec

show ip ospf database

Use the show ip ospf database command to display lists of information related to the
OSPF database for a specific router. If no router type is specified, OSPF information is
displayed for all routers.

Syntax

show ip ospf database
[asbr-summary|router|network|network-summary|external]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>asbr-summary</td>
<td>Displays information about the autonomous system boundary router summary LSAs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>router</td>
<td>Displays information about the router LSAs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>network</td>
<td>Displays information about the network LSAs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>network-summary</td>
<td>Displays information about the network LSAs summary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>external</td>
<td>Displays information about the external LSAs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only
CLI Commands

Context
general

Example
To display OSPF database information for all router types:

G350-001> show ip ospf database

Showing 1 rows

<table>
<thead>
<tr>
<th>Area</th>
<th>Type</th>
<th>LSA ID</th>
<th>Router ID</th>
<th>Sequence</th>
<th>Age</th>
<th>Cksm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>RTR</td>
<td>149.49.75.71</td>
<td>149.49.75.71</td>
<td>800000001</td>
<td>567</td>
<td>139b</td>
</tr>
</tbody>
</table>

show ip ospf interface

Use the `show ip ospf interface` command to display OSPF-related interface information. If no interface name is specified, information for all interfaces is displayed.

Syntax

```plaintext
show ip ospf interface [interface_name]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface_name</td>
<td>The OSPF interface name</td>
<td>string</td>
<td></td>
</tr>
</tbody>
</table>

Note:

To specify an interface name that includes spaces, enclose the entire name in quotation marks (for example, “New York”).

User level

read-only

Context
general
Example
To display OSPF information for all interfaces:

G350-001> show ip ospf interface

show ip ospf interface

Showing 1 OSPF Interfaces
Vlan 1.0 is up
Internet Address 1.1.1.1, Mask 255.255.255.0 , Area 0.0.0.0
AS Router ID 1.1.1.1, COST 1
Transmit Delay 1, State DR, Priority 1
DRId 1.1.1.1, IpAddress 1.1.1.1
BDRId is 0.0.0.0, IpAddress 0.0.0.0
Timer Intervals Configured:
Hello 10
Dead 40
Retransmit 5
Neighbor count 0

show ip ospf neighbor

Use the show ip ospf neighbor command to display OSPF neighbor information for a specific interface or for all interfaces.

Syntax
show ip ospf neighbor [interface_name] [neighbor_id]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface_name</td>
<td>The OSPF interface name</td>
<td>string</td>
<td></td>
</tr>
<tr>
<td>neighbor_id</td>
<td>The OSPF neighbor ID number</td>
<td>an IP address</td>
<td></td>
</tr>
</tbody>
</table>

Note:
To specify an interface name that includes spaces, enclose the entire name in quotation marks (for example, “New York”).

User level
read-only
CLI Commands

Context

general

Example

To display neighbor information for all interfaces:

G350-001> show ip ospf neighbor

<table>
<thead>
<tr>
<th>Nbr-Id</th>
<th>Priority</th>
<th>State</th>
<th>Router ID</th>
<th>Time To Live</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.17.2</td>
<td>1</td>
<td>2 Way</td>
<td>212.150.244.1</td>
<td>36</td>
</tr>
<tr>
<td>10.0.17.3</td>
<td>12</td>
<td>Full</td>
<td>10.0.17.3</td>
<td>38</td>
</tr>
<tr>
<td>10.0.17.6</td>
<td>18</td>
<td>Full</td>
<td>10.0.17.6</td>
<td>33</td>
</tr>
<tr>
<td>10.0.18.2</td>
<td>1</td>
<td>Full</td>
<td>105.1.12.1</td>
<td>107</td>
</tr>
<tr>
<td>10.0.20.2</td>
<td>0</td>
<td>Full</td>
<td>62.56.252.253</td>
<td>40</td>
</tr>
<tr>
<td>18.18.18.2</td>
<td>1</td>
<td>Full</td>
<td>62.56.255.254</td>
<td>38</td>
</tr>
<tr>
<td>192.168.6.173</td>
<td>0</td>
<td>Full</td>
<td>172.18.21.254</td>
<td>4</td>
</tr>
</tbody>
</table>

show ip pbr-list

Use the `ip pbr-list` command to display information about the specified pbr-list.

Syntax

```
show ip pbr-list {list_number | all} [detailed]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list_number</td>
<td>The pbr-list number to display</td>
<td>800-899</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

Interface: Serial (DS1 PPP L2, DS1 PPP L2-L3, DS1 FR-SUB L2, DS1 FR-SUB L2-L3, USP PPP L2, USP PPP L2-L3), FastEthernet (L2, L2-L3), VLAN (L2, L2-L3), Loopback (L2, L2-L3), Tunnel (L2, L2-L3)

Example

G350-001> show ip pbr-list 801 detailed
show ip protocols

Use the `show ip protocols` command to display parameters and statistics of the IP routing protocol process.

Syntax

```
show ip protocols [protocol]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol</td>
<td>The protocol for which to display statistics</td>
<td>RIP, OSPF</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To display all running protocol details:

```
G350-011> show ip protocols
```

To display RIP details:

```
G350-011> show ip protocols RIP
```

Routing Protocol is "rip"
Sending updates every 30 seconds, next due in 0 seconds
Invalid after 180 seconds, flushed after 300
Redistributing: rip
Default version control: rip version 1

```
Routing for Networks:
Routing Information Sources:
Gateway        Last Update
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Version</th>
<th>Key</th>
</tr>
</thead>
</table>

Routing for Networks:
Routing Information Sources:
Gateway Last Update
show ip qos-list

Use the show ip qos-list command to display the attributes about a specific QoS list, or all QoS lists, for the current interface.

Syntax

show ip qos-list {list_number | all | active-list-in | active-list-out | active-list-in-out} [detailed]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>list_number</td>
<td>The QoS list to display</td>
<td></td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>Keyword specifying to display all QoS lists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>active-list-in</td>
<td>Keyword specifying to display lists for the in direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>active-list-out</td>
<td>Keyword specifying to display lists for the out direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>active-list-in-out</td>
<td>Keyword specifying to display lists for in and out directions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>detailed</td>
<td>Keyword specifying to display detailed information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Serial (DS1 PPP L2, DS1 PPP L2-L3, DS1 FR-SUB L2, DS1 FR-SUB L2-L3, USP PPP L2, USP PPP L2-L3), FastEthernet (L2, L2-L3), VLAN (L2, L2-L3), Loopback (L2, L2-L3), Tunnel (L2, L2-L3)

Example

To display information about all QoS lists:

G350-011(if:Vlan 1)# show ip qos-list all
List Number: 400

List Name: Default QoS List
show ip qos-list

Use the `show ip qos-list` command to display the attributes about a specific QoS list.

Note:
To specify an interface name that includes spaces, enclose the entire name in quotation marks (for example, “FastEthernet 10/2”).

Syntax

```
show ip qos-list {list_number | all} [detailed]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>list_number</code></td>
<td>The QoS list to display</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>all</code></td>
<td>Keyword specifying to display all QoS lists</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>detailed</code></td>
<td>Keyword specifying to display detailed information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example

To display detailed information about all the QoS lists on all the interfaces:

```
G350-011# show ip qos-list all detailed
Index Name                                      Owner
----- ------------------------------------------- ---------
400    Default QoS List                       other
```

Index Protocol IP Wildcard Port Operation
show ip reverse-arp

Use the show ip reverse-arp command to display the IP address of a host, based on a known MAC address.

Syntax

```plaintext
show ip reverse-arp mac_addr [match_len]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac_addr</td>
<td>The MAC address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>match_len</td>
<td>The number of bytes in the address to match</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general
Example
To list IPs that match a specific MAC address:

G350-001> show ip reverse-arp 00:10:a4:98:97:e0
Showing 1 rows
Address MAC Address I/F Type TTL
--------------- ----------------- ----------- ------- --------
149.49.70.68 00:10:a4:98:97:e0 e-70 Dynamic 14355

show ip route

Use the **show ip route** command to display information about the IP routing table.

Syntax

```plaintext
show ip route [ip_address[ip_mask]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_address</td>
<td>The IP address of the routes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip_mask</td>
<td>The IP mask of the routes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example

To display all routes:

G350-011> show ip route

To display a single route:

G350-011> show ip route 137.32.50.13

To display a range of routes:

G350-011> show ip route 137.44.50.13 255.255.255.0
show ip route best-match

Use the `show ip route best-match` command to display a routing table for a destination address.

Syntax

```
show ip route best-match dst_addr
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dst_addr</td>
<td>The destination IP address</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To display the routing table entries for IP address 199.93.0.0:

```
G350-001> show ip route best-match 199.93.0.0
```

Searching for: 199.93.0.0
Showing 1 rows

<table>
<thead>
<tr>
<th>Network Mask</th>
<th>Interface</th>
<th>Next-Hop</th>
<th>Cost</th>
<th>TTL</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>199.93.0.0 16</td>
<td>e-135new</td>
<td>135.64.76.1</td>
<td>1</td>
<td>n/a</td>
<td>STAT-HI</td>
</tr>
</tbody>
</table>

show ip route static

Use the `show ip route static` command to display static routes.

Syntax

```
show ip route static [ip_addr [mask]]
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_addr</td>
<td>The IP address of the routes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mask</td>
<td>The IP mask of the routes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To display all static routes:

```
G350-001> show ip route static
```

To display a single static route:

```
G350-001> show ip route static 137.32.50.13
```

To display a range of static routes:

```
G350-001> show ip route static 137.44.50.13 255.255.255.0
```

```
G350-001> show ip route static

Showing 1 rows

Network    Mask    Interface   Next-Hop     Cost   Pref    Perm    Active
------- ---- ---------- ----------- ---- ---- ---- -----
0.0.0.0    0        FastEth 1  149.49.75.1  1     low    No     Yes
```

where Pref is the preference, and Perm is Permanent.

show ip route summary

Use the `show ip route summary` command to display the number of routes known to the device.

Syntax

```
show ip route summary
```
CLI Commands

User level
read-only

Context
general

Example
To display a summary of routes:

```
G350-001> show ip route summary
```

<table>
<thead>
<tr>
<th>Route Source</th>
<th>Networks</th>
<th>Subnets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Static</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

```
show ip rtp header-compression
```

Use the `show ip rtp header-compression` command to display the RTP header compression statistics for a specific interface. If no interface is specified, statistics for all interfaces are displayed.

Note:
To specify an interface name that includes spaces, enclose the entire name in quotation marks (for example, “FastEthernet 10/2”).

Syntax

```
show ip rtp header-compression [interfaceName]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>interfaceName</td>
<td>The name of the interface</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general
Example

To display compression statistics for all interfaces:

```
G350-001# show ip rtp header-compression
```

Output Fields

<table>
<thead>
<tr>
<th>Section</th>
<th>Item</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received</td>
<td>Full Headers</td>
<td>No. of RTP packets with Full headers received</td>
<td></td>
</tr>
<tr>
<td>Received</td>
<td>Compressed</td>
<td>No. of RTP packets with compressed headers received</td>
<td></td>
</tr>
<tr>
<td>Received</td>
<td>Errors</td>
<td>Packets discarded during de-compression due to errors.</td>
<td></td>
</tr>
<tr>
<td>Sent</td>
<td>Full Headers</td>
<td>No. of RTP packets with Full headers sent</td>
<td></td>
</tr>
<tr>
<td>Sent</td>
<td>Compressed</td>
<td>No. of RTP packets with compressed headers sent</td>
<td></td>
</tr>
<tr>
<td>Sent</td>
<td>Bytes Saved</td>
<td>Total saving in bytes due to compression</td>
<td></td>
</tr>
<tr>
<td>Sent</td>
<td>Bytes Sent</td>
<td>Total bytes sent after compression</td>
<td></td>
</tr>
<tr>
<td>Sent</td>
<td>Efficiency</td>
<td>Rounding Factor</td>
<td>Rounded to two decimal places</td>
</tr>
<tr>
<td></td>
<td>Improvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connect</td>
<td>Active/</td>
<td>Status of RTP header compression on this interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connect</td>
<td>Rx Slots</td>
<td>Actual no. of RTP sessions to decompress</td>
<td>After negotiation (when there is one), or equal to the user’s setting.</td>
</tr>
<tr>
<td>Connect</td>
<td>Tx Slots</td>
<td>Actual no. of RTP sessions to compress</td>
<td>After negotiation (when there is one), or equal to the user’s setting.</td>
</tr>
</tbody>
</table>
show ip rtp header-compression brief

Use the `show ip rtp header-compression brief` command to display a subset of header compression statistics in the form of a table.

Note:
To specify an interface name that includes spaces, enclose the entire name in quotation marks (for example, “FastEthernet 10/2”).

Syntax

`show ip rtp header-compression brief [interfaceName]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interfaceName</code></td>
<td>The name of the interface</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general
Example

To display concise header compression statistics for all interfaces:

G350-001# show ip rtp header-compression brief

<table>
<thead>
<tr>
<th>Interface</th>
<th>Active</th>
<th>Slots</th>
<th>Max Time</th>
<th>Max Period</th>
<th>Packets Sent</th>
<th>Bytes Saved</th>
<th>Improvement Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial 1:0</td>
<td>NO</td>
<td>16</td>
<td>5</td>
<td>256</td>
<td>0</td>
<td>0</td>
<td>1.00</td>
</tr>
</tbody>
</table>

show ip ssh

Use the `show ip ssh` command to display general SSH information and information on the currently active connections that are using SSH.

Syntax

`show ip ssh`

User level

`admin`

Context

`general`

Example

G350-001(super)# show ip ssh

Max Sessions: 2
Key type: DSA, 512 bit
Listen Port: 22
Ciphers List: 3des-cbc

Session Version Encryption Username IP/Port
0 1.5 3des-cbc guest 11.11.11.1/34444
show ip tcp header-compression

Use the `show ip tcp header-compression` command to display TCP header compression statistics for a specific interface. If no interface is specified, it shows TCP header compression statistics for all interfaces.

Note:
To specify an interface name that includes spaces, enclose the entire name in quotation marks (for example, “FastEthernet 10/2”).

Syntax

```
show ip tcp header-compression [interfaceName]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interfaceName</code></td>
<td>The name of the interface</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To display tcp header compression statistics for all interfaces:

```
G350-001# show ip tcp header-compression
```

Output Fields

<table>
<thead>
<tr>
<th>Section</th>
<th>Item</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received</td>
<td>Full Headers</td>
<td>No. of RTP packets with Full headers received</td>
<td></td>
</tr>
<tr>
<td>Received</td>
<td>Compressed</td>
<td>No. of RTP packets with compressed headers received</td>
<td></td>
</tr>
</tbody>
</table>
show ip tcp header-compression brief

Use the `show ip tcp header-compression` command to display a subset of TCP header compression statistics for a specific interface. If no interface is specified, it shows TCP header compression statistics for all interfaces.

Note:
To specify an interface name that includes spaces, enclose the entire name in quotation marks (for example, “FastEthernet 10/2”).

Syntax

```
show ip tcp header-compression brief [interfaceName]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interfaceName</code></td>
<td>The name of the interface</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only
show ip tftp-server files

Use the `show ip tftp-server files` command to display the phone image and script files.

Syntax

`show ip tftp-server files`

User level

Read-write

Example

```
interface# > show ip tftp-server files

File          Bank    Location   Size (bytes)
------------- ---------- ---------- --------------
46xxupgrade.txt phone-scriptA Nv-Ram  4096
46xxxsettings.txt phone-scriptB Nv-Ram  16384
4602dble1_8.bin  phone-imageA  Ram  1048576
4602dape1_8.bin  phone-imageD  Ram  2097152

Nv-Ram:
Total bytes used:  20480
Total bytes free:  110592
Total bytes capacity (fixed):  131072

Ram:
Total bytes used:  3166208
Total bytes free:  2076672
Total bytes capacity (Allocated)  3166208
Total bytes capacity (Configured)  5242880
```
show ip traffic

Use the `show ip traffic` command to display IP counters information.

Syntax

`show ip traffic [protocol_type]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>protocol_type</code></td>
<td>The type of IP protocol for which to display information</td>
<td><code>arp</code>, <code>bootp-dhcp</code>, <code>icmp</code>, <code>ip</code>, <code>ospf</code></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To display traffic information for all protocols:

```
G350-001> show ip traffic
IP statistics:
Received:
5644 total, 4012 local destination
0 bad hop count, 0 packet header errors
0 unknown protocol, 0 address errors
1632 discarded
Fragments:
0 reassembled, 0 timeouts
0 couldn’t reassemble, 0 fragmented

Sent:
4014 generated, 0 forwarded
0 no route, 0 discarded

ICMP statistics:
Received:
```
CLI Commands

0 total, 0 ICMP errors
0 unreachables, 0 time exceeded
0 parameter, 0 quench
0 echo, 0 echo reply
0 timestamps request, 0 timestamp reply
0 mask requests, 0 mask replies
0 redirects

Sent:
0 total, 0 ICMP errors
0 unreachables, 0 time exceeded
0 parameter, 0 quench
0 echo, 0 echo reply
0 timestamps request, 0 timestamp reply
0 mask requests, 0 mask replies
0 redirects

OSPF statistics:
Received:
0 total, 0 checksum errors
0 hello, 0 database desc
0 link state req, 0 link state updates
0 link state acks

Sent:
0 total

ARP statistics:
Received:
5394 requests, 2 replies

Sent:
36 requests, 16 replies (0 proxy)

DHCP statistics:
Requests: 0, Replies: 0

BOOTP statistics:
Requests: 0, Replies: 0

show ip vrrp

Use the **show ip vrrp** command to display VRRP information for a specific VLAN or for all VLANs.
Syntax

show ip vrrp [vlan [router-id vr_id]] [detail]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan</td>
<td>Filter by the specified VLAN</td>
<td>1 – 4095</td>
<td></td>
</tr>
<tr>
<td>router_id</td>
<td>Keyword specifying to filter by virtual router ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vr_id</td>
<td>The virtual router ID</td>
<td>1-255</td>
<td></td>
</tr>
<tr>
<td>detail</td>
<td>Keyword specifying to provide detailed information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example

To show VRRP information for all VLANs:

G350-001> show ip vrrp
VRRP is globally enabled
VLAN VRID IP Address Pri Timer State Since
----- ----- ------------- ---- ------- --------- -------------
1 1 192.168.66.23 255 1 MASTER 00:00:00
1 2 192.168.66.24 100 1 BACKUP 00:00:00

To show detailed VRRP information for all VLANs:

G350-001# show ip vrrp detail
VRRP is globally enabled
Virtual Router on VLAN:1
Router-id:1
State:MASTER
Priority: 255
Advertisement Interval: 1
Last State Change: 00:00:00
Override Address Ownership Rule: No
Authentication Type: None
Authentication Key:
Master IP Address 192.168.66.23
Has 1 IP addresses
IP addresses:
 192.168.66.23
Primary IP Address: 192.168.66.23
Primary IP Address was chosen by default
Preemption Mode: enabled
of times Master: 2
of received Advertisements: 0
of transmitted Advertisements: 20
of received Advertisements with Security Violations: 0
Virtual Router on VLAN: 1
Router-id: 2
State: BACKUP
Priority: 100
Advertisement Interval: 1
Last State Change: 00:00:00
Override Address Ownership Rule: No
Authentication Type: None
Authentication Key:
Master IP Address 0.0.0.0
Has 1 IP addresses
IP addresses:
 192.168.66.24
Primary IP Address: 192.168.66.23
Primary IP Address was chosen by default
Preemption Mode: enabled
of times Master: 1
of received Advertisements: 0
of transmitted Advertisements: 13
of received Advertisements with Security Violations: 0

show ip-rule

Use the show ip-rule command to display the attributes of a specific rule. Leave the rule_number parameter blank to display all rules.

Syntax

show ip-rule [rule_number]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rule_number</td>
<td>The specific rule for which attributes are displayed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

ip access-control-list, ip access-control-list/ip-rule, ip qos-list, ip qos-list/ip-rule, ip capture-list, ip capture-list/ip-rule, ip pbr-list, ip pbr-list/ip-rule

Example

To display information about ip rule 22 in access-control-list 320:

G350-001(ACL 320/ip rule 22)# show ip-rule 22

<table>
<thead>
<tr>
<th>I.D.</th>
<th>Protocol</th>
<th>IP Wildcard</th>
<th>Port</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Ip</td>
<td>Src Any</td>
<td></td>
<td>permit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dst Any</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show isdn bri link

Use the show isdn bri link command to view the status of all BRI links on a media module.

Syntax

show isdn bri link mmID

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmID</td>
<td>The Media Module ID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

User level
read-only

Context
general

Example
To display the status of all BRI links on media module 1:
G350-011> show isdn bri link 1
LOCATION TYPE LINK ID DLCI SIDE STATE
--------- ------- ---------- ---------- ----- ------------
v1 NO LINK N/A N/A N/A N/A

show isdn link summary

Use the show isdn link summary command to view a summary of all ISDN links.

Syntax
show isdn link summary

User level
read-only

Context
general

Example
To display information about all ISDN links:
G350-001> show isdn link summary
LOCATION TYPE NO. OF LINKS UP
--------- -------- ---------------
MG NO LINK N/A

LOCATION TYPE NO. OF LINKS UP
--------- -------- ---------------
MG NO LINK N/A
show isdn pri link

Use the `show isdn pri link` command to view the status of all PRI links on a media module.

Syntax

```
show isdn pri link mmID
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mmID</code></td>
<td>The Media Module ID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To display PRI link information for media module 1:

```
G350-001> show isdn pri link 1
LOCATION  TYPE    LINK ID    DLCI       SIDE  STATE
--------- ------- ---------- ---------- ----- ------------
v1        NO LINK N/A        N/A        N/A   N/A
```

show keepalive

Use the `show keepalive` command to display information about the extended keepalive settings.

Syntax

```
show keepalive
```

User level

read-only
CLI Commands

Context

Interface: FastEthernet (L2, L2-L3)

Example

To display extended keepalive information for the FastEthernet interface:

```
G350-001(if:FastEthernet 10/2)# show keepalive
```

- Mode: Disable
- Status: Disable
- Destination IP: 172.16.1.228
- Next-Hop MAC: 00:40:0d:b9:3e:45
- Source IP: 0.0.0.0
- Timeout: 1 Sec
- Interval: 20 Sec
- Success Retries: 1
- Failure Retries: 4
- Success Retries Counter: 0
- Failure Retries Counter: 0

show license status

Use the `show license status` command to display the status of the VPN license.

Syntax

```
show license status
```

User level

read-only

Context

general

Example

```
G350-001> show license status
License was installed.
```
show list

Use the `show list` command to display information about the specified list.

Syntax

```
show list
```

User level

read-write

Context

`ip access-control-list, ip qos-list, ip capture-list, ip pbr-list`

Example

To show detailed information about access control list 330:

```
G350-011(ACL 330)# show list

Index Name           Owner
----- -------------- ------------
330   SplitPriority     Admin
ip options: Permit
ip fragments : Permit

Index Protocol IP Wildcard Port Operation-
-----  --------    --- ----------- -----   ----------
22    tcp     Src Any   Any     Permit
      Dst Any   Any
Deflt Any   Src Any   Any     Permit
      Dst Any   Any
```

show logging file condition

Use the `show logging file condition` command to display all conditions that have been defined for the file output sink.

Syntax

```
show logging file condition
```
CLI Commands

User level
read-only

Context
general

Example
To show information about conditions that are defined for the file output:

```
G350-011> show logging file condition
**************************************************************************
*** Message logging configuration of FILE     sink ***
Sink Is Enabled
Sink default severity: Informational
Facility                   ! Severity Override
-------------------------------------------
FAN                         ! Error
VLAN                        ! Critical
```

show logging file content

Use the `show logging file content` command to output the messages in the log file to the CLI console. The output is arranged with the most recent event first. The content of the file is output according to the current filter settings and user access.

Syntax

```
show logging file content [severity] [all|Msgfacility] [number]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>severity</code></td>
<td>Minimal severity of messages to be displayed</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>all</code></td>
<td>Keyword specifying to display messages from all facilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>Msgfacility</code></td>
<td>Display messages from this facility only</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>number</code></td>
<td>Maximum number of messages to display</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
read-only

Context
general

Example
To display contents of the message file for all message facilities and severities:

G350-011> show logging file content

CLI-Notification: root: exit
CLI-Notification: root: exit
CLI-Notification: root: ip
SECURITY-Warning: Unauthorized Access from IP address = 0.0.0.0, User = super, Protocol = 23
CLI-Notification: root: exit

show logging server condition

Use the **show logging server condition** command to display the filter conditions that have been defined for the Syslog output sink. If an IP address or hostname is not specified, the configuration of all of the Syslog servers is displayed.

Syntax

```
show logging server condition [ip_address | hostname]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_address</td>
<td>The IP address of the Syslog server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hostname</td>
<td>The name of the Syslog server host</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general
Example
To display filter conditions defined for the Syslog server at IP address 172.16.1.139:

G350-011> show logging server condition 172.16.1.139
Logging: enabled
Logging severity: warning
Facility Severity Override
------------- -----------------------
System Critical
Syslog server 222.222.222.222
Logging: enabled
Logging severity: Debug
Facility Severity Override
------------- -----------------------
Kernel Critical

show logging session condition

Use the `show logging session condition` command to display the filter conditions defined for message logging to the current console session.

Syntax
`show logging session condition`

User level
read-only

Context
general

Example
To display filter conditions defined for console messaging:

G350-011> show logging session condition
Logging console: enabled
Logging session severity: warning
Facility Severity Override
------------- -----------------------
System Critical
show logout

Use the `show logout` command to display the amount of time in minutes the terminal remains idle before timing out. If the logout value is 0, there is no timeout limit. The default logout value is 15 minutes.

Syntax

`show logout`

User level

read-only

Context

general

Example

To display the timeout value:

```
G350-001> show logout
CLI timeout is 15 minutes
```

show map-class frame-relay

Use the `show map-class frame-relay` command to display the map-class Frame Relay table.

Syntax

`show map-class frame-relay`

User level

read-only

Context

general
CLI Commands

Example

To display the map class Frame Relay table:

G350-001> show map-class frame-relay

Showing 1 frame-relay map-class entry

<table>
<thead>
<tr>
<th>Map Class Name</th>
<th>CIR</th>
<th>BC</th>
<th>BE</th>
<th>De</th>
<th>Pre-Mark</th>
<th>Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>56000</td>
<td>7000</td>
<td>0</td>
<td>100%</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

show mediaserver

Use the show mediaserver command to show media server configuration information.

Syntax

show mediaserver

User level

read-only

Context

general

Example

To display media server configuration information:

G350-001# show mediaserver

MGC IP ADDRESS SAT IP ADDRESS SAT PORT SERVER IP ADDRESS SERVER PORT
--------------- --------------- -------- ----------------- ----------
135.8.65.107 135.8.65.107 5023 135.8.65.107 23

show mg list_config

Use the show mg list_config command to show the installed media gateway equipment. It displays the current hardware and firmware configurations of the media gateway.

The show mg list_config command is an alias for show module on page 462.
Syntax

show mg list_config

User level
read-only

Context
general

Example

To display the list of installed equipment:

G350-001# show mg list_config

<table>
<thead>
<tr>
<th>SLOT</th>
<th>TYPE</th>
<th>CODE</th>
<th>SUFFIX</th>
<th>HW VINTAGE</th>
<th>FW VINTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0</td>
<td>G350</td>
<td>PC1053</td>
<td>B</td>
<td>00</td>
<td>0.0.15(B)</td>
</tr>
<tr>
<td>v1</td>
<td>--</td>
<td>Not Installed</td>
<td>--</td>
<td>0.0.15(B)</td>
<td></td>
</tr>
<tr>
<td>v2</td>
<td>--</td>
<td>Not Installed</td>
<td>--</td>
<td>0.0.15(B)</td>
<td></td>
</tr>
<tr>
<td>v3</td>
<td>--</td>
<td>Not Installed</td>
<td>--</td>
<td>0.0.15(B)</td>
<td></td>
</tr>
<tr>
<td>v4</td>
<td>--</td>
<td>Not Installed</td>
<td>--</td>
<td>0.0.15(B)</td>
<td></td>
</tr>
<tr>
<td>v5</td>
<td>--</td>
<td>Not Installed</td>
<td>--</td>
<td>0.0.15(B)</td>
<td></td>
</tr>
<tr>
<td>v6</td>
<td>--</td>
<td>Not Installed</td>
<td>--</td>
<td>0.0.15(B)</td>
<td></td>
</tr>
<tr>
<td>v7</td>
<td>--</td>
<td>Initializing</td>
<td>--</td>
<td>0.0.15(B)</td>
<td></td>
</tr>
</tbody>
</table>

show mgc

Use the show mgc command to display the currently active Media Gateway Controller state and setup parameters.

Syntax

show mgc

User level
read-only

Context
general
Example

To display media gateway controller information:

G350-001# show mgc

CALL CONTROLLER STATUS

Registered : NO
Active Controller : 255.255.255.255
H248 Link Status : DOWN
H248 Link Error Code: 0x0

CONFIGURED MGC HOST

-- Not Available --
-- Not Available --
-- Not Available --
-- Not Available --

show mgc list

Use the show mgc list command to display the list of available Media Gateway Controllers and their IP addresses.

Syntax

show mgc list

User level
read-only

Context

general
Example
To display the list of media gateway controllers:
G350-001> show mgc list
CONFIGURED MGC HOST

135.8.48.220
-- Not Available --
-- Not Available --
-- Not Available --

show mm

Use the show mm command to show the media gateway Media Module information. It displays the types and serial numbers of Media Modules installed on the media gateway. If no Media Module ID is specified, information for all Media Modules is displayed.

Syntax
show mm [mmID]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmID</td>
<td>The Media Module ID number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general
CLI Commands

Example

To display information about media module 7:

G350-001> show mm 7

MEDIA MODULE DESCRIPTION: v7

Uptime(d,h:m:s): 0, 00:23:19
Type : Voice (Initializing)
Description : N/A
Serial Number : N/A
HW Vintage : N/A
HW Suffix : N/A
FW Version : N/A
No. of ports : 0
Faults : No Fault Messages

show module

Use the show module command to view information about a Media Module. To view information about all Media Modules, do not specify a Media Module.

Syntax

show module [mmID]

Parameters

<table>
<thead>
<tr>
<th>Parameter (mmID)</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmID</td>
<td>The Media Module ID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

462 Avaya G350 Media Gateway CLI Reference
Example

To show information about media module 3:

G350-001> show module v3

<table>
<thead>
<tr>
<th>SLOT</th>
<th>TYPE</th>
<th>CODE</th>
<th>SUFFIX</th>
<th>HW VINTAGE</th>
<th>FW VINTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>v3</td>
<td>DS1</td>
<td>MM710</td>
<td>A</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

To show information about all media modules:

G350-001> show module

<table>
<thead>
<tr>
<th>SLOT</th>
<th>TYPE</th>
<th>CODE</th>
<th>SUFFIX</th>
<th>HW VINTAGE</th>
<th>FW VINTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0</td>
<td>G350</td>
<td>DAF1</td>
<td>A</td>
<td>00</td>
<td>10(B)</td>
</tr>
<tr>
<td>v1</td>
<td>ICC</td>
<td>S8300</td>
<td>A</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>v2</td>
<td>DCP</td>
<td>MM712</td>
<td>A</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>v3</td>
<td>DS1</td>
<td>MM710</td>
<td>A</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>v4</td>
<td>-- Not Installed --</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v5</td>
<td>-- Not Installed --</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v6</td>
<td>PoE</td>
<td>MM314</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v7</td>
<td>Analog</td>
<td>(on-board)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show next-hop

Use the show next-hop command to show the next-hop entries in the current list.

Syntax

show next-hop

User level

read-only

Context

ip next-hop-list
Example

G350-001> show next-hop
Index Name
----- -------
3 list #3

Index Next Hop IP/Interface Status
------- --------------------------- -------
1 149.49.200.3 Down
4 Serial5/1:0 Up

show pmi

Use the **show pmi** command to view the current Primary Management Interface.

Syntax

```plaintext
show pmi
```

User level

read-only

Context

general

Example

To view information about the current PMI:

G350-001> show pmi
Active PMI : interface Vlan 1 (172.16.1.139)
Configured PMI : interface Vlan 1 (172.16.1.139)

show port

Use the **show port** command to display port status on I/O modules. If no port is specified, information for all ports is displayed.

Syntax

```plaintext
show port [module[/port]]
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example

To display the status for port 4 on module 3:

```
G350-001> show port 3/4
```

```
Port Name   Status  Vlan Level  Neg  Dup.  Spd.  Type
           ----   -------   ----  -----  ------  ----  ---------------
3/4         NO NAME  no link  1   0   enable   half 10M  10/100BaseTx Port
```

Output fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Module and port number</td>
</tr>
<tr>
<td>Name</td>
<td>Name of port</td>
</tr>
<tr>
<td>Status</td>
<td>Status of the port — connected, faulty, disabled, no link</td>
</tr>
<tr>
<td>Vlan</td>
<td>VLAN ID of the port</td>
</tr>
<tr>
<td>Level</td>
<td>Priority level of the port — 0-7</td>
</tr>
<tr>
<td>Neg</td>
<td>Autonegotiation status of the port — enabled, disabled</td>
</tr>
<tr>
<td>Dup</td>
<td>Duplex setting for the port — full, half</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed setting for the port — 10, 100, 1000</td>
</tr>
<tr>
<td>Type</td>
<td>Port type, for example: 10/100BASE-TX, GBIC_SX, GBIC_LX, GBIC_not present, GBIC_unknown</td>
</tr>
</tbody>
</table>
show port auto-negotiation-flowcontrol-advertisement

Use the `show port auto-negotiation-flowcontrol-advertisement` command to display the flowcontrol advertisement for a Gigabit port used to perform auto-negotiation. If no port is specified, information for all ports is displayed.

Syntax

```
set auto-negotiation-flowcontrol-advertisement [module/port]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>The port number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To display the flowcontrol advertisement for all ports:

```
G350-001> show port auto-negotiation-flowcontrol-advertisement
asym-tx-only 4/49
Port 4/49 pause capabilities was set
```

show port classification

Use the `show port classification` command to display a port’s classification. If no port is specified, information for all ports is displayed.

Syntax

```
show port classification [module/[port]]
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example
To display information for port 8 of module 4:
G350-001> show port classification 4/8
Port Port Classification
------ ---------------------
4/8 regular

show port dot1x

Use the **show port dot1x** command to display the configurable values associated with the authenticator Port Access Entity (PAE) and backend authenticator.

Syntax

```
show port dot1x [mod[/port]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mod</td>
<td>(Optional) Number of the module.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>(Optional) Number of the port on the module.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
admin

Context
general

Example

Console> `show port dot1x 3/3`

```
Port  Auth  BEnd Port  Port  Re  Quiet  ReAuth  Server  Supp  Tx  Max
Number  State  State  Control  Status  Auth  Priod  Priod  Timeout  Timeout  Priod  Req
-------  -----  ------  -------  -------  ------  -------  -------  --------  --------  -------  ---
1/3      Init  Init  Auto  Unauth  Disa  60  3600  30  30  30  2
```

show port dot1x statistics

Use the `show port dot1x statistics` command to display all the port dot1x statistics.

Syntax

`show port dot1x statistics [mod[/port]]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mod</code></td>
<td>(Optional) Number of the module.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>port</code></td>
<td>(Optional) Number of the port on the module.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
admin

Context
general
Example

MG-1(develop)# show port dot1x statistics 1/1

Port Tx_Req/Id Tx_Req Tx_Total Rx_Start Rx_Logoff Rx_Resp/Id Rx_Resp
---- --------- ------ -------- -------- -------- ---------- -------
1/1 2 5 0 0 0 0 0

Port Rx_Invalid Rx_Len_Err Rx_Total Last_Rx_Frm_Ver Last_Rx_Frm_Src_Mac
---- ---------- ---------- -------- --------------- -------------------
1/1 0 0 0 0 1d-80-00-00-00-00

show port edge state

Use the `show port edge state` command to display the edge state of the specified port. If no port is specified, information for all ports is displayed.

Syntax

`show port edge state [module/[port]]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>module</code></td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>port</code></td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example

To show edge state for all ports:

G350-001> show port edge state
show port flowcontrol

Use the `show port flowcontrol` command to display port flow control information. If no port is specified, information for all ports is displayed.

Syntax

`show port flowcontrol [module[/port]]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To display flowcontrol information for port 4 of module 3:

```
G350-101> show port flowcontrol 3/4
Port    Send-Flowcontrol Receive-Flowcontrol
Admin Oper    Admin Oper
------- ------ ------ ------
3/4    off    off    off    off
```
Output fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Module and port number</td>
</tr>
<tr>
<td>Send-Flowcontrol-Admin</td>
<td>Send flow-control administration. Possible settings:</td>
</tr>
<tr>
<td></td>
<td>ON — indicates that the local port is allowed to send flow control frames to the far end.</td>
</tr>
<tr>
<td></td>
<td>OFF — indicates that the local port is not allowed to send flow control frames to the far end.</td>
</tr>
<tr>
<td>Send-Flowcontrol-Oper</td>
<td>Send flow-control operation mode. Possible modes:</td>
</tr>
<tr>
<td></td>
<td>ON — indicates that the local port will send flow control frames to the far end.</td>
</tr>
<tr>
<td></td>
<td>OFF — indicates that the local port will not send flow control frames to the far end.</td>
</tr>
<tr>
<td>Receive-Flowcontrol-Admin</td>
<td>Receive flow-control administration. Possible settings:</td>
</tr>
<tr>
<td></td>
<td>ON — indicates that the local port will act upon flow control indications if received from the far end.</td>
</tr>
<tr>
<td></td>
<td>OFF — indicates that the local port will discard flow control frames if received from the far end.</td>
</tr>
<tr>
<td>Receive-Flowcontrol-Oper</td>
<td>Receive flow-control operation mode. Possible modes:</td>
</tr>
<tr>
<td></td>
<td>ON — indicates that the local port will act upon flow control indications received from the far end.</td>
</tr>
<tr>
<td></td>
<td>OFF — indicates that the local port will discard flow control frames received from the far end.</td>
</tr>
</tbody>
</table>

show port mirror

Use the `show port mirror` command to display mirroring information for the specified port. If no port is specified, information for all ports is displayed.

Syntax

`show port mirror [module/port]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

User level
read-only

Context
general

Example
To display port mirroring information for all ports:
G350-011> show port mirror

show port point-to-point status

Use the `show port point-to-point status` command to display the point-to-point status of the specified port. If no port is specified, information for all ports is displayed.

Syntax

`show port point-to-point status [module/port]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example
To display point-to-point information for all ports:
G350-011> show port point-to-point status
show port redundancy

Use the `show port redundancy` command to display information about software port redundancy pairs defined on the media gateway.

Syntax

`show port redundancy`

User level

read-only

Context

general

Example

To display port redundancy information:

```
G350-001> show port redundancy
Redundancy Name       Primary Port        Secondary Port      Status
-----------------   --------------      ----------------    --------
bud3/48             3/47 secondary     
jack3/46             3/45 secondary     
tony3/1              3/2 primary        
wayne3/34            3/33 secondary     
Minimum Time between Switchovers: 1
Switchback interval: 3
```

show port trap

Use the `show port trap` command to display information on SNMP generic link up/down traps sent for a specific port. If no port is specified, information for all ports is displayed.

Syntax

`show port trap [module[/port]]`
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Number of the port on the module. You can also specify a range of ports separated by a dash, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example
To display trap information for port 1 of module 4:

```
G350-455> show port trap 4/1
Port 4/1 up/down trap is disabled
```

show port vlan-binding-mode

Use the `show port-vlan-binding` command to display port VLAN binding mode information. If no module number is specified, information for all ports on all modules is displayed. If no port number is specified, information for all ports on the specified module is displayed.

Syntax

```
show port vlan-binding-mode [module[/port]]
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>The number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>The number of the port on the module. You can also specify a range of ports, for example, 4/5-13 for ports 5 to 13 on module 4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example
To display VLAN binding information for all ports:

G350-001> show port vlan-binding-mode
port 2/1 is statically bound
port 2/2 is statically bound
port 2/3 is statically bound
port 2/4 is statically bound
port 2/5 is statically bound
port 2/6 is statically bound
port 2/7 is statically bound
port 2/8 is statically bound
port 2/9 is statically bound
port 2/10 is statically bound

show powerinline

Use the show powerinline command to display the current inline power status of the specified module or port. If no port is specified, information for all ports is displayed.

Syntax

show powerinline [module_number/port_number]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module_number</td>
<td>The module number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port_number</td>
<td>The port number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example
To display power information for ports on module 6:

G350-001> show powerinline 6
Actual powerinline power consumption is 30W.
Powerinline power consumption trap threshold is 207 (99%) Watts.
Powerinline traps are enabled

<table>
<thead>
<tr>
<th>Port</th>
<th>Inline Operational Status</th>
<th>Powering Priority</th>
<th>PD Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/1</td>
<td>Fault</td>
<td>Low</td>
<td>telephone</td>
</tr>
<tr>
<td>6/2</td>
<td>Searching</td>
<td>Low</td>
<td>telephone</td>
</tr>
</tbody>
</table>

show ppp authentication

Use the show ppp authentication command to show the PPP authentication status.

Syntax
show ppp authentication

User level
Read only

Context
Ethernet interface
Example
interface# > show ppp authentication
PAP sent-username: configured
CHAP refuseCHAP hostname: G350
CHAP password: not configured

show protocol

Use the `show protocol` command to display the status of a specific management protocol, or all protocols.

Syntax

`show protocol [ssh|telnet-client|ssh-client|https|snmp|telnet|http|scp |icmp|recovery-password|ftp-client|tftp|dhcp]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ssh</code></td>
<td>Keyword indicating to display the status of the ssh protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>telnet-client</code></td>
<td>Keyword indicating to display the status of the telnet-client protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ssh-client</code></td>
<td>Keyword indicating to display the status of the ssh-client protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>https</code></td>
<td>Keyword indicating to display the status of the https protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>SNMP</code></td>
<td>Keyword indicating to display the status of the SNMP protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>telnet</code></td>
<td>Keyword indicating to display the status of the telnet protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>http</code></td>
<td>Keyword indicating to display the status of the http protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>scp</code></td>
<td>Keyword indicating to display the status of the scp protocol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp</td>
<td>Keyword indicating to display the status of the icmp protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>recovery-password</td>
<td>Keyword indicating to display the status of the recovery-password protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ftp-client</td>
<td>Keyword indicating to display the status of the ftp-client protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tftp</td>
<td>Keyword indicating to display the status of the tftp protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dhcp</td>
<td>Keyword indicating to display the status of the DHCP protocol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
admin

Context
general

Example
To display information about all protocols:

G350-011(super)# show protocol

<table>
<thead>
<tr>
<th>Protocols</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH-CLIENT</td>
<td>ON</td>
</tr>
<tr>
<td>TELNET-CLIENT</td>
<td>OFF</td>
</tr>
<tr>
<td>SNMPv1</td>
<td>ON</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>ON</td>
</tr>
<tr>
<td>TELNET</td>
<td>ON</td>
</tr>
<tr>
<td>HTTP</td>
<td>ON</td>
</tr>
<tr>
<td>RECOVERY-PASSWORD</td>
<td>ON</td>
</tr>
<tr>
<td>FTP-CLIENT</td>
<td>ON</td>
</tr>
<tr>
<td>TFTP</td>
<td>OFF</td>
</tr>
<tr>
<td>DHCP</td>
<td>ON</td>
</tr>
</tbody>
</table>
show qos-rtcp

Use the `show qos-rtcp` command to display QoS and RTCP parameters.

Syntax

```
show qos-rtcp
```

User level

admin

Context

general

Example

To display QoS and RTCP information:

```
G350-001(super)# show qos-rtcp
PARAMETERS IN EFFECT: -- Downloaded --

<table>
<thead>
<tr>
<th>QOS PARAMETERS</th>
<th>LOCALLY SET</th>
<th>DOWNLOADED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal 802 Priority: 7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Signal DSCP: 34</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bearer 802 Priority: 6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Bearer BBE DSCP: 43</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Bearer EF DSCP: 46</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Minimum RTP Port: 3</td>
<td>2048</td>
<td></td>
</tr>
<tr>
<td>Maximum RTP Port: 65535</td>
<td>65535</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RSVP PARAMETERS</th>
<th>LOCALLY SET</th>
<th>DOWNLOADED</th>
</tr>
</thead>
<tbody>
<tr>
<td>State: Enabled</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>Retry on Failure: Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Retry Delay(secs): 15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Service Profile: Guaranteed</td>
<td>Guaranteed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RTCP MON PARAMETERS</th>
<th>LOCALLY SET</th>
<th>DOWNLOADED</th>
</tr>
</thead>
<tbody>
<tr>
<td>State: Enabled</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>IP Address: 0.0.0.0</td>
<td>0.0.0.0</td>
<td></td>
</tr>
<tr>
<td>Listening Port: 5005</td>
<td>5005</td>
<td></td>
</tr>
<tr>
<td>Report Period(secs): 5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
show queue

Use the `show queue` command to display information about the real-time status of output queues for the current interface.

**Note:**
This command is only applicable in fair-voip-queue mode.

**Syntax**

`show queue type identifier`

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>type</code></td>
<td>The type of interface</td>
<td>Fast Ethernet</td>
<td>Serial</td>
</tr>
<tr>
<td><code>identifier</code></td>
<td>The identifier depends on the interface type:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For Fast Ethernet: <code>module/port</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For Serial: <code>module/port:channel-group</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>channel-group:</td>
<td>E1: 0-30</td>
<td>T1: 0-23</td>
</tr>
</tbody>
</table>

**User level**

read-only

**Context**

Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR L2, USP FR L2, USP PPP L2, USP PPP L2-L3), FastEthernet (L2, L2-L3) - when traffic shaping is configured

**Examples**

```
G350-001> show queue FastEthernet 10/2
G350-001> show queue Serial 3/1:2
```
**show queueing**

Use the `show queueing` command to display the priority queue size, in packets.

**Syntax**

```
show queueing [interface_type if_number]
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface_type</code></td>
<td>The type of interface</td>
<td>Serial, Fast-Ethernet</td>
<td></td>
</tr>
<tr>
<td><code>if_number</code></td>
<td>The port number of this interface in the form: <code>&lt;port&gt;[:&lt;channel_group&gt;]</code></td>
<td>port: 1, 2 channel_group: E1: 0-30 T1: 0-23</td>
<td></td>
</tr>
</tbody>
</table>

**User level**

read

**Context**

general

**Note:**
This command is also used for the FastEthernet interface when traffic shaping has been configured.

**Example**

```
G350-001> show queueing

Current priority queue configuration:

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>VOIP</th>
<th>Est. Delay [ms]</th>
<th>Q.1(High)</th>
<th>Q.2</th>
<th>Q.3</th>
<th>Q.4(Low)</th>
<th>DE Buf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial 2/1</td>
<td>OFF</td>
<td>OFF</td>
<td>524</td>
<td>524</td>
<td>524</td>
<td>524</td>
<td>-</td>
</tr>
<tr>
<td>Serial 5/1:1</td>
<td>OFF</td>
<td>OFF</td>
<td>507</td>
<td>507</td>
<td>507</td>
<td>507</td>
<td>507</td>
</tr>
</tbody>
</table>
```
Current voip fair queue configuration:

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Total discard threshold</th>
<th>Flow discard threshold</th>
<th>Dynamic Queue</th>
<th>Max voip delay (ms)</th>
<th>Priority queues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial 3/1:1</td>
<td>256</td>
<td>64</td>
<td>16</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

**Output fields**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total discard threshold</td>
<td>The total buffer credits limit for WFQ, configurable through fair-queue-limit command.</td>
</tr>
<tr>
<td>Flow discard threshold</td>
<td>Per subqueue buffer credits. Not configurable.</td>
</tr>
<tr>
<td>Dynamic queues</td>
<td>The total number of subqueues. Not configurable.</td>
</tr>
<tr>
<td>Max voip delay [ms]</td>
<td>Maximum delay for voip bearer. Configurable through the voip-queue-delay command.</td>
</tr>
<tr>
<td>Priority queues</td>
<td>The number of priority queues in the system. Not configurable. From the user’s point of view control and bearer queues are the same queue.</td>
</tr>
</tbody>
</table>

**show radius authentication**

Use the `show radius authentication` command to display all RADIUS authentication configurations. Shared secrets are not displayed.

**Syntax**

`show radius authentication`

**User level**

read-only

**Context**

general
Example

To show RADIUS authentication information:

G350-001> show radius authentication

Mode: Disable
Primary-server: 0.0.0.0
Secondary-server: 0.0.0.0
Retry-number: 4
Retry-time: 5
UDP-port: 1812

show recovery

Use the `show recovery` command to show the media gateway monitoring and recovery setup.

Syntax

show recovery

User level

read-only

Context

general

Example

To show recovery information:

G350-011> show recovery

RECOVERY TIMES

Primary Search : 1
Total Search : 30
Transition Point: 1
**show restart-log**

Use the `show restart-log` command to retrieve restart data that is stored in a log in flash memory.

**Syntax**

`show restart-log`

**User level**

read-only

**Context**

general

**Example**

To display restart information:

```
G350-011> show restart-log
RESET ID MM/DD-hh:mm:ss.hs STR
---------- ------------------- ------------------------------------
0000000000 01/01-02:54:17.00 MgFw#:48.46.48 REBOOT
0000000000 01/01-02:54:12.00 MgFw#:48.46.48 WWD-STYCRINO-XXXXX REBOOT
from RecoveryEngineUti
EOF
```

**show rmon alarm**

Use the `show rmon alarm` command to display information about existing alarm entries. If no alarm index is specified, information for all alarms is displayed.

**Syntax**

`show rmon alarm [alarm_index]`

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>alarm_index</code></td>
<td>The alarm about which to display information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**User level**
read-only

**Context**
general

**Example**
To show information for all existing RMON alarms:
G350-001> show rmon alarm

alarm 1 is active, owned by billp
Monitors ifEntry.1.218106371 every 20 seconds
Taking delta samples, last value was 0
Rising threshold is 500, assigned to event # 1
Falling threshold is 100, assigned to event # 2
On startup enable rising or_falling alarms

---

**show rmon event**

Use the **show rmon event** command to display information about existing event entries. If no index is specified, information for all events is displayed.

**Syntax**

```
show rmon event [event_index]
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>event_index</td>
<td>The index of the event about which to display information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**User level**
read-only

**Context**
general
Example
To display RMON event information for all events:

G350-001> show rmon event
Event 32 is active, owned by config
Description is resetTrap
Event firing causes trap to community public, last fired 0:0:0

show rmon history

Use the show rmon history command to display information about existing history entries. If no index is specified, information for all history entries is displayed.

Syntax
show rmon history [history_index]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>history_index</td>
<td>The history entry about which to display information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example
To display RMON history information for entry 32:

G350-001> show rmon history 32
history
Entry 32 is active, owned by config
Monitors the port 10/2 every 20 seconds
Requested # of time intervals, ie buckets, is 100
Granted # of time intervals, ie buckets, is 100
Sample # 47 began measuring at 8:32:17
Received 664636 octets, 1912 packets,
2 broadcast and 0 multicast packets,
0 undersize and 0 oversize packets,
22 fragments and 0 jabbers,
0 CRC alignment errors and 3 collisions,
# of dropped packet events (due to a lack of resources): 0
Network utilization is estimated at 0

---

**show rmon statistics**

Use the `show rmon statistics` command to display traffic statistics for an interface. If no module is specified, information for all modules and ports is displayed.

**Syntax**

`show rmon statistics [module/port]`

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>The module number of the interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>The port or range of ports of the interface</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**User level**

read-only

**Context**

general

**Example**

To display traffic statistics for all modules and ports:

```
G350-001> show rmon statistics
Statistics for switch is active, owned by Monitor
Received 1150436284 octets, 1344680977 packets,
3301887234 broadcast and 3286425893 multicast packets,
3088727251 undersize and 3613263278 oversize packets,
1062765319 fragments and 3882972139 jabbers,
1956639312 CRC alignment errors and 725598320 collisions,
of dropped packet events (due to a lack of resources): 181377479
of packets received of length (in octets):
64:1508486650, 65-127:3587014782, 128-255:1989866214,
256-511:378421598, 512-1023:2746475436, 1024-1518:3976219609,
```
show rtp-stat config

Use the `show rtp-stat config` command to display the RTP statistics application configuration.

**Syntax**

`show rtp-stat config`

**User level**

read only

**Context**

General

**Example**

To display the current configuration of the RTP statistics application:

```
G350-001(super)# show rtp-stat config
```

RTP Statistic: Enabled
QoS Trap: Enabled
QoS Fault Trap: Enabled
  Fault: 1
  Clear: 0
QoS Trap Rate Limiter:
  Token Interval: 10.00 seconds
  Bucket Size: 5
Session Table:
  Size: 128
  Reserved: 64
Min Stat Win: 50
# Output Fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| RTP Statistic      | Status of the RTP Statistics application. Possible values:  
  - Enabled. The application is enabled.  
  - Disabled. The application is disabled.                                                                                                                                                                                                                                                                                          |
| QoS Trap           | QoS trap status. Possible values:  
  - Enabled. The RTP statistics application is configured to generate QoS traps when one or more QoS indicators were over their event thresholds in a terminated RTP stream.  
  - Disabled. The RTP statistics application is not configured to generate QoS traps.                                                                                                                                                                                                                                                  |
| QoS Fault Trap     | QoS fault trap status. Possible values:  
  - Enabled. The RTP statistics application is configured to generate QoS fault traps when a specified number of active RTP sessions have QoS indicators over the configured thresholds and to send a QoS clear trap after a QoS fault trap when the number of active RTP sessions with QoS indicators over the configured thresholds reduces to a specified number.  
  - Disabled. The RTP statistics application is not configured to generate QoS fault and clear traps.                                                                                                                                                                                                 |
| Fault              | The configured minimum number of sessions suffering bad QoS to trigger the generation of a QoS fault trap                                                                                                                                                                                                                                                                                        |
| Clear              | The configured maximum number of sessions that suffer from bad QoS to trigger the generation of a QoS clear trap                                                                                                                                                                                                                                                                                  |
| QoS Trap Rate Limit: | The configured interval, in hundredths of seconds, between additions of a token to the token bucket of the trap rate limiter. The trap rate limiter limits the rate at which QoS traps are sent to the SNMP trap manager on the media server. The trap rate limiter uses a token bucket scheme, in which the maximum number of QoS traps that can be sent is stored as a number of tokens in a virtual bucket. The number increments by one at a specified interval and is limited to a maximum by a specified bucket size. |
| Token Interval     |                                                                                                                                                                                                                                                                                                                                       |
| Bucket Size        | The maximum number of tokens stored in the token bucket of the trap rate limiter.                                                                                                                                                                                                                                                                                                               |
| Session Table:     | The maximum capacity of RTP session entries in the G350 history.                                                                                                                                                                                                                                                                     |
show rtp-stat detailed

Use the `show rtp-stat detailed` command to display a detailed QoS log for a specific RTP session.

**Note:**
Use the `show rtp-stat sessions` command to view a list of all RTP sessions.

**Syntax**

```
show rtp-stat detailed session-id
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>session-id</code></td>
<td>The index of a specific RTP session</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**User level**
read only

**Context**
General
Example

To display RTP statistics for RTP session 35:

G350-001(super)# show rtp-stat detailed 35

Session-ID: 35
Status: Active, QOS: Faulted, EngineId: 0
Start-Time: 2004-10-20,11:09:07, End-Time: -
Duration: 00:03:11
CName: gwp@135.8.118.252
Phone:
  Local-Address: 135.8.118.252:2045 SSRC 154611212
  Remote-Address: 135.8.76.107:2061 SSRC 2989801899 (0)
Samples: 38 (5 sec)

Codec:
  G723 62B 30mS Off, Silence-suppression(Tx/Rx) Disabled/Not-Supported,
  Play-Time
  186.690sec, Loss 0.0% #1, Avg-Loss 0.1%, RTT 816mS #18, Avg-RTT 463mS,
  JBuf-unde
  r/overruns 0.2%/0.0%, Jbuf-Delay 60mS, Max-Jbuf-Delay 60mS

Received-RTP:
  Packets 6372, Loss 0.0% #0, Avg-Loss 0.0%, RTT 603mS #18, Avg-RTT
  267mS, Jitter
  0mS #0, Avg-Jitter 0mS, TTL(last/min/max) 63/63/63, Duplicates 0,
  Seq-Fall 0, DS
  CP 46, L2Pri 12, RTCP 37

Transmitted-RTP:
  VLAN 1, DSCP 184, L2Pri 6, RTCP 43

Remote-Statistics:
  Loss 0.0% #0, Avg-Loss 0.0%, Jitter 0mS #0, Avg-Jitter 0mS
CLI Commands

Echo-Cancellation:
Loss 45dB #1, Len 32mS

RSVP:
Status Disabled, Failures 0

Output Fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session-ID</td>
<td>The RTP Session ID</td>
</tr>
<tr>
<td>Status</td>
<td>The current session status. Possible values:</td>
</tr>
<tr>
<td></td>
<td>● Active</td>
</tr>
<tr>
<td></td>
<td>● Terminated</td>
</tr>
<tr>
<td>QoS status</td>
<td>The QoS status. Possible values:</td>
</tr>
<tr>
<td></td>
<td>● OK</td>
</tr>
<tr>
<td></td>
<td>● Faulted. One or more QoS event counters are over their thresholds.</td>
</tr>
<tr>
<td>EngineId</td>
<td>The VoIP engine used for the RTP session.</td>
</tr>
<tr>
<td>Start-Time</td>
<td>The start time of the RTP session</td>
</tr>
<tr>
<td>End-Time</td>
<td>The end time of the RTP session (empty for active calls)</td>
</tr>
<tr>
<td>Duration</td>
<td>The total duration of the RTP session</td>
</tr>
<tr>
<td>CName</td>
<td>Equals gwt@&lt;MGP-address&gt;</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Phone</td>
<td>The local extension number and conference ID. Format: &lt;ConferenceID&gt;:&lt;extensionID&gt; Format for N-parties conference call: &lt;ConferenceID&gt;:&lt;ExtensionId1&gt;&lt;extensionId2&gt;:... extensionIdN&gt;</td>
</tr>
<tr>
<td>Note:</td>
<td>This item is received from the CM if VMON is configured.</td>
</tr>
<tr>
<td>Note:</td>
<td>If VMON (RTCP server) is not present, the administrator can still cause the CM to send the “Phone” data by configuring a dummy RTCP server for the region (e.g., with a localhost IP address such as 127.x.x.x).</td>
</tr>
<tr>
<td>Local-Address</td>
<td>The local address for the RTP session. Format: local gateway PMI or VoIP engine address:local UDP port, SSRC RTP SSRC field</td>
</tr>
<tr>
<td>Remote-Address</td>
<td>The local address for the RTP session. Format: remote VoIP engine address, gateway PMI, or IP phone address:remote UDP port, SSRC RTP SSRC field (number of observed SSRC changes(optional))</td>
</tr>
<tr>
<td>Samples</td>
<td>The number of times the application has sampled the VoIP engine (RTP receiver) statistics. The number in parentheses is the sample interval.</td>
</tr>
<tr>
<td>Codec:</td>
<td></td>
</tr>
<tr>
<td>Codec</td>
<td>The codec used for the RTP session (for example, G.711, G.729), the codec packet size, in bytes (for example, 122B), the codec packet interval, in milliseconds (for example, 20ms), and the encryption method</td>
</tr>
<tr>
<td>Silence suppression (Tx/Rx)</td>
<td>The transmitted silence suppression method/the received silence suppression method</td>
</tr>
<tr>
<td>Play-Time</td>
<td>The overall time the codec played valid received frames. This timer is not incremented when the codec plays fill frames (for example, during silence suppression conditions)</td>
</tr>
</tbody>
</table>
### CLI Commands

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <code>codec-loss %</code> <strong>codec-loss-events</strong></td>
<td>The codec loss is the percentage of time the codec had to play a fill frames due to lack of valid RTP frames. Possible causes include jitter and packet loss. <code>codec-loss</code> is the last codec loss sample. <code>codec-loss-events</code> is the number of samples that were over the codec-loss threshold.</td>
</tr>
<tr>
<td><strong>Avg-Loss</strong></td>
<td>The average codec loss sample</td>
</tr>
<tr>
<td><strong>RTT</strong> <code>rtt ms</code> <strong>rtt-events</strong></td>
<td><code>rtt</code>: The last sample of the codec Round Trip Time (in milliseconds). Round Trip Time is the time taken for a message to get to the remote peer and back to the local receiver. In order to reflect the round-trip-delay experienced by the user, this metric includes the internal delay inside the G350 and the IP phone and an estimation of the remote internal delay. <code>rtt-events</code>: the number of samples that were over the RTT threshold.</td>
</tr>
<tr>
<td><strong>Avg-RTT</strong></td>
<td>The average Round Trip time</td>
</tr>
<tr>
<td>Jbuf-under/overruns</td>
<td>The contribution of jitter-buffer underruns to the average codec loss/the contribution of jitter-buffer overruns to the average codec loss</td>
</tr>
<tr>
<td>Jbuf-delay</td>
<td>The current/last jitter buffer delay, in milliseconds</td>
</tr>
<tr>
<td>Max-Jbuf-Delay</td>
<td>The maximum jitter buffer delay during the session</td>
</tr>
<tr>
<td><strong>Received RTP:</strong></td>
<td></td>
</tr>
<tr>
<td>Packets</td>
<td>The total number of received RTP packets</td>
</tr>
<tr>
<td><strong>Loss</strong> <code>loss %</code> <strong>loss-events</strong></td>
<td><code>loss</code>: The last sample network RTP packet loss <code>loss-events</code>: the number of samples that were over the loss threshold The G350 VoIP engine evaluates the current received packet loss in fixed intervals of 6 to 12 seconds. The G350 VoIP engine postpones loss estimation until the next interval if the number of packets received is less than the minimum statistic window. The minimum statistic window is configured with the CLI command <code>rtp-stat min-stat-win</code>.</td>
</tr>
<tr>
<td><strong>Avg-Loss</strong></td>
<td>The average packet loss during the session</td>
</tr>
<tr>
<td><strong>RTT</strong> <code>rtt ms</code> <strong>rtt-events</strong></td>
<td><code>rtt</code>: The last network RTP packet round-trip-time sample. The system calculates RTT each time an RTCP packet is received. <code>rtt-events</code>: the number of samples that were over the RTT threshold</td>
</tr>
<tr>
<td><strong>Avg-RTT</strong></td>
<td>The average Round Trip Time during the session</td>
</tr>
<tr>
<td>Jitter <code>jitter ms</code> <strong>jitter-event</strong></td>
<td><code>jitter</code>: The last sample of network jitter (at the RTP receiver) <code>jitter-event</code>: the number of samples that were over the network jitter threshold</td>
</tr>
</tbody>
</table>

---

3 of 5
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg-Jitter</td>
<td>The average network jitter during the session</td>
</tr>
<tr>
<td>TTL(last/min/max)</td>
<td>The last, minimum and maximum values of the TTL field of received RTP packets. TTL changes during the session may indicate IP routing instability.</td>
</tr>
<tr>
<td>Duplicates</td>
<td>This counter increments each time two consecutive RTP packets with the sample RTP sequence number are received.</td>
</tr>
<tr>
<td>Seq-Fall</td>
<td>This counter increments each time an RTP packet with a sequence number less than the last known sequence is received.</td>
</tr>
<tr>
<td>DSCP</td>
<td>The last received DSCP value of an RTP packet</td>
</tr>
<tr>
<td>L2Pri</td>
<td>The last received L2 priority (usually IEEE802.1p) value of an RTP packet</td>
</tr>
<tr>
<td>RTCP</td>
<td>The total number of received RTCP packets</td>
</tr>
<tr>
<td>Transmitted-RTP:</td>
<td></td>
</tr>
<tr>
<td>VLAN</td>
<td>The VLAN-ID on which the RTP packets are transmitted</td>
</tr>
<tr>
<td>DSCP</td>
<td>The DSCP (diff-serve code point) of RTP packets</td>
</tr>
<tr>
<td>L2Pri</td>
<td>The Layer 2 priority (usually 802.1p) of transmitted RTP packets.</td>
</tr>
<tr>
<td>RTCP</td>
<td>The total number of transmitted RTCP packets</td>
</tr>
<tr>
<td>Remote-Statistics:</td>
<td></td>
</tr>
<tr>
<td>Loss</td>
<td>rem-loss: the network loss experienced by the remote RTP receiver. The local RTP receiver learns about its remote peer statistics from RTCP packets. rem-loss-ev: the number of samples that were over the rem-loss threshold.</td>
</tr>
<tr>
<td>Avg-Loss</td>
<td>The average network loss experienced by the remote RTP receiver.</td>
</tr>
<tr>
<td>Jitter</td>
<td>rem-jitter: the network jitter experienced by the remote RTP receiver. rem-jitter-ev: the number of samples that were over the remote jitter threshold.</td>
</tr>
<tr>
<td>Avg-jitter</td>
<td>The average remote jitter</td>
</tr>
<tr>
<td>Echo cancellation:</td>
<td></td>
</tr>
<tr>
<td>Loss</td>
<td>loss: the echo cancellation loss on the TDM bus. A high value may indicate impairment of DCP terminals. loss-ev: a counter that increments each time the Echo-cancellation loss is sampled below its threshold</td>
</tr>
</tbody>
</table>

4 of 5
### show rtp-stat sessions

Use the `show rtp-stat sessions` command to display RTP sessions QoS statistics.

**Syntax**

```
show rtp-stat sessions [active|active-events|history|events]
[destination-ip {remote-subnet remote-subnet-mask}|{host rem-addr}]
[last last-N]
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>Displays only active sessions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>active-events</td>
<td>Displays only active sessions experiencing bad QoS conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>history</td>
<td>Displays only terminated sessions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>events</td>
<td>Displays only terminated sessions that experienced bad QoS conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>destination-ip</td>
<td>Displays only sessions to this destination subnet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remote-subnet</td>
<td>The destination subnet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### User level
read only

### Context
General

### Example
To display all RTP sessions:

```
G350-001(super)# show rtp-stat sessions
```

<table>
<thead>
<tr>
<th>ID</th>
<th>QoS</th>
<th>Start date and time</th>
<th>End Time</th>
<th>Type</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001</td>
<td>*</td>
<td>2004-10-15,16:57:48</td>
<td>17:00:15</td>
<td>G729</td>
<td>135.8.76.64</td>
</tr>
<tr>
<td>00002</td>
<td></td>
<td>2004-10-15,16:59:06</td>
<td>17:00:15</td>
<td>G729</td>
<td>135.8.76.62</td>
</tr>
<tr>
<td>00003</td>
<td>*</td>
<td>2004-10-15,17:00:41</td>
<td>17:01:40</td>
<td>G723</td>
<td>135.8.76.107</td>
</tr>
<tr>
<td>00004</td>
<td>*</td>
<td>2004-10-18,10:28:33</td>
<td>10:30:29</td>
<td>G729</td>
<td>135.8.76.64</td>
</tr>
<tr>
<td>00006</td>
<td>*</td>
<td>2004-10-18,10:52:26</td>
<td>10:53:15</td>
<td>G729</td>
<td>135.8.76.64</td>
</tr>
<tr>
<td>00007</td>
<td>*</td>
<td>2004-10-18,10:53:42</td>
<td>10:54:29</td>
<td>G723</td>
<td>135.8.76.107</td>
</tr>
<tr>
<td>00008</td>
<td>*</td>
<td>2004-10-18,10:56:31</td>
<td>10:57:34</td>
<td>G729</td>
<td>135.8.76.64</td>
</tr>
<tr>
<td>00009</td>
<td></td>
<td>2004-10-18,10:57:39</td>
<td>11:02:38</td>
<td>G729</td>
<td>135.8.76.64</td>
</tr>
<tr>
<td>Index</td>
<td>Date/Time</td>
<td>Duration</td>
<td>Codec</td>
<td>IP Address</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>----------</td>
<td>-------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>00010</td>
<td>2004-10-18, 11:03:13 11:06:07</td>
<td>3:00</td>
<td>G723</td>
<td>135.8.76.13</td>
<td></td>
</tr>
<tr>
<td>00011</td>
<td>2004-10-18, 11:13:56 11:16:46</td>
<td>3:00</td>
<td>G723</td>
<td>135.8.76.35</td>
<td></td>
</tr>
<tr>
<td>00014</td>
<td>2004-10-18, 11:18:50 11:19:59</td>
<td>3:00</td>
<td>G723</td>
<td>135.8.76.107</td>
<td></td>
</tr>
<tr>
<td>00017</td>
<td>2004-10-18, 11:22:11 11:23:02</td>
<td>3:00</td>
<td>G729</td>
<td>135.8.76.64</td>
<td></td>
</tr>
<tr>
<td>00019</td>
<td>2004-10-18, 11:40:12 11:42:10</td>
<td>3:00</td>
<td>G723</td>
<td>135.8.76.107</td>
<td></td>
</tr>
<tr>
<td>00021</td>
<td>2004-10-18, 11:47:07 11:50:33</td>
<td>3:00</td>
<td>G723</td>
<td>135.8.76.107</td>
<td></td>
</tr>
<tr>
<td>00023</td>
<td>2004-10-18, 11:48:34 11:50:43</td>
<td>3:00</td>
<td>G723</td>
<td>135.8.76.35</td>
<td></td>
</tr>
<tr>
<td>00026</td>
<td>2004-10-18, 11:54:02 11:55:27</td>
<td>3:00</td>
<td>G729</td>
<td>135.8.76.62</td>
<td></td>
</tr>
<tr>
<td>00028</td>
<td>2004-10-18, 13:56:57 08:40:39</td>
<td>3:00</td>
<td>G723</td>
<td>135.8.76.107</td>
<td></td>
</tr>
<tr>
<td>00029</td>
<td>2004-10-19, 17:24:00 17:28:10</td>
<td>3:00</td>
<td>G711A</td>
<td>135.8.76.107</td>
<td></td>
</tr>
<tr>
<td>00030</td>
<td>2004-10-19, 17:29:06 09:04:04</td>
<td>3:00</td>
<td>G723</td>
<td>135.8.76.107</td>
<td></td>
</tr>
<tr>
<td>00031</td>
<td>2004-10-20, 10:51:36 10:59:07</td>
<td>3:00</td>
<td>G729</td>
<td>135.8.76.64</td>
<td></td>
</tr>
<tr>
<td>00032</td>
<td>2004-10-20, 10:53:42 10:57:36</td>
<td>3:00</td>
<td>G723</td>
<td>135.8.76.107</td>
<td></td>
</tr>
<tr>
<td>00033</td>
<td>2004-10-20, 10:58:21 10:59:06</td>
<td>3:00</td>
<td>G723</td>
<td>135.8.76.107</td>
<td></td>
</tr>
<tr>
<td>00034</td>
<td>2004-10-20, 11:08:40  -</td>
<td>3:00</td>
<td>G729</td>
<td>135.8.76.64</td>
<td></td>
</tr>
<tr>
<td>00035</td>
<td>2004-10-20, 11:09:07  -</td>
<td>3:00</td>
<td>G723</td>
<td>135.8.76.107</td>
<td></td>
</tr>
</tbody>
</table>

**Note:**

An asterisk (*) in the QoS column indicates that the session suffered from QoS problems.
To display the last five sessions:

G350-001(super)# show rtp-stat sessions last 5

<table>
<thead>
<tr>
<th>ID</th>
<th>QoS</th>
<th>Start date and time</th>
<th>End Time</th>
<th>Type</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>00031</td>
<td>2004-10-20,10:51:36</td>
<td>10:59:07</td>
<td>G729</td>
<td>135.8.76.64</td>
<td></td>
</tr>
<tr>
<td>00032</td>
<td>*</td>
<td>2004-10-20,10:53:42</td>
<td>10:57:36</td>
<td>G723</td>
<td>135.8.76.107</td>
</tr>
<tr>
<td>00033</td>
<td>*</td>
<td>2004-10-20,10:58:21</td>
<td>10:59:06</td>
<td>G723</td>
<td>135.8.76.107</td>
</tr>
<tr>
<td>00034</td>
<td></td>
<td>2004-10-20,11:08:40</td>
<td>-</td>
<td>G729</td>
<td>135.8.76.64</td>
</tr>
<tr>
<td>00035</td>
<td>*</td>
<td>2004-10-20,11:09:07</td>
<td>-</td>
<td>G723</td>
<td>135.8.76.107</td>
</tr>
</tbody>
</table>

**show rtp-stat summary**

Use the `show rtp-stat summary` command to display a summary of the RTP statistics.

**Syntax**

`show rtp-stat summary`

**User Level**

read-write

**Context**

General

**Example**

The following summary shows two active sessions, one with QoS problems (35):

G350-001(super)# show rtp-stat summary

Total QoS traps: 23
QoS traps Drop : 0
Qos Fault

<table>
<thead>
<tr>
<th>Engine</th>
<th>Active</th>
<th>Total</th>
<th>Mean</th>
<th>Tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Description</td>
<td>Uptime</td>
<td>Session</td>
<td>Session</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>000</td>
<td>internal</td>
<td>04,18:15:15</td>
<td>2/1</td>
<td>35/24</td>
</tr>
</tbody>
</table>
Output fields

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Number of the trap</td>
</tr>
<tr>
<td>Description</td>
<td>Description of the VoIP engine</td>
</tr>
<tr>
<td>Uptime</td>
<td>The uptime of the RTP statistics application. This is the time since the</td>
</tr>
<tr>
<td></td>
<td>last boot or since the last use of the rtp-stat clear command.</td>
</tr>
<tr>
<td>Active Session</td>
<td>The number of active sessions / number of active sessions with QoS problems</td>
</tr>
<tr>
<td>Total Session</td>
<td>The total number of sessions / number of sessions that had QoS problems</td>
</tr>
<tr>
<td>Mean Duration</td>
<td>The mean RTP session duration</td>
</tr>
<tr>
<td>Tx TTL</td>
<td>The TTL field for transmitted RTP packets</td>
</tr>
</tbody>
</table>

**show rtp-stat thresholds**

Use the `show rtp-stat thresholds` command to display the configured thresholds and event-thresholds for QoS metrics sampled by the RTP statistics application during RTP streams. For a description of the thresholds, see `rtp-stat threshold` on page 281.

**Syntax**

```
show rtp-stat thresholds
```

**User level**

read only

**Context**

General

**Example**

To display the configured RTP statistics application thresholds:

```
G350-001(super)# show rtp-stat thresholds

<table>
<thead>
<tr>
<th>Item</th>
<th>Threshold</th>
<th>Event Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Codec Loss 6.0% 1
Average Codec Loss 3.0% N/A
Codec RTT 700mS 1
Echo Return Loss 0dB 1
Loss 6.0% 1
Average Loss 3.0% N/A
Remote Loss 6.0% 1
Average Remote Loss 3.0% N/A
RTT 500mS 1
Local Jitter 50mS 1
Remote Jitter 50mS 1
SSRC Changes N/A 1

show running-config

Use the `show running-config` command to display the media gateway’s current configuration.

Syntax

```plaintext
show running-config
```

User level

read-only

Context

general

Example

To display the current configuration:

```plaintext
G350-011> show running-config

G350-011> ! version 0.0.13
! !
! ds-mode t1
```
show snmp

Use the `show snmp` command to display SNMP configuration information.

Syntax

`show snmp`

User level

read-only

Context

general

Example

To display SNMP information:

```
G350-001> show snmp
```

```
Community-Access  Community-String
read-only          public
read-write         private
trap               secret

Trap-Rec-Addr       Status       Traps configured
```
SNMPv3 Notifications Status
Traps: Disabled
Informs: Disabled Retries: 3 Timeout: 3 seconds

<table>
<thead>
<tr>
<th>SNMP Rec-Addr</th>
<th>Model</th>
<th>Level</th>
<th>Notification</th>
<th>Trap/Inform</th>
<th>User Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>129.22.22.22</td>
<td>v1</td>
<td>noauth</td>
<td>all</td>
<td>trap</td>
<td>ReadCommN</td>
</tr>
<tr>
<td>UDP port: 162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129.11.33.44</td>
<td>v2c</td>
<td>noauth</td>
<td>all</td>
<td>inform</td>
<td>WriteCommN</td>
</tr>
<tr>
<td>UDP port: 162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show snmp engineID

Use the `show snmp engineID` command to display the SNMP engine ID for the G350.

Syntax

```
show snmp endingid
```

User level

`admin`

Context

`general`

Example

To display the SNMP engine ID:

```
G350-001(super)# show snmp engineid
EngineId: 00:00:00:09:00:d0:00:4c:18:00
Engine Boots: 1234455
```
show snmp group

Use the `show snmp group` command to display configuration information about the SNMP groups.

Syntax

```
show snmp group
```

User level

admin

Context

general

Example

```
G350-001(super)# show snmp group

Group Name: defaultROgroup Context:  
Security Model: v1  
Security Level: noauth  
Context Match: exact  
Read View: defaultUserView  
Write View:  
Notify View: defaultUserView  
Group Name: defaultROgroup Context:  
Security Model: v2c  
Security Level: noauth  
Context Match: exact  
Read View: defaultUserView  
Write View:  
Notify View: defaultUserView
```

show snmp retries

Use the `show snmp retries` command to display the number of retry attempts to make when attempting to communicate with a node.

Syntax

```
show snmp retries
```
User level
read-only

Context
general

Example
To display the number of retry attempts:
G350-001> show snmp retries
the SNMP Retries Number is 100

show snmp timeout

Use the show snmp timeout command to display the time to wait before resending a communication.

Syntax
show snmp timeout

User level
read-only

Context
general

Example
To display the timeout value:
G350-001> show snmp timeout
the SNMP Timeout is 60
show snmp user

Use the `show snmp user` command to display configuration information for the specified SNMP user.

Syntax

```
show snmp user username [remote EngineID]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>username</td>
<td>The username of the user whose information you wish to display</td>
<td></td>
<td></td>
</tr>
<tr>
<td>remote EngineID</td>
<td>The EngineID of the remote user</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

admin

Context

general

Example

```
G350-001(super)# show snmp user <john>

EngineId: 00:11:22:33:44
User Name: john
Authentication Protocol: md5
Privacy Protocol: des56
Group for Security Model v1: RestrictedGroup
Group for Security Model v2: RestrictedGroup
Group for Security Model v3: RestrictedGroup
Storage Type: volatile
Row status: active
```
show snmp usertogroup

Use the show snmp usertogroup command to show the mapping table between SNMPv3 users and groups.

Syntax

```
show snmp usertogroup [username]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>username</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

admin

Context

general

Example

```
G350-001(super)# show snmp usertogroup
Security Model: v1
Security Name: WriteCommN
Group Name: WriteCommG
Security Model: v2c
Security Name: ReadCommN
Group Name: ReadCommG
Security Model: v2c
Security Name: WriteCommN
Group Name: WriteCommG
```
show snmp user summary

Use the `show snmp user summary` command to display configuration information for all SNMP users.

Syntax

```
show snmp user summary
```

User level

admin

Context

general

show snmp view

Use the `show snmp view` command to display configuration information for all SNMP views.

Syntax

```
show snmp view
```

User level

admin

Context

general

Example

```
G350-001(super)# show snmp view
View Name: iso
Subtree Oid: 1
Subtree Mask:
View Type: include
Storage Type: nonVolatile
Status: active
```
show spantree

Use the `show spantree` command to display spanning-tree information. If no port is specified, information for all ports is displayed.

Syntax

`show spantree [module[/port]]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>module</code></td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>port</code></td>
<td>Number of the port on the module</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example

To display spanning tree information for all ports:

```
G350-001> show spantree
Spanning tree enabled
Designated Root: 00-40-0d-88-06-c8
Designated Root Priority: 32768
Designated Root Cost: 20
Designated Root Port: 1/1
Root Max Age: 20   Hello Time: 2

Bridge ID MAC ADDR: 00-40-0d-92-04-b4
Bridge ID priority: 32768

<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Cost</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 /1</td>
<td>Forwarding</td>
<td>20</td>
<td>128</td>
</tr>
<tr>
<td>4 /2</td>
<td>not-connected</td>
<td>20</td>
<td>128</td>
</tr>
<tr>
<td>4 /3</td>
<td>LAG-member</td>
<td>20</td>
<td>128</td>
</tr>
<tr>
<td>4 /4</td>
<td>LAG-member</td>
<td>20</td>
<td>128</td>
</tr>
<tr>
<td>4 /5</td>
<td>not-connected</td>
<td>20</td>
<td>128</td>
</tr>
<tr>
<td>4 /6</td>
<td>not-connected</td>
<td>20</td>
<td>128</td>
</tr>
</tbody>
</table>
```
Output fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning tree</td>
<td>Spanning-Tree Protocol status (enabled or disabled)</td>
</tr>
<tr>
<td>Designated root</td>
<td>MAC address of the designated spanning-tree root bridge</td>
</tr>
<tr>
<td>Designated Root Priority</td>
<td>Priority of the designated root bridge</td>
</tr>
<tr>
<td>Designated Root Cost</td>
<td>Total path cost to reach the root</td>
</tr>
<tr>
<td>Designated Root Port</td>
<td>Port through which the root bridge can be reached (shown only on non root bridges)</td>
</tr>
<tr>
<td>Root Max Age</td>
<td>Amount of time a BPDU packet should be considered valid</td>
</tr>
<tr>
<td>Hello Time</td>
<td>Number of times the root bridge sends BPDUs</td>
</tr>
<tr>
<td>Bridge ID MAC ADDR</td>
<td>Bridge MAC address used in the sent BPDUs</td>
</tr>
<tr>
<td>Bridge ID Priority</td>
<td>Bridge Priority</td>
</tr>
<tr>
<td>Port</td>
<td>Port number</td>
</tr>
<tr>
<td>Port-State</td>
<td>Spanning-tree port state (disabled, inactive, not-connected, blocking, listening, learning, forwarding, bridging, or type-pvid-inconsistent)</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost associated with the port</td>
</tr>
<tr>
<td>Priority</td>
<td>Priority associated with the port</td>
</tr>
</tbody>
</table>

show startup-config

Use the `show startup-config` command to show the NVRAM based configuration loaded automatically at startup.

Syntax

`show startup-config`

User level

read-only

Context

general
Example

To display the startup configuration:

G350-011> show startup-config
G350-011>
! version 0.0.13
ds-mode t1
interface Vlan 1
icc-vlan
ip address 172.16.1.139 255.255.255.240
pmi
interface FastEthernet 10/2
interface Console
ip address 10.3.0.1 255.255.255.0

show status

Use the show status command to display the status of the current file copy process to or from the device.

Syntax

show {download | upload} {software [mmID] | config} status

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>download</td>
<td>Keyword specifying that the download status is displayed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>upload</td>
<td>Keyword specifying that the upload status is displayed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>software</td>
<td>Keyword specifying that software download or upload information is displayed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mmId</td>
<td>The Media Module ID number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>config</td>
<td>Keyword specifying that configuration download or upload information is displayed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only
CLI Commands

Context
general

Example
To display the status of software downloads for all media modules:

G350-001# show download software status

TFTP STATUS

Module: MGP
Source File: mg01_3.com
Destination File: BANK B
Host: 0.0.0.0
Running State: idle
Last Failure: No Error
Last Warning: (null)
Progress: [0/0]0%

show sync timing

Use the show sync timing command to display the status of the primary, secondary, and local clock sources.

Syntax
show sync timing

User level
read-only

Context
general

Example
To display clock source information:

G350-001# show sync timing

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>MM</th>
<th>STATUS</th>
<th>FAILURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td></td>
<td>Not Configured</td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td>Not Configured</td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>v0</td>
<td>Active</td>
<td>None</td>
</tr>
</tbody>
</table>

Active Source: v0
Sync Source Switching: Enabled
show system

Use the `show system` command to display information about the device.

Syntax

```
show system
```

User level

read-only

Context

general

Example

To display device information:

```
G350-001# show system
System Name        : 
System Location    : 
System Contact     : 
Uptime (d,h:m:s)   : 0,7:36:43
MV Time            : N/A
MAC Address        : 00:04:0d:29:c5:11
WAN MAC address    : 00:04:0d:29:c5:10
Serial No          : 03IS12345678
Model No           : G350 Chassis
HW Vintage         : 00
HW Suffix          : B
FW Vintage         : 0.0.15
```

show temp

Use the `show temp` command to view the device temperature.

Syntax

```
show temp
```

User level

read-only
show timeout

Use the `show timeout` command to display the amount of time in minutes the terminal remains idle before timing out. If the timeout value is 0, there is no timeout limit. The default timeout value is 15 minutes.

Syntax

`show timeout`

User level

read-only

Context

general

Example

To display the timeout value:

```
G350-001> show timeout
CLI timeout is 15 minutes
```
show trunk

Use the `show trunk` command to display VLAN tagging information for the media gateway. If no port is specified, information for all ports is displayed.

Syntax

```
show trunk [module[/port[-port]]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>module</code></td>
<td>Number of the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>port</code></td>
<td>Number of the port on the module. You can specify a range of ports. For example, use the syntax 4/1-3 to specify ports 1 through 3 on module 4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To display binding information for ports 1-3 of module 4:

```
G350-001# show trunk 4/1-3
Port   Mode   Binding mode Native vlan Vlans allowed on trunk
------- ----- --------------- ----------- -----------------------
        ----- ------------------ ------------
Port   Mode   Binding mode Native vlan Vlans allowed on trunk
------- ----- --------------- ----------- -----------------------
        ----- ------------------ ------------
Port   Mode   Binding mode Native vlan Vlans allowed on trunk
------- ----- --------------- ----------- -----------------------
        ----- ------------------ ------------
4/3     off    statically bound 1  1
```
Output fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Module and port numbers</td>
</tr>
<tr>
<td>Mode</td>
<td>VLAN tagging status of the port. Possible values:</td>
</tr>
<tr>
<td></td>
<td>● dot1q - the port uses dot1Q tagging mode</td>
</tr>
<tr>
<td></td>
<td>● off - the port uses clear tagging mode</td>
</tr>
<tr>
<td>Binding mode</td>
<td>Binding mode of the port. Possible values:</td>
</tr>
<tr>
<td></td>
<td>● statically bound</td>
</tr>
<tr>
<td></td>
<td>● bound-to-configured</td>
</tr>
<tr>
<td>Native vlan</td>
<td>Number of the Port VLAN ID. This is the VLAN to which received untagged traffic is assigned.</td>
</tr>
</tbody>
</table>

show upload dhcp-binding-file status

Use the `show upload dhcp-binding status` command to display the upload status of a DHCP binding file.

Syntax

`show upload dhcp-binding-file status`

User level

read only

Context

configure

Example

If no download was done:

G350-001# show upload dhcp-binding-file status

Module #10

No dest file for download operation - no download operation was done.

If download was done:

G350-001# show upload dhcp-binding-file status
Module #10

Module : 10
Source file : dhcp-binding
Destination file : bbb
Host : 135.64.102.64
Running state : Idle
Failure display : (null)
Last warning : No-warning

show upload phone-script-file status

Use the `show upload phone-script-file status` command to display the upload phone-script file.

Syntax

`show upload phone-script-file status`

User level

Read only

Context

general

Example

`interface# > show upload phone-script-file status`

- If no upload has been performed

 Module #10

 No source file for upload operation - no upload operation was done.

CLI Commands

- If an upload has been performed

 Module #10

 ===========
 Module : 10
 Source file : phone-scriptA
 Destination file : d:\lou\run.cfg
 Host : 135.64.102.39
 Running state : Idle
 Failure display : SCP - Permission denied
 Last warning : No-warning

 ===========

show upload status

Use the show upload status command to display status information regarding the upload of a configuration file for a specific module or for all modules.

Syntax

show upload status [module_number]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module_number</td>
<td>The module number for which to display upload information</td>
<td>0 – 10</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general
Example
To display upload status information for module 10:
G350-001> show upload status 10
Module #10
============
No source file for upload operation - no upload operation was done.

show username

Use the show username command to display local user accounts.

Syntax
show username

User level
admin

Context
general

Example
To display all the defined user accounts:
G350-001(super)# show username
User account password access-type
------------- -------- ------------
root --------- admin
gkohll ------- read-only
readwrite **** read-write

show utilization

Use the show utilization command to display information about CPU usage. If no module is specified, information for all modules is displayed.

Syntax
show utilization [module]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
<td>Module to display</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
general

Example
To display utilization information for all modules:

G350-011# show utilization

<table>
<thead>
<tr>
<th>Mod</th>
<th>CPU 5sec</th>
<th>CPU 60sec</th>
<th>RAM used (%)</th>
<th>Total (Kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4%</td>
<td>4%</td>
<td>21%</td>
<td>105313 Kb</td>
</tr>
</tbody>
</table>

show vlan

Use the `show vlan` command to display the VLANs configured in the media gateway. If no VLAN is specified, information for all VLANs is displayed.

Syntax

`show vlan [vlan_id | name vlan_name]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan_id</td>
<td>VLAN number to display</td>
<td>1 – 3071</td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>Keyword indicating to specify the VLAN by name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vlan_name</td>
<td>VLAN name to display</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level

read-only

Context

general

Example

To display information for all VLANs:

```
G350-001> show vlan
VLAN ID Vlan-name
------- --------------------------------
 1       v1
 5       V5
 10      V10
 15      V15
 20      V20
 25      V25
```

To display information for VLAN 1:

```
G350-001# show vlan 1
VLAN ID Vlan-name
------- --------------------------------
 1       V1
```

Switch Ports currently bound to this vlan:
In module 10: 3
Switch Ports statically bound to this vlan:
None

show voip-parameters

Use the `show voip-parameters` command to display information about the current VoIP engine.

Syntax

```
show voip-parameters
```

User level

read-only
Context

general

Example

To display VoIP information:

G350-001> show voip-parameters

VOIP ENGINE PARAMETERS

IP (PMI) : 172.16.1.139
DSP Firmware Version: 200
Fault Status : No Fault Messages
Additional Status : No Status Messages

CURRENT STATE

In Use : 0 channels, 0 of 32 resources
DSPs State : Idle
Admin State: Release

show voltages

Use the show voltages command to view power supply voltages.

Syntax

show voltages

User level

read-only

Context

general

Example

To display voltage information:

G350-011> show voltages

Voltage Actual Status Usage
------- ------ ------
-48.0 -48.761 OK 5V DC2DC, Analog/DCP ports, Fans
5.0 4.947 OK 3.3V DC2DC, 1.8V DC-to-DC, Modules logic, TDM buses TSI
show web aux-files-url

Use the `show web aux-files-url` command to display the URL of the Web server containing online help files and the Java plug-in.

Syntax

```
show web aux-files-url
```

User level

read-only

Context

general

Example

To display the URL of the Web server:

```
G350-001> show web aux-files-url
the web aux-files-url is http://176.2.3.66/DMweb
```

shutdown

Use the `shutdown` command to set the administrative status of the current interface to down. Use the `no` form of this command to restore the administrative status for the interface to up.

Syntax

```
[no] shutdown
```

User level

read-write
CLI Commands

Context

Example
To shutdown the VLAN 2 interface:

G350-001(if:Vlan 2)# shutdown
Interface Vlan 2, changed state to administratively down
Line protocol on Interface Vlan 2, changed state to down
Done!

shutdown

Use the shutdown command to disable the usb-modem interface. When the interface is disabled, calls to the modem are immediately hung up. No PPP initialization is performed, and there is no access to the device.

Use the no form of this command to enable the usb-modem interface. For security reasons, the usb-modem interface is disabled by default. The USB modem can only be connected after the interface is manually brought up using this command.

Syntax
[no] shutdown

User level
For shutdown: read-write
For no shutdown: admin

Context
interface usb-modem

Example
G350-001(super-if:USB-Modem)# shutdown
Done!
snmp trap link-status

Use the `snmp trap link-status` command to enable Link Up and Link Down traps. Use the `no` form of this command to restore the default value, interface traps deactivated.

Syntax

```
[no] snmp trap link-status
```

User level

read-write

Context

Interface: Serial (DS1 PPP L2, DS1 PPP L2-L3, DS1 FR L2, DS1 FR-SUB L2, DS1 FR-SUB L2-L3, USP PPP L2, USP PPP L2-L3, USP FR L2), FastEthernet (L2, L2-L3), Tunnel (L2, L2-L3)

snmp-server community

Use the `snmp-server community` command to enable access to SNMP services via community strings. Use the `no` form of the command to prevent access to SNMP services using community strings. By default, community string access is enabled.

Syntax

```
[no] snmp-server community
```

User level

admin

Context

general

Example

```
G350-001(super)# snmp-server community
Done!
```
snmp-server dynamic-trap-manager

Use the `snmp-server dynamic-trap-manager` command to modify the SNMP settings of the dynamic trap manager. Use the `no` form of the command to restore the dynamic trap manager to its default settings, and remove all notification type filters.

Syntax

```
snmp-server dynamic-trap-manager {traps | informs} {v1 | v2c community} [udp-port port] [notification_type_list]
no snmp-server dynamic-trap-manager notification_type_list
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>traps</td>
<td>Specifies that the dynamic trap manager sends messages without requesting acknowledgement. This is the default.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>informs</td>
<td>Specifies that the dynamic trap manager sends messages requiring acknowledgement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v1</td>
<td>Specifies that the dynamic trap manager uses SNMP v1 functionality. This is the default.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v2c</td>
<td>Specifies that the dynamic trap manager uses SNMP v2c functionality.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>community</td>
<td>The community string for accessing SNMP services.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>The udp port of the SNMP host.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>notification_type_list</td>
<td>The specific types of messages that the dynamic trap manager sends. Use this list to filter the messages controlled by the dynamic trap manager.</td>
<td>All</td>
<td></td>
</tr>
</tbody>
</table>

User Level

admin

Context

general
Example
G350-001 (super)# snmp-server dynamic-trap-manager 10.1.2.4 traps v2c public all

snmp-server enable notifications

Use the `snmp-server enable notifications` command to enable the sending of all traps and informs from the G350. Use the `no` form of the command to disable the sending of all traps and informs from the G350.

Note:
This command overrides the enabling of individual notifications using the `snmp-server host` command.

Syntax
[no] snmp-server enable notifications

User level
admin

Context
general

Example
G350-001 (super)# snmp-server enable notifications
Done!

snmp-server engineID

Use the `snmp-server engineID` command to specify the SNMP Engine ID for the G350. Use the `no` form of the command to return the device to its default Engine ID.

Note:
The SNMP Engine ID must be unique for all devices on the network.

Note:
When you change the SNMP Engine ID, all users other than the default user are invalidated and must be redefined.
Note:
When the IP address of the G350 changes, the SNMP Engine ID is automatically changed.

Syntax

```
snmp-server engineID engineID
no snmp-server engineID
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>engineID</code></td>
<td>12 byte hexadecimal string, with each byte separated by a colon. For example, 00:00:00:81:0a:fe:ff:12:97:33:45:12.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
admin

Context
genereal

Example

```plaintext
G350-001(super)# snmp-server engineid 00:02:00:81:00:d0:00:4c:18:00
Done!
```

snmp-server group

Use the `snmp-server group` command to define a new SNMPv3 group, or to configure settings for the group. An SNMP group associates users with views. Use the `no` form of the command to remove the specified group.

Note:
If you use the `no` form of the command with no additional parameters, all instances of the specified group are removed. If you specify a particular security group, only that group instance is removed.
Syntax

```
snmp-server group groupname {v1|v2c|v3 {auth|noauth|priv}} [read readviewname] [write writeviewname] [notify notifyviewname]
no snmp-server group groupname [v1|v2c|v3 {noauth|auth|priv}]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>groupname</code></td>
<td>A character string of at most 32 characters specifying the group name</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>v1</code></td>
<td>The group is limited to SNMP v1 functionality</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>v2c</code></td>
<td>The group is limited to SNMP v2c functionality</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>v3</code></td>
<td>The group has full SNMP v3 functionality (this is the default)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>auth</code></td>
<td>The group authenticates packets</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>noauth</code></td>
<td>The group does not authenticate packets (this is the default)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>priv</code></td>
<td>The group authenticates and encrypts packets</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>readviewname</code></td>
<td>A character string of at most 64 characters specifying the view name for the read view. Users of this group have read access to the set of MIB objects specified in the read view. If no view is specified, the default is an empty view.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>writeviewname</code></td>
<td>A character string of at most 64 characters specifying the view name for the write view. Users of this group have write access to the set of MIB objects specified in the write view. If no view is specified, the default is an empty view.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>notifyviewname</code></td>
<td>A character string of at most 64 characters specifying the view name for the notify view. Users of this group have notify access to the set of MIB objects specified in the notify view. If no view is specified, the default is an empty view.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

User level
admin

Context
general

Example
G350-001(super)# snmp-server group 12groupRO v3 auth read view1 notify view2
Done!

snmp-server host

Use the `snmp-server host` command to identify an SNMP management server, and specify the kind of messages it receives. Use the `no` form of the command to remove the specified server, or to disable a particular set of notification types.

Note:
If you specify `no snmp-server host` without a notification type list, all notification types are disabled.

Syntax

```
snmp-server host {host_address | hostname} {traps | informs} {{{v1 | v2c} community} | {v3 [auth | noauth | priv] user}} [udp-port port] [notification-type-list]
no snmp-server host host_address [{traps|informs} notification-type-list]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>host_address</code></td>
<td>IP address of the SNMP host</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>A character string no longer than 32 characters, specifying the hostname of the SNMP host</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

530 Avaya G350 Media Gateway CLI Reference
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>traps</td>
<td>Send traps to this host (messages not requiring acknowledgement). This is the default.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>informs</td>
<td>Send informs to this host (messages requiring acknowledgement)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v1</td>
<td>Use SNMP v1 functionality with this host</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v2c</td>
<td>Use SNMP v2c functionality with this host</td>
<td></td>
<td></td>
</tr>
<tr>
<td>community</td>
<td>The community string to use to connect to the specified host (for v1 or v2c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v3</td>
<td>Use SNMP v3 functionality with this host</td>
<td></td>
<td></td>
</tr>
<tr>
<td>auth</td>
<td>Authenticate messages to this host</td>
<td></td>
<td></td>
</tr>
<tr>
<td>noauth</td>
<td>Do not authenticate messages to this host (this is the default)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>priv</td>
<td>Authenticate and encrypt messages to this host</td>
<td></td>
<td></td>
</tr>
<tr>
<td>user</td>
<td>The username to use for authentication on the specified host</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>Which port of the target host to use</td>
<td>162</td>
<td></td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>notification-type-list</td>
<td>List of notification types that are enabled for this host. Use the no form of the command to disable specific notification types. The default is none.</td>
<td>all — all traps</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td></td>
<td>generic — generic traps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hardware — hardware faults</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rmon — RMON rising/falling alarm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dhcp server — DHCP server error</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dhcp-clients — DHCP client error</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rtp-stat-faults — RTP statistics: QoS fault/clear traps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rtp-stat-qos — RTP statistics: end-of-call QoS traps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wan — WAN router traps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>media-gateway — media gateway traps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>security — security traps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>config — configuration change notifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>eth-port-faults — notifications of Ethernet port faults</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sw-redundancy — software redundancy notifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>temperature — temperature warning notifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cam-change — notifications about changes in CAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>l3-events — notifications about L3 faults (duplicate IP, VLAN violations)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lag-event — notifications about link aggregation faults and configuration changes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>policy — notifications about changes in policy (for L3 devices)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>link-faults — link-down notifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>supply — power supply notifications</td>
<td></td>
</tr>
</tbody>
</table>
```
User level
admin

Context
general

Example
G350-001(super)# snmp-server host 10.1.2.4 informs v3 auth John
udp-port 789 config generic
Done!

__

snmp-server informs

Use the `snmp-server informs` command to configure settings for SNMP inform messages.

Syntax

`snmp-server informs [retries retries] [timeout timeout] [pending pending]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>retries</td>
<td>The maximum number of times to resend an inform message</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>timeout</td>
<td>The number of seconds to wait for an acknowledgement before resending an inform message</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>pending</td>
<td>The maximum allowable number of inform messages that can be waiting for acknowledgement at any given time. When the maximum is reached, the oldest pending inform messages are discarded.</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

User level
admin

Context
general
Example

G350-001(super)# snmp-server informs retries 5 timeout 3
Done!

snmp-server remote-user

Use the `snmp-server remote-user` command to configure settings for a remote SNMPv3 user. If the user does not exist, it is created. Use the `no` form of the command to remove the user from specific groups. If no groups are specified, the user is removed from all groups.

Syntax

```
snmp-server remote-user username SNMPEngineID groupname {v1|v2c|v3} [auth {md5|sha} auth-password [priv des56 priv-password]]
```

```
no snmp-server remote-user username [groupname {v1|v2c|v3}]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>username</code></td>
<td>A character string no longer than 32 characters, specifying the username of this user</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>SNMPEngineID</code></td>
<td>The remote device Engine ID for this user</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>groupname</code></td>
<td>A character string no longer than 32 characters, specifying the groupname this user is associated with</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>v1</code></td>
<td>The user is authorized for SNMP v1 functionality in the specified group</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>v2c</code></td>
<td>The user is authorized for SNMP v2c functionality in the specified group</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>v3</code></td>
<td>The user is authorized for SNMP v3 functionality in the specified group</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>auth</code></td>
<td>Use the MAC-MD5-96 authentication protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>md5</code></td>
<td>Use the MAC-MD5-96 authentication protocol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
admin

Context
general

Example
G350-001(super)# snmp-server remote-user john
00:02:00:81:00:d0:00:4c:18:00 L2Group
Done!

snmp-server user

Use the `snmp-server user` command to configure settings for an SNMPv3 user. If the user does not exist, it is created. Use the `no` form of the command to remove the user from specific groups. If no groups are specified, the user is removed from all groups.

Syntax

```
snmp-server user username groupname {v1|v2c|v3} [auth {md5|sha} auth-password [priv des56 priv-password]] [volatile]
no snmp-server user username [groupname {v1|v2c|v3}]
```

Parameter Description Possible Values Default Value

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sha</td>
<td>Use the HMAC-SHA-96 authentication protocol</td>
</tr>
<tr>
<td>auth-password</td>
<td>A character string no longer than 64 characters specifying the authentication password. An authentication password is required if the auth keyword is used. The minimum length is 8 characters.</td>
</tr>
<tr>
<td>priv</td>
<td></td>
</tr>
<tr>
<td>des56</td>
<td></td>
</tr>
<tr>
<td>priv-password</td>
<td>A character string no longer than 64 characters specifying the privacy password. The minimum length is 8 characters.</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>username</td>
<td>A character string no longer than 32 characters, specifying the username of this user</td>
<td></td>
<td></td>
</tr>
<tr>
<td>groupname</td>
<td>A character string no longer than 32 characters, specifying the groupname this user is associated with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v1</td>
<td>The user is authorized for SNMP v1 functionality in the specified group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v2c</td>
<td>The user is authorized for SNMP v2c functionality in the specified group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v3</td>
<td>The user is authorized for SNMP v3 functionality in the specified group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>md5</td>
<td>Use the MAC-MD5-96 authentication protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sha</td>
<td>Use the HMAC-SHA-96 authentication protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>auth-password</td>
<td>A character string between 8 and 64 characters specifying the authentication password. An authentication password is required if the auth keyword is used. The minimum length is 8 characters.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>priv-password</td>
<td>A character string between 8 and 64 characters specifying the privacy password. The minimum length is 8 characters.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>volatile</td>
<td>Specifies that the user configurations are only set temporarily, until the system is reset. After reset, the user settings return to their previous values.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

admin

Context

general

Example

```
G350-001(super)# snmp-server user john L2Group v3 auth md5 katmandu priv des56 uktanatan
Done!
```
snmp-server view

Use the `snmp-server view` command to configure settings for an SNMP MIB view. If the view does not exist, it is created. A MIB view specifies a particular section or subsection of the MIB tree. You can create a view that includes a particular subsection, or excludes one.

Syntax

```plaintext
snmp-server view viewname oidtree {included|excluded}
no snmp-server view viewname [oidtree]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>viewname</code></td>
<td>The name of the view</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>oidtree</code></td>
<td>The subtree to be included in or excluded from this view. Oidtree is specified as a series of period-separated numbers. In order to include a subtree family, use an asterisk as a wildcard character. Symbolic MIB object names are not supported.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>included</code></td>
<td>Keyword indicating that the view includes the specified subtree (this is the default).</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>excluded</code></td>
<td>Keyword indicating that the view excludes the specified subtree.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

`admin`

Context

`general`

Example

```
G350-001(super)# snmp-server view internet 1.3.6.1 included
Done!
```
source-ip

Use the source-ip command to indicate that the current rule applies to packets from the specified source IP address. Use the no form of the command to indicate that the current rule applies to all packets except those coming from the specified IP address.

Syntax

[no] source-ip {host ip_address | any | ip_address wildcard}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>host</td>
<td>Keyword that indicates a specific host IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip_address</td>
<td>The IP address of packets to which the rule is applied</td>
<td></td>
<td></td>
</tr>
<tr>
<td>any</td>
<td>Keyword that indicates any IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wildcard</td>
<td>A range of IP addresses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

ip pbr-list ip-rule, ip qos-list ip-rule, ip capture-list ip-rule, ip access-control-list ip-rule, ip crypto-list ip-rule

Example

To specify that rule 22 of QoS policy list 460 applies to any packet coming from IP address 135.64.104.102:

G350-110(QoS 460/rule 22)# source-ip host 135.64.104.102
speed

Use the `speed` command to set the PPP baud rate to be used by asynchronous PPP ports.

Note:
The peer baud-rate must be set to the same value.

Syntax
```
speed speed_rate
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>speed_rate</code></td>
<td>The PPP baud rate</td>
<td>9600, 19200, 38400</td>
<td>38400</td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Console, USB-modem

Example
To set the PPP baud rate to 9600:
```
G350-001(if:CON)# speed 9600
```

speed

Use the `speed` command to control the speed setting for the interface.

Note:
This command functions only in `no autoneg` mode.

Syntax
```
speed speed_rate
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed_rate</td>
<td>The interface speed</td>
<td>10MB, 100MB</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: FastEthernet (L2, L2-L3)

Example
To set the interface speed to 100MB:
G350-001(if:FastEthernet 10/2)# speed 100MB

start-ip-addr

Use the `start-ip-addr` command to set the start IP address of a DHCP pool. For manual/reservation leasing, set the start IP address to be identical to the end IP address. Use the `no` form of this command to clear the start IP address of the pool. Since there is a combined limit of 256 IP addresses for all pools, clear both the start and end IP addresses in a pool using the `no` forms of `start-ip-addr` and `end-ip-addr` before you configure a new range.

Syntax

```
[no] start-ip-addr ip-addr
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_addr</td>
<td>The start IP address of the DHCP pool</td>
<td>The start IP address must be smaller than the end IP address. The number of IP addresses in one pool cannot exceed 256.</td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>

User level
read-write
Context
dhcp pool

Example
G350-001(DHCP 5)# start-ip-addr 135.64.120.2

subnet-mask

Use the `subnet-mask` command to set the subnet mask of a DHCP pool. Use the `no` form of this command to reset the subnet mask of the pool to default.

Syntax

```
[no] subnet-mask {mask|prefix-length}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mask</code></td>
<td>The subnet mask of the DHCP pool</td>
<td>255.0.0.0 - 255.255.255.0</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td><code>prefix-length</code></td>
<td>The prefix length of subnet mask</td>
<td>8-32</td>
<td>24</td>
</tr>
</tbody>
</table>

User level

read-write

Context
dhcp pool

Example

To set the subnet-mask for DHCP pool 5 to 255.255.255.240:
G350-001(DHCP 5)# subnet-mask 255.255.255.240

To set the subnet-mask for DHCP pool 5 to 255.255.255.240 by stating the subnet mask prefix:
G350-001(DHCP 5)# subnet-mask 28
tcp destination-port

Use the tcp destination-port command to define a destination port with the TCP protocol for which to apply the current rule. Use the no form of the command to specify that the rule applies to all ports other than the defined port.

Note:
Issuing this command also sets the protocol to be TCP, if it is not already.

Syntax

tcp destination-port any | {{eq | lt | gt} {port_name | port_number}} | {range start_port end_port}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Keyword that specifies to apply the rule to a port with any name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eq</td>
<td>Keyword that specifies to apply the rule to a port whose name or number matches exactly to the specified name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lt</td>
<td>Keyword that specifies to apply the rule to a port whose name or number is less than the specified name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gt</td>
<td>Keyword that specifies to apply the rule to a port whose name or number is greater than the specified name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port_name</td>
<td>The name of the port for which to apply the rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port_number</td>
<td>The number of the port for which to apply the rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>range</td>
<td>Keyword indicating that a range of ports is specified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
ip pbr-list ip-rule, ip capture-list ip-rule, ip qos-list ip-rule, ip access-control-list ip-rule

Example
To specify that the current rule applies to all packets whose destination port is 300:
G350-001(ACL 330/ip rule 22)# tcp destination-port eq 300

tcp established

Use the `tcp established` command to specify that the current rule applies only to packets that are part of an established TCP session. Use the `no` form of the command to specify that the current rule applies to any TCP packets.

Note:
The `tcp established` and `no tcp established` commands also set the IP protocol to TCP.

Syntax

```
[no] tcp established
```

User level
read-write

Context
ip access-control-list ip-rule
Example
To specify that rule 27 applies only to packets from an established TCP session:

```
G350-001(ACL 330/ip rule 27)# tcp established
Rule protocol changed.
```

tcp source-port

Use the `tcp source-port` command to define a source port with the TCP protocol for which to apply the current rule. Use the `no` form of the command to specify that the rule applies to all ports other than the defined port.

Note:
Issuing this command also sets the protocol to be TCP, if it is not already.

Syntax

```
[no] tcp source-port any | {{eq | lt | gt} \{port_name | port_number\}} | \{range \start_port \end_port\}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Keyword that specifies to apply the rule to a port with any name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eq</td>
<td>Keyword that specifies to apply the rule to a port whose name or number matches exactly to the specified name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lt</td>
<td>Keyword that specifies to apply the rule to a port whose name or number is less than the specified name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gt</td>
<td>Keyword that specifies to apply the rule to a port whose name or number is greater than the specified name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port_name</td>
<td>The name of the port for which to apply the rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port_number</td>
<td>The number of the port for which to apply the rule</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
ip pbr-list ip-rule, ip capture-list ip-rule, ip qos-list ip-rule, ip access-control-list ip-rule

Example
To specify that rule 22 applies to all packets whose source port is greater than 95:
G350-001(ACL 330/ip rule 22)# tcp source-port gt 95

technology

Use the `tech` command to enter tech mode, where additional tech-related commands are available.

Note:
This command is reserved for service personnel use only.

Syntax
technology

tech

User level
tech

Context
general

Example

To enter tech mode:

G350-001# tech
Password:
G350-001(tech)#

telnet

Use the `telnet` command to initiate a login session via Telnet to a network host.

Syntax

```
telnet ipaddress [port_number]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipaddress</td>
<td>The Telnet IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port_number</td>
<td>The Telnet port number</td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To initiate a Telnet session to IP address 133.23.6.66:

G350-011> telnet 133.23.6.66
terminal length

Use the **terminal length** command to set the length of the terminal display in characters.

Syntax

`terminal length [lines]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>lines</td>
<td>The number of lines in the terminal display</td>
<td><code>none</code> - Displays the current length. <code>3 – 200</code> - Sets the new screen length to the value.</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To set the screen to display 24 lines:

G350-001> terminal length 24

terminal width

Use the **terminal width** command to set the width of the terminal display in characters.

Syntax

`terminal width [characters]`
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>characters</td>
<td>The number of characters in the width of the terminal display</td>
<td>none - Displays the current width. 10 – 200 - Sets the new screen width to the value.</td>
<td>none</td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example
To limit the display to a width of 6 characters:
G350-001> terminal width 6

test led

Use the test led command to run a test of the device’s LED operation.

Syntax
test led

User level
read-only

Context
general

Example
To run a test of the device’s LED operation:
G350-001> test led
The Box level ALM, CPU and MDM LEDs should be BLINKING for 5 seconds each.
test voip-dsp

Use the `test voip-dsp` command to start a BTR test on the VoIP engine. Also refer to: `busyout voip-dsp` on page 48, and `release voip-dsp` on page 268.

Note:
If you do not run the `busyout voip-dsp` command before the `test voip-dsp` command, only non-disruptive tests will run.

Note:
Status changes during the test create SNMP traps.

Note:
To view the results of the most recent BTR test, refer to `show mm` on page 461.

Syntax
```
test voip-dsp
```

User level
read-write

Context
general

Example:
To start a BTR test:
```
G350-001# test voip-dsp
DSP TEST RESULTS
--------------------------
DSP 0                 PASS
DSP 1                 PASS
```

timeout absolute

Use the `timeout absolute` command to set the number of minutes until the system automatically disconnects an idle PPP incoming session.

Syntax
```
timeout absolute time
```
CLI Commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>time</code></td>
<td>Interval, in minutes, after which the system</td>
<td>0 – 999</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>automatically disconnects the PPP session. An</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>interval of 0 minutes indicates that no timeout</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>should occur.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Console, USB-modem

Example
To set the PPP timeout to 30 minutes:

```
G350-011(if:Console)# timeout absolute 30
PPP incoming session will automatically disconnect after 30 minutes of idle time.
```

timers basic

Use the `timers basic` command to set RIP timers. Use the `no` form of this command to set the RIP timers to their default values.

Syntax

```
timers basic update invalid
no timers basic
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>update</code></td>
<td>The RIP update timer, in seconds</td>
<td>30 or more</td>
<td></td>
</tr>
<tr>
<td><code>invalid</code></td>
<td>The RIP invalid route timer, in seconds</td>
<td>30 or more</td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
Router: rip

Example
To set the update timer to 30 seconds, and the invalid route timer to 180 seconds:
G350-001(router:rip)# timers basic 30 180

timers spf

Use the `timers spf` command to configure the delay between SPF calculations when using OSPF. Use the `no` form of this command to restore the default value.

Syntax

timers spf spf_holdtime
	no timers spf

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>spf_holdtime</code></td>
<td>The time in seconds of the delay between SPF calculations</td>
<td>1-3600</td>
<td>3</td>
</tr>
</tbody>
</table>

User level
read-write

Context
Router: ospf

Example
To set the SPF delay time to 5 seconds:
G350-001(router:ospf)# timers spf 5
CLI Commands

traceroute

Use the `traceroute` command to trace the network routing path to a destination IP address.

Syntax

```
traceroute ip_address
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip_address</code></td>
<td>Destination IP address to which a route is traced</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-only

Context

general

Example

To trace the route to IP address 172.16.1.47:

```
G350-001# traceroute 172.16.1.47
Press any key to stop traceroute ...
172.16.1.47               10 ms   (ttl = 1)
```

traffic-shape rate

Use the `traffic-shape rate` command to configure traffic shaping for outbound traffic on the current interface.

Syntax

```
traffic-shape rate bit_rate
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit_rate</td>
<td>The bit-rate that traffic is shaped to, in bits per second</td>
<td>64000 – 2048000</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: FastEthernet(L2, L2-L3)

Example
To set the traffic-shaping rate to 128000:

G350-001(if:FastEthernet 10/2)# traffic-shape rate 128000

transmitter-delay

Use the transmitter-delay command to set the minimum number of flags to be sent between successive packets. Use the no form of the command to restore the transmitter-delay value to the default of 0.

Syntax
transmitter-delay number
no transmitter-delay

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>The number of flags</td>
<td>0 – 15</td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write
CLI Commands

Context
Interface: Serial (USP FR L2, USP PPP L2, USP PPP L2-L3)

Example
To set the transmitter-delay to send at least 10 flags between packets:
G350-001(if:Serial 5/1)# transmitter-delay 10

Tree

Use the tree command to display the commands that are available at your current location in the CLI hierarchy. All commands are listed alphabetically.

Syntax
tree [depth]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>depth</td>
<td>The level of depth at which to display the list of CLI commands</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-only

Context
general

Example
To display the list of available commands to two levels:
G350-001> tree 2
> arp
> arp timeout
> banner login
 banner login > line
> banner post-login
 banner post-login > line
--type q to quit or space key to continue--
tunnel checksum

Use the `tunnel checksum` command to specify that the router adds a checksum bit to the outgoing GRE packet, for data verification. Use the `no` form of the command to specify that no checksum bit should be added.

Syntax

```plaintext
[no] tunnel checksum
```

User level

read-write

Context

Interface: Tunnel (L2, L2-L3)

Example

```
G350-001# tunnel checksum
```

tunnel destination

Use the `tunnel destination` command to specify the destination IP address for the GRE tunnel. The destination is the IP address of the tunnel’s endpoint.

Note:

The CLI does not verify that the specified IP address actually exists.

Syntax

```plaintext
tunnel destination ip-address
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip-address</code></td>
<td>The destination IP address for the GRE tunnel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write
CLI Commands

Context

Interface: Tunnel (L2, L2-L3)

Example

G350-001# tunnel destination 168.30.10.2

tunnel dscp

By default, the GRE header copies the DSCP value from the header of the original packet. Use the `tunnel dscp` command to override the original packet's DSCP with the specified DSCP value. Use the `no` form of the command to use the DSCP value of the original packet.

Syntax

`tunnel dscp dscp`

`no tunnel dscp`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dscp</code></td>
<td>The DSCP value to be used instead of the DSCP from the header of the original packet</td>
<td>0-63</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Tunnel (L2, L2-L3)

Example

G350-001# tunnel dscp 0
tunnel keepalive

Use the `tunnel keepalive` command to specify that the tunnel sends keepalive packets to determine if the tunnel endpoint is up. Packets are sent according to the interval specified in the `seconds` parameters, and resent according to the number of the `retries` parameter.

Use the `no` form of the command to disable keepalive packets.

If the tunnel’s destination interface fails to respond to a consecutive number of keepalive packets equal to the `<retries>` parameter, the tunnel informs hosts that send packets to the tunnel that the tunnel is down, although the source interface continues to send keepalive packets.

Syntax

tunnel keepalive `[seconds [retries]]`

`no keepalive`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seconds</code></td>
<td>The rate at which keepalive packets are sent</td>
<td>0-32767</td>
<td>10</td>
</tr>
<tr>
<td><code>retries</code></td>
<td>The number of times that a device continues to send keepalive packets without a response before the interface becomes inactive</td>
<td>0-255</td>
<td>3</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Tunnel (L2, L2-L3)

Example

```
G350-001# tunnel keepalive 10 3
```
tunnel key

Use the `tunnel key` command to instruct the router to send GRE packets with a security key number. The tunnel endpoint must also be configured to use a security key, and the key numbers must be identical. If a security key is not configured on the tunnel endpoint, or a different key number is used, the packets are discarded. Use the `no` form of the command to specify that no security key should be sent.

Syntax

```
tunnel key key_id
no tunnel key
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>key_id</code></td>
<td>The ID number of the security key to be sent with GRE packets</td>
<td>0-2147483647</td>
<td>0-2147483647</td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Tunnel (L2, L2-L3)

Example

```
G350-001# tunnel key 7
```

tunnel mode

Use the `tunnel mode` command to specify the encapsulation method of the tunnel. This command is only included for future development, and for conformity with other systems. Currently, the tunnel can only perform GRE encapsulation.

Syntax

```
tunnel mode encapsulation
no tunnel mode
```
Alphabetical listing of CLI commands

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>encapsulation</td>
<td>The encapsulation method of the tunnel</td>
<td>gre</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

Interface: Tunnel (L2, L2-L3)

Example

G350-001# tunnel mode gre

tunnel path-mtu-discovery

Use the `tunnel path-mtu-discovery` command to specify that the tunnel maintain information on the maximum allowable packet size (smallest MTU) for the entire routing path of the tunnel. Packets entering the tunnel that are larger than the tunnel's MTU are either fragmented, or sent back with a request for fragmentation (depending on the DF bit of the packet).

Use the age-timer parameter to force the tunnel to update the MTU after a specified number of minutes. Specify infinite to make the MTU value permanent (no updating).

Use the `no` form of the command to disable MTU discovery.

Note:

When MTU discovery is disabled, the tunnel's source interface marks all packets *may be fragmented*, even if the packet’s original setting is *do not fragment*. It is highly recommended to enable the MTU-discovery feature on a tunnel.

Syntax

tunnel path-mtu-discovery [age-timer {minutes | infinite}]

no tunnel path-mtu-discovery
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>age-timer</td>
<td>Specifies how often the tunnel must update the MTU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>minutes</td>
<td>Number of minutes after which the tunnel is updated</td>
<td>10-30</td>
<td>10</td>
</tr>
<tr>
<td>infinite</td>
<td>The tunnel does not update the MTU and its value remains permanent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Tunnel (L2, L2-L3)

Example
G350-001# tunnel path-mtu-discovery age-timer 20

tunnel source

Use the `tunnel source` command to specify the IP address of the source interface for the GRE tunnel. The source interface is the interface used to direct all traffic into the tunnel.

Note:
The CLI does not verify that the specified IP address actually exists.

Syntax
`tunnel source ip-address`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>The IP address of the source interface for the GRE tunnel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alphabetical listing of CLI commands

User level
read-write

Context
Interface: Tunnel (L2, L2-L3)

Example
G350-001# tunnel source 90.0.0.10

tunnel ttl

By default, GRE packets are given a ttl value of 255, since there is an unknown number of hops to reach the tunnel endpoint. Use the `tunnel ttl` command to override this default. Use the `no` form of the command to use the default ttl value.

Syntax
```
tunnel ttl ttl
no tunnel ttl
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttl</td>
<td>The ttl value to be used instead of the default ttl value of 255</td>
<td>1-255</td>
<td>1-255</td>
</tr>
</tbody>
</table>

User level
read-write

Context
Interface: Tunnel (L2, L2-L3)

Example
G350-001# tunnel ttl 16
udp destination-port

Use the **udp destination-port** command to define a destination port with the UDP protocol for which to apply the current rule. Use the **no** form of the command to specify that the rule applies to all ports *other* than the defined port.

Note:
Issuing this command also sets the protocol to be UDP, if it is not already.

Syntax

```
udp destination-port any | {{eq | lt | gt} {port_name | port_number}} | {range start_port end_port}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Keyword that specifies to apply the rule to a port with any name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eq</td>
<td>Keyword that specifies to apply the rule to a port whose name or number matches exactly to the specified name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lt</td>
<td>Keyword that specifies to apply the rule to a port whose name or number is less than the specified name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gt</td>
<td>Keyword that specifies to apply the rule to a port whose name or number is greater than the specified name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port_name</td>
<td>The name of the port for which to apply the rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port_number</td>
<td>The number of the port for which to apply the rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>range</td>
<td>Keyword indicating that a range of ports is specified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start_port</td>
<td>The start of a port range for which to apply the rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>end_port</td>
<td>The end of a port range for which to apply the rule</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User level
read-write

Context
ip pbr-list ip-rule, ip qos-list ip-rule, ip capture-list ip-rule, ip access-control-list ip-rule

Example
To specify that rule 22 applies to all packets whose destination port is 300:
G350-001(ACL 330/ip rule 22)# udp destination-port eq 300

udp source-port

Use the `udp source-port` command to define a source port with the UDP protocol for which to apply the current rule. Use the `no` form of the command to specify that the rule applies to all ports other than the defined port.

Note:
Issuing this command also sets the protocol to be UDP, if it is not already.

Syntax
`udp source-port any | {eq | lt | gt} {port_name | port_number} | {range start_port end_port}`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Keyword that specifies to apply the rule to a port with any name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eq</td>
<td>Keyword that specifies to apply the rule to a port whose name or number matches exactly to the specified name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lt</td>
<td>Keyword that specifies to apply the rule to a port whose name or number is less than the specified name or number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLI Commands

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>gt</td>
<td>Keyword that specifies to apply the rule to a port whose name or number is greater than the specified name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port_name</td>
<td>The name of the port for which to apply the rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port_number</td>
<td>The number of the port for which to apply the rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>range</td>
<td>Keyword indicating that a range of ports is specified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>start_port</td>
<td>The start of a port range for which to apply the rule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>end_port</td>
<td>The end of a port range for which to apply the rule</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level
read-write

Context
ip pbr-list ip-rule, ip qos-list ip-rule, ip capture-list ip-rule, ip access-control-list ip-rule

Example
To specify that rule 22 applies to all packets whose source port is greater than 95:
G350-001(ACL 330/ip rule 22)# udp source-port gt 95

username

Use the `username` command to add a local user account. Use the `no` form of the command to remove the user account from the system.

By default there is only a single user account, named `root`, with password `root`, which accesses the administrator level. You cannot delete this basic user account, nor modify its access level. But you can modify its basic password.

Note:
For security reasons, you should change the `root` password immediately.
Syntax

username name password passwd access-type access_type
no username name

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>New user name</td>
<td>minimum four character string</td>
<td></td>
</tr>
<tr>
<td>passwd</td>
<td>User's password</td>
<td>minimum four character string</td>
<td></td>
</tr>
<tr>
<td>access_type</td>
<td>Access type definition</td>
<td>read-only, read-write, admin</td>
<td></td>
</tr>
</tbody>
</table>

User level

admin

Context

general

Example

To create a new user account with username john, password johnny and access type of read-write:

G350-011(super)# username john password johnny access-type read-write
User account added.

You cannot change the access type of the root user:

G350-011(super)# username root password secret access-type read-write
ERROR: User account root has always an administrator access type.

To change the password of the root user:

G350-011(super)# username root password secret access-type admin
User account modified.

Note:

If you wish to define a name which includes spaces, you must enclose the entire name in quotation marks, for example “new york”.

value

Use the `value` command to set the value of a DHCP option or a vendor-specific option. Use the `no` form of this command to clear the vendor-specific value.

Syntax

```
[no] value  raw  type  value
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw</td>
<td>Non-encapsulated value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>Type of sub-option</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● ascii — ASCII</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● hex string — hexadecimal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● ip-address — IP address</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● word — 16 bit number</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● integer — 32 bit number</td>
<td></td>
</tr>
<tr>
<td>value</td>
<td>The sub-option value</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

dhcp pool vendor specific, dhcp pool option

Example

To specify IP addresses for World Wide Web servers (DHCP option 72):

```
G350-001(dhcp 5/option 72)# value raw ip-address "135.64.102.1,
135.64.102.2"
```

To enable IP forwarding (DHCP option 19 specifies whether the client should configure its IP layer for packet forwarding):

```
G350-001(dhcp 5/option 19)# value raw hex 01
```

To set a non-encapsulated value in ASCII format for vendor-specific option 1:

```
G350-001(DHCP 5/vendor specific 1)# value raw ascii
"MCIPADD=10.10.2.140,MCPORT=1719,TFTPSRVR=10.10.5.188"
```
To set a non-encapsulated value in Hex format for vendor-specific option 1:

G350-001(DHCP 5/vendor specific 1)# value raw hex
00:00:11:22:33:44:55:66:77

vendor-specific-option

A vendor specific option is an option unique to an individual vendor class. Use the **vendor-specific-option** command to set a vendor specific option. Use the **no** form of this command to delete a vendor-specific option.

Syntax

```plaintext
[no] vendor-specific-option index-num
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>index-num</code></td>
<td>The index number of the vendor-specific option</td>
<td>1-10</td>
<td></td>
</tr>
</tbody>
</table>

User level

read-write

Context

dhcp pool

Example

To set:

G350-001(DHCP 5)# vendor-specific-option 1

voip-queue

Use the **voip-queue** command to select custom queueing for VoIP traffic. By default, VoIP queueing is off, and Weighted Fair VoIP Queuing (WFVQ) is enabled on all Serial interfaces and all Fast Ethernet interfaces for which traffic-shaping is enabled. If you disable custom queueing by using the **no** form of the **voip-queue** command, WFVQ is re-enabled.

Syntax

```plaintext
[no] voip-queue
```
CLI Commands

User level
read-write

Context
Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR L2, USP FR L2, USP PPP L2, USP PPP L2-L3), FastEthernet (L2, L2-L3)

Note:
This command is also used in FastEthernet context when traffic shaping is configured.

Example
To enable VoIP queuing:
G350-001(if:Serial 2/1:1)# voip-queue

voip-queue-delay

Use the voip-queue-delay command to set the maximum query delay for which to estimate.

Syntax

voip-queue-delay queue_delay_ms

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>queue_delay_ms</td>
<td>The maximum amount of time that voice traffic is allowed to wait in the queue</td>
<td>1-1000</td>
<td></td>
</tr>
</tbody>
</table>

User level
admin

Context
Interface: Serial (DS1 PPP L2-L3, DS1 PPP L2, DS1 FR L2, USP FR L2, USP PPP L2, USP PPP L2-L3), FastEthernet (L2, L2-L3)

Note:
This command is also used in Serial and WAN FastEthernet context when traffic shaping is configured.
Example
To set the maximum query delay to 30 milliseconds:
G350-001(super)# voip-queue-delay 30
Done!

zeroize

Use the zeroize command to clear all secret parameters and initialize the NVRAM to its factory defaults.

⚠️ CAUTION:
This command restores factory defaults and disconnects the current session.

Syntax
zeroize

User level
admin

Context
general

Example
To clear all secret parameters and initialize the NVRAM to its factory defaults:
G350-001(super)# zeroize
This command will restore factory defaults, and disconnect your existing session.

*** Zeroize *** - do you want to continue (Y/N)? Y