Command Reference Guide for the Avaya P580 and P882 Multiservice Switches,
Software Version 6.2
Notice
Every effort was made to ensure that the information in this document was complete and accurate at the time of printing. However, information is subject to change.

Warranty
Avaya Inc. provides a limited warranty on this product. Refer to your sales agreement to establish the terms of the limited warranty. In addition, Avaya’s standard warranty language as well as information regarding support for this product, while under warranty, is available through the following Web site: http://www.avaya.com/support.

Preventing Toll Fraud
“Toll fraud” is the unauthorized use of your telecommunications system by an unauthorized party (for example, a person who is not a corporate employee, agent, subcontractor, or is not working on your company’s behalf). Be aware that there may be a risk of toll fraud associated with your system and that, if toll fraud occurs, it can result in substantial additional charges for your telecommunications services.

Avaya Fraud Intervention
If you suspect that you are being victimized by toll fraud and you need technical assistance or support, in the United States and Canada, call the Technical Service Center’s Toll Fraud Intervention Hotline at 1-800-643-2353.

Disclaimer
Avaya is not responsible for any modifications, additions or deletions to the original published version of this documentation unless such modifications, additions or deletions were performed by Avaya. Customer and/or End User agree to indemnify and hold harmless Avaya, Avaya’s agents, servants and employees against all claims, lawsuits, demands and judgments arising out of, or in connection with, subsequent modifications, additions or deletions to this documentation to the extent made by the Customer or End User.

How to Get Help
For additional support telephone numbers, go to the Avaya support Web site: http://www.avaya.com/support. If you are:

- Within the United States, click the Escalation Contacts link. Then click the appropriate link for the type of support you need.
- Outside the United States, click the Escalation Contacts link. Then click the International Services link that includes telephone numbers for the international Centers of Excellence.

Providing Telecommunications Security
Telecommunications security (of voice, data, and/or video communications) is the prevention of any type of intrusion to (that is, either unauthorized or malicious access to or use of) your company’s telecommunications equipment by some party.

Your company’s “telecommunications equipment” includes both this Avaya product and any other voice/data/video equipment that could be accessed via this Avaya product (that is, “networked equipment”).

An “outside party” is anyone who is not a corporate employee, agent, subcontractor, or is not working on your company’s behalf. Whereas, a “malicious party” is anyone (including someone who may be otherwise authorized) who accesses your telecommunications equipment with either malicious or mischievous intent.

Such intrusions may be either through synchronous (time-multiplexed and/or circuit-based), or asynchronous (character-, message-, or packet-based) equipment, or interfaces for reasons of:

- Utilization (of capabilities special to the accessed equipment)
- Theft (such as, of intellectual property, financial assets, or toll facility access)
- Eavesdropping (privacy invasions to humans)
- Mischief (troubling, but apparently innocuous, tampering)
- Harm (such as harmful tampering, data loss or alteration, regardless of motive or intent)

Be aware that there may be a risk of unauthorized intrusions associated with your system and/or its networked equipment. Also realize that, if such an intrusion should occur, it could result in a variety of losses to your company (including but not limited to, human/data privacy, intellectual property, material assets, financial resources, labor costs, and/or legal costs).

Responsibility for Your Company’s Telecommunications Security
The final responsibility for securing both this system and its networked equipment rests with you - Avaya’s customer system administrator, your telecommunications peers, and your managers. Base the fulfillment of your responsibility on acquired knowledge and resources from a variety of sources including but not limited to:

- Installation documents
- System administration documents
- Security documents
- Hardware-/software-based security tools
- Shared information between you and your peers
- Telecommunications security experts

To prevent intrusions to your telecommunications equipment, you and your peers should carefully program and configure:

- Your Avaya-provided telecommunications systems and their interfaces
- Your Avaya-provided software applications, as well as their underlying hardware/software platforms and interfaces
- Any other equipment networked to your Avaya products

TCP/IP Facilities
Customers may experience differences in product performance, reliability and security depending upon network configurations/design and topologies, even when the product performs as warranted.

Standards Compliance
Avaya Inc. is not responsible for any radio or television interference caused by unauthorized modifications of this equipment or the substitution or attachment of connecting cables and equipment other than those specified by Avaya Inc. The correction of interference caused by such unauthorized modifications, substitution or attachment will be the responsibility of the user. Pursuant to Part 15 of the Federal Communications Commission (FCC) Rules, the user is cautioned that changes or modifications not expressly approved by Avaya Inc. could void the user’s authority to operate this equipment.

Product Safety Standards
This product complies with and conforms to the following international Product Safety standards as applicable:

Safety of Information Technology Equipment, IEC 60950, 3rd Edition, or IEC 60950-1, 1st Edition, including all relevant national deviations as listed in Compliance with IEC for Electrical Equipment (IECEE) CB-96A.

One or more of the following Mexican national standards, as applicable:

The equipment described in this document may contain Class 1 LASER Device(s). These devices comply with the following standards:

- EN 60825-1, Edition 1.1, 1998-01
- 21 CFR 1040.10 and CFR 1040.11.

The LASER devices used in Avaya equipment typically operate within the following parameters:

<table>
<thead>
<tr>
<th>Typical Center Wavelength</th>
<th>Maximum Output Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>830 nm - 860 nm</td>
<td>-1.5 dBm</td>
</tr>
<tr>
<td>1270 nm - 1360 nm</td>
<td>-3.0 dBm</td>
</tr>
<tr>
<td>1540 nm - 1570 nm</td>
<td>5.0 dBm</td>
</tr>
</tbody>
</table>

Luokan 1 Laserlaitte
Klass 1 Laser Apparat

Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposures. Contact your Avaya representative for more laser product information.
Electromagnetic Compatibility (EMC) Standards
This product complies with and conforms to the following international EMC standards and all relevant national deviations:

 - Electrostatic Discharge (ESD) IEC 61000-4-2
 - Radiated Immunity IEC 61000-4-3
 - Electrical Fast Transient IEC 61000-4-4
 - Lightning Effects IEC 61000-4-5
 - Conducted Immunity IEC 61000-4-6
 - Mains Frequency Magnetic Field IEC 61000-4-8
 - Voltage Dips and Variations IEC 61000-4-11

Power Line Emissions, IEC 61000-3-2: Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions.
Power Line Emissions, IEC 61000-3-3: Electromagnetic compatibility (EMC) - Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems.

Federal Communications Commission Statement
Part 15:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Part 68: Answer-Supervision Signaling
Allowing this equipment to be operated in a manner that does not provide proper answer-supervision signaling is in violation of Part 68 rules. This equipment returns answer-supervision signals to the public switched network when:
- answered by the called station,
- answered by the attendant, or
- routed to a recorded announcement that can be administered by the customer premises equipment (CPE) user.

This equipment returns answer-supervision signals on all direct inward dialed (DID) calls forwarded back to the public switched telephone network. Permissible exceptions are:
- A call is unanswered.
- A busy tone is received.
- A reorder tone is received.

Avaya attests that this registered equipment is capable of providing users access to interstate providers of operator services through the use of access codes. Modification of this equipment by call aggregators to block access dialing codes is a violation of the Telephone Operator Consumers Act of 1990.

REN Number
For MCC1, SCC1, CMC1, G600, and G650 Media Gateways:
This equipment complies with Part 68 of the FCC rules. On either the rear or inside the front cover of this equipment is a label that contains, among other information, the FCC registration number, and ringer equivalence number (REN) for this equipment. If requested, this information must be provided to the telephone company.

For G350 and G700 Media Gateways:
This equipment complies with Part 68 of the FCC rules and the requirements adopted by the ACTA. On the rear of this equipment is a label that contains, among other information, a product identifier in the format US:AAAEQ##TXXX##. The digits represented by # are the ringer equivalence number (REN) without a decimal point (for example, 03 is a REN of 0.3). If requested, this number must be provided to the telephone company.

For all media gateways:
The REN is used to determine the quantity of devices that may be connected to the telephone line. Excessive RENs on the telephone line may result in devices not ringing in response to an incoming call. In most, but not all areas, the sum of RENs should not exceed 5.0. To be certain of the number of devices that may be connected to a line, as determined by the total RENs, contact the local telephone company.

REN is not required for some types of analog or digital facilities.

Means of Connection
Connection of this equipment to the telephone network is shown in the following tables.

For MCC1, SCC1, CMC1, G600, and G650 Media Gateways:

<table>
<thead>
<tr>
<th>Manufacturer’s Port Identifier</th>
<th>FIC Code</th>
<th>SOC/REN A.S. Code</th>
<th>Network Jacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off premises station</td>
<td>OL13C</td>
<td>9.0F</td>
<td>RJ2GX, RJ21X, RJ11C</td>
</tr>
<tr>
<td>DID trunk</td>
<td>02RV2-T</td>
<td>0.0B</td>
<td>RJ2GX, RJ21X</td>
</tr>
<tr>
<td>CO trunk</td>
<td>02GS2</td>
<td>0.3A</td>
<td>RJ21X</td>
</tr>
<tr>
<td>Tie trunk</td>
<td>02LS2</td>
<td>0.3A</td>
<td>RJ21X</td>
</tr>
<tr>
<td>Basic Rate Interface</td>
<td>02IS5</td>
<td>6.0F, 6.0Y</td>
<td>RJ49C</td>
</tr>
<tr>
<td>1.544 digital interface</td>
<td>04DU9-BN</td>
<td>6.0F</td>
<td>RJ48C, RJ48M</td>
</tr>
<tr>
<td></td>
<td>04DU9-IKN</td>
<td>6.0F</td>
<td>RJ48C, RJ48M</td>
</tr>
<tr>
<td></td>
<td>04DU9-ISN</td>
<td>6.0F</td>
<td>RJ48C, RJ48M</td>
</tr>
<tr>
<td>120A4 channel service unit</td>
<td>04DU9-DN</td>
<td>6.0Y</td>
<td>RJ48C</td>
</tr>
</tbody>
</table>

For G350 and G700 Media Gateways:

<table>
<thead>
<tr>
<th>Manufacturer’s Port Identifier</th>
<th>FIC Code</th>
<th>SOC/REN A.S. Code</th>
<th>Network Jacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Start CO trunk</td>
<td>02GS2</td>
<td>1.0A</td>
<td>RJ11C</td>
</tr>
<tr>
<td>DID trunk</td>
<td>02RV2-T</td>
<td>AS.0</td>
<td>RJ11C</td>
</tr>
<tr>
<td>Loop Start CO trunk</td>
<td>02LS2</td>
<td>0.5A</td>
<td>RJ11C</td>
</tr>
<tr>
<td>1.544 digital interface</td>
<td>04DU9-BN</td>
<td>6.0Y</td>
<td>RJ48C</td>
</tr>
<tr>
<td></td>
<td>04DU9-DN</td>
<td>6.0Y</td>
<td>RJ48C</td>
</tr>
<tr>
<td></td>
<td>04DU9-IKN</td>
<td>6.0Y</td>
<td>RJ48C</td>
</tr>
<tr>
<td></td>
<td>04DU9-ISN</td>
<td>6.0Y</td>
<td>RJ48C</td>
</tr>
<tr>
<td>Basic Rate Interface</td>
<td>02IS5</td>
<td>6.0F</td>
<td>RJ49C</td>
</tr>
</tbody>
</table>

For all media gateways:
If the terminal equipment (for example, the media server or media gateway) causes harm to the telephone network, the telephone company will notify you in advance that temporary discontinuance of service may be required. But if advance notice is not practical, the telephone company will notify the customer as soon as possible. Also, you will be advised of your right to file a complaint with the FCC if you believe it is necessary.

The telephone company may make changes in its facilities, equipment, operations or procedures that could affect the operation of the equipment. If this happens, the telephone company will provide advance notice in order for you to make necessary modifications to maintain uninterrupted service.

If trouble is experienced with this equipment, for repair or warranty information, please contact the Technical Service Center at 1-800-242-2121 or contact your local Avaya representative. If the equipment is causing harm to the telephone network, the telephone company may request that you disconnect the equipment until the problem is resolved.
A plug and jack used to connect this equipment to the premises wiring and telephone network must comply with the applicable FCC Part 68 rules and requirements adopted by the ACTA. A compliant telephone cord and modular plug is provided with this product. It is designed to be connected to a compatible modular jack that is also compliant. It is recommended that repairs be performed by Avaya certified technicians. The equipment cannot be used on public coin phone service provided by the telephone company. Connection to party line service is subject to state tariffs. Contact the state public utility commission, public service commission or corporation commission for information. This equipment, if it uses a telephone receiver, is hearing aid compatible.

Canadian Department of Communications (DOC) Interference Information
This Class A digital apparatus complies with Canadian ICES-003.
Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.
This equipment meets the applicable Industry Canada Terminal Equipment Technical Specifications. This is confirmed by the registration number. The abbreviation, IC, before the registration number signifies that registration was performed based on a Declaration of Conformity indicating that Industry Canada technical specifications were met. It does not imply that Industry Canada approved the equipment.

Installation and Repairs
Before installing this equipment, users should ensure that it is permissible to be connected to the facilities of the local telecommunications company. The equipment must also be installed using an acceptable method of connection. The customer should be aware that compliance with the above conditions may not prevent degradation of service in some situations.

Repairs to certified equipment should be coordinated by a representative designated by the supplier. Any repairs or alterations made by the user to this equipment, or equipment malfunctions, may give the telecommunications company cause to request the user to disconnect the equipment.

Declarations of Conformity
United States FCC Part 68 Supplier’s Declaration of Conformity (SDoC)
Avaya Inc. in the United States of America hereby certifies that the equipment described in this document and bearing a TIA TSB-168 label identification number complies with the FCC’s Rules and Regulations 47 CFR Part 68, and the Administrative Council on Terminal Attachments (ACTA) adopted technical criteria. Avaya further asserts that Avaya handset-equipped terminal equipment described in this document complies with Paragraph 68.316 of the FCC Rules and Regulations defining Hearing Aid Compatibility and is deemed compatible with hearing aids.
Copies of SDoCs signed by the Responsible Party in the U. S. can be obtained by contacting your local sales representative and are available on the following Web site: http://www.avaya.com/support.

All Avaya media servers and media gateways are compliant with FCC Part 68, but many have been registered with the FCC before the SDoC process was available. A list of all Avaya registered products may be found at: http://www.part68.org by conducting a search using “Avaya” as manufacturer.

European Union Declarations of Conformity
Copies of these Declarations of Conformity (DoCs) can be obtained by contacting your local sales representative and are available on the following Web site: http://www.avaya.com/support.

Japan
This is a Class A product based on the standard of the Voluntary Control Council for Interference by Information Technology Equipment (VCCI). If this equipment is used in a domestic environment, radio disturbance may occur, in which case the user may be required to take corrective actions.

To order copies of this and other documents:
Call: Avaya Publications Center Voice 1.800.457.1235 or 1.207.866.6701
Write: Globalware Solutions P.O. Box 902781 Haverhill, MA 01835 USA
Attention: Avaya Account Management
E-mail: totalware@gwsmail.com
For the most current versions of documentation, go to the Avaya support Web site: http://www.avaya.com/support.

この装置は、情報処理装置等電波障害自主規制協議会（V C C I）の基準に基づくクラスA情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。
Chapter 1: Overview

Command Mode Summaries
Entering and Exiting the Command Modes
Basic Functions
Help
Command Syntax Conventions
No Form Commands
Command Line History Keys
Accessing the CLI
Accessing the CLI Using Telnet
Accessing the CLI Using a Serial Interface

Chapter 2: AFT

Overview
clear aft instance invalid-learned-entries vlan
clear aft instance learned-entries vlan
set aft agetime
set aft auto-sizing-threshold
set aft entry
set aft instance vlan (auto-increment)
set aft instance vlan (hash-table-size)
set aft super-agetime
show aft config
show aft entry
show aft instance

Chapter 3: Appletalk

Overview
appletalk access-group
appletalk access-list
appletalk address
appletalk admin-state
appletalk cable-range
appletalk echo
appletalk mac-format
appletalk routing
appletalk static cable-range
Contents

set console stopbits .. 91
set console transfer ppp .. 92
set console type .. 93
show console .. 94

Chapter 6: DNS .. 95
 Overview .. 95
 ip domain-lookup ... 95
 ip name-server ... 96
 ip domain-list ... 96
 ip domain-name .. 97
 show host .. 98

Chapter 7: DVMRP .. 99
 Overview .. 99
 ip dvmrp ... 100
 ip dvmrp interface-metric 101
 ip dvmrp interface type .. 102
 ip dvmrp min-route-flash-update 103
 ip dvmrp neighbor-probe-interval 104
 ip dvmrp neighbor-timeout 105
 ip dvmrp prune-message-lifetime 106
 ip dvmrp remote-tunnel-address 107
 ip dvmrp route-limit ... 108
 ip dvmrp stats-reset ... 109
 ip dvmrp timers basic .. 110
 ip multicast prune-source 111
 ip multicast ttl-threshold 112
 router dvmrp .. 113
 show ip dvmrp ... 113
 show ip dvmrp designated forwarders 115
 show ip dvmrp downstream dependent routers 116
 show ip dvmrp forwarding cache 117
 show ip dvmrp interface .. 118
 show ip dvmrp interface neighbors 119
 show ip dvmrp routes ... 120
Chapter 8: Hunt Groups

Overview

- set huntgroup
- set huntgroup auto-flush
- set huntgroup (redistribute)
- set huntgroup internal-error-shutdown
- show huntgroup
- show huntgroup detailed
- show huntgroup internal-error-config

Chapter 9: IGMP

Overview

- ip igmp
- ip igmp max-groups
- ip igmp process-leaves
- ip igmp querier
- ip igmp querier-timeout
- ip igmp query-interval
- ip igmp query-max-response-time
- ip igmp query-timeout
- ip igmp robustness
- ip igmp version
- ip mtrace
- mtrace
- router igmp
- show ip igmp groups
- show ip igmp interface
- show ip igmp statistics

Chapter 10: Intelligent Multicast

Overview

- clear cgmp statistics
- clear igmp-snooping statistics
- clear intelligent-multicast client-port
- clear intelligent-multicast router-port
- clear intelligent-multicast session
Contents

clear intelligent-multicast static-client-port 153
clear intelligent-multicast static-session .. 154

clear lgmp client statistics .. 155
clear lgmp server statistics .. 156

set cgmp .. 157
set igmp-snooping ... 157
set intelligent-multicast ... 158

set intelligent-multicast client-leave-processing 159
set intelligent-multicast client-port-pruning 160

set intelligent-multicast client-port-pruning time 161
set intelligent-multicast router-port ... 162
set intelligent-multicast router-port-pruning 163

set intelligent-multicast router-port-pruning time 164
set intelligent-multicast session-pruning 165
set intelligent-multicast session-pruning time 166

set intelligent-multicast static-client-port 167
set intelligent-multicast static-session .. 168

set lgmp client .. 169
set lgmp server ... 169

set lgmp server priority ... 170
set lgmp server proxy .. 171
set lgmp server router-report-time .. 172
set lgmp server robust-variable ... 173

show cgmp statistics ... 174
show igmp-snooping statistics ... 175
show intelligent-multicast client-port .. 176
show intelligent-multicast configuration 177
show intelligent-multicast router-port .. 178
show intelligent-multicast session ... 179
show intelligent-multicast static-client 180
show intelligent-multicast static-session 181
show lgmp client ... 182
show lgmp server .. 184
Chapter 11: IP ... 187
 Overview .. 187
 arp ... 189
 arp timeout ... 190
 clear arp-cache .. 191
 clear ip route ... 192
 clear tcp .. 193
 interface ... 194
 ip address .. 195
 ip admin-state ... 196
 ip bootp-dhcp agent-info 197
 ip bootp-dhcp circuit-info 198
 ip bootp-dhcp relay .. 199
 ip bootp-dhcp server .. 200
 ip default-gateway .. 201
 ip directed broadcast .. 202
 ip domain-list ... 203
 ip domain-lookup .. 203
 ip domain-name .. 204
 ip http .. 205
 ip irdp .. 206
 ip irdp holdtime .. 207
 irdp maxadvertinterval .. 208
 ip irdp minadvertinterval 209
 ip irdp multicast .. 210
 ip irdp preference ... 211
 ip mac-format .. 212
 ip max-arp-entries .. 213
 ip max-route-entries .. 214
 ip multicast-routing ... 215
 ip name-server ... 216
 ip netbios-rebroadcast .. 217
 ip netmask-format ... 218
 ip proxy-arp .. 219
 ip proxy-arp-default-route 220
 ip proxy-arp-limit ... 221
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip redirects</td>
<td>222</td>
</tr>
<tr>
<td>ip reset-stats</td>
<td>223</td>
</tr>
<tr>
<td>ip route</td>
<td>223</td>
</tr>
<tr>
<td>ip route-preference</td>
<td>225</td>
</tr>
<tr>
<td>ip routing</td>
<td>226</td>
</tr>
<tr>
<td>ip routing-mode</td>
<td>227</td>
</tr>
<tr>
<td>ip short-lived</td>
<td>228</td>
</tr>
<tr>
<td>ip source-route</td>
<td>229</td>
</tr>
<tr>
<td>ip telnet inactivity-period</td>
<td>230</td>
</tr>
<tr>
<td>ip telnet</td>
<td>231</td>
</tr>
<tr>
<td>ip vlan</td>
<td>232</td>
</tr>
<tr>
<td>ping</td>
<td>233</td>
</tr>
<tr>
<td>redistribute</td>
<td>234</td>
</tr>
<tr>
<td>show arp</td>
<td>236</td>
</tr>
<tr>
<td>show hosts</td>
<td>237</td>
</tr>
<tr>
<td>show ip arp</td>
<td>238</td>
</tr>
<tr>
<td>show ip interface</td>
<td>239</td>
</tr>
<tr>
<td>show ip irdp</td>
<td>240</td>
</tr>
<tr>
<td>show ip redistribute</td>
<td>241</td>
</tr>
<tr>
<td>show ip route</td>
<td>242</td>
</tr>
<tr>
<td>show ip route summary</td>
<td>243</td>
</tr>
<tr>
<td>show ip short-lived</td>
<td>244</td>
</tr>
<tr>
<td>show ip traffic</td>
<td>244</td>
</tr>
<tr>
<td>show tcp configuration</td>
<td>246</td>
</tr>
<tr>
<td>show tcp connections</td>
<td>246</td>
</tr>
<tr>
<td>show tcp statistics</td>
<td>247</td>
</tr>
<tr>
<td>show udp statistics</td>
<td>248</td>
</tr>
</tbody>
</table>

Chapter 12: IP-RIP

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>249</td>
</tr>
<tr>
<td>default-metric</td>
<td>250</td>
</tr>
<tr>
<td>ip rip authentication key</td>
<td>251</td>
</tr>
<tr>
<td>ip rip authentication mode</td>
<td>252</td>
</tr>
<tr>
<td>ip rip default-route-mode</td>
<td>253</td>
</tr>
<tr>
<td>ip rip poison-reverse</td>
<td>254</td>
</tr>
<tr>
<td>ip rip receive version</td>
<td>255</td>
</tr>
</tbody>
</table>
Contents

ip rip send version 256
ip rip send-receive-mode 257
network .. 258
output-delay 259
router rip 260
show ip rip statistics 261
timers basic 262
triggered updates 263

Chapter 13: IPX 265
 Overview 265
clear ipx route 267
clear ipx service 268
ipx advertise-default-route-only 269
ipx default-route 270
ipx delay 271
ipx down 272
ipx gns-reply-disable 273
ipx gns-response-delay 274
ipx network 275
ipx output-rip-delay 276
ipx output-sap-delay 277
ipx rip ... 278
ipx rip-filter 279
ipx rip-max-packetsize 281
ipx rip-multiplier 282
ipx route 283
ipx router 284
ipx routing 285
ipx sap ... 286
ipx sap-max-packetsize 287
ipx sap-multiplier 288
ipx sap-name-filter 289
ipx sap-network-filter 291
ipx send-receive-mode 293
ipx send-triggered-updates 294
Contents

Chapter 15: LDAP
- Overview .. 325
- ldap execution-option 325
- ldap search-base. 326
- ldap server primary 327
- ldap server secondary 328
- show ldap ... 329

Chapter 16: Logging.
- Overview .. 331
- logging clear 332
- logging console 333
- logging history 335
- logging history size 338
- logging protocol event 339
- logging shutdown size 341
- logging traps 342
- set syslog 344
- set syslog facility 344
- set syslog server_ip 347
- set syslog severity 348
- show alarms 349
- show logging 350
- show syslog buffer 351
- show syslog config 353

Chapter 17: Module
- Overview .. 355
- reset-module 355
- set module name 356
- set module notes 357
- show module 358
- show module inventory 360
Chapter 18: NEDR and IEDR 361
 Overview .. 361
 set huntgroup internal-error-shutdown 362
 set internal-error-threshold 363
 set port internal-error-shutdown 364
 set port network-error-detection 365
 show huntgroup internal-error-config 367
 show port internal-error-config 367
 show port network-error-detection 368

Chapter 19: OSPF ... 369
 Overview .. 369
 area ... 370
 area ase-filter 371
 area default-cost 372
 area nssa ... 373
 area range .. 374
 area stub ... 375
 area translate-nssa-to-external 376
 area virtual-link 377
 ip ospf as-boundary-router 379
 ip ospf authentication-key 380
 ip ospf auto-vlink-create 381
 ip ospf cost 382
 ip ospf dead-interval 383
 ip ospf ext-route-metric 384
 ip ospf hello-interval 385
 ip ospf max-paths 386
 ip ospf message-digest-key md5 387
 ip ospf packet tracing 388
 ip ospf poll interval 389
 ip ospf reset-stats 390
 ip ospf retransmit-interval 391
 ip ospf router-id 392
 ip ospf transmit-delay 393
 network area 394
Contents

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>passive-interface.</td>
<td>395</td>
</tr>
<tr>
<td>router ospf.</td>
<td>396</td>
</tr>
<tr>
<td>show ip ospf.</td>
<td>396</td>
</tr>
<tr>
<td>show ip ospf database.</td>
<td>397</td>
</tr>
<tr>
<td>show ip ospf interface.</td>
<td>398</td>
</tr>
<tr>
<td>show ip ospf neighbor.</td>
<td>400</td>
</tr>
<tr>
<td>show ip ospf stats.</td>
<td>401</td>
</tr>
<tr>
<td>show ip ospf virtual-links</td>
<td>402</td>
</tr>
<tr>
<td>timers Isograph-pacing.</td>
<td>403</td>
</tr>
<tr>
<td>timers spf.</td>
<td>404</td>
</tr>
</tbody>
</table>

Chapter 20: Policy 405

Overview 405
access-list 406
ip access-group 412
ip access-list 414
ip acl-logging. 415
ip acl-logging logging-interval 416
show access-group 417
show access-lists 417
show acl-match-timer 418
show ip access-lists 419

Chapter 21: Port 421

Overview 421
clear port counters 423
set port 3com-mapping-table 424
set port allow-learning 425
set port auto-flush 426
set port auto-negotiation 427
set port auto-negotiation-duplex-advertisement 428
set port auto-negotiation-flow-control-advertisement 429
set port auto-negotiation-speed-advertisement 430
set port auto-vlan-create 431
set port category 432
set port disable 433
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>set port duplex</td>
<td>434</td>
</tr>
<tr>
<td>set port edge admin state</td>
<td>435</td>
</tr>
<tr>
<td>set port enable</td>
<td>436</td>
</tr>
<tr>
<td>set port flow-control</td>
<td>437</td>
</tr>
<tr>
<td>set port frame-tags</td>
<td>438</td>
</tr>
<tr>
<td>set port huntgroup</td>
<td>439</td>
</tr>
<tr>
<td>set port internal-error-shutdown</td>
<td>440</td>
</tr>
<tr>
<td>set port intrusion-trap</td>
<td>441</td>
</tr>
<tr>
<td>set port intrusion-trap-timer</td>
<td>442</td>
</tr>
<tr>
<td>set port known-mode</td>
<td>443</td>
</tr>
<tr>
<td>set port mirror</td>
<td>444</td>
</tr>
<tr>
<td>set port mirror Fabric_mode2</td>
<td>446</td>
</tr>
<tr>
<td>set port name</td>
<td>449</td>
</tr>
<tr>
<td>set port network-error-detection</td>
<td>450</td>
</tr>
<tr>
<td>set port pace-priority-mode</td>
<td>452</td>
</tr>
<tr>
<td>set port point-to-point admin status</td>
<td>453</td>
</tr>
<tr>
<td>set port rate-limit-burst-size</td>
<td>454</td>
</tr>
<tr>
<td>set port rate-limit-mode</td>
<td>455</td>
</tr>
<tr>
<td>set port rate-limit-rate</td>
<td>456</td>
</tr>
<tr>
<td>set port redundancy</td>
<td>457</td>
</tr>
<tr>
<td>set port redundancy name</td>
<td>457</td>
</tr>
<tr>
<td>set port remote-fault-detect</td>
<td>458</td>
</tr>
<tr>
<td>set port spanning-tree-mode</td>
<td>459</td>
</tr>
<tr>
<td>set port speed</td>
<td>460</td>
</tr>
<tr>
<td>set port trunking-format</td>
<td>461</td>
</tr>
<tr>
<td>set port vlan</td>
<td>463</td>
</tr>
<tr>
<td>set port vlan-binding-method</td>
<td>464</td>
</tr>
<tr>
<td>set port vtp-snooping</td>
<td>465</td>
</tr>
<tr>
<td>show port</td>
<td>466</td>
</tr>
<tr>
<td>show port counters</td>
<td>467</td>
</tr>
<tr>
<td>show port mirror</td>
<td>468</td>
</tr>
<tr>
<td>show port mirror Fabric_mode2</td>
<td>470</td>
</tr>
<tr>
<td>show port physical</td>
<td>471</td>
</tr>
<tr>
<td>show port status</td>
<td>472</td>
</tr>
<tr>
<td>show port redundancy</td>
<td>473</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>set radius authentication server</td>
<td>519</td>
</tr>
<tr>
<td>set radius authentication source-ip</td>
<td>520</td>
</tr>
<tr>
<td>set radius authentication switch-service-type-required</td>
<td>521</td>
</tr>
<tr>
<td>set radius authentication udp-port</td>
<td>522</td>
</tr>
<tr>
<td>show radius authentication</td>
<td>523</td>
</tr>
</tbody>
</table>

Chapter 25: SNMP

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>525</td>
</tr>
<tr>
<td>snmp-server</td>
<td>526</td>
</tr>
<tr>
<td>snmp-server atm-community</td>
<td>526</td>
</tr>
<tr>
<td>snmp-server community</td>
<td>527</td>
</tr>
<tr>
<td>snmp-server contact</td>
<td>529</td>
</tr>
<tr>
<td>snmp-server engineid</td>
<td>530</td>
</tr>
<tr>
<td>snmp-server group</td>
<td>531</td>
</tr>
<tr>
<td>snmp-server location</td>
<td>532</td>
</tr>
<tr>
<td>snmp-server notify</td>
<td>533</td>
</tr>
<tr>
<td>snmp-server notify user</td>
<td>534</td>
</tr>
<tr>
<td>snmp-server password</td>
<td>535</td>
</tr>
<tr>
<td>snmp-server user</td>
<td>536</td>
</tr>
<tr>
<td>snmp-server view</td>
<td>537</td>
</tr>
<tr>
<td>show snmp</td>
<td>538</td>
</tr>
<tr>
<td>show snmp community</td>
<td>539</td>
</tr>
<tr>
<td>show snmp engineid</td>
<td>540</td>
</tr>
<tr>
<td>show snmp group</td>
<td>540</td>
</tr>
<tr>
<td>show snmp notify-user</td>
<td>541</td>
</tr>
<tr>
<td>show snmp user</td>
<td>542</td>
</tr>
<tr>
<td>show snmp view</td>
<td>543</td>
</tr>
</tbody>
</table>

Chapter 26: SSH

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>545</td>
</tr>
<tr>
<td>clear ssh</td>
<td>545</td>
</tr>
<tr>
<td>ip ssh</td>
<td>546</td>
</tr>
<tr>
<td>ssh</td>
<td>547</td>
</tr>
<tr>
<td>ssh keygen</td>
<td>548</td>
</tr>
<tr>
<td>ssh timeout</td>
<td>549</td>
</tr>
<tr>
<td>show ssh</td>
<td>550</td>
</tr>
</tbody>
</table>
Chapter 27: SSL

- Overview ... 553
- ip https .. 553
- show ssl cert .. 554
- show ssl certreq 556
- show ssl ciphers 557
- show ssl config 558
- ssl backcert .. 559
- ssl certreq .. 559
- ssl restart .. 560
- ssl selfcert ... 561

Chapter 28: Rapid Spanning Tree Protocol

- Overview ... 563
- set port edge admin state 564
- set port point-to-point admin status 565
- set port spanning-tree-mode 566
- set port spantree force-protocol-migration 567
- set port spantree priority 568
- set spantree ... 570
- set spantree config 571
- set spantree default-path-cost 572
- set spantree fwddelay 574
- set spantree hello 575
- set spantree hold-count 577
- set spantree maxage 578
- set spantree portcost 580
- set spantree priority 582
- set spantree version 583
- show spantree 584
- show spantree blocked 586
- show spantree config 587
- show spantree port 588
- show spantree version 590
Chapter 29: Switch Fabric

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>591</td>
</tr>
<tr>
<td>set fabric configure-redundant-hardware</td>
<td>591</td>
</tr>
<tr>
<td>set fabric enable-redundant-element</td>
<td>592</td>
</tr>
<tr>
<td>set fabric toggle-active-controller</td>
<td>593</td>
</tr>
<tr>
<td>show fabric status</td>
<td>594</td>
</tr>
</tbody>
</table>

Chapter 30: System

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>595</td>
</tr>
<tr>
<td>boot system flash</td>
<td>597</td>
</tr>
<tr>
<td>calendar set</td>
<td>599</td>
</tr>
<tr>
<td>clear utilization high-threshold</td>
<td>600</td>
</tr>
<tr>
<td>clear utilization monitoring</td>
<td>601</td>
</tr>
<tr>
<td>clear utilization threshold-event</td>
<td>602</td>
</tr>
<tr>
<td>clock set</td>
<td>603</td>
</tr>
<tr>
<td>clock summer-time recurring</td>
<td>604</td>
</tr>
<tr>
<td>clock timezone</td>
<td>605</td>
</tr>
<tr>
<td>copy</td>
<td>606</td>
</tr>
<tr>
<td>copy <filename> running-config</td>
<td>607</td>
</tr>
<tr>
<td>copy <filename> startup-config</td>
<td>608</td>
</tr>
<tr>
<td>copy <filename_opt_path> tftp</td>
<td>609</td>
</tr>
<tr>
<td>copy card-image bootflash</td>
<td>610</td>
</tr>
<tr>
<td>copy card-image flash</td>
<td>611</td>
</tr>
<tr>
<td>copy <filename1> pcmcia <filename2></td>
<td>612</td>
</tr>
<tr>
<td>copy pcmcia <filename1> <filename2></td>
<td>613</td>
</tr>
<tr>
<td>copy running-config</td>
<td>614</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>615</td>
</tr>
<tr>
<td>copy running-config tftp</td>
<td>615</td>
</tr>
<tr>
<td>copy startup-config</td>
<td>616</td>
</tr>
<tr>
<td>copy startup-config running-config</td>
<td>617</td>
</tr>
<tr>
<td>copy startup-config tftp</td>
<td>618</td>
</tr>
<tr>
<td>copy tftp</td>
<td>619</td>
</tr>
<tr>
<td>copy tftp bootflash</td>
<td>620</td>
</tr>
<tr>
<td>copy tftp flash</td>
<td>621</td>
</tr>
<tr>
<td>copy tftp pcmcia</td>
<td>622</td>
</tr>
<tr>
<td>copy tftp running-config</td>
<td>623</td>
</tr>
</tbody>
</table>
Contents

copy tftp startup-config ... 624
cpu_redundancy console ... 625
cpu_redundancy hello-interval 626
cpu-redundancy mac-prefix ... 627
cpu_redundancy synchronize .. 627
delete pcmcia .. 628
dir ... 629
erase ... 630
erase legacy-configs .. 631
erase scripts ... 631
erase startup-config .. 632
get 48_port_mode ... 633
get Fabric_mode ... 634
hostname ... 635
ip http help server .. 636
nvram initialize ... 637
pcmcia initialize .. 637
reload ... 638
reset .. 639
secure-mode .. 639
set 48_port_mode ... 640
set debug ... 641
set Fabric_mode ... 641
set utilization high-threshold 642
set utilization monitoring ... 644
set utilization threshold-event 645
setup .. 646
show boot ... 647
show calendar .. 648
show clock ... 649
show cpu ... 650
show cpu_redundancy .. 651
show file_name .. 652
show flash ... 653
show running-config .. 654
show secure-mode ... 655
Contents

terminal flowcontrol .. 687
terminal length .. 688
terminal output pause .. 689
terminal parity .. 690
terminal speed .. 691
terminal stopbits ... 692
terminal width ... 693
username .. 694
width ... 696

Chapter 33: VLAN ... 697
 Overview .. 697
 set 3com-mapping-table .. 698
 set vlan .. 699
 set vlan frame-format ... 700
 set vlan <vlan-id> <mod-swport-range> 701
 set vtp-snooping domain ... 703
 show 3com-mapping-table .. 704
 show vlan .. 705
 show vtp-snooping configure .. 706

Chapter 34: VRRP ... 707
 Overview .. 707
 router vrrp ... 707
 ip vrrp .. 708
 ip vrrp <vr-id> address ... 709
 ip vrrp auth-key ... 710
 ip vrrp override addr owner ... 711
 ip vrrp preempt .. 712
 ip vrrp priority .. 713
 ip vrrp timer ... 714
 show ip vrrp .. 715

Index ... 717
Chapter 1: Overview

This chapter describes:

- Command Mode Summaries
- Entering and Exiting the Command Modes
- Basic Functions
- Accessing the CLI

Command Mode Summaries

The CLI for the Avaya P580 and P882 Multiservice switches consists of various command modes. The commands you can enter depend on the mode you are in. Each command mode has a distinct prompt. Table 1 describes the main command modes.

To exit command mode, enter `exit`.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>To Access</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>The mode you are in after log in. Includes a limited number of commands to display status and statistic information.</td>
<td>Log in.</td>
<td>></td>
</tr>
<tr>
<td>Privileged</td>
<td>Includes User mode commands and commands to set operating parameters.</td>
<td>From User mode, enter <code>enable</code>.</td>
<td>#</td>
</tr>
<tr>
<td>Global Configuration</td>
<td>Includes commands to configure the system as a whole.</td>
<td>From Privileged mode, enter <code>configure</code>.</td>
<td>(configure)#</td>
</tr>
</tbody>
</table>
Entering and Exiting the Command Modes

See Table 2 for an explanation of how to access and exit the command modes.

Table 2: Entering and Exiting the Command Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>To Access</th>
<th>Prompt Displayed</th>
<th>To Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>Log in.</td>
<td>></td>
<td>Enter exit.</td>
</tr>
<tr>
<td>Privileged</td>
<td>From the User mode, enter enable</td>
<td>#</td>
<td>Disable or exit returns to the User mode.</td>
</tr>
<tr>
<td>Global Configuration</td>
<td>From the Privileged mode, enter configure</td>
<td>(configure)#</td>
<td>Exit returns to the Privileged mode.</td>
</tr>
<tr>
<td>Router Configuration</td>
<td>From Global mode, enter router <protocol> (dvmrp, igmp, ospf, rip, or vrrp).</td>
<td>For DVMRP, OSPF, and RIP: (configure router:<protocol>)# For IGMP and VRRP: (configure)#</td>
<td>Exit returns to the Global Configuration mode. End returns to the Privileged mode.</td>
</tr>
<tr>
<td>Interface Configuration</td>
<td>From Global mode, enter interface <interface-name></td>
<td>(configure-if: <interface-name>)#</td>
<td>Exit returns to the Global Configuration mode. End returns to Privileged mode.</td>
</tr>
</tbody>
</table>
Basic Functions

This section provides information about the following switch functions:

- **Help**
- **Command Syntax Conventions**
- **No Form Commands**
- **Command Line History Keys**

Help

Enter a question mark (?) at the system prompt to display all of the commands in a mode. See Table 3 for additional help commands.

Table 3: Basic Functions

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>partial-command? (First tokens only - not whole syntax)</td>
<td>Lists the commands that begin with the specified character string. There is no space between the command and question mark.</td>
<td># m? mtrace #</td>
</tr>
<tr>
<td>partial-command <Tab></td>
<td>Completes a command name.</td>
<td># conf <Tab> configure</td>
</tr>
<tr>
<td>partial-command +</td>
<td>Lists the remaining syntax of all commands that begin with the character string.</td>
<td>> sh+</td>
</tr>
<tr>
<td>+</td>
<td>Lists all of the commands for the current mode - complete syntax and help descriptions.</td>
<td># +</td>
</tr>
<tr>
<td>?</td>
<td>Lists, if unique, all commands for the current command mode.</td>
<td>(configure)# ?</td>
</tr>
</tbody>
</table>
Table 3: Basic Functions (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>command ? (Gives the next token (parameter or keyword))</td>
<td>Lists the command parameters (with a brief explanation, if available). There is a space between the command and the question mark.</td>
<td># show ?</td>
</tr>
<tr>
<td>command[parameter] ? (Gives the next token (parameter or keyword))</td>
<td>Lists the arguments for a parameter. There is a space between the parameter and the question mark.</td>
<td>(configure)# show ip ospf ?</td>
</tr>
</tbody>
</table>

Command Syntax Conventions

See Table 4 for an explanation of the command syntax conventions.

Table 4: Command Syntax Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>keyword</td>
<td>A command keyword. An alphanumeric string with “-” allowed.</td>
</tr>
<tr>
<td><parameter></td>
<td>Variables for which you supply values. A command parameter name, where the name can be anything.</td>
</tr>
<tr>
<td>[optional]</td>
<td>Optional syntax that can be a keyword, parameter, option or any combination thereof.</td>
</tr>
<tr>
<td>{option1</td>
<td>option2}</td>
</tr>
<tr>
<td>[{optional1</td>
<td>optional2}]</td>
</tr>
<tr>
<td>[...,expansion]</td>
<td>Zero or more occurrences of “expansion” are possible. Expansion must be a keyword, parameter, options or any combination thereof. Complete contents of the bracket [...<uid1> <uid2>] (“user-ids”) implies that users must be added to the system two at a time.</td>
</tr>
</tbody>
</table>
No Form Commands

Most CLI commands have a no form. In general, the no form disables a feature/function or restores a default for Layer 3 commands. Clear disables the Layer 2 set commands. The Description section of each command describes the no or clear form (if applicable to the command).

Command Line History Keys

The history buffer stores the last 20 commands you have entered. Use these key sequences to recall commands from the history buffer.

Table 5: History Buffer Key Sequence

<table>
<thead>
<tr>
<th>Keys</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-P</td>
<td>Recalls the most recent command in the history buffer. Repeat the key sequence to recall the other previous commands.</td>
</tr>
<tr>
<td>Ctrl-N</td>
<td>Returns to the more recent command in the history buffer after Ctrl-P is used to recall commands. Repeat the key sequence to recall the other most recent commands.</td>
</tr>
<tr>
<td>Ctrl-C</td>
<td>Enables you to exit from help command (+).</td>
</tr>
</tbody>
</table>
Accessing the CLI

There are two ways to access the Avaya P550R, P580, P880, and P882 Multiservice Switch CLI:

- Using telnet
- Using a serial interface

Accessing the CLI Using Telnet

To access the CLI using telnet:

1. Obtain the name and password for the user account you will be using.
2. Enter telnet at the prompt.
3. Enter the IP address or host name for the switch to which you are telnetting:

 \[\text{telnet } \text{<IP address / hostname>} \]

 \[\text{Note: From NT run: } \text{telnet } \text{<a.b.c.d>} \]

Accessing the CLI Using a Serial Interface

To access the CLI using a serial interface (such as HyperTerminal):

1. Obtain the IP address you want to access.
2. Set up a new connection within the serial interface and proceed to connect with the host as directed by the instructions in the specific serial interface software you are using.
Chapter 2: AFT

Overview

This chapter describes the following commands:

- clear aft instance invalid-learned-entries vlan
- clear aft instance learned-entries vlan
- set aft agetime
- set aft auto-sizing-threshold
- set aft entry
- set aft instance vlan (auto-increment)
- set aft instance vlan (hash-table-size)
- set aft super-agetime
- show aft config
- show aft entry
- show aft instance
clear aft instance invalid-learned-entries vlan

Command Mode
Global Configuration.

Description
Delete all learned entries from a particular AFT instance.

Syntax
```
clear aft instance invalid-learned-entries vlan {<vlan-id> | name <vlan-name>}
```

Table 6: clear aft instance invalid-learned-entries vlan Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><vlan-id></code></td>
<td>Specifies the AFT instance associated with the ID of this VLAN.</td>
</tr>
<tr>
<td><code><vlan-name></code></td>
<td>Specifies the AFT instance associated with the name of this VLAN.</td>
</tr>
</tbody>
</table>

Sample Output
The following example clears all invalid learned entries in the AFT instance for the vlan named *Default*.

```
(configure)# clear aft instance invalid-learned-entries vlan 1
All Invalid Learned Entries successfully deleted in AFT Instance for Vlan “Default” (vlanID 1).
```

Systems
clear aft instance learned-entries vlan

Command Mode

Global Configuration.

Description

Delete all learned entries and invalid learned entries from a particular AFT instance.

Syntax

clear aft instance learned-entries vlan {<vlan-id> | name <vlan-name>}

Table 7: clear aft instance learned-entries vlan Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The ID of the VLAN.</td>
</tr>
<tr>
<td><vlan-name></td>
<td>The name of the VLAN.</td>
</tr>
</tbody>
</table>

Sample Output

The following example clears all learned entries.

(configure)# clear aft instance learned-entries vlan 1
All Learned Entries successfully deleted in AFT Instance for Vlan “Default” (vlanID 1).

Systems

set aft agetime

Command Mode

Global Configuration.

Description

Sets the AFT age time. The default time is 300 seconds.

Syntax

set aft agetime `<age-time-value>`

Table 8: set aft agetime Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><age-time-value></code></td>
<td>Enter the amount of time, in seconds, after which aft entries become invalid. The range is 10–1,000,000 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the aft age time to 350 seconds.

```
(configure)# set aft agetime 350
AFT Age Time successfully set to 350.
```

Systems

set aft auto-sizing-threshold

Command Mode

Global Configuration.

Description

Sets the AFT auto sizing threshold (percentage before auto-incrementing hash tables). The default percentage is 40%.

Syntax

set aft auto-sizing-threshold <threshold-value>

Table 9: set aft auto-sizing-threshold Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><threshold-value></td>
<td>Enter the desired percentage full that a hash table must be before it auto-increments itself. Valid values range from 5-90 percent.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the aft auto sizing threshold to 60%.

(configure)# set aft auto-sizing-threshold 60
AFT Auto Sizing Threshold successfully set to 60%

Systems

set aft entry

Command Mode
Global Configuration.

Description
Creates a static AFT entry or modify an existing static or learned AFT entry. The negative form of this command deletes a static or learned AFT entry.

Syntax

| To Configure: | set aft entry <mac-address> vlan {<vlan-id> | name <vlan-name>} port-binding {filter | forward <mod-port-spec>} [persistence {ageout | permanent}] [priority {normal | high}] [sa-priority {port | aft <entry-priority>} | max-port-aft <entry-priority>]} [da-priority {port | aft <entry-priority>} | max-port-aft <entry-priority>]} |
| To Delete: | clear aft entry <mac-address> vlan {<vlan-id> | name <vlan-name>}

Table 10: set aft entry Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mac-address></td>
<td>The MAC address associated with this entry.</td>
</tr>
<tr>
<td>vlan</td>
<td>The keyword for per VLAN commands.</td>
</tr>
<tr>
<td>vlan-id</td>
<td>The numerical ID of a specific VLAN.</td>
</tr>
<tr>
<td>name</td>
<td>The keyword for the VLAN name.</td>
</tr>
<tr>
<td>vlan-name</td>
<td>The name of the VLAN.</td>
</tr>
<tr>
<td>port-binding</td>
<td>Options include:</td>
</tr>
<tr>
<td>filter</td>
<td>AFT entries with a filter port binding are dropped when received.</td>
</tr>
<tr>
<td>forward</td>
<td>The port from which the mac address is forwarded.</td>
</tr>
<tr>
<td>mod-port-spec</td>
<td>Specifies a particular port.</td>
</tr>
<tr>
<td>persistence</td>
<td>Options include:</td>
</tr>
<tr>
<td>ageout</td>
<td>The entry is aged as per-learned entries.</td>
</tr>
<tr>
<td>permanent</td>
<td>The entry is not aged out.</td>
</tr>
</tbody>
</table>
Table 10: set aft entry Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
<td>Options include:</td>
</tr>
<tr>
<td></td>
<td>* normal - The AFT entry has normal priority.</td>
</tr>
<tr>
<td></td>
<td>* high - The AFT entry has high priority.</td>
</tr>
<tr>
<td>sa-priority port</td>
<td>Uses the priority of the physical port, Cisco ISL tag, or 802.1p tag to determine the layer 2 priority of frames.</td>
</tr>
<tr>
<td>sa-priority aft</td>
<td>Uses the priority that is assigned to the source MAC address in the Address Forwarding Table (AFT) to determine the layer 2 priority of frames.</td>
</tr>
<tr>
<td><entry-priority></td>
<td>The priority that you want to assign to the source MAC address. Enter a number between 0 and 7. This priority is stored in the AFT entry for the MAC address that you specify.</td>
</tr>
<tr>
<td>sa-priority max-port-aft</td>
<td>Determines the priority of a frame by using the higher of the:</td>
</tr>
<tr>
<td></td>
<td>* Physical port priority or tag priority</td>
</tr>
<tr>
<td></td>
<td>* Source MAC address priority</td>
</tr>
<tr>
<td>da-priority port</td>
<td>Uses the priority of the physical port, Cisco ISL tag, 802.1p tag, or source MAC address to determine the layer 2 priority of frames.</td>
</tr>
<tr>
<td>da-priority aft</td>
<td>Uses the priority that is assigned to the destination MAC address in the AFT to determine the priority of the frame.</td>
</tr>
<tr>
<td><entry-priority></td>
<td>The priority that you want to assign to the destination MAC address. Enter a number between 0 and 7.</td>
</tr>
<tr>
<td>da-priority max-port-aft</td>
<td>Determines the priority of the frame by using the higher of the:</td>
</tr>
<tr>
<td></td>
<td>* Physical port priority or tag priority</td>
</tr>
<tr>
<td></td>
<td>* Destination MAC address priority</td>
</tr>
</tbody>
</table>
Sample Output

Table 11: set aft entry Examples

<table>
<thead>
<tr>
<th>To...</th>
<th>Enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set an aft entry on “Default” vlan, with a port binding option of “forward,” a persistence option of “ageout” and a “normal” priority</td>
<td>set aft entry 44:44:44:44:44:44 vlan name “Default” port-binding forward 3/1 persistence ageout priority normal</td>
</tr>
<tr>
<td>● Associate MAC address 00:00:00:00:00:55 with port 1 on the module in slot 3 and with VLAN 50.</td>
<td>set aft entry 00:00:00:00:00:55 VLAN 50 port-binding forward 3/1 sa-priority aft 7</td>
</tr>
<tr>
<td>● Forward frames that have a source or destination MAC address of 00:00:00:00:00:55.</td>
<td></td>
</tr>
<tr>
<td>● Assign a priority of 7 to frames that have a source MAC address of 00:00:00:00:00:55.</td>
<td></td>
</tr>
<tr>
<td>● Associate MAC address 00:00:00:00:00:55 with port 1 on the module in slot 3 and with VLAN 50.</td>
<td>set aft entry 00:00:00:00:00:55 VLAN 50 port-binding forward 3/1 sa-priority max-port-aft 5</td>
</tr>
<tr>
<td>● Forward frames that have a source or destination MAC address of 00:00:00:00:00:55.</td>
<td></td>
</tr>
<tr>
<td>● Assign a priority of 5 with the source MAC address of 00:00:00:00:00:55.</td>
<td></td>
</tr>
<tr>
<td>● Assign the higher of the port priority, tag priority, or source MAC address priority (5) to frames that have a source MAC address of 00:00:00:00:00:55.</td>
<td></td>
</tr>
</tbody>
</table>

1 of 2
Table 11: set aft entry Examples (continued)

<table>
<thead>
<tr>
<th>To...</th>
<th>Enter...</th>
</tr>
</thead>
</table>
| ● Associate MAC address 00:00:00:00:00:55 with port 1 on the module in slot 3 and with VLAN 50.
● Forward frames that have a source or destination MAC address of 00:00:00:00:00:55.
● Assign a priority of 7 to packets that have a destination MAC address of 00:00:00:00:00:55. | set aft entry 00:00:00:00:00:55 VLAN 50 port-binding forward 3/1 da-priority aft 7 |
|● Associate MAC address 00:00:00:00:00:55 with port 1 on the module in slot 3 and with VLAN 50.
● Forward frames that have a source or destination MAC address of 00:00:00:00:00:55.
● Associate a priority of 5 with the destination MAC address 00:00:00:00:00:55.
● Assign the higher of the port priority, tag priority, or destination MAC address priority (5) to frames that have a destination MAC address of 00:00:00:00:00:55. | set aft entry 00:00:00:00:00:55 VLAN 50 port-binding forward 3/1 da-priority max-port-aft 5 |

Systems

set aft instance vlan (auto-increment)

Command Mode

 Global Configuration.

Description

 Sets the auto-increment flag for a particular VLAN’s AFT instance.

Syntax

 set aft instance vlan {<vlan-id> | name <vlan-name>} auto-increment-ht-size {true | false}

Table 12: set aft instance vlan Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan</td>
<td>The AFT instance associated with the VLAN.</td>
</tr>
<tr>
<td>vlan-id</td>
<td>The numerical ID of a specific VLAN.</td>
</tr>
<tr>
<td>name</td>
<td>The keyword for the VLAN name.</td>
</tr>
<tr>
<td>vlan-name</td>
<td>The name of the vlan.</td>
</tr>
<tr>
<td>auto-increment-ht-size</td>
<td>Specify whether or not the hash table should auto-increment itself.</td>
</tr>
<tr>
<td></td>
<td>The options are:</td>
</tr>
<tr>
<td>true</td>
<td>The hash table auto-increments itself.</td>
</tr>
<tr>
<td>false</td>
<td>The hash table does not auto-increment itself.</td>
</tr>
</tbody>
</table>

Sample Output

 The following example sets the auto-increment flag for the aft instance vlan named “Default” to false, which means that the hash table does not auto-increment itself.

 (configure)# set aft instance vlan name ‘Default” auto-increment-ht-size false
 AFT Instance Hash Table Auto-Increment for Vlan “Default” (vlanID 1) successfully set to false

Systems

set aft instance vlan (hash-table-size)

Command Mode

Global Configuration.

Description

Sets the hash table size for a particular VLAN's AFT instance.

Syntax

set aft instance vlan {<vlan-id> | name <vlan-name>} hash-table-size {16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192}

Table 13: set aft instance vlan Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan</td>
<td>The AFT instance associated with the VLAN. vlan-id - The numerical ID of a specific VLAN.</td>
</tr>
<tr>
<td>name</td>
<td>The keyword for the VLAN name. vlan-name - The name of the vlan.</td>
</tr>
<tr>
<td>hash-table-size</td>
<td>Specifies the hash table size. The table size specified must be one of the following (all values are power of 2): 16</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the AFT instance vlan named “default” hash table size to 2048.

(configure)# set aft instance vlan name “Default” hash-table-size 2048
AFT Instance Hash Table Size for Vlan “Default” (vlanID 1) successfully set to 2048

Systems

set aft super-agetime

Command Mode

Global Configuration.

Description

Sets the AFT super age time. The default is seven (7) days.

Syntax

set aft super-agetime <super-age-time-value>

Table 14: set aft super-agetime Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><super-age-time-value></td>
<td>Enter the amount of time, in days, after which invalid aft entries are removed. The range is 1-30 days.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the aft super age time to 8 days.

(configure)# set aft super-agetime 8
AFT Super Age Time successfully set to 8

Systems

show aft config

Command Mode

User.

Description

Displays the AFT’s global configuration.

Syntax

show aft config

Sample Output

The following example displays the aft manager configuration table.

> show aft config
AFT Manager Configuration:
==========================
Age Time: 300
Super Age Time: 7

AFT PLE Configuration:
=======================
Initial Hash Table Size: 1024
Utilization Threshold: 40%
Bkt Size To Trig Util: 32
HT Size Mult To Trig Util: 12

Systems

show aft entry

Command Mode
User.

Description
Performs a search for all of the AFT entries that matches the criteria specified in the command.

Syntax
show aft entry [mac <wildcard-mac-address>] [vlan {<vlan-id> | name <vlan-name>}] [port-binding {cpu | filter | forward [<mod-port-spec>]}] [status {learned | management | self | multicast}]

Table 15: show aft entry Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac</td>
<td>The MAC address associated with this entry.</td>
</tr>
<tr>
<td>wildcard-mac-address</td>
<td>the wildcard is indicated by a single asterisk (*) before the MAC address.</td>
</tr>
<tr>
<td>vlan</td>
<td>vlan-id - the ID of the VLAN.</td>
</tr>
<tr>
<td>name</td>
<td>vlan-name - the name of the VLAN.</td>
</tr>
<tr>
<td>port-binding</td>
<td>Specifies the binding of the entry to be displayed. VLAN.</td>
</tr>
<tr>
<td>cpu</td>
<td>Displays entries bound to the CPU.</td>
</tr>
<tr>
<td>filter</td>
<td>Displays filtered entries.</td>
</tr>
<tr>
<td>forward</td>
<td>Displays forwarding entries.</td>
</tr>
<tr>
<td>mod-port-spec</td>
<td>Applies only to forwarding entries and specifies the ports for which forwarding entries are to be displayed.</td>
</tr>
<tr>
<td>status</td>
<td>Displays the following entries:</td>
</tr>
<tr>
<td></td>
<td>● learned - Displays learned entries only</td>
</tr>
<tr>
<td></td>
<td>● management - Displays management entries only</td>
</tr>
<tr>
<td></td>
<td>● self - Displays self entries</td>
</tr>
<tr>
<td></td>
<td>● multicast - Displays multicast entries only</td>
</tr>
</tbody>
</table>
Sample Output

The following example display the aft entry table.

> show aft entry

AFT Entries matching search criteria: “All Entries”

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Port</th>
<th>Valid</th>
<th>VlanID</th>
<th>Priority</th>
<th>Persistence</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:80:C2:00:00:00</td>
<td>cpu</td>
<td>valid</td>
<td>2</td>
<td>high</td>
<td>permanent</td>
<td>self</td>
</tr>
<tr>
<td>01:80:C2:00:00:01</td>
<td>cpu</td>
<td>valid</td>
<td>2</td>
<td>high</td>
<td>permanent</td>
<td>self</td>
</tr>
<tr>
<td>01:80:C2:00:00:02</td>
<td>filter</td>
<td>valid</td>
<td>2</td>
<td>normal</td>
<td>permanent</td>
<td>self</td>
</tr>
<tr>
<td>01:80:C2:00:00:03</td>
<td>filter</td>
<td>valid</td>
<td>2</td>
<td>normal</td>
<td>permanent</td>
<td>self</td>
</tr>
<tr>
<td>01:80:C2:00:00:04</td>
<td>filter</td>
<td>valid</td>
<td>2</td>
<td>normal</td>
<td>permanent</td>
<td>self</td>
</tr>
</tbody>
</table>

Systems

show aft instance

Command Mode

User.

Description

Displays the AFT instance for a particular VLAN or show all AFT instances for all VLANs. If no VLAN parameter is specified, all instances show on the switch.
Syntax

show aft instance [vlan <vlan-id> | name <vlan-name>]]

Table 16: show aft instance Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>Specifies the aft instance associated with the ID of this VLAN. Displays the AFT instance information for this VLAN ID.</td>
</tr>
<tr>
<td><vlan-name></td>
<td>Displays the AFT Instance information for the VLAN identified by “name”.</td>
</tr>
</tbody>
</table>

Sample Output

The following example displays the aft instance configuration table.

> show aft instance
AFT Instance Configuration:
=================================
Instance for Vlan “Default” (vlanID 1)
 AutoSizeHT: true
 UseConfHTsize: false
 KeepInvalidInCol: false
 UseInvalidInBktSizing: true
 KeepInvalidInBkt: false
 ConfigHTsize: 1024
Instance for Vlan “Discard” (vlanID 4097)
 AutoSizeHT: false
 UseConfHTsize: false
 KeepInvalidInCol: false
 UseInvalidInBktSizing: true
 KeepInvalidInBkt: false
 ConfigHTsize: 1

Systems

Chapter 3: Appletalk

Overview

This chapter describes the following commands:

- appletalk access-group
- appletalk access-list
- appletalk address
- appletalk admin-state
- appletalk cable-range
- appletalk echo
- appletalk mac-format
- appletalk routing
- appletalk static cable-range
- appletalk vlan
- appletalk zone
- clear appletalk arp
- clear appletalk route
- clear appletalk traffic
- ping appletalk
- show appletalk access-lists
- show appletalk arp
- show appletalk globals
- show appletalk interface
- show appletalk nbp
- show appletalk route
- show appletalk static cable-range
- show appletalk traffic
- show appletalk zone
appletalk access-group

Command Mode

Interface Configuration.

Description

Assign an access list to an Appletalk interface. The no form of this command removes the access list from the interface.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>appletalk access-group <code><access-list-number></code></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no appletalk access-group <code><access-list-number></code></td>
</tr>
</tbody>
</table>

Table 17: appletalk access-group Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><access-list-number></code></td>
<td>A decimal value that specifies the identifier of the access list. This is a number between 600 and 663.</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables access-group 625 to an Appletalk interface.

```
(config-if:serial0)# appletalk access-group 625
```

Systems

appletalk access-list

Command Mode

Global Configuration.

Description

Creates an Appletalk Access List. The no form of this command removes an Appletalk Access List. The default is to permit all zones and all NBP objects.

The access list applies to either an Appletalk zone name or to the object portion of an NBP entity. To delete a zone from the zone list, delete the static route first.

Syntax

To Enable:	appletalk access-list <access-list-number> {deny	permit}		
	{ {nbp	zone} <string>	additional-zones	additional-nbps}
To Disable:	[no] appletalk access-list <access-list-number>			

Table 18: appletalk access-list Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><access-list-number></td>
<td>The identifier (in decimal) of the access list. The access-list-number for nbp must be between 600 and 631. The access-list-number for zone must be between 632 and 663.</td>
</tr>
<tr>
<td>deny</td>
<td>Prevents access when conditions match. Specifying deny denies access if the conditions are matched.</td>
</tr>
<tr>
<td>permit</td>
<td>Allows access when conditions match. Specifying permit permits access if the conditions are matched.</td>
</tr>
<tr>
<td>nbp</td>
<td>Applies the access-list to the <string> field of Appletalk Naming Binding Protocol (NBP) entities.</td>
</tr>
<tr>
<td>zone</td>
<td>Applies the access-list to Appletalk Zone names.</td>
</tr>
<tr>
<td><string></td>
<td>The name of the zone or NBP object to which this entry applies.</td>
</tr>
</tbody>
</table>
Sample Output

The following example disables Appletalk access list 630.

(configuration)# no appletalk access-list 630

Systems

Table 18: appletalk access-list Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>additional-zones</td>
<td>Additional zone names. This keyword defines the default action to take for access check, which apply to zones.</td>
</tr>
<tr>
<td>additional-nbps</td>
<td>Additional Naming Binding Protocol entities. This keyword defines the default action to take for access checks, which apply to nbp.</td>
</tr>
</tbody>
</table>
appletalk address

Command Mode

Interface Configuration.

Description

Configure an Appletalk Phase I Address for an interface. The no form of this command removes the Appletalk interface itself.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>appletalk address <network.node></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] appletalk address</td>
</tr>
</tbody>
</table>

Table 19: appletalk address Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><network.node></td>
<td>● network - A 16-bit network number between 0 and 66279.</td>
</tr>
<tr>
<td></td>
<td>● node - An 8-bit node number between 0 and 254.</td>
</tr>
<tr>
<td></td>
<td>Separate the network and node values with a period. When omitted, the Appletalk address defaults to 0.0.</td>
</tr>
</tbody>
</table>

Systems

appletalk admin-state

Command Mode

Interface Configuration.

Description

Set the administrative state of an Appletalk Interface. The default value is up.

Syntax

appletalk admin-state {up | down}

Table 20: appletalk admin-state Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{up</td>
<td>down}</td>
</tr>
<tr>
<td></td>
<td>● up - The administrative state of the interface is active.</td>
</tr>
<tr>
<td></td>
<td>● down - The administrative state of the interface is inactive.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the Appletalk administrative state to down.

```
(config-if:serial0)# appletalk admin-state down
```

Systems

appletalk cable-range

Command Mode

Interface Configuration.

Description

Configure a cable range for an Appletalk Phase II for an interface. The no form of this command disables Appletalk for this interface.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>appletalk cable-range <code><cable-range></code> [<network.node>]</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] appletalk cable-range</td>
</tr>
</tbody>
</table>

Table 21: appletalk cable-range Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><cable-range></code></td>
<td>An optional parameter to indicate the range of the Appletalk network values to be used on this interface. Specify start and end values between 0 and 65279 and separate the values with a hyphen. The starting network number must be less than the ending network number. When <code><cable-range></code> is omitted, the interface tries to configure the Appletalk network and obtains its configuration from another Appletalk router.</td>
</tr>
</tbody>
</table>
| `<network.node>`| The Appletalk network address to assign to the interface. When `<network.node>` is omitted, the Appletalk address defaults to 0.0.
 - network - A 16-bit network number between 0 and 66279.
 - node - An 8-bit node number between 0 and 254. |

Sample Output

The following example configures a cable range of 222-224 for the Appletalk interface on serial port 0.

```
(config-if:serial0)# appletalk cable-range 222.224
```

Systems

appletalk echo

Command Mode
Privileged.

Description
Send an Appletalk echo request to a specified Appletalk node.

Syntax
appletalk echo <network.node>

Table 22: appletalk echo Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><network.node></td>
<td>● network - The DDP network address of the Appletalk device.</td>
</tr>
<tr>
<td></td>
<td>● node - The DDP node address of the Appletalk device.</td>
</tr>
</tbody>
</table>

Systems
appletalk mac-format

Command Mode

Interface Configuration.

Description

Sets which Appletalk Interface MAC format is to be used. The default value is snap. The no form of this command resets the MAC format for the interface to the default value.

Syntax

| To Configure: | appletalk mac-format {ethv2 | snap} |
|-----------------------------------|-------------------------------------|
| To Restore Default: | [no] appletalk mac-format |

Table 23: appletalk mac-format Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| {ethv2 | snap} | ● ethv2 - Ethernet Version 2.
| | ● snap - Subnetwork Access Protocol. |

Sample Output

The following example sets the Appletalk Interface MAC format to ethv2.

(config-if:serial0)# appletalk mac-format ethv2

Systems

appletalk routing

Command Mode

Global Configuration.

Description

Enables Appletalk routing. The no form of this command disables Appletalk routing. The default for Appletalk routing is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>appletalk routing</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] appletalk routing</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables Appletalk routing.

```
(configuration)# appletalk routing
```

Systems

appletalk static cable-range

Command Mode

Global Configuration.

Description

Creates an Appletalk static route. The no form of this command removes the static route itself, or only removes a zone from the static route if the zone name is supplied.

Syntax

To Enable:

appletalk static cable-range <cable-range> to <network.node> [floating]
zone <zone-name>

To Disable:

[no] appletalk static cable-range <cable-range> to <network.node>

Table 24: appletalk static cable-range Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><cable-range></td>
<td>The range of Appletalk network values to be used for this static route. Specify start and end values, in decimal, between 0 and 65279 and separate the values with a hyphen. The starting network number must be less than the ending network number. The next hop Appletalk router is specified via the network.node parameter.</td>
</tr>
</tbody>
</table>
| <network.node> | Specifies the Appletalk Network Address of the next hop to the destination network. (Both numbers are in decimal.)
 - network - A 16-bit network number between 0 and 66279.
 - node - An 8-bit node number between 0 and 254. |
| [floating] | Specifies that a dynamic route update for this network can replace the route entry created by this command. The floating argument is optional. If supplied, the route defined via this command may be overwritten by an Appletalk routing update. The default is to ignore Appletalk route updates for this cable range. |
| <zone-name> | A zone name to be associated with this destination. When the keyword zone and the zone-name are omitted, the static route is removed. |
Sample Output

The following example creates a static route to a remote router whose address is 1.5 on the remote network 110-120 in the remote zone “adams”.

```
(configure)# appletalk static cable-range 110-120 to 1.5 zone adams
```

Systems

appletalk vlan

Command Mode

Interface Configuration.

Description

Assigns the Appletalk interface to a VLAN. The no form of this command resets the VLAN to the discard VLAN, which is the default value.

Syntax

| To Enable: | appletalk vlan {<vlan-id> | name <vlan-name>} |
|--------------------------------|---------------------------|
| To Disable: | [no] appletalk vlan |

Table 25: appletalk vlan Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The ID of the VLAN Appletalk uses for the interface.</td>
</tr>
<tr>
<td><vlan-name></td>
<td>The name of the VLAN Appletalk uses for the interface.</td>
</tr>
</tbody>
</table>
Sample Output

The following example sets Appletalk interface foo2 to VLAN auto50.

(config-if:auto50)# appletalk vlan name foo2

Systems

appletalk zone

Command Mode

Interface Configuration.

Description

Adds an Appletalk zone name to an interface. The no form of this command removes a specifically named zone name from an interface, or all zone names, if no zone name is specified. The first zone added is the default zone. This command can be issued, as needed, to assign additional zone names to an interface.

Syntax

| To Enable: | appletalk zone [<zone-name>] |
| To Disable: | [no] appletalk zone |

Table 26: appletalk zone Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><zone-name></td>
<td>The name of the zone you want to add to the interface. The first zone added is the default zone.</td>
</tr>
</tbody>
</table>
Appletalk

Sample Output

The following example adds Appletalk zone “foo2” to the “auto50” interface.

```
(config-if:auto50)# appletalk zone foo2
```

Systems

clear appletalk arp

Command Mode

Global Configuration.

Description

Deletes a single or all entries from the Appletalk ARP and Appletalk Routing tables, and clears the Appletalk counters.

Syntax

```
clear appletalk arp [network.node]
```

Table 27: clear appletalk arp Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>network.node</td>
<td>The Appletalk network address to delete from the AARP table. This is a 16-bit network number in the range 0 to 65279.</td>
</tr>
<tr>
<td>node</td>
<td>An 8-bit node number in the range 0 to 254.</td>
</tr>
</tbody>
</table>

To delete all dynamic entries, omit the argument. Local and static entries cannot be deleted.

Systems

clear appletalk route

Command Mode

 Global Configuration

Description

 Delete a single or all Appletalk routing entries from the Appletalk Routing Table.

Syntax

 clear appletalk route [<network>]

Table 28: clear appletalk route Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><network></td>
<td>The number of the network to which the route provides access. To delete all dynamic entries, omit the argument. Local and static route entries cannot be deleted.</td>
</tr>
</tbody>
</table>

Sample Output

 The following example deletes all entries from the Appletalk Routing table.

 (config)# clear appletalk route

Systems

clear appletalk traffic

Command Mode
Global Configuration.

Description
Clears the Appletalk counters.

Syntax
```
clear appletalk traffic
```

Systems

ping appletalk

Command Mode
Privileged.

Description
Sends an Appletalk Echo Request to a specific Appletalk node.

Syntax
```
ping appletalk <network.node>
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| <network.node> | ● network - The DDP network address of the Appletalk device.
 | ● node - The DDP node address of the Appletalk device. |

Systems
show appletalk access-lists

Command Mode
User.

Description
Displays currently defined Appletalk access lists.

Syntax
show appletalk access-list

Sample Output
The following example displays the Appletalk access list.

> show appletalk access-list
Apple Talk Access Lists

<table>
<thead>
<tr>
<th>Index</th>
<th>Type</th>
<th>Operation</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>606</td>
<td>NBP</td>
<td>Deny</td>
<td>Lime</td>
</tr>
<tr>
<td>632</td>
<td>Zone</td>
<td>Permit</td>
<td>Zone700</td>
</tr>
<tr>
<td>633</td>
<td>Zone</td>
<td>Permit</td>
<td>Zone500</td>
</tr>
<tr>
<td>640</td>
<td>Zone</td>
<td>Permit</td>
<td>Area0</td>
</tr>
<tr>
<td>650</td>
<td>Zone</td>
<td>Permit</td>
<td>Zone600</td>
</tr>
</tbody>
</table>

Systems
show appletalk arp

Command Mode

User.

Description

List entries in the Appletalk ARP Table.

Syntax

```
show appletalk arp [all]
```

Table 30: show appletalk arp Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[all]</td>
<td>Shows local and broadcast entries, in addition to dynamic entries listed in the Appletalk Arp Table.</td>
</tr>
</tbody>
</table>

Sample Output

The following example displays the Appletalk arp table.

```
> show appletalk arp

AppleTalk AARP Cache Table

<table>
<thead>
<tr>
<th>Hardware Address</th>
<th>DDP Address</th>
<th>Type</th>
<th>TTL</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0:0D:04:31:00:31</td>
<td>55.55</td>
<td>Remote</td>
<td>60</td>
<td>at_if2</td>
</tr>
<tr>
<td>08:00:07:41:C0:8B</td>
<td>8001.1</td>
<td>Dynamic</td>
<td>50</td>
<td>at_if3</td>
</tr>
</tbody>
</table>
```

Systems

show appletalk globals

Command Mode

User.

Description

Displays information about the router’s Appletalk status.

Syntax

show appletalk globals

Sample Output

The following example displays information about the router’s Appletalk status.

> show appletalk globals
 AT Global Statistics
 Apple Talk Routing is enabled

Systems

show appletalk interface

Command Mode
User.

Description
Displays Appletalk-related interface settings for a specific interface, or all interfaces when interface-name is omitted.

Syntax
show appletalk interface [brief] [<interface-name>]

Table 31: show appletalk interface Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[brief]</td>
<td>A keyword indicating that only summary information is to be displayed.</td>
</tr>
<tr>
<td><interface-name></td>
<td>The name of the interface to display.</td>
</tr>
</tbody>
</table>

Sample Output

The following example displays summary information about the Appletalk interface labeled jerry.

> show appletalk interface brief jerry
 jerry is down, and administratively up
 On vlan Internal-Network, is down
 Starting Cable Range is 0
 Ending Cable Range is 0
 DDP Network Number 0
 DDP Node Number 0

Systems

show appletalk nbp

Command Mode
User.

Description
Displays all Appletalk Name Binding Protocol (NBP) entries.

Syntax
show appletalk nbp

Sample Output
The following example shows the display for the show Appletalk nbp command.

> show appletalk nbp
 AppleTalk Name Binding Protocol Table
 Index Object : Type@Zone on Interface
 1 PORT_8000.1:Router@Zone8000 on at_if3
 2 PORT_500.1 :Router@Area0 on at_if2
 3 PORT_300.1 :Router@Zone300 on at_if1

Systems
show appletalk route

Command Mode
User.

Description
Displays the contents of the Appletalk Routing Table.

Syntax
show appletalk route [<starting-range>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><starting-range></td>
<td>If the starting range is supplied, the entry corresponding to this specific Appletalk network is displayed; otherwise, the entire routing table is displayed.</td>
</tr>
</tbody>
</table>

Sample Output
The following example displays the contents of the Appletalk routing table with “8000” as the starting range.

> show appletalk route 8000
AppleTalk Route Table
Start-End Next Hop Metric State Owner Interface
8000-8001 0.0 0 Good Local at_if3

Systems
show appletalk static cable-range

Command Mode
User.

Description
Displays the static routes that are configured for Appletalk.

Syntax
show appletalk static cable-range [<starting-range>]

Table 33: show appletalk static cable-range Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><starting-range></td>
<td>If the starting range is supplied, the entry corresponding to this specific static route is displayed; otherwise, the entire routing table is displayed.</td>
</tr>
</tbody>
</table>

Sample Output
The following example displays all of the Appletalk static routes that are configured.

`> show appletalk static cable-range`

<table>
<thead>
<tr>
<th>AppleTalk StaticRoute Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start-End</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>9000-9001</td>
</tr>
</tbody>
</table>

Systems
show appletalk traffic

Command Mode

User.

Description

Displays Appletalk Protocol Counters and Statistics.

Syntax

show appletalk traffic

Sample Output

The following example displays the Appletalk protocol counter and statistics.

```bash
> show appletalk traffic

AT Traffic Statistics
AppleTalk Traffic Statistics
Echo Req Tx 0 Echo Replies Rcv 0
Echo Req Rcv 0 DDP Output Counter 12
DDP Output Short 0 DDP Output Long 12
DDP Input Counter 0 DDP Fwd Counter 0
DDP Local Counter 0 No Client 0
No Route 0 Too Short 0
Too Long 0 Broadcast Error 0 Short PDU in Error 0 TTL Expired 0
Checksum Error 0 AARP Req Rcv 0
AARP Repl Rcv 0 AARP Invalid PDU 0
AARP Req Tx 57 AARP Repl Rcv 0
RTMP Rq Sent 0 RTMP Rq Rcv 0
RTMP Rsp Sent 0 RTMP Rsp Rcv 0
RTMP RDR Sent 12 RTMP RDR Rcv 0
ZIP Query Sent 0 ZIP Query Rcv 0
ZIP Reply Sent 0 ZIP Reply Rcv 0
ZIP Reply Ext Sent 0 ZIP Reply Ext Rcv 0
ZIP GNI Rq Sent 0 ZIP GNI Rq Rcv 0
ZIP GNI Rsp Sent 0 ZIP GNI Rsp Rcv 0
Config Address Error 0 Config Zone Error 0
```

Systems

show appletalk zone

Command Mode

User.

Description

Displays the contents of the Appletalk Zone Information Table (ZIT).

Syntax

show appletalk zone [<zone-name>

Table 34: show appletalk zone Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><zone-name></td>
<td>The name of the zone corresponding to the entry. When omitted, all entries in the table are displayed.</td>
</tr>
</tbody>
</table>

Sample Output

The following example displays the contents of the Zone1 Appletalk Zone Information table.

> show appletalk zone Zone1
AppleTalk Zone Table
Index Start-End Name
418 1-10 Zone1
418 500-600 Zone1

Systems

Chapter 4: Buffering

Overview

This chapter describes the following commands:

- set buffering fabric-port (age-timer)
- set buffering fabric-port (hipri-alloc)
- set buffering fabric-port (hipri-service-ratio)
- set buffering fabric-port (pri-threshold)
- set buffering port (age-timer)
- set buffering port (hipri-alloc)
- set buffering port (hipri-service-ratio)
- set buffering port (pri-threshold)
- show buffering fabric-port
- show buffering port

Note:

These commands are not supported on 80-Series modules.
set buffering fabric-port (age-timer)

Command Mode

Global Configuration.

Description

Sets the input or output buffer age timer range for a fabric port. The default age-timer range is 160-320.

Syntax

```
set buffering fabric-port <fabric-port-spec> [routing] {input | output} age-timer {160-to-320 | 640-to-1280}
```

Table 35: set buffering fabric-port (age-timer) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><fabric-port-spec></td>
<td>Enter a particular fabric port or a range of fabric ports on a module.</td>
</tr>
<tr>
<td>[routing]</td>
<td>Set the routing buffer parameters.</td>
</tr>
<tr>
<td>{input</td>
<td>output}</td>
</tr>
<tr>
<td>age-timer</td>
<td>The age-timer ranges are:</td>
</tr>
<tr>
<td></td>
<td>● 160-to-320</td>
</tr>
<tr>
<td></td>
<td>● 640-to-1280</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the buffer age-timer range for fabric port 4/1 to the 640-1280 range.

```
(configure)# set buffering fabric-port 4/1 routing input age-timer 640-to-1280
Buffers for fabric-port 4/1 set.
```

Systems

set buffering fabric-port (hipri-alloc)

Command Mode

Global Configuration.

Description

Set the input or output buffer high priority allocation percentage. The default percentage value is 20%.

Note:

The switch must be rebooted for changes to this parameter to take effect.

Syntax

set buffering fabric-port <fabric-port-spec> [routing] {input | output} hipri-alloc {10 | 20 | 30 | 40 | 50}

Sample Output

The following example sets the buffer high priority allocation percentage for fabric port 4/1 to 30%.

(configure)# set buffering fabric-port 4/1 routing output hipri-alloc 30
Buffers for fabric-port 4/1 set.

Systems

set buffering fabric-port (hipri-service-ratio)

Command Mode

Global Configuration.

Description

Sets the input or output buffer high priority service ratio for a fabric port. The default ratio is 999-to-1.

Syntax

set buffering fabric-port <fabric-port-spec> [routing] {input | output} hipri-service-ratio {3-to-1 | 99-to-1 | 999-to-1 | 9999-to-1}

Table 37: set buffering fabric-port (hipri-service-ratio) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><fabric-port-spec></td>
<td>Enter a particular fabric port or a range of fabric ports on a module.</td>
</tr>
<tr>
<td>[routing]</td>
<td>Set the routing buffer parameters.</td>
</tr>
<tr>
<td>{input</td>
<td>output}</td>
</tr>
<tr>
<td>hipri-service-ratio</td>
<td>The high priority service ratios are: 3-to-1, 99-to-1, 999-to-1, 9999-to-1</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the input buffer high priority service ratio for fabric port 4/1 to 9999-to-1.

(configure)# set buffering fabric-port 4/1 routing input hipri-service-ratio 9999-to-1
Buffers for fabric-port 4/1 set.

Systems

set buffering fabric-port (pri-threshold)

Command Mode

Global Configuration.

Description

Sets the input or output buffer priority threshold for a fabric port. The default value for the priority threshold is 4.

Syntax

set buffering fabric-port <fabric-port-spec> [routing] {input | output} pri-threshold {1 | 2 | 3 | 4 | 5 | 6 | 7 | all-frames-normal-priority}

Table 38: set buffering fabric-port (pri-threshold) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><fabric-port-spec></td>
<td>Enter a particular fabric port or a range of fabric ports on a module.</td>
</tr>
<tr>
<td>[routing]</td>
<td>Set the routing buffer parameters.</td>
</tr>
<tr>
<td>{input</td>
<td>output}</td>
</tr>
<tr>
<td>pri-threshold</td>
<td>The priority thresholds are: 1, 2, 3, 4, 5, 6, 7 or all-frames-normal-priority</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the buffer priority threshold for fabric port 4/1 to 5.

```
(configure)# set buffering fabric-port 4/1 routing output pri-threshold 5
Buffers for fabric-port 4/1 set.
```

Systems

set buffering port (age-timer)

Command Mode

Global Configuration.

Description

Sets the output buffer age timer for a physical port. The default setting is 168.

Syntax

set buffering port <mod-port-spec> output age-timer {21 | 42 | 84 | 168 | 336 | 672 | 1340}

Table 39: set buffering port (age-timer) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-port-spec></td>
<td>Specifies the module and the port.</td>
</tr>
<tr>
<td>output</td>
<td>The output buffer.</td>
</tr>
<tr>
<td>age-timer</td>
<td>The values for the age timer are: 21, 42, 84, 168, 336, 672 or 1340.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the output age timer for port 4/1 as 42.

(configure)# set buffering port 4/1 output age-timer 42
Buffers for fabric-port 4/1 set.

Systems

set buffering port (hipri-alloc)

Command Mode

Global Configuration.

Description

Sets the output buffer high priority allocation percentage for a physical port. The default setting is 20.

Syntax

set buffering port <mod-port-spec> output hipri-alloc \{10 | 20 | 30 | 40 | 50\}

Table 40: set buffering port (hipri-alloc) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-port-spec></td>
<td>Specifies the module and the port.</td>
</tr>
<tr>
<td>output</td>
<td>The output buffer.</td>
</tr>
<tr>
<td>hipri-alloc</td>
<td>The high priority allocation percentages are: 10, 20, 30, 40, or 50.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the output buffer priority allocation percentage for physical port 4/1 to 50.

(configure)# set buffering port 4/1 output hipri-alloc 50
Buffers for buffering port 4/1 set.

Systems

set buffering port (hipri-service-ratio)

Command Mode

Global Configuration.

Description

Set the output buffer high priority service ratio for a physical port. The default setting is 1023-to-1.

Syntax

set buffering port <mod-port-spec> output hipri-service-ratio {1-to-1 | 3-to-1 | 7-to-1 | 15-to-1 | 31-to-1 | 63-to-1 | 127-to-1 | 255-to-1 | 511-to-1 | 1023-to-1 | 2047-to-1 | 4095-to-1 | 8191-to-1 | 16383-to-1 | 32767-to-1}

Table 41: set buffering port (hipri-service-ratio) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-port-spec></td>
<td>Specifies the module and the port.</td>
</tr>
<tr>
<td>output</td>
<td>The output buffer.</td>
</tr>
<tr>
<td>hipri-service-ratio</td>
<td>The high priority service ratios are: 1-to-1, 3-to-1, 7-to-1, 15-to-1, 31-to-1, 63-to-1, 127-to-1, 255-to-1, 511-to-1, 1023-to-1, 2047-to-1, 4095-to-1, 8191-to-1, 16383-to-1, or 32767-to-1.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the buffer high priority service ratio for physical port 4/1 to 15-to-1.

```
(configure)# set buffering port 4/1 output hipri-service-ratio 15-to-1
Buffers for port 4/1 set.
```

Systems

set buffering port (pri-threshold)

Command Mode

Global Configuration.

Description

Sets the output buffer priority threshold for a physical port. The default setting is 4.

Syntax

set buffering port <mod-port-spec> output pri-threshold {1 | 2 | 3 | 4 | 5 | 6 | 7 | all-frames-normal-priority}

Table 42: set buffering port (pri-threshold) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-port-spec></td>
<td>Specifies the module and the port.</td>
</tr>
<tr>
<td>output</td>
<td>The output buffer.</td>
</tr>
<tr>
<td>pri-threshold</td>
<td>The priority thresholds are: 1, 2, 3, 4, 5, 6, 7 or all-frames-normal-priority.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the output buffer priority threshold for physical port 4/1 to 5.

(configure)# set buffering port 4/1 output pri-threshold 5

Systems

show buffering fabric-port

Command Mode
User.

Description
Displays the buffering configuration and statistics for a fabric port.

Syntax
show buffering fabric-port [<fabric-port-spec> [...,<fabric-port-spec>]]

Table 43: show buffering fabric-port Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><fabric-port-spec></td>
<td>Specifies a fabric port.</td>
</tr>
</tbody>
</table>

Sample Output
The following example displays the buffering configuration and statistics for fabric-port 4/1-4/10

> show buffering fabric-port 4/1-4/10

<table>
<thead>
<tr>
<th>Fabric Port:4/1-4/8</th>
<th>Input Buffer</th>
<th>Output Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory(KB):</td>
<td>256</td>
<td>496</td>
</tr>
<tr>
<td>Age Timer(ms):</td>
<td>160-to-320</td>
<td>160-to-320</td>
</tr>
<tr>
<td>HiPri Allocation(%)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>HiPri Allocation(%)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Priority Threshold:</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>High Pri Service Ratio:</td>
<td>999-to-1</td>
<td>999-to-1</td>
</tr>
<tr>
<td>High Overflow Drops:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Overflow Drops:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>High Stale Drops:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stale Drops:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Congestion Drops:</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
show buffering port

Command Mode

User.

Description

Displays the buffer configuration and statistics for a physical port.

Syntax

show buffering port [<mod-port-spec>[..,<mod-port-spec>]]

Table 44: show buffering port Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-port-spec></td>
<td>Specifies a particular port or a range of ports on a module.</td>
</tr>
</tbody>
</table>

Sample Output

The following example displays the buffer configuration and statistics for physical port 6/19.

> show buffering port 6/19

Physical Port: 6/19 Input Buffer Output Buffer
------------------- --------------- ---------------
Memory): 16 116
Age Timer): - 168
HiPri Allocation(%) run: - 20
HiPri Allocation(%) cfg: - 20
Priority Threshold: - 4
High Pri Service Ratio: - 1023-to-1
High Overflow Drops: - 0
Overflow Drops: - 0
High Stale Drops: - 0
Stale Drops: 0 0
Buffering

Systems

Chapter 5: Console

Overview

This chapter describes:

- `set console baud`
- `set console databits`
- `set console flowcontrol`
- `set console initcmd`
- `set console parity`
- `set console stopbits`
- `set console transfer ppp`
- `set console type`
- `show console`
set console baud

Command Mode

 Global Configuration.

Description

 Sets console port baud rate. The default value is 9600.

Syntax

 set console baud {300| 1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 | 115200}

Table 45: set console baud Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{300</td>
<td>1200</td>
</tr>
</tbody>
</table>

Sample Output

 The following example sets the console baud rate to 19200.

 (configure)# set console baud 19200

Systems

set console databits

Command Mode

Global Configuration.

Description

Sets the console serial port’s databit width. The default value is 8.

Note:

This command is not applicable when the console serial port is configured in PPP mode. The input will not be accepted or stored when the console serial port is configured in PPP mode.

However, if the console serial port is configured as TTY mode and the databits width is configured, the console serial port can be changed to PPP mode and the databit width is saved until TTY mode is restored.

Syntax

set console databits {7 | 8}

Table 46: set console databits Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{7</td>
<td>8}</td>
</tr>
</tbody>
</table>

Sample Output

This example sets the databit width for the console serial port to 7.

(configure)# set console databits 7

Systems

set console flowcontrol

Command Mode

Global Configuration.

Description

Sets the flow control type for the serial console port. The default for both TTY and PPP is xon/ xoff.

Syntax

set console flowcontrol {none | xon/xoff}

Table 47: set console flowcontrol Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{none</td>
<td>xon/xoff}</td>
</tr>
</tbody>
</table>

Sample Output

This example sets the console flow control to none.

(configure)# set console flowcontrol none

Systems

set console initcmd

Command Mode

Global Configuration.

Description

Sets the modem initialization string for console serial port modem control software. The default Modem Configuration String is \texttt{AT&D0S0=1}.

\textbf{Note:}

This command is not applicable when the console serial port is in TTY mode. The command is not accepted or stored when the serial port is in TTY mode.

The init command string is used to configure the attached external modem so that dial-in sessions will be properly accepted by the modem and the connection successfully completed between the switch and the remote system. The \texttt{set console initcmd} is accepted only when the console serial port is in PPP mode. See your modem’s reference literature to find the correct AT parameters.

There are few configurations and Avaya recommended modems that do not require a modem initialization string.

Syntax

\texttt{set console initcmd [init_cmd_string]}

\textbf{Table 48: set console initcmd Parameters}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[init_cmd_string]</td>
<td>An optional parameter, however, when the parameter is missing, it means that the modem initialization string is <null>.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the console initialization command with an initialization string of \texttt{AT&D0S0=1}

\texttt{(configure)# set console initcmd AT&D0S0=1}

\textbf{Systems}

set console parity

Command Mode
Global Configuration.

Description
Sets the parity for the console serial port. The default setting is none.

Note:
The concept of parity is not applicable to the console serial port when it is configured in PPP mode. When the console serial port is configured in PPP mode, the parity value cannot be accepted or stored. However, to save a parity value, the console serial port mode can be changed to TTY mode, the parity value set, and the console serial port mode returned to PPP mode. The parity value is saved until the console serial port is reconfigured as TTY mode.

Syntax
set console parity {none | even | odd}

Table 49: set console parity Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{none</td>
<td>even</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the console parity to even.

```
(configure)# set console parity even
```

Systems

set console stopbits

Command Mode

Global Configuration.

Description

Sets the serial console port stopbits to 1 or 2 bits wide. The default setting is 1.

Stopbits is not compatible with the serial console port configured in PPP mode. The stopbits parameter cannot be accepted or saved when the serial console port is configured as PPP mode.

However, to configure the serial console port stopbits parameter, the serial console port can be configured as TTY mode and the stopbits parameter set. The serial console port can then be reconfigured as PPP mode. The stopbits parameter is saved until the console serial port is reconfigured as TTY mode.

Syntax

set console stopbits {1 | 2}

Table 50: set console stopbits Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1</td>
<td>2}</td>
</tr>
</tbody>
</table>

Sample Output

This example sets the serial console port stopbits to 2 bits wide

(configure)# set console stopbits 2

Systems

set console transfer ppp

Command Mode

 Global Configuration.

Description

Transfers control of the serial console port and the CLI session to the PPP protocol layer. This command is accepted only when the console serial port is configured in PPP mode.

When accepted, this command immediately terminates the current CLI session, logs the user out, and switches the I/O on the serial console port from the CLI processing software to the PPP layer. The remote host also needs to simultaneously change its I/O to use PPP software. This command is NOT stored (no back-end), and is only for use when the user has successfully dialed-into the switch. This command can only be accepted when the Console Serial Port is configured in PPP mode.

The command cannot be accepted from a telnet session, it can be accepted only over directly connected serial sessions, and most preferably from a post-dial modem terminal session on the remote host.

Syntax

 set console transfer ppp

Sample Output

 The following example sets the console transfer ppp.

 (configure)# set console transfer ppp

Systems

set console type

Command Mode

Global Configuration.

Description

Sets the console type to the indicated value - either tty or ppp. The default is tty.

Syntax

set console type {tty | ppp}

Table 51: set console type Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{tty</td>
<td>ppp}</td>
</tr>
<tr>
<td></td>
<td>● tty - Sets the serial console port mode to use straight ascii interface, in other words, “dumb terminal.”</td>
</tr>
<tr>
<td></td>
<td>● ppp - Sets the serial console port mode, upon the conclusion of the current TTY:CLI session, to interact with an external modem, and to permit the use of a PPP connection and PPP packets contained in Async-PPP frames.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the console type to tty.

(configure)# set console type ppp

Systems

show console

Command Mode
User.

Description
Displays the serial console port configuration.

Syntax
show console

Sample Output
The following example displays the serial port configuration information.

> show console
 Type: TTY
 Baudrate: 9600 bps
 Flow control: XON/XOFF
 Data bits: 8
 Parity: None
 Stop bits: 1

Systems
Chapter 6: DNS

Overview

This chapter describes the following commands:

- ip domain-lookup
- ip name-server
- ip domain-list
- ip domain-name
- show host

ip domain-lookup

Command Mode

Global Configuration.

Description

Enables DNS client. The no form of this command disables DNS client.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip domain-lookup</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip domain-lookup</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables DNS.

(configure)# ip domain-lookup

Systems

ip name-server

Command Mode

Global Configuration.

Description

Adds a DNS server address. The **no** form of this command removes the DNS server address.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip name-server <ip address></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip name-server <ip address></td>
</tr>
</tbody>
</table>

Sample Output

The following example adds the DNS server with an IP address of 210.120.87.90.

```
(configure)# ip name-server 210.120.87.90
```

Systems

ip domain-list

Command Mode

Global Configuration.

Description

Adds a domain name to the domain name list. The **no** form of this command removes the domain name.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip domain-list <name></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip domain-list <name></td>
</tr>
</tbody>
</table>
Sample Output

The following example adds the name “avaya.com” to the DNS name list.

(configure)# ip domain-list avaya.com

Systems

ip domain-name

Command Mode

Global Configuration.

Description

Adds a domain name to the domain name list. The **no** form of this command removes the domain name.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip domain-name <code><domain-name></code></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip domain-name <code><domain-name></code></td>
</tr>
</tbody>
</table>

Sample Output

The following example adds the name “avaya.com” to the DNS name list.

(configure)# ip domain-name avaya.com

Systems

show host

Command Mode
 Global Configuration.

Description
 Displays the DNS domain configuration.

Syntax
 show host

Sample Output
 The following example displays the DNS configuration:

 (configure)# show host

Systems
Chapter 7: DVMRP

Overview

This chapter describes the following commands:

- ip dvmrp
- ip dvmrp interface type
- ip dvmrp interface-metric
- ip dvmrp min-route-flash-update
- ip dvmrp neighbor-probe-interval
- ip dvmrp neighbor-timeout
- ip dvmrp prune-message-lifetime
- ip dvmrp remote-tunnel-address
- ip dvmrp route-limit
- ip dvmrp stats-reset
- ip dvmrp timers basic
- ip multicast prune-source
- ip multicast ttl-threshold
- router dvmrp
- show ip dvmrp
- show ip dvmrp designated forwarders
- show ip dvmrp downstream dependent routers
- show ip dvmrp forwarding cache
- show ip dvmrp interface
- show ip dvmrp interface neighbors
- show ip dvmrp routes
DVMRP

ip dvmrp

Command Mode

Interface Configuration.

Description

Enables and configure DVMRP services on an interface. The no form of this command disables DVMRP services on an interface.

Syntax

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Enable:</td>
<td>ip dvmrp</td>
</tr>
<tr>
<td>To Disable:</td>
<td>[no] ip dvmrp</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables dvmrp on an interface.

```
(config-if:boston)# ip dvmrp
```

Systems

ip dvmrp interface-metric

Command Mode

Interface Configuration.

Description

Configures the DVMRP interface metric. The no form of this command restores the default, which is 1.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip dvmrp interface-metric <intf-metric></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip dvmrp interface-metric</td>
</tr>
</tbody>
</table>

Table 52: ip dvmrp interface-metric Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><intf-metric></td>
<td>DVMRP interface metric or hop count. The valid range is 1 to 31 hops. The default setting is 1.</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures the interface labeled “boston” with a DVMRP interface metric of 2.

```
(config-if:boston)# ip dvmrp interface-metric 2
```

Systems

ip dvmrp interface type

Command Mode

Interface Configuration.

Description

Configures the DVMRP interface type. The no form of this command restores the interface to the default interface type, which is broadcast.

Syntax

```plaintext
To Configure:    ip dvmrp interface type {broadcast | nonEncapsulatedTunnel | IPIPTunnel}
To Restore Default: [no] ip dvmrp interface type
```

Table 53: ip dvmrp interface type Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface type</td>
<td>DVMRP interface type. The case-sensitive keywords are broadcast (default), nonEncapsulatedTunnel, and IPIPTunnel.</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures interface “boston” as a DVMRP IPIPTunnel.

```
(config-if:boston)# ip dvmrp interface type IPIPTunnel
```

Systems

ip dvmrp min-route-flash-update

Command Mode

DVMRP Router Configuration.

Description

Sets the DVMRP minimum route flash update period. Use the no form of this command to return to the default value of 5.

Syntax

To Configure: ip dvmrp min-route-flash-update <min-update-value>

To Restore Default: [no] ip dvmrp min-route-flash-update

Table 54: ip dvmrp min-route-flash-update Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><min-update-value></td>
<td>The DVMRP minimum route flash update period, measured in seconds. The valid range is 5 to 20 seconds. The default setting is 5 seconds</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures the ip dvmrp minimum route flash update period for ten seconds.

(configure router:dvmrp)# ip dvmrp min-route-flash-update 10

Systems

ip dvmrp neighbor-probe-interval

Command Mode

DVMRP Router Configuration.

Description

Sets the DVMRP neighbor probe interval. Use the no form of this command to return to the default value of 10 seconds.

Syntax

To Configure:

```
ip dvmrp neighbor-probe-interval <neighbor-probe>
```

To Restore Default:

```
[no] ip dvmrp neighbor-probe-interval
```

Table 55: ip dvmrp neighbor-probe-interval Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| `<neighbor-probe>` | The DVMRP neighbor probe interval, which is measured in seconds.
The valid range is 5-45 seconds. The default setting is 10 seconds. |

Sample Output

The following example configures the IP DVMRP neighbor probe interval for eleven seconds.

```
(configure router:dvmrp)# ip dvmrp neighbor-probe-interval 11
```

Systems

ip dvmrp neighbor-timeout

Command Mode

DVMRP Router Configuration.

Description

Sets the DVMRP neighbor timeout interval. Use the no form of this command to return to the default value of 35 seconds.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip dvmrp neighbor-timeout <neighbor-timeout></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip dvmrp neighbor-timeout</td>
</tr>
</tbody>
</table>

Table 56: ip dvmrp neighbor-timeout Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><neighbor-timeout></td>
<td>The DVMRP neighbor timeout interval, which is measured in seconds.</td>
</tr>
<tr>
<td></td>
<td>The valid range is 10 to 50 seconds. The default setting is 35 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures the IP DVMRP neighbor timeout interval for thirty-six seconds.

```
(configure router:dvmrp)# ip dvmrp neighbor-timeout 36
```

Systems

ip dvmrp prune-message-lifetime

Command Mode

DVMRP Router Configuration.

Description

Sets the DVMRP prune message lifetime. Use the no form of this command to return to the default value of 7200 seconds.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip dvmrp prune-message-lifetime <prune-lifetime></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip dvmrp prune-message-lifetime</td>
</tr>
</tbody>
</table>

Table 57: ip dvmrp prune-message-lifetime Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><prune-lifetime></td>
<td>The DVMRP upstream prune message lifetime. The message lifetime is measured in seconds. The valid range is 100-7,200 seconds. The default setting is 7,200 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures the IP DVMRP prune message lifetime for fifteen hundred seconds.

```plaintext
(configure router:dvmrp)# ip dvmrp prune-message-lifetime 1500
```

Systems

ip dvmrp remote-tunnel-address

Command Mode

Interface Configuration.

Description

Configures the DVMRP remote-tunnel-address on an interface. The no form of this command restores the default, which is: no defined address.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip dvmrp remote-tunnel-address <ip-addr></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip dvmrp remote-tunnel-address</td>
</tr>
</tbody>
</table>

Table 58: ip dvmrp remote-tunnel-address Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-addr></td>
<td>Unicast Network IP address of the DVMRP capable router designated to be</td>
</tr>
<tr>
<td></td>
<td>DVMRP tunnel end point.</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures the DVMRP remote tunnel address on interface 199.162.99.61.

```
(configure if:1)# ip dvmrp remote-tunnel-address 199.162.99.61
```

Systems

ip dvmrp route-limit

Command Mode

DVMRP Router Configuration.

Description

Sets the maximum routes allowed in DVMRP. Use the no form of this command to return to the default value of 7000 routes.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip dvmrp route-limit <route-limit></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no ip dvmrp route-limit</td>
</tr>
</tbody>
</table>

Table 59: ip dvmrp route-limit Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><route-limit></td>
<td>The maximum number of routes allowed. The valid range is 10 to 20,000.</td>
</tr>
<tr>
<td></td>
<td>The default setting is 7,000</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures the IP DVMRP route limit to five thousand, five hundred.

```
(configure router:dvmrp)# ip dvmrp route-limit 5500
```

Systems

ip dvmrp stats-reset

Command Mode

DVMRP Router Configuration.

Description

Resets the DVMRP global statistics.

Syntax

ip dvmrp stats-reset

Sample Output

The following example shows the command for IP DVMRP stats-reset.

```
(configure router:dvmrp)# ip dvmrp stats-reset
```

Systems

ip dvmrp timers basic

Command Mode

DVMRP Router Configuration.

Description

Adjusts the DVMRP network timers. Use the no form of this command to return to the default values.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip dvmrp timers basic <rte-update> <rte-expire> <rte-holddown></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip dvmrp timers basic</td>
</tr>
</tbody>
</table>

Table 60: ip dvmrp timers basic Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><rte-update></td>
<td>Configures the DVMRP route reporting interval. The range of frequencies at which updates are sent is 30 to 90 seconds. The default setting is 60 seconds.</td>
</tr>
<tr>
<td><rte-expire></td>
<td>Interval of time, in seconds, after which a DVMRP route expires. The valid range is 70 to 190 seconds. The default value is 140 seconds.</td>
</tr>
<tr>
<td><rte-holddown></td>
<td>The amount of time, in seconds, that must pass before the route is removed from the routing table. The valid range is 120-380 seconds. The default setting is 120 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures the IP DVMRP timers basic with route update time of 35 seconds, a route expiration time of 75 seconds and route holddown time of 145 seconds.

```
(configure router:dvmrp)# ip dvmrp timers basic 35 75 145
```

Systems

ip multicast prune-source

Command Mode

Interface Configuration.

Description

Configures the host address used in DVMRP prune packets forwarded on this interface. The no form of this command restores the default, which is host-addr.

Syntax

| To Configure: | ip multicast prune-source {host-addr | network-addr} |
|------------------------|-----------------|
| To Restore Default: | [no] ip multicast prune-source |

Table 61: ip multicast prune-source Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>host-addr</td>
<td>The full host address is used in the prune packet for the source address.</td>
</tr>
<tr>
<td>network-addr</td>
<td>Only the network portion of the address is used in the prune packet.</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures the DVRMP prune packets to the host address for interface 1.

```
(configure if:1)# ip multicast prune-source host-addr
```

Systems

ip multicast ttl-threshold

Command Mode

Interface Configuration.

Description

Sets the minimum TTL (time-to-live) required for a packet to leave the interface. The no form of this command restores the default (none).

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip multicast ttl-threshold <ttl-thresh></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip multicast ttl-threshold</td>
</tr>
</tbody>
</table>

Table 62: ip multicast ttl-threshold Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ttl-thresh></td>
<td>Indicates the time to live threshold: The possible values are:</td>
</tr>
<tr>
<td></td>
<td>● 0- None</td>
</tr>
<tr>
<td></td>
<td>● 127</td>
</tr>
<tr>
<td></td>
<td>● 2-255 - only outbound broadcasts are accepted.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the minimum TTL required for a packet to leave interface 1 to 127.

(configure if:1)# ip multicast ttl-threshold 127

Systems

router dvmrp

Command Mode
Global Configuration.

Description
Enables DVMRP routing globally on an interface. The no form of the command disables DVMRP routing. The default state is Enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>router dvmrp</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] router dvmrp</td>
</tr>
</tbody>
</table>

Sample Output
The following example enables DVMRP routing.

```
(configure)# router dvmrp
```

Systems

show ip dvmrp

Command Mode
User.

Description
Displays configuration information about the DVMRP protocol.

Syntax
```
show ip dvmrp
```
Sample Output

The following example displays the DVMRP global configuration information with some statistics.

> show ip dvmrp
DVMRP state is Enabled

 Neighbor probe interval: 10
 Neighbor timeout interval: 35
 Minimum flash update interval: 5
 Maximum number of routes allowed: 7000
 Route report interval: 60
 Route expire period: 140
 Route holddown period: 120
 Prune message lifetime: 7200
 Prune message retransmit interval: 3
 Graft message retransmit interval: 5

Global Statistics
 Probe messages received: 014181
 Probe messages transmitted: 22272
 Report messages received: 2462
 Report messages transmitted: 1412
 Prune messages received: 1
 Prune messages transmitted: 6
 Graft messages received: 2
 Graft messages transmitted: 5
 Graft acknowledge messages received: 3
 Graft acknowledge messages transmitted: 2
 Unknown messages received: 0
 Valid route report messages received: 3
 Total remote and local route entries: 3
 Total triggered route entries: 0

Systems

show ip dvmrp designated forwarders

Command Mode

User.

Description
Displays all DVMRP designated forwarding routers for the source network address and address mask.

Syntax
show ip dvmrp designated forwarders <ip-addr> <mask>

Table 63: show ip dvmrp designated forwarders Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>designated forwarders</td>
<td>Display DVMRP designated forwarder information.</td>
</tr>
<tr>
<td></td>
<td>● <ip-addr> - the source network address.</td>
</tr>
<tr>
<td></td>
<td>● <mask> - the mask for the source network address.</td>
</tr>
</tbody>
</table>

Sample Output
The following example displays the DVMRP designated forwarding routers for ip address 20.0.4.0 and mask 255.255.255.0.

> show ip dvmrp designated forwarders 20.0.4.0 255.255.255.0
DVMRP designated forwarders for route entry 20.0.4.0/255.255.255.0
Forwarder interface: vlan9
Forwarder network address: 9.0.0.100
Forwarder cost to source network: 3

Forwarder interface: vlan11
Forwarder network address: 11.0.0.10
Forwarder cost to source network: 2

Forwarder interface: Test70 VLAN: VLAN70
Forwarder network address: 10.4.53.102
Forwarder cost to source network: 1

Forwarder interface: SW Lab VLAN71
Forwarded Network Address: 171.102.0.1
Forwarder cost to source network: 1

Systems
show ip dvmrp downstream dependent routers

Command Mode
User.

Description
Displays all DVMRP downstream dependent neighbor routers for the source network address and address mask.

Syntax
show ip dvmrp downstream dependent routers <ip-addr> <mask>

Table 64: show ip dvmrp downstream dependent routers Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>downstream dependent routers</td>
<td>Display DVMRP downstream dependency information.</td>
</tr>
<tr>
<td></td>
<td>● <ip-addr> - The source network address IP address.</td>
</tr>
<tr>
<td></td>
<td>● <mask> - The mask for the source network address IP subnet.</td>
</tr>
</tbody>
</table>

Sample Output
The following example displays all DVMRP downstream dependent neighbor routers for ip address 20.0.4.0 and mask 255.255.255.0.

> show ip dvmrp downstream dependent routers 20.0.4.0 255.255.255.0
DVMRP designated forwarders for route entry 44.0.0.0/255.0.0.0
Neighbor network adders: 9.0.0.10
Found on interface: vlan9
Neighbor supported major/minor version 3/0xFF
Neighbor received probe from this router: Yes
Neighbor supports prune function: Yes
Neighbor supports generation ID function: Yes
Neighbor supports MTRACE requests: No
Neighbor is SNMP manageable: Yes

Systems
show ip dvmrp forwarding cache

Command Mode
User.

Description
Displays the DVMRP Multicast Forwarding Cache.

Syntax

```
show ip dvmrp forwarding cache
```

Sample Output

The following example displays the DVMRP Multicast Forwarding cache.

```
> show ip dvmrp forwarding cache
  DVMRP forwarding cache

  Destination group address: 225.0.0.100
  Source subnetwork: 10.4.32.0
  Source address mask: 255.255.255.0
  Upstream interface: Accounting
  Upstream VLAN: VLAN70
  Upstream neighbor (router) address: 10.4.54.105
  Invalid flows from upstream: 0
  Packets forwarded through cache entry: 1
  Upstream interface is pruned: Yes
  Next pruned downstream interface to timeout: None
  Downstream interface(s): Filtered
  Interface: Video_Feed VLAN: VLAN60
  Interface type: Broadcast
  Interface is pruned: No
  Prune expiration time in (sec): n/a
  Upstream source(s)

    Flow source address: 33.33.33.34
    Payload protocol type: UDP
    Source port number: 3280
    Destination port number: 49153

```

Systems

show ip dvmrp interface

Command Mode
User.

Description
Displays the related information about the DVMRP interface.

Syntax
show ip dvmrp interface

Sample Output
The following example displays information for an ip DVMRP interface

> show ip dvmrp interface
DVMRP circuit IFIndex 8 on interface vlan40 state is up

 Interface address and mask: 10.0.4.94/255.255.255.0
 Interface type: Broadcast
 Prune message flow source address: Use source host address
 Current neighbors on interface: 0
 Interface metric: 1
 Interface scope: 0
 Invalid protocol message received: 0
 Invalid route messages received: 0
 Route messages transmitted: 13320

Systems
show ip dvmrp interface neighbors

Command Mode
User.

Description
Displays all DVMRP neighbors on all DVMRP configured interfaces.

Syntax
show ip dvmrp interface neighbors

Sample Output
The following example displays all DVMRP neighbors on all of the configure DVMRP interfaces on the switch.

> show ip dvmrp interface neighbors
DVMRP neighbor routers on interface vlan9

Neighbor network address: 9.0.0.10
Neighbor supported major/minor version: 3/0x0FF
Neighbor expiration period in (sec): 27
Neighbor received probe from this router: Yes
Neighbor supports prune function: Yes
Neighbor supports generation ID function: No
Neighbor supports MTRACE requests: No
Neighbor is SNMP manageable: Yes

Systems
show ip dvmrp routes

Command Mode
User.

Description
Displays all DVMRP routes.

Syntax
show ip dvmrp routes

Sample Output
The following example displays all DVMRP routes.

> show ip dvmrp routes
DVMRP route table

Source network and mask: 10.0.4.94/255.255.255.0
Reporting router: 10.0.6.96
Reporting router interface: Software_Lab
Reporting router vlan: vlan60
Route metric: 3
Expiration period in (sec): 18

Source network and mask: 171.102.0.0/255.255.0.0
Local Interface: Hardware_Lab
Local VLAN: VLAN 71
Route metric: 1

Systems
Chapter 8: Hunt Groups

Overview

This chapter describes:
- `set huntgroup`
- `set huntgroup auto-flush`
- `set huntgroup (redistribute)`
- `set huntgroup internal-error-shutdown`
- `show huntgroup`
- `show huntgroup detailed`
- `show huntgroup internal-error-config`

set huntgroup

Command Mode
Global Configuration.

Description

Creates a hunt group, modifies an existing hunt group or removes a hunt group. If no load-sharing value is specified, then a hunt group is created with load-sharing enabled. Use the `clear huntgroup` form of this command to remove a hunt group.

Syntax

| To Configure: | set huntgroup <huntgroup-name> [load-sharing {enable | disable}] |
|---------------|---|
| To Delete: | clear huntgroup <huntgroup-name> |
Hunt Groups

Sample Output

The following example creates hunt group hg1 and disables load-sharing.

 (configure)# set huntgroup hg1 load-sharing disable
 HuntGroup “hg1” created

Systems

set huntgroup auto-flush

Command Mode

Global Configuration.

Description

Enables or disables the auto flush feature for the ports participating in a hunt group.

When you enable auto flush for a hunt group, all AFT entries that were learned on the hunt group are marked invalid if the links to all of the hunt group ports fail. Once the AFT entries are marked invalid, they can be learned on a redundant port. When auto flush is enabled, failover to a redundant port occurs much sooner.

Syntax

| To Enable: | set huntgroup auto-flush <huntgroup-name> enable |
| To Disable: | set huntgroup auto-flush <huntgroup-name> disable |

Table 65: set huntgroup Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><huntgroup-name></td>
<td>The unique string used to identify a hunt group. If the name is not unique to the hunt group, then it is assumed that an existing hunt group is being modified.</td>
</tr>
</tbody>
</table>
| load-sharing | The load sharing capability.
 • {enable | disable} - Enables or disables load sharing. |

- Systems

- **set huntgroup auto-flush**

 Command Mode

 Global Configuration.

 Description

 Enables or disables the auto flush feature for the ports participating in a hunt group.

 When you enable auto flush for a hunt group, all AFT entries that were learned on the hunt group are marked invalid if the links to all of the hunt group ports fail. Once the AFT entries are marked invalid, they can be learned on a redundant port. When auto flush is enabled, failover to a redundant port occurs much sooner.

 Syntax

 | To Enable: | set huntgroup auto-flush <huntgroup-name> enable |
 | To Disable: | set huntgroup auto-flush <huntgroup-name> disable |
set huntgroup (redistribute)

Table 66: set huntgroup auto-flush Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><huntgroup-name></td>
<td>The hunt group for which you want to enable or disable auto flush.</td>
</tr>
<tr>
<td>{enable</td>
<td>disable}</td>
</tr>
</tbody>
</table>

Systems
P580 and P882.

set huntgroup (redistribute)

Command Mode
Global Configuration.

Description
Redistributes learned addresses to a hunt group. The MAC addresses are redistributed among the hunt group ports.

Syntax
set huntgroup <huntgroup-name> redistribute

Table 67: set huntgroup Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><huntgroup-name></td>
<td>The unique identifier of a hunt group.</td>
</tr>
</tbody>
</table>

Sample Output
The following example redistributes hunt group 1 (hg1).

(configure)# set huntgroup hg1 redistribute
HuntGroup "hg1" successfully redistributed

Systems
set huntgroup internal-error-shutdown

Command Mode

Global Configuration.

Description

Enables or disables internal-error-shutdown on the hunt group.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set huntgroup internal-error-shutdown enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>set huntgroup internal-error-shutdown disable</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables internal-error-shutdown on a hunt group.

(configure)# set huntgroup internal-error-shutdown enable

Systems

show huntgroup

Command Mode
User.

Description
Displays a single hunt group or, if no hunt group name is specified, then all of the configured hunt groups display.

Syntax
show huntgroup [<huntgroup-name>]

Table 68: show huntgroup Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><huntgroup-name></td>
<td>The name of the hunt group to be displayed.</td>
</tr>
</tbody>
</table>

Sample Output
The following example shows detailed hunt group information.

> show huntgroup 1

<table>
<thead>
<tr>
<th>huntgroup name</th>
<th>HGID</th>
<th>Base-Port</th>
<th>Load-Sharing</th>
<th># Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>huntgroup</td>
<td>1</td>
<td>1</td>
<td>Enable</td>
<td>0</td>
</tr>
</tbody>
</table>

Switch Port:

Systems
show huntgroup detailed

Command Mode
User.

Description
Displays detailed information about all of the hunt groups configured on your switch.

Syntax
show huntgroup detailed

Sample Output
The following example shows detailed hunt group information.

```
> show huntgroup detailed

huntgroup name  HGD  Base-Port  Load-Sharing  # Ports
--------------- ----- -------- -------- -------
huntgroup 1     1   1        Enable     0

Switch Port:
```

Systems
show huntgroup internal-error-config

Command Mode
User.

Description
Displays the status of internal-error-detection on the hunt group.

Syntax
show huntgroup internal-error-config

Sample Output
The following example displays the status of internal-error-detection for the hunt group.

(configure)# show huntgroup internal-error-config
HuntGroup internal-error-detection enabled

Systems
Hunt Groups
Chapter 9: IGMP

Overview

This chapter describes the following commands:

- `ip igmp`
- `ip igmp max-groups`
- `ip igmp process-leaves`
- `ip igmp querier`
- `ip igmp querier-timeout`
- `ip igmp query-interval`
- `ip igmp query-max-response-time`
- `ip igmp query-timeout`
- `ip igmp robustness`
- `ip igmp version`
- `ip mtrace`
- `mtrace`
- `router igmp`
- `show ip igmp groups`
- `show ip igmp interface`
- `show ip igmp statistics`
ip igmp

Command Mode

Interface Configuration.

Description

Enables the Internet Group Management Protocol (IGMP) on an interface. The no form of this command disables IGMP on an interface.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip igmp</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ip igmp</td>
</tr>
</tbody>
</table>

System

ip igmp max-groups

Command Mode

Interface Configuration.

Description

Sets the maximum number of IGMP groups on an interface. The no form of this command restores the default value, which is 32 groups.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip igmp max-groups <number></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip igmp max-groups</td>
</tr>
</tbody>
</table>

Table 69: ip igmp max-groups Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><number></td>
<td>Maximum number IGMP groups on the interface. The valid range is 1 to 7000. The default setting is 32.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the maximum number of IGMP groups on interface labelled “Boston” to 50.

(config-if:boston)# ip igmp max-groups 50

Systems

ip igmp process-leaves

Command Mode
Interface Configuration.

Description
Enables the processing of leave requests on an interface. The no form of this command disables the processing of leave requests on an interface and returns it to the default state: enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip igmp process-leaves 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>ip igmp process-leaves 0</td>
</tr>
</tbody>
</table>

Sample Output
The following example enables the processing of leave requests on interface labelled boston.

```
(config-if:boston)# ip igmp process-leaves 1
```

Systems
ip igmp querier

Command Mode

Interface Configuration.

Description

Enables IGMP querier on an interface on a router.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip igmp querier 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>ip igmp querier 0</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables IGMP querier on interface labeled “boston”.

(config-if:boston)# ip igmp querier 1

Systems

ip igmp querier-timeout

Command Mode

Interface Configuration.

Description

Sets the time that needs to elapse from the time the last query was heard before this router takes over as a designated querier for the interface. The no form of this command restores the default value of 255 seconds.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip igmp querier-timeout <nbr-qry></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip igmp querier-timeout</td>
</tr>
</tbody>
</table>

Table 70: ip igmp querier-timeout Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><nbr-qry></td>
<td>The neighbor group querier timeout in seconds. The range is 30-600 seconds. The default setting is 255 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures the time out period before the router takes over as the querier on an interface labeled “boston” to 250 seconds.

(config-if:boston)# ip igmp querier-timeout 250

Systems

ip igmp query-interval

Command Mode

Interface Configuration.

Description

Configures the frequency at which the router sends IGMP host-query messages. The no form of this command restores the default value of 125 seconds.

Syntax

<table>
<thead>
<tr>
<th>To Configure</th>
<th>ip igmp query-interval <code><req-intvl></code></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default</td>
<td>[no] ip igmp query-interval</td>
</tr>
</tbody>
</table>

Table 71: ip igmp query-interval Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><req-intvl></code></td>
<td>The number of seconds between host-query messages. The valid range is 1 to 65,535 seconds. The default setting is 125 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures the frequency at which the router sends IGMP host query messages on interface labelled “boston” to 125 seconds.

```
(config-if:boston)# ip igmp query-interval 125
```

Systems

ip igmp query-max-response-time

Command Mode

Interface Configuration.

Description

Configures the maximum response time advertised in IGMP queries. The no form of this command restores the default value of 10 seconds.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th><code>ip igmp query-max-response-time <max-rsp-intvl></code></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td><code>[no] ip igmp query-max-response-time</code></td>
</tr>
</tbody>
</table>

Table 72: ip igmp query-max-response-time Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><max-rsp-intvl></code></td>
<td>The maximum response time advertised in IGMP queries. The valid range is 1-25 seconds. The default setting is 10 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures the maximum response time advertised in IGMP queries on interface labeled “boston” to 25 seconds.

```
(config-if:boston)# ip igmp query-max-response-time 25
```

Systems

ip igmp query-timeout

Command Mode

Interface Configuration.

Description

Sets the time that needs to elapse from the time the last query was heard before this router takes over as a designated querier for the interface. The no form of this command restores the default value of 255 seconds.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip igmp query-timeout <nbr-qry></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip igmp query-timeout</td>
</tr>
</tbody>
</table>

Table 73: ip igmp query-timeout Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><nbr-qry></td>
<td>The neighbor group querier timeout in seconds. The range is 30-600 seconds. The default setting is 255 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures the time out period before the router takes over as the querier on an interface labeled “boston” to 250 seconds.

```
(config-if:boston)# ip igmp query-timeout 250
```

Systems

ip igmp robustness

Command Mode

Interface Configuration.

Description

Configures the IGMP robustness variable. Use the no form of this command to restore the default value of 2.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip igmp robustness <code><robustness></code></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td><code>[no] ip igmp robustness</code></td>
</tr>
</tbody>
</table>

Table 74: ip igmp robustness Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><robustness></code></td>
<td>IGMP robustness variable. The valid range is 1 to 65,535. The default setting is 2.</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures the IGMP robustness variable on an interface labeled “boston” to 100 seconds.

```
(config-if:boston)# ip igmp robustness 100
```

Systems

ip igmp version

Command Mode

Interface Configuration.

Description

Configures which IGMP version the router will use. Use the no form of this command to restore the default value of 2.

Syntax

| To Configure: | ip igmp version {2 | 1} |
|---------------|-------------------------|
| To Restore Default: | [no] ip igmp version |

Sample Output

The following example configures the router on an interface labeled “boston” to use IGMP version 1.

(config-if:boston)# ip igmp version 1

Systems

ip mtrace

Command Mode
User.

Description
Globally configures MTrace capability on this router. The no form of this command disables MTrace capability.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip mtrace</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip mtrace</td>
</tr>
</tbody>
</table>

Sample Output
The following example configures IP mtrace capability on the router.
> ip mtrace

Systems
mtrace

Command Mode
Privileged.

Description
Traces the path from a source to a destination branch for a multicast distribution tree. The trace follows the multicast path from the destination to the source by passing an mtrace request packet to each hop. The responses are unicast to the querying router by the first hop router to the source. The mtrace command is helpful in isolating multicast routing failures.

Syntax
mtrace <source> [<destination>] [<group>]

Table 75: mtrace Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><source></td>
<td>The IP address of the Multicast Capable source. This is a unicast address that represents the beginning of the path to be traced.</td>
</tr>
<tr>
<td><destination></td>
<td>The IP address of the unicast destination. If omitted, the trace starts from the system at which the command is typed.</td>
</tr>
<tr>
<td><group></td>
<td>The Multicast Address of the group address to be traced. The default address is: 224.2.0.1. (The group used for MBONE audio.)</td>
</tr>
</tbody>
</table>
IGMP

Sample Output

The following example traces the path from a source (10.0.2.129) to a destination (10.0.4.177) branch for a multicast destination tree (255.0.1.1).

```
# mtrace 10.0.2.129 10.0.4.177 255.0.1.1
```

<table>
<thead>
<tr>
<th>OutIntf</th>
<th>InIntf</th>
<th>Port</th>
<th>Fwd</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.6.96,</td>
<td>10.0.5.96</td>
<td>DVMRP</td>
<td>thresh^32</td>
<td>0 ms</td>
</tr>
<tr>
<td>10.0.5.95,</td>
<td>10.0.1.95</td>
<td>DVMRP</td>
<td>thresh^32</td>
<td>1391000 ms</td>
</tr>
<tr>
<td>10.0.2.63,</td>
<td>10.0.1.63</td>
<td>DVMRP</td>
<td>thresh^32</td>
<td>2054500 ms</td>
</tr>
</tbody>
</table>

Round trip time 0 ms

Systems

router igmp

Command Mode

Global Configuration.

Description

Globally enables or disables IGMP. The **no** form of the command disables a IGMP. The default state is: **Enabled**.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>router igmp</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] router igmp</td>
</tr>
</tbody>
</table>

Sample Output

The following example globally disables IGMP on the switch.

```
(configure)# no router igmp
```

Systems

142 Command Reference Guide for the Avaya P580 and P882 Multiservice Switches, v6.2
show ip igmp groups

Command Mode

User.

Description

Displays multicast groups, learned by this router via IGMP.

Syntax

show ip igmp groups

Sample Output

The following example displays multicast groups learned by this router via IGMP.

> show ip igmp groups
GROUP<s> for Accounting. State is up.
GROUP<s> for Software Lab. State is up
GROUP<s> for Video_Feed. State is up.
 Group Address is 239.255.0.1
 Group Reporter Address is 20.0.4.41
 Entry Expiration Period in (sec) is 193
 Group Created on 02-May-21 17:38:59

Systems

show ip igmp interface

Command Mode
User.

Description
Displays IGMP interface configuration.

Syntax
show ip igmp interface

Sample Output
The following example displays IP IGMP interface information on the switch.

```
> show ip igmp interface
  30net is down
    Internet address is 30.30.1.0 Subnet Mask is 255.255.0.0
    IGMP is enabled on interface?: TRUE
    IP multicast forwarding enabled on interface: FALSE
    IGMP version running is v2
    Maximum number of groups allowed on interface is 32
    Group queries are Enabled? FALSE?
    Processing of Leave Requests is Enabled? TRUE?
    Interval between General Queries sent is 125
    Maximum Response Time inserted into General Queries is 10
    Neighbor Group querier timeout in seconds is 255
    Robustness variable is 2
    Current state of IGMP on this interface is DOWN
```
show ip igmp statistics

Command Mode
User.

Description
Displays IGMP statistics for all interfaces.

Syntax
show ip igmp statistics

Sample Output
The following example displays IGMP statistics for all of the interfaces configured on the switch.

> show ip igmp statistics
 intf4 is up
 Internet address is 10.0.4.94, subnet mask is 255.255.255.0
 Next Query Request in seconds 113
 Neighbor Querier Timeout in seconds 0
 Number of Group Join Requests Received on this interface 110
 Number of Group Leave Request Received on this interface 0
 Number of Group Reports Received on this interface 4711
 Number of Unknown Messages Received on this interface 0
 Number of Current Groups on this interface 7
 .
 .
 .

Systems
Chapter 10: Intelligent Multicast

Overview

This chapter describes the following commands:

- clear cgmp statistics
- clear igmp-snooping statistics
- clear intelligent-multicast client-port
- clear intelligent-multicast router-port
- clear intelligent-multicast session
- clear intelligent-multicast static-client-port
- clear intelligent-multicast static-session
- clear lgmp client statistics
- clear lgmp server statistics
- set cgmp
- set igmp-snooping
- set intelligent-multicast
- set intelligent-multicast client-leave-processing
- set intelligent-multicast client-port-pruning
- set intelligent-multicast client-port-pruning time
- set intelligent-multicast router-port
- set intelligent-multicast router-port-pruning time
- set intelligent-multicast session-pruning
- set intelligent-multicast session-pruning time
- set intelligent-multicast static-client-port
- set intelligent-multicast static-session
- set lgmp client
- set lgmp server
- set lgmp server priority
- set lgmp server proxy
clear cgmp statistics

Command Mode

Global Configuration.

Description

Clears CGMP snooping statistics.

Syntax

clear cgmp statistics

Sample Output

The following example clears cgmp snooping statistics.

(configure)# clear cgmp statistics

Systems

clear igmp-snooping statistics

Command Mode
 Global Configuration.

Description
 Clears IGMP snooping statistics.

Syntax
 clear igmp-snooping statistics

Sample Output
 The following example clears igmp snooping statistics.
 (configure)# clear igmp snooping statistics

Systems
clear intelligent-multicast client-port

Command Mode

Global Configuration.

Description

Removes the specified learned client ports from an Intelligent Multicast session.

Syntax

```
clear intelligent-multicast client-port <session-id> port <port>
```

Table 76: clear intelligent-multicast client-port Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><session-id></td>
<td>The number assigned to the Intelligent Multicast Session at creation. This number can be found using the show intelligent-multicast session command.</td>
</tr>
<tr>
<td><port></td>
<td>The switch port assigned to the Intelligent Multicast session.</td>
</tr>
</tbody>
</table>

Sample Output

The following example removes learned client ports from Intelligent Multicast session 3.

```
(configure)# clear intelligent-multicast client-port 3 port 4/2
```

Systems

clear intelligent-multicast router-port

Command Mode

Global Configuration.

Description

Removes manually or dynamically added router ports.

Note:

You can remove only one router port at a time. If a router port is configured with `vlan all` then you must clear it with `vlan all`.

Syntax

```
clear intelligent-multicast router-port vlan {all | <vlan-id> | name <vlan-name>} port <mod-port-spec>
```

Table 77: clear intelligent-multicast router-port Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| vlan | ● all - All VLANs
 | ● vlan-id - The numerical ID of a specific VLAN.
 | ● name - The VLAN name. |
| <mod-port-spec> | Switch port on a module. |

Sample Output

The following example removes router ports for Intelligent Multicasting on all VLANs bound to port 3/4

```
(configure)# clear intelligent-multicast router-port vlan all port 3/4
Multicast Router Port successfully removed
```

Systems

clear intelligent-multicast session

Command Mode

Global Configuration.

Description

Removes the specified learned session from Intelligent Multicast.

Note:
You cannot use this command to remove static multicast sessions. This command removes dynamically learned multicast sessions only.

Syntax

clear intelligent-multicast session <session-id>

Table 78: clear intelligent-multicast session Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><session-id></td>
<td>A number assigned to the Multicast Session when it is created. This number can be found in the show intelligent-multicast session display.</td>
</tr>
</tbody>
</table>

Sample Output

The following example clears an Intelligent Multicast session.

(configure)# clear intelligent-multicast session 3

Systems

clear intelligent-multicast static-client-port

Command Mode

Global Configuration.

Description

Removes the specified manually added client port from an Intelligent Multicast session.

Syntax

clear intelligent-multicast static-client-port {<group-address> | mac-address <mac-address>} vlan {all | <vlan-id> | name <vlan-name>} port <mod-port-spec>

Table 79: clear intelligent-multicast static-client-port Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><group-address></td>
<td>The IP address of the multicast group for which the session was created.</td>
</tr>
<tr>
<td><mac-address></td>
<td>The MAC address associated with the Intelligent Multicast session.</td>
</tr>
<tr>
<td>vlan</td>
<td>The keyword for per VLAN commands.</td>
</tr>
<tr>
<td></td>
<td>● all - All VLANs</td>
</tr>
<tr>
<td></td>
<td>● vlan-id - The numerical ID of a specific VLAN.</td>
</tr>
<tr>
<td></td>
<td>● name - The VLAN name.</td>
</tr>
<tr>
<td><mod-port-spec></td>
<td>Switch port on a module.</td>
</tr>
</tbody>
</table>

Sample Output

The following example clears a static client port from an Intelligent Multicast session.

(configure)# clear intelligent-multicast static-client-port 225.1.1.2 vlan all port 3/2
Multicast Client successfully destroyed

Systems

clear intelligent-multicast static-session

Command Mode
Global Configuration.

Description
Removes manually created Intelligent Multicast sessions.

Syntax
```
clear intelligent-multicast static-session {<group-address> | mac-address <mac-address>} vlan {all | <vlan-id> | name <vlan-name>}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><group-address></td>
<td>The IP address of the multicast group for which the session was created.</td>
</tr>
<tr>
<td><mac-address></td>
<td>The MAC address associated with the Intelligent Multicast session.</td>
</tr>
<tr>
<td>vlan</td>
<td>The keyword for per VLAN commands.</td>
</tr>
<tr>
<td>all</td>
<td>All VLANs</td>
</tr>
<tr>
<td>vlan-id</td>
<td>The numerical ID of a specific VLAN.</td>
</tr>
<tr>
<td>name</td>
<td>The VLAN name.</td>
</tr>
</tbody>
</table>

Sample Output
The following example clears an intelligent-multicast static session.
```
(configure)# clear intelligent-multicast static-session 225.1.1.2 vlan all
Multicast Session successfully destroyed
```

Systems
clear lgmp client statistics

Command Mode

Global Configuration.

Description

Clears LGMP client statistics. If you omit the parameters, this command will clear the global counters representing all LGMP clients.

Syntax

```plaintext
clear lgmp client statistics [vlan {all | <vlan-id> | name <vlan-name>}]  
```

Table 81: clear lgmp client statistics Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan</td>
<td>The keyword for per VLAN commands.</td>
</tr>
<tr>
<td></td>
<td>● all - All VLANs</td>
</tr>
<tr>
<td></td>
<td>● vlan-id - The numerical ID of a specific VLAN.</td>
</tr>
<tr>
<td></td>
<td>● name - The VLAN name.</td>
</tr>
</tbody>
</table>

Sample Output

The following example clears all lgmp client global statistics.

```plaintext
(configure)# clear lgmp client statistics  
Global statistics cleared
```

Systems

clear lgmp server statistics

Command Mode

Global Configuration.

Description

Clears the LGMP server global or per VLAN statistics. Excluding parameters clears the global counters that represent all LGMP servers.

Syntax

clear lgmp server statistics [vlan {all | <vlan-id> | name <vlan-name>}]

Table 82: clear lgmp server statistics Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan</td>
<td>The keyword for per VLAN commands.</td>
</tr>
<tr>
<td></td>
<td>● all - All VLANS.</td>
</tr>
<tr>
<td></td>
<td>● vlan-id - The numerical ID of a specific VLAN.</td>
</tr>
<tr>
<td></td>
<td>● name - The VLAN name.</td>
</tr>
</tbody>
</table>

Sample Output

The following example clears all lgmp server statistics.

(configure)# clear lgmp server statistics
Global statistics cleared

Systems

set cgmp

Command Mode

Global Configuration.

Description

Enables or disables CGMP snooping functionality. CGMP snooping is disabled by default.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set cgmp enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>set cgmp disable</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables cgmp.

```
(configure)# set cgmp enable
```

Systems

set igmp-snooping

Command Mode

Global Configuration.

Description

Enables or disables IGMP snooping. The default state of IGMP snooping is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set igmp-snooping enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>set igmp-snooping disable</td>
</tr>
</tbody>
</table>
Intelligent Multicast

Sample Output
The following example enables IGMP snooping.

```
(configure)# set igmp-snooping enable
```

Systems

set intelligent-multicast

Command Mode
Global Configuration.

Description
Enables or disables Intelligent Multicasting. The default state is enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set intelligent-multicast enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>set intelligent-multicast disable</td>
</tr>
</tbody>
</table>

Sample Output
The following example enables Intelligent Multicasting.
```
(configure)# set intelligent-multicast enable
```

Systems
set intelligent-multicast client-leave-processing

Command Mode

Global Configuration.

Description

Configures processing of client port leave messages. The default state of this command is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable</th>
<th>set intelligent-multicast client-leave-processing enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable</td>
<td>set intelligent-multicast client-leave-processing disable</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables the processing of intelligent-multicast client-leave-processing messages.

(configure)# set intelligent-multicast client-leave-processing enable

Systems

set intelligent-multicast client-port-pruning

Command Mode

Global Configuration.

Description

Enables or disables automatic client port pruning. The default state of this command is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set intelligent-multicast client-port-pruning enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>set intelligent-multicast client-port-pruning disable</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables automatic client port pruning.

(configure)# set intelligent-multicast client-port-pruning enable
Client Port Pruning State successfully set to enable

Systems

set intelligent-multicast client-port-pruning time

Command Mode

 Global Configuration.

Description

 Sets the time interval after which a client port will be removed from a session if no IGMP reports
 have been heard.

 The valid range is from 1 minute to 1440 minutes (24 hours). Default time is 60 minutes.

Syntax

 set intelligent-multicast client-port-pruning time \{<minutes>\}

Table 83: set intelligent-multicast client-port-pruning time Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><minutes></td>
<td>The number of minutes that a dynamic Intelligent Multicast client port must</td>
</tr>
<tr>
<td></td>
<td>be inactive before it is removed from an Intelligent Multicast session.</td>
</tr>
</tbody>
</table>

Sample Output

 The following example sets the intelligent-multicast port pruning time to 45 minutes.

 (configure)# set intelligent-multicast client-port-pruning time 45
 Client Port Pruning Time successfully set to 45 minutes

Systems

set intelligent-multicast router-port

Command Mode

Global Configuration.

Description

Configures router ports on a selected VLAN or all VLANs. The default state is disabled.

Syntax

set intelligent-multicast router-port vlan {all | <vlan-id> | name <vlan-name>} port <mod-port-spec>

Table 84: set intelligent-multicast router-port Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan</td>
<td>The keyword for per VLAN commands.</td>
</tr>
<tr>
<td></td>
<td>● all - All VLANS.</td>
</tr>
<tr>
<td></td>
<td>● vlan-id - The numerical ID of a specific VLAN.</td>
</tr>
<tr>
<td></td>
<td>● name - The VLAN name.</td>
</tr>
<tr>
<td>port</td>
<td>Switch port on a module.</td>
</tr>
</tbody>
</table>

Sample Output

The following example adds a multicast router port.

(configure)# set intelligent-multicast router-port vlan all port 3/4
Multicast Router Port successfully added

Systems

set intelligent-multicast router-port-pruning

Command Mode

Global Configuration.

Description

Enables or disables automatic router port pruning. The default state is enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set intelligent-multicast router-port-pruning enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>set intelligent-multicast router-port-pruning disable</td>
</tr>
</tbody>
</table>

Sample Output

The following example disables router port pruning.

(configure)# set intelligent-multicast router-port-pruning disable

Systems

set intelligent-multicast router-port-pruning time

Command Mode
 Global Configuration.

Description
 Sets the time interval after which quiet router ports will be removed.

Syntax
 set intelligent-multicast router-port-pruning time <seconds>

Table 85: set intelligent-multicast router-port-pruning time Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><seconds></td>
<td>The number of seconds that a dynamic Intelligent Multicast Router Port must be inactive before it is pruned by the Intelligent Multicast functionality. The value range is 10 to 172800. The default value is 120 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets router port pruning time to 320 seconds.

(configure)# set intelligent-multicast router-port-pruning time 320

Systems

set intelligent-multicast session-pruning

Command Mode

Global Configuration.

Description

Enables or disables session pruning for Intelligent Multicasting. Intelligent multicast session pruning will remove any multicast session from configuration that has been determined to be inactive for a specified amount of time. By default, Intelligent Multicast session pruning is enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set intelligent-multicast session-pruning enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>set intelligent-multicast session-pruning disable</td>
</tr>
</tbody>
</table>

Sample Output

The following example disables intelligent-multicast session pruning.

```
(configure)# set intelligent-multicast session-pruning disable
```

Systems

set intelligent-multicast session-pruning time

Command Mode

Global Configuration.

Description

Sets the time interval after which inactive learned sessions are removed.

Syntax

set intelligent-multicast session-pruning time <seconds>

Table 86: set intelligent-multicast session-pruning time Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><seconds></td>
<td>The number of seconds that a dynamic Intelligent Multicast Session must be inactive before it is pruned by the Intelligent Multicast functionality. The value range is 10 to 172800. The default value is 250 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets intelligent-multicast session pruning time to 320 seconds.

(configure)# set intelligent-multicast session-pruning time 320

Systems

set intelligent-multicast static-client-port

Command Mode
Global Configuration.

Description
Adds a client port to a static Intelligent Multicast session.

Syntax

set intelligent-multicast static-client-port {<group-address> | mac-address <mac-address>} vlan {all | <vlan-id> | name <vlan-name>} port <mod-port-spec>

Table 87: set intelligent-multicast static-client-port Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><group-address></td>
<td>The multicast IP address of a static multicast session</td>
</tr>
<tr>
<td><mac-address></td>
<td>The multicast MAC Address of a static non-IP multicast session.</td>
</tr>
<tr>
<td>vlan</td>
<td>The keyword for per VLAN commands.</td>
</tr>
<tr>
<td></td>
<td>● all - All VLANS.</td>
</tr>
<tr>
<td></td>
<td>● vlan-id - The numerical ID of a specific VLAN.</td>
</tr>
<tr>
<td></td>
<td>● name - The VLAN name.</td>
</tr>
<tr>
<td>port</td>
<td>The client port in the multicast session. <mod-port-spec> is the port specifier for the static multicast client.</td>
</tr>
</tbody>
</table>

Sample Output

The following example assigns port 3.11 to a session for multicast group 229.10.10.10 on VLAN 4.

(configure)# set intelligent-multicast static-client-port 229.10.10.10 vlan 4 port 3/11
Multicast Client successfully created

Systems

set intelligent-multicast static-session

Command Mode

Global Configuration.

Description

Creates an Intelligent Multicast session.

Syntax

set intelligent-multicast static-session {<group-address> | mac-address <mac-address>} vlan {all | <vlan-id> | name <vlan-name>}

Table 88: set intelligent-multicast static-session Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><group-address></td>
<td>The multicast IP address of the multicast session.</td>
</tr>
<tr>
<td><mac-address></td>
<td>The multicast MAC address of the non-IP multicast session.</td>
</tr>
<tr>
<td>vlan</td>
<td>The keyword for per VLAN commands.</td>
</tr>
<tr>
<td></td>
<td>● all - All VLANS.</td>
</tr>
<tr>
<td></td>
<td>● vlan-id - The numerical ID of a specific VLAN.</td>
</tr>
<tr>
<td></td>
<td>● name - The VLAN name.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets an intelligent-multicast static session for multicast group 229.10.10.10 on a VLAN named adams.

(configure)# set intelligent-multicast static-session 229.10.10.10 vlan name adams

Systems

set lgmp client

Command Mode
Global Configuration.

Description
Enables or disables the LGMP client functionality. The default state is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set lgmp client enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>set lgmp client disable</td>
</tr>
</tbody>
</table>

Sample Output
The following example enables lgmp client.

```
(configure)# set lgmp client enable
```

Systems

set lgmp server

Command Mode
Global Configuration.

Description
Enables or disables the LGMP server. The LGMP server is disabled by default.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set lgmp server enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>set lgmp server disable</td>
</tr>
</tbody>
</table>

Sample Output

The following example disables lgmp server

```
(configure)# set lgmp server disable
```

Systems

set lgmp server priority

Command Mode

Global Configuration.

Description

Sets the LGMP server ID priority. Excluding the parameter sets the priority to its default of 128.

Syntax

```
set lgmp server priority [<server-priority>]
```

Table 89: set lgmp server priority Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><server-priority></td>
<td>Specifies the most significant byte of the LGMP Server ID. The lower four bytes are defined by the IP address of the interface and VLAN associated with the particular LGMP Server. The server priority can make LGMP servers on a device distributors or non-distributors. The lowest LGMP Server ID wins the distributor election. The range is 0 to 255.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the LGMP server priority to 140.

```
(configure)# set lgmp server priority to 140
LGMP Server ID Priority successfully set to 140
```

Systems

set lgmp server proxy

Command Mode

Global Configuration.

Description

Enables or disables the LGMP server proxy mode. The proxy mode allows an LGMP server to generate LGMP Router Report and LGMP Router Leave messages on behalf of another router on the same VLAN. The default state is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set lgmp server proxy enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>set lgmp server proxy disable</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables lgmp server proxy.

```
(configure)# set lgmp server proxy enable
LGMP Server Proxy Mode successfully set to enable
```

Systems

set lgmp server router-report-time

Command Mode

Global Configuration.

Description

Sets the LGMP server router report time. Omitting the parameter sets the router report time to its default time of 125 seconds.

Syntax

set lgmp server router-report-time [<rrt-seconds>]

Table 90: set lgmp server router-report-time Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><rrt-seconds></td>
<td>The router report time, measured in seconds, defines the interval in which the LGMP server distributor should send LGMP Router Report messages. These messages are used by the distributor election as a keep-alive for the current distributor. The range is 10 to 10000.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the router report time to 150 seconds.

(configure)# set lgmp server router-report-time 150
LGMP Server Router Report Time successfully set to 150

Systems

set lgmp server robust-variable

Command Mode

Global Configuration.

Description

Sets the LGMP server robustness variable. Omitting the parameter sets the robustness variable to its default value of 2.

Syntax

```
set lgmp server robust-variable [<rv-val>]
```

Table 91: set lgmp server robust-variable Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><rv-val></td>
<td>The robustness variable that defines the scalar used to calculate the timeout for an LGMP server non-distributor to become a distributor. The scalar is used to calculate non-distributor timeout. The range is 2 to 10.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the robustness variable to 4.

```
(configure)# set lgmp server robust-variable 4
LGMP Server Robustness Variable successfully set to 4
```

Systems

show cgmp statistics

Command Mode

User.

Description

Displays CGMP-related statistics.

Syntax

```
show cgmp statistics [detailed]
```

Table 92: show cgmp statistics Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[detailed]</td>
<td>Displays detailed cgmp statistics.</td>
</tr>
</tbody>
</table>

Sample Output

The following example displays cgmp statistics:

```bash
> show cgmp statistics
CGMP Snooping is currently disabled.

CGMP Packet Reception Stats
============================
Join Messages Received ----------- 0
Leave Messages Received ---------- 0
Unknown CGMP Messages Received --- 0

CGMP Action Stats
=================
New Sessions Created -------------- 0
New Client Ports Added ------------ 0
Existing Sessions Removed --------- 0
All Sessions Removed ------------- 0
New Router Ports Added ----------- 0
Existing Router Ports Removed ----- 0
```

Systems

show igmp-snooping statistics

Command Mode

User.

Description

Displays IGMP snooping configuration and statistics.

Syntax

show igmp-snooping statistics [detailed]

Table 93: show igmp-snooping statistics Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>

Sample Output

The following example shows the igmp-snooping statistics:

> show igmp-snooping statistics
IGMP Snooping is currently enabled.

New Sessions Created 0
Sessions Destroyed 0
New Client Ports Added 0
New Router Ports Added 0
Router Ports Removed 0

Systems

show intelligent-multicast client-port

Command Mode
User.

Description
Displays current client ports that are assigned to a particular session.

Syntax
show intelligent-multicast client-port <session-id>

Table 94: show intelligent-multicast client-port Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><session-id></td>
<td>The number assigned to the multicast session when it is created. This ID is displayed in the show intelligent-multicast session command.</td>
</tr>
</tbody>
</table>

Sample Output
The following example displays the ports that are configured for Intelligent Multicasting on multicast session 4.

> show intelligent-multicast client-port 4
IM Client

<table>
<thead>
<tr>
<th>Port</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Router</td>
</tr>
<tr>
<td>6.1</td>
<td>Mgmt: 226.0.0.9</td>
</tr>
</tbody>
</table>

Systems
show intelligent-multicast configuration

Command Mode

User.

Description

Displays global configuration information for Intelligent Multicasting.

Syntax

show intelligent-multicast configuration

Sample Output

The following example shows the Intelligent Multicast configuration with the default values.

> show intelligent-multicast configuration
 Intelligent Multicast Global Configuration
 ===
 Enable State: Enable
 Automatic Router Port Pruning:
 Enable State: Enable
 Time : 120 Seconds
 Automatic Session Pruning:
 Enable State: Enable
 Time : 250 Seconds
 Automatic Client Pruning:
 Enable State: Disable
 Time : 60 Minutes

Systems

show intelligent-multicast router-port

Command Mode
User.

Description
Displays the Intelligent Multicast router ports.

Syntax
show intelligent-multicast router-port

Sample Output
The following example displays the router ports that are configured for Intelligent Multicast.

> show intelligent-multicast router-port

<table>
<thead>
<tr>
<th>IM Router</th>
<th>VLAN</th>
<th>Port Name</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>All</td>
<td></td>
<td>Mgmt</td>
</tr>
<tr>
<td>6.3</td>
<td>All</td>
<td></td>
<td>Mgmt</td>
</tr>
<tr>
<td>6.2</td>
<td>foo</td>
<td></td>
<td>Mgmt</td>
</tr>
<tr>
<td>6.4</td>
<td>bar</td>
<td></td>
<td>Mgmt</td>
</tr>
</tbody>
</table>

Systems
show intelligent-multicast session

Command Mode
User.

Description
Displays Intelligent Multicast sessions that optionally match specified search criteria. Omitting any criteria displays all configured Intelligent Multicast sessions.

Syntax
show intelligent-multicast session [vlan {<vlan-id> | name <vlan-name>}] [{ip-address <group-address> <ip-mask>} | {mac-address <wildcard-mac-address>}] [client-port <mod-port-spec>]

Table 95: show intelligent-multicast session Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan</td>
<td><vlan-id> is the VLAN ID of the session(s) to display.</td>
</tr>
<tr>
<td>name</td>
<td><vlan-name> - The name of the VLAN of the session(s) to display.</td>
</tr>
<tr>
<td>ip-address</td>
<td>The IP address associated with the multicast session.</td>
</tr>
<tr>
<td></td>
<td>• group-address - The multicast IP address of the multicast group.</td>
</tr>
<tr>
<td></td>
<td>• ip-mask - The subnet mask used to determine which portions of <group-address> should be matched</td>
</tr>
<tr>
<td>mac-address</td>
<td>The MAC address associated with this entry:</td>
</tr>
<tr>
<td></td>
<td>• wildcard-mac-address - The multicast MAC address of the session(s) to display. The wildcard is indicated by a single asterisk (*) before the MAC address.</td>
</tr>
<tr>
<td>client-port</td>
<td>Switch port number that is a client port for an Intelligent Multicast session.</td>
</tr>
</tbody>
</table>
Sample Output

The following example displays information about all Intelligent Multicast sessions configured on the switch.

> show intelligent-multicast session

<table>
<thead>
<tr>
<th>Session ID</th>
<th>MAC Address</th>
<th>VLAN</th>
<th>Clients</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01:00:5E:01:01:02</td>
<td>Default</td>
<td>1</td>
<td>Mgmt:</td>
</tr>
<tr>
<td>2</td>
<td>01:00:5E:01:01:02</td>
<td>Default</td>
<td>1</td>
<td>Mgmt:</td>
</tr>
<tr>
<td>2</td>
<td>01:00:5E:01:01:02</td>
<td>Adams</td>
<td>1</td>
<td>Mgmt: 255.1.1.2</td>
</tr>
<tr>
<td>3</td>
<td>01:00:5E:01:01:02</td>
<td>Alcott</td>
<td>0</td>
<td>Mgmt: 256.0.0.9</td>
</tr>
</tbody>
</table>

Systems

show intelligent-multicast static-client

Command Mode

User.

Description

Displays all statically configured client ports for a given Intelligent Multicast session.

Note:

If a static session is created with `vlan all`, then you must specify `vlan all` to see the clients. If a static session is created with an IP address, then you cannot use the MAC address to see the clients.

Syntax

show intelligent-multicast static-client {<group-address> | mac-address <mac-address>} vlan {all | <vlan-id> | name <vlan-name>}

Table 96: show intelligent-multicast static-client Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><group-address></td>
<td>The IP address of the multicast group.</td>
</tr>
<tr>
<td><mac-address></td>
<td>The MAC address associated with this entry:</td>
</tr>
<tr>
<td>vlan</td>
<td>The choices are:</td>
</tr>
<tr>
<td></td>
<td>● all - The static session or client is created for all VLANS.</td>
</tr>
<tr>
<td></td>
<td>● vlan-id - A session or client is created for a specific VLAN only identified by numerical ID.</td>
</tr>
<tr>
<td></td>
<td>● name - A session or client is created for a specific VLAN only identified by VLAN name.</td>
</tr>
</tbody>
</table>

Sample Output

The following example displays the Intelligent Multicast client ports for the multicast session created with all VLANS.

> show intelligent-multicast static-client 225.1.1.2 vlan all

<table>
<thead>
<tr>
<th>IM</th>
<th>ClientPort</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.2</td>
<td>Mgmt : 225.1.1.2</td>
</tr>
</tbody>
</table>

Systems

Sample Output

The following example displays the Intelligent Multicast static sessions.

> `show intelligent-multicast static-session`

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC Address</th>
<th>IP Address</th>
<th># Clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>01:00:5E:01:01:02</td>
<td>225.1.1.2</td>
<td>1</td>
</tr>
<tr>
<td>All</td>
<td>01:00:5E:01:04:05</td>
<td>225.1.4.5</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>01:00:5E:00:00:09</td>
<td>226.0.0.9</td>
<td>1</td>
</tr>
</tbody>
</table>

Systems

show lgmp client

Command Mode

User.

Description

Displays current LGMP client configuration information or statistics. Omitting parameters after the statistics keyword displays global LGMP client statistics.

Syntax

`show lgmp client {config | statistics [vlan {all | <vlan-id> | name <vlan-name>}]}`

Table 97: show lgmp client Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config</td>
<td>LGMP client configuration or statistics.</td>
</tr>
<tr>
<td>statistics</td>
<td></td>
</tr>
<tr>
<td>vlan</td>
<td>The keyword for per VLAN commands.</td>
</tr>
<tr>
<td>all</td>
<td>All VLANS.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>The numerical ID of a specific VLAN.</td>
</tr>
<tr>
<td>name</td>
<td>The VLAN name.</td>
</tr>
</tbody>
</table>
Sample Output

The following example displays LGMP client statistics.

> show lgmp client statistics
Global LGMP Client Statistics
================================
LGMP Client Message Reception Stats
===================================
Report --------------------------- 0
Leave ---------------------------- 0
End Session ---------------------- 0
Router Report -------------------- 0
Router Leave --------------------- 0
Invalid -------------------------- 0

LGMP Client Intelligent Multicast Session Stats
==
New Client Ports Added ----------- 0
Existing Client Ports Removed ---- 0
Existing Sessions Removed -------- 0
New Router Ports Added ----------- 0
Existing Router Ports Removed ---- 0

Systems

show lgmp server

Command Mode
User.

Description
Displays current LGMP server configuration information or statistics. Omitting parameters after the statistics keyword displays global LGMP server statistics

Syntax
show lgmp server {config | statistics [vlan {all | <vlan-id> | name <vlan-name>}]}

Table 98: show lgmp server Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config</td>
<td>LGMP server configuration or statistics. Displays the current configuration or current statistics.</td>
</tr>
<tr>
<td>vlan</td>
<td>The keyword for per VLAN commands.</td>
</tr>
<tr>
<td></td>
<td>• all - All VLANS.</td>
</tr>
<tr>
<td></td>
<td>• vlan-id - The numerical ID of a specific VLAN.</td>
</tr>
<tr>
<td></td>
<td>• name - The VLAN name.</td>
</tr>
</tbody>
</table>
Sample Output

The following example shows the LGMP server statistics:

```plaintext
> show lgmp server statistics
Global LGMP Server Statistics
===================================
LGMP Server Message Reception Stats
===================================
  Router Report ------------------- 0
  Invalid ------------------------ 0
LGMP Server Message Transmission Stats
======================================
  Report ------------------------- 0
  Leave -------------------------- 0
  End Session -------------------- 0
  Router Report ------------------ 0
  Router Leave ------------------- 0
LGMP Server Intelligent Multicast Session Stats
=======================================
  Client Ports Added ----------- 0
  Client Ports Removed -------- 0
  Sessions Removed ------------ 0
  Router Ports Added --------- 0
  Router Ports Removed ------ 0
```

Systems

Intelligent Multicast
Chapter 11: IP

Overview

This chapter describes the following commands:

- `arp`
- `arp timeout`
- `clear arp-cache`
- `clear ip route`
- `clear tcp`
- `interface`
- `ip address`
- `ip admin-state`
- `ip bootp-dhcp agent-info`
- `ip bootp-dhcp circuit-info`
- `ip bootp-dhcp relay`
- `ip bootp-dhcp server`
- `ip default-gateway`
- `ip directed broadcast`
- `ip domain-list`
- `ip domain-lookup`
- `ip domain-name`
- `ip http`
- `ip irdp`
- `ip irdp holdtime`
- `irdp maxadvertinterval`
- `ip irdp minadvertinterval`
- `ip irdp multicast`
- `ip irdp preference`
- `ip mac-format`
IP

- ip max-arp-entries
- ip max-route-entries
- ip multicast-routing
- ip name-server
- ip netbios-rebroadcast
- ip netmask-format
- ip proxy-arp
- ip proxy-arp-default-route
- ip proxy-arp-limit
- ip redirects
- ip reset-stats
- ip route
- ip route-preference
- ip routing
- ip routing-mode
- ip short-lived
- ip source-route
- ip telnet inactivity-period
- ip telnet
- ip vlan
- ping
- redistribute
- show arp
- show hosts
- show ip arp
- show ip interface
- show ip irdp
- show ip redistribute
- show ip route
- show ip route summary
- show ip short-lived
- show ip traffic
arp

Command Mode

Global Configuration.

Description

Creates a permanent entry in the Address Resolution Protocol (ARP) table. The **no** form of this command deletes an entry.

Syntax

<table>
<thead>
<tr>
<th>To Create:</th>
<th>arp <ip-address> <hw-addr></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Delete:</td>
<td>[no] arp <ip-address> <hw-addr></td>
</tr>
</tbody>
</table>

Table 99: arp Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-address></td>
<td>IP address, in dotted decimal format, of the local data link.</td>
</tr>
<tr>
<td><hw-addr></td>
<td>48-bit address of the local data link.</td>
</tr>
</tbody>
</table>

Sample Output

The following example adds a permanent entity to the ARP cache at IP address 10.10.10.1, and the hardware-address 00:01:0D:00:35:45.

```
(configure)# arp 10.10.10.1 00:01:0D:00:35:45
```

Systems

arp timeout

Command Mode
Interface Configuration.

Description
Configures the amount of time that an entry remains in the ARP cache on an interface. The no form of this command restores the default value.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>arp timeout <seconds></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] arp timeout</td>
</tr>
</tbody>
</table>

Table 100: arp timeout Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><seconds></td>
<td>The amount of time, in seconds, that an entry remains in the arp cache</td>
</tr>
</tbody>
</table>

Sample Output
The following example sets the arp timeout period to 300 seconds on an interface labeled “boston”.

(config-if:boston)# arp timeout 300

Systems
clear arp-cache

Command Mode

 Global Configuration.

Description

 Deletes all dynamic entries from the ARP cache.

Syntax

 clear arp-cache

Sample Output

 The following example clears all dynamic entries from the ARP cache:

 (configure)# clear arp-cache

Systems

clear ip route

Command Mode

Global Configuration.

Description

Deletes routes from the IP routing table.

Syntax

```
clear ip route {<network> [<mask>] | *}
```

Table 101: clear ip route Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><network></td>
<td>The network or subnet address to remove.</td>
</tr>
<tr>
<td>[<mask>]</td>
<td>Subnet address to remove.</td>
</tr>
<tr>
<td>*</td>
<td>Clears all routes.</td>
</tr>
</tbody>
</table>

Sample Output

The following example deletes ip routes from the network with an IP address of 10.10.10.0 and the mask of 255.255.0.0,

```
(configure)# clear ip route 10.10.10.0 255.255.0.0
```

Systems

clear tcp

Command Mode

Global Configuration.

Description

Ends the TCP session that you specify.

Syntax

clear tcp [all | local <local-ip-address> <local-tcp-port> remote <remote-ip-address> <remote-tcp-port>]

Table 102: clear tcp Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Ends all TCP sessions on the switch.</td>
</tr>
<tr>
<td>local</td>
<td>Ends a specific TCP session on the local switch.</td>
</tr>
<tr>
<td><local-ip-address></td>
<td>The local IP address for which you want to end the TCP session.</td>
</tr>
<tr>
<td><local-tcp-port></td>
<td>The local TCP port number for which you want to end the TCP session.</td>
</tr>
<tr>
<td>remote</td>
<td>The associated TCP session on the remote switch.</td>
</tr>
<tr>
<td><remote-ip-address></td>
<td>The associated remote IP address for which you want to end the TCP session.</td>
</tr>
<tr>
<td><remote-tcp-port></td>
<td>The associated remote TCP port number for which you want to end the TCP session.</td>
</tr>
</tbody>
</table>

Systems

interface

Command Mode

Global Configuration.

Description

Configures an interface type and enters Interface Configuration mode. The no form of this command deletes an interface with the name specified.

To enter Interface Configuration mode, omit the [type {nbma | ethernet}] option.

Syntax

To Configure: interface <intf-name> [type {nbma | ethernet}]

To Delete: [no] interface <intf-name>

Table 103: interface Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><intf-name></td>
<td>A name for the interface you are attempting to configure or create. This name can be series of characters from 1 - 32 characters long.</td>
</tr>
<tr>
<td>nbma</td>
<td>Sets the interface to be a non-broadcast multi-access (NBMA) IP interfaces. NBMA interfaces make it possible for the switch to exchange routing information over nonbridged connections (routed virtual switch ports (VSPs)) NBMA functionality was added to RIP and OSPF routing protocols on the Avaya Multiservice switch software</td>
</tr>
<tr>
<td>ethernet</td>
<td>Sets the interface to be an ethernet LAN interface.</td>
</tr>
</tbody>
</table>

Systems

ip address

Command Mode

Interface Configuration.

Description

Assigns an IP address to an interface. To remove an IP address or disable IP processing, use the no form of this command.

Syntax

<table>
<thead>
<tr>
<th>To Assign:</th>
<th>ip address <ip-address> <mask></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Remove:</td>
<td>no ip address <ip-address> <mask></td>
</tr>
</tbody>
</table>

Table 104: ip address Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-address></td>
<td>The IP address assigned to the interface.</td>
</tr>
<tr>
<td><mask></td>
<td>Mask for the associated IP subnet.</td>
</tr>
</tbody>
</table>

Sample Output

The following example assigns IP address 170.180.5.33 to an interface labeled “boston”.

(config-if:boston)# ip address 170.180.5.33

Systems

ip admin-state

Command Mode

Interface Configuration.

Description

Sets the administrative state of an IP interface. The default state is **up**.

Syntax

```
ip admin-state {up | down}
```

Table 105: ip admin-state Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{up</td>
<td>down}</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the administrative state of an interface labeled “boston” to up.

```
(config-if:boston)# ip admin-state up
```

Systems

ip bootp-dhcp agent-info

Command Mode
Global Configuration.

Description
Enables BOOTP/DHCP option 82, suboption 2 (agentID). The no command disables option 82, suboption 2.

This suboption identifies the IP address and, if available, the system name of the switch. The default setting is disabled.

Note:
Before you enter this command, make sure that the switch is set to be a BOOTP/DHCP relay agent. Use the ip bootp-dhcp relay command to enable BOOTP/DHCP relay agent on the switch.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip bootp-dhcp agent-info</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip bootp-dhcp agent-info</td>
</tr>
</tbody>
</table>

Systems
ip bootp-dhcp circuit-info

Command Mode

Global Configuration.

Description

Enables BOOTP/DHCP option 82, suboption 1 (circuitID). The no command disables option 82, suboption 1.

This suboption identifies the slot and physical port number from which the DHCP request was received. The default setting is disabled.

Note:

Before you enter this command, make sure that the switch is set to be a BOOTP/DHCP relay agent. Use the ip bootp-dhcp relay command to enable BOOTP/DHCP relay agent on the switch.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip bootp-dhcp circuit-info</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip bootp-dhcp circuit-info</td>
</tr>
</tbody>
</table>

Systems

ip bootp-dhcp relay

Command Mode
Global Configuration.

Description
Enables relaying BOOTP and DHCP service to the BOOTP/DHCP server. The no command disables relaying BOOTP and DHCP service to the BOOTP/DHCP server. The default setting is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip bootp-dhcp relay</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip bootp-dhcp relay</td>
</tr>
</tbody>
</table>

Systems
ip bootp-dhcp server

Command Mode

Global Configuration.

Description

Adds a BOOTP/DHCP server entry. The no command removes the BOOTP/DHCP server entry. When you add a BOOTP/DHCP server entry, the switch serves as a BOOTP/DHCP relay agent between the BOOTP/DHCP server and the requesting client.

Note:
Before you enter this command, make sure that the switch is set to be a BOOTP/DHCP relay agent. Use the ip bootp-dhcp relay command to enable BOOTP/DHCP relay agent on the switch.

Syntax

To Add: ip bootp-dhcp server <ip-address>
To Remove: [no] ip bootp-dhcp server <ip-address>

Table 106: ip bootp-dhcp server Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-address></td>
<td>IP address of the BOOTP/DHCP server for which you want to add an entry.</td>
</tr>
</tbody>
</table>

Systems

ip default-gateway

Command Mode

Global Configuration.

Description

Defines a default gateway (router) when IP routing is disabled. The no form of this command removes a default gateway. The default state is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip default-gateway <ip-address></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ip default-gateway <ip-address></td>
</tr>
</tbody>
</table>

Table 107: ip default-gateway Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-address></td>
<td>IP address of the router.</td>
</tr>
</tbody>
</table>

Sample Output

The following example defines the router at address 128.88.84.34 as the default gateway.

(configure)# ip default-gateway 128.88.84.34

Systems

ip directed broadcast

Command Mode

 Interface Configuration.

Description

 When the IP Directed-Broadcast feature is enabled, it allows a net-directed broadcast (unicast
 IP address with the host ID set to all ones) to be forwarded by the router on the selected
 interface. The default setting is enabled.

Syntax

 | To Enable: | ip directed-broadcast |
 |------------|-----------------------|
 | To Disable:| no ip directed-broadcast |

Sample Output

 The following example enables directed-broadcast on the interface labeled “boston”.

 (config-if:boston)# ip directed-broadcast

Systems

ip domain-list

Command Mode
Global Configuration.

Description
Defines a default domain name to complete unqualified host names. You can define a maximum of six default domain names. The no form of this command removes the domain name.

Syntax

<table>
<thead>
<tr>
<th>To Add:</th>
<th>ip domain-list <name></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Remove:</td>
<td>no ip domain-list <name></td>
</tr>
</tbody>
</table>

Sample Output
The following example adds the name “avaya.com” to the DNS name list.

```
(configure)# ip domain-list avaya.com
```

Systems

ip domain-lookup

Command Mode
Global Configuration.

Description
Enables DNS client. The no form of this command disables DNS client.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip domain-lookup</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip domain-lookup</td>
</tr>
</tbody>
</table>
Sample Output

The following example enables DNS.

```
(configure)# ip domain-lookup
```

Systems

ip domain-name

Command Mode

Global Configuration.

Description

Defines a default domain name to complete unqualified host names. You can define a maximum of six default domain names. The no form of this command removes the domain name.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip domain-name <domain-name></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip domain-name <domain-name></td>
</tr>
</tbody>
</table>

Sample Output

The following example adds the name “avaya.com” to the DNS name list.

```
(configure)# ip domain-name avaya.com
```

Systems

ip http

Command Mode

Global Configuration.

Description

Enables or disables HTTP and changes the port number for HTTP. Valid port numbers are 80 or a port number from 9000 through 65535. The default setting is port 80.

Once you change the TCP port number for HTTP, only users who know the new port number can access the Web Agent.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip http {port [<tcp-new-port>] [enable]</th>
<th>[enable]}</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip http</td>
<td></td>
</tr>
</tbody>
</table>

Table 108: ip http Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><tcp-new-port></td>
<td>The TCP port number that you want to use for HTTP requests. The default setting is port 80. Valid port numbers are 80 or a port number from 9000 through 65535. Once you change the TCP port number for HTTP, only users who know the new port number can access the Web Agent.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables HTTP.</td>
</tr>
</tbody>
</table>

Sample Output

The following example changes the TCP port for HTTP requests to port 9999:

```
(configure)# ip http port 9999
TCP HTTP listening port was changed successfully to 9999
```

Systems

ip irdp

Command Mode

Interface Configuration.

Description

Enables the ICMP Router Discovery Protocol (IRDP) on an interface. The no form of this command restores the default, which is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip irdp</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip irdp</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables IRDP on IP Interface labeled “boston”.

```
(config-if:boston)# ip irdp
```

Systems

ip irdp holdtime

Command Mode

Interface Configuration.

Description

Sets the length of time, in seconds, that advertisements are held valid. The holdtime value must be greater than the maxadvertinterval value and cannot be greater than 9000 seconds. The range is 5 - 9000 seconds. The default is 1800 seconds.

The no command restores the default setting.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip irdp holdtime <irdpHoldTime></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no ip irdp holdtime</td>
</tr>
</tbody>
</table>

Table 109: ip irdp holdtime Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><irdpHoldTime></td>
<td>The length of time, in seconds, that advertisements are held valid. The holdtime value must be greater than the maxadvertinterval value and cannot be greater than 9000 seconds. The range is 5 - 9000 seconds. The default is 1800 seconds.</td>
</tr>
</tbody>
</table>

Systems

irdp maxadvertinterval

Command Mode

Interface Configuration.

Description

Sets the maximum interval in seconds between advertisements. The range is 4 to 1800 seconds. The default value is 600 seconds.

The no command restores the default setting.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip irdp maxadvertinterval <code><irdpMaxTimer></code></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no ip irdp maxadvertinterval</td>
</tr>
</tbody>
</table>

Table 110: ip irdp maxadvertinterval Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><irdpMaxTimer></code></td>
<td>Maximum interval in seconds between advertisements. The range is 4 - 1800</td>
</tr>
<tr>
<td></td>
<td>seconds. The default value is 600 seconds.</td>
</tr>
</tbody>
</table>

Systems

ip irdp minadvertinterval

Command Mode
Interface Configuration.

Description
Sets the minimum interval in seconds between advertisements. The range is 3 to 1799 seconds. The default setting is 450 seconds. Changing the maxadvertinterval value automatically changes the minadvertinterval value to three-quarters of the new value. The no command restores the default setting.

Syntax

<table>
<thead>
<tr>
<th></th>
<th>ip irdp minadvertinterval <irdpMinTimer></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no ip irdp minadvertinterval</td>
</tr>
</tbody>
</table>

Table 111: ip irdp minadvertinterval Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><irdpMinTimer></td>
<td>The minimum interval in seconds, between advertisements. The range is 3 to 1799 seconds. The default setting is 450 seconds.</td>
</tr>
</tbody>
</table>

Systems
ip irdp multicast

Command Mode
Interface Configuration.

Description
Sets the router discovery addressing mode. Forces this interface to send advertisements to the multicast address (224.0.0.1) instead of IP broadcast address (255.255.255.255).
The **no** command forces the interface to use the IP broadcast address.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip irdp multicast</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no ip irdp multicast</td>
</tr>
</tbody>
</table>

Systems
ip irdp preference

Command Mode

Global Configuration.

Description

Sets the preference of the address as a default router address, relative to other router addresses on the same subnet. The minimum value (80000000 hex) is used to indicate that the address should not be used by neighboring hosts as a default router address, even though it may be advertised. The default setting is 0.

The no command restores the default setting.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip irdp preference <irdp-pref-num></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no ip irdp preference</td>
</tr>
</tbody>
</table>

Table 112: ip irdp preference Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><irdp-pref-num></td>
<td>The preference of the address as a default router address, relative to other router addresses on the same subnet. The minimum value (80000000 hex) is used to indicate that the address should not be used by neighboring hosts as a default router address, even though it may be advertised. The default value is 0.</td>
</tr>
</tbody>
</table>

Systems

ip mac-format

Command Mode

Interface Configuration.

Description

Sets the MAC format of the IP interfaces. The no form of this command restores the default ethv2.

Syntax

| To Configure: | ip mac-format {ethv2 | snap} |
|---------------|--------------------------------|
| To Restore Default: | no ip mac-format {ethv2 | snap} |

Table 113: ip mac-format Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ethv2</td>
<td>snap}</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the MAC format of the IP interfaces, on the interface labeled boston, to the Subnetwork Access Protocol (snap).

(config-if:boston)# ip mac-format snap

Systems

ip max-arp-entries

Command Mode

Global Configuration.

Description

Specifies the maximum number of ARP cache entries allowed in the ARP cache. The default maximum number of entries is 16,384. The no command restores the default setting.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip max-arp-entries <value></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no ip max-arp-entries</td>
</tr>
</tbody>
</table>

Table 114: ip max-arp-entries Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><value></td>
<td>The space that is available for the ARP cache. When you increase the number of entries, it may cause the table to be relearned more frequently, thus increasing address space. The default maximum number of entries is 16,384.</td>
</tr>
</tbody>
</table>

Sample Output

The following example specifies the maximum number of ARP cache entries allowed in the ARP cache to 100.

(configure)# ip max-arp-entries 100

Systems

ip max-route-entries

Command Mode
Global Configuration.

Description
Specifies the maximum number of routes that can be added to the routing table. These routes refer to IP Unicast entries only. The default number of routes is 16,384. The no command restores the default setting.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip max-route-entries <value></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no ip max-route-entries</td>
</tr>
</tbody>
</table>

Table 115: ip max-route-entries Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><value></td>
<td>The space that is available for the IP address table. When you increase the number of entries, it may cause the table to be relearned more frequently, thus increasing address space.</td>
</tr>
</tbody>
</table>

Sample Output

The following example specifies the number of routes that can be added to the routing table as 50.

(configure)# ip max-route-entries 50

Systems

ip multicast-routing

Command Mode

Global Configuration.

Description

Globally enables IP multicast routing. IP multicast routing must be enabled to configure IGMP or DVMRP. The no form of this command disables IP multicast routing. The default state is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip multicast-routing</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip multicast-routing</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables IP multicast routing.

(configure)# ip multicast-routing

Systems

ip name-server

Command Mode

Global Configuration.

Description

Adds a DNS server address. The **no** form of this command removes the DNS server address.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip name-server <ip address></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip name-server <ip address></td>
</tr>
</tbody>
</table>

Sample Output

The following example adds the DNS address 210.120.87.90.

```
(configure)# ip name-server 210.120.87.90
```

Systems

ip netbios-rebroadcast

Command Mode

Interface Configuration.

Description

Enables NETBIOS rebroadcasts on an interface. The no form of this command disables NETBIOS rebroadcasts on an interface (default).

Syntax

To Enable: ip netbios-rebroadcast [{both | inbound | outbound | disable}]
To Disable: no ip netbios-rebroadcast

Table 116: ip netbios-rebroadcast Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{both</td>
<td>inbound</td>
</tr>
<tr>
<td></td>
<td>● both - inbound and outbound broadcasts are accepted.</td>
</tr>
<tr>
<td></td>
<td>● inbound - only inbound broadcasts are accepted.</td>
</tr>
<tr>
<td></td>
<td>● outbound - only outbound broadcasts are accepted.</td>
</tr>
<tr>
<td></td>
<td>● disable - no broadcasts are accepted.</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables NETBIOS rebroadcasts and accepts only INBOUND broadcasts on an interface labeled “boston”.

(config-if:boston)# ip netbios-rebroadcast inbound

Systems

ip netmask-format

Command Mode

Global Configuration.

Description

Specifies the format of netmasks in the show command output. The no form of this command restores the default, which is a dotted decimal format.

Syntax

| To Configure: | ip netmask-format {bitcount | decimal | hexadecimal} |
|------------------------|---|
| To Restore Default: | no ip netmask-format |

Table 117: ip netmask-format Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{bitcount</td>
<td>decimal</td>
</tr>
<tr>
<td></td>
<td>● bitcount - Addresses are followed by a slash and the total number of bits in the netmask. For example, 131.108.11.0/24 indicates the netmask is 24 bits.</td>
</tr>
<tr>
<td></td>
<td>● decimal - The network masks are in dotted decimal notation. For example, 255.255.255.0.</td>
</tr>
<tr>
<td></td>
<td>● hexadecimal - The network masks are in hexadecimal format as indicated by the leading 0X. For example, 0XFFFFFF00.</td>
</tr>
</tbody>
</table>

Sample Output

The following example displays netmasks in bitcount format.

(configure)# ip netmask-format bitcount

Systems

ip proxy-arp

Command Mode

Interface Configuration.

Description

Enables proxy ARP on an interface. The no form of this command disables proxy ARP on an interface. The default state is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip proxy-arp</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip proxy-arp</td>
</tr>
</tbody>
</table>

Sample Output

The following example disables proxy ARP on IP interface Boston.

(config-if:boston)# no ip proxy arp

Systems

ip proxy-arp-default-route

Command Mode

 Global Configuration.

Description

 Enables use of the default route as the route for proxy ARPs. The no command disables use of the default route as the route for proxy ARPs. The default setting is enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip proxy-arp-default-route</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>To Disable:</th>
</tr>
</thead>
<tbody>
<tr>
<td>no ip proxy-arp-default-route</td>
</tr>
</tbody>
</table>

Sample Output

 The following example enables use of the default route for proxy ARPs.

 (configure)# ip proxy-arp-default-route

Systems

ip proxy-arp-limit

Command Mode

Global Configuration.

Description

Enables proxy ARP. When enabled, the router only responds to ARP requests when the source and target IP address are in the same IP network and different IP subnets.

When disabled, the router only responds to ARP requests when the source and target IP address are in different networks. The no form of this command restores the default, which is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip proxy-arp-limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip proxy-arp-limit</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables proxy ARP.

```
(configure)# ip proxy-arp-limit
```

Systems

ip redirects

Command Mode

Interface Configuration.

Description

Enables the sending of redirect messages when the router is forced to resend a packet through the same interface on which it was received. The no form of this command disables the sending of redirect messages. The default state is enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip redirects</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ip redirects</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables the sending of redirect messages on interface labeled “boston”.

```
(config-if:boston)# ip redirects
```

Systems

ip reset-stats

Command Mode

Global Configuration.

Description

Resets the IP statistics.

Syntax

`ip reset-stats`

Sample Output

The following example resets the IP statistics.

```
(configure)# ip reset-stats
```

Systems

ip route

Command Mode

Global Configuration.

Description

Creates a static route. The `no` form of this command removes a static route. The default static routing preference is Low.

Syntax

| To Create: | `ip route <route-addr> <mask> {<next-hop> | null 0} <cost> [[high | low]]` |
|------------|---|
| To Delete: | `no ip route <route-addr> <mask>` |
Sample Output

The following example establishes a static route on IP address 10.10.10.1, mask 255.255.0.0 with a next hop address of 10.15.1.1 and a low path cost.

(configure)# ip route 10.10.10.1 255.255.0.0 10.15.1.1 low

Systems

P580 and P882.
ip route-preference

Command Mode
- Global Configuration.

Description
Assigns preference values to routes. The IP routing table uses these values to determine the best routes. The no form of this command restores the default settings.

Syntax

| To Configure: | ip route-preference {local | rip | ospf-intra | ospf-inter | ospf-extra | static-hp | static-lp} <value> |
|---------------|--|
| To Restore Default: | [no] ip route-preference {local | rip | ospf-intra | ospf-inter | ospf-extra | static-hp | static-lp} |

Table 119: ip route-preference Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| {local | rip | ospf-intra | ospf-inter | ospf-extra | static-hp | static-lp} | The route keywords are:
 - **local** - locally connected routes.
 - **rip** - route learned via the RIP protocol.
 - **ospf-intra** - OSPF intra-area routes.
 - **ospf-extr**a - OSPF external routes.
 - **static-hp** - high preference static routes.
 - **static-lp** - low preference static routes. |
| <value> | Preference value assigned to the specified route. The higher the value, the more preferable the route. Valid preference values range from 0 to 255. |

Sample Output
The following sample assigns a preference of 100 to RIP routes.

```
(configure)# ip route-preference rip 100
```

Systems
ip routing

Command Mode

Global Configuration.

Description

Enables IP routing. The no form of this command disables IP routing. The default state is enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip routing</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip routing</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables IP routing.

(configure)# ip routing

Systems

ip routing-mode

Command Mode

Interface Configuration.

Description

Sets the IP routing mode on an interface. The no form of this command restores the default setting of RT_MGMT.

Syntax

| To Configure: | ip routing-mode {RT_MGMT | RT_ONLY | MGMT_ONLY} |
|---------------|--|
| To Restore Default: | no ip routing-mode |

Table 120: ip routing-mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| {RT_MGMT | RT_ONLY | MGMT_ONLY} | ● **Routing/Mgmt** - IP routing is enabled on the interface, *and* you can manage the switch through the interface (from the CLI or Web Agent).
● **Mgmt Only** - You can manage the switch through the interface (from the CLI or Web Agent), but IP routing is disabled on the interface.

Note:
Do not enable routing protocols on an interface configured for Mgmt Only since the interface will act as an end point and will not pass traffic.

● **Routing Only** - Routing only interfaces do not permit management traffic destined for local interfaces but do allow all other traffic including management traffic destined for interfaces on other switches.

Sample Output

This example enables local packet consumption and disables IP forwarding on an interface labeled “boston”.

(config-if:boston)# ip routing-mode MGMT_ONLY

Systems

ip short-lived

Command Mode

Global Configuration

Description

Enables a filter for a short-lived IP protocol.

Syntax

| **To Enable:** | ip short-lived {tcp | udp} <port> |
|---------------|----------------------------------|
| **To Disable:** | no ip short-lived {tcp | udp} <port> |

Table 121: ip short-lived Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{tcp</td>
<td>udp}</td>
</tr>
<tr>
<td><port></td>
<td>The TCP or UDP port number that the protocol uses. Enter a port number from 0 through 65535.</td>
</tr>
</tbody>
</table>

Sample Output

To send all SNMP packets to supervisor module for slow path routing, enter the following command:

```plaintext
(configure)# ip short-lived udp 161
```

To send all BOOTP and DHCP packets to the supervisor for slow path routing, enter the following commands:

```plaintext
(configure)# ip short-lived udp 67
(configure)# ip short-lived udp 68
```

Systems

P580 and P882.
ip source-route

Command Mode

Global Configuration.

Description

Allows the router to handle IP datagrams with source-routing header options. The no form of this command discards any IP datagrams containing a source-route option. The default state is enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip source-route</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip source-route</td>
</tr>
</tbody>
</table>

Sample Output

The following example specifies that the router discards IP datagrams with source-routing header options.

(configure)# no ip source-route

Systems

ip telnet inactivity-period

Command Mode

Global Configuration.

Description

Sets the IP telnet inactivity period. Specifies how many seconds a telnet session is to remain open with no activity. The default is 900 seconds, or 15 minutes. The no command restores the default setting.

Setting this command to 0 disables the timer so that sessions never close because of inactivity.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip telnet inactivity-period <code><timeout></code></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no ip telnet inactivity-period</td>
</tr>
</tbody>
</table>

Table 122: ip telnet inactivity-period Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><timeout></code></td>
<td>The telnet inactivity timeout period, measured in seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the ip telnet inactivity timeout period to 800 seconds.

```
(configure)# ip telnet inactivity-period 800
```

Systems

ip telnet

Command Mode

 Global Configuration

Description

Enables or disables Telnet and changes the TCP port number for Telnet. Valid port numbers are 23 or a port number from 9000 through 65355.

Once you change the TCP port number for Telnet, only users who know the new port number can start Telnet sessions to the switch.

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip telnet {port [<tcp-new-port>] [enable]</th>
<th>[enable]}</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip telnet</td>
<td></td>
</tr>
</tbody>
</table>

Table 123: ip telnet Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><tcp-telnet-port></code></td>
<td>The TCP port number that you want to use for Telnet requests. The default setting is port 23. Valid port numbers are 23 or a port number from 9000 through 65355. Once you change the TCP port number for Telnet, only users who know the new port number can start Telnet sessions to the switch.</td>
</tr>
</tbody>
</table>

Sample Output

The following example changes the TCP port for Telnet requests to port 9998:

```
(configure)# ip telnet port 9998
TCP Telnet listening port was changed successfully to 9998
```

Systems

ip vlan

Command Mode

Interface Configuration.

Description

Specifies the VLAN on which an IP interface resides. The no form of this command sets the IP interface to the Discard vlan.

Syntax

| To Enable: | ip vlan {<vlan-id> | name <vlan-name> | Ethernet-Console | Serial-Console} |
|-------------------|-------------------|
| To Disable: | [no] ip vlan |

Table 124: ip vlan Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>ID of the VLAN.</td>
</tr>
<tr>
<td><vlan-name></td>
<td>Name of the VLAN.</td>
</tr>
</tbody>
</table>

Sample Output

The following example specifies that the interface labeled “boston” resides on VLAN 100

(config-if:boston)# ip vlan 100

Systems

ping

Command Mode

Privileged.

Description

Checks host reachability and network connectivity.

Syntax

ping <ip-addr> [<count> [<delay> [<size> [<timeout> [quiet]]]]]]

Table 125: ping Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-addr></td>
<td>IP address of the target system.</td>
</tr>
<tr>
<td><count></td>
<td>The number of ping attempts you want to perform with this operation. The default is 5.</td>
</tr>
<tr>
<td><delay></td>
<td>The number of milliseconds the switch waits between generating pings. The default is 1.</td>
</tr>
<tr>
<td><size></td>
<td>The size of the packet sent during a ping operation (0-1472).</td>
</tr>
<tr>
<td><timeout></td>
<td>The number of seconds to wait for an ICMP reply. The default is 2.</td>
</tr>
<tr>
<td>quiet</td>
<td>Include this keyword to disable the display of the ping operation in progress.</td>
</tr>
</tbody>
</table>

Sample Output

The following example checks the host reachability and host connectivity to the host at IP address 192.168.0.115.

> ping 192.168.0.115
#1: Ping ok, RTT 0.000 seconds
#2: Ping ok, RTT 0.000 seconds
#3: Ping ok, RTT 0.000 seconds
#4: Ping ok, RTT 0.000 seconds
#5: Ping ok, RTT 0.000 seconds
Ping of 192.168.0.115 completed: 5 OK, 0 Failed

Systems

redistribute

Command Mode

Router Configuration (RIP or OSPF).

Description

Creates an IP redistribute list entry.

IP redistribute list entries control the distribution of static, local, or dynamically learned routes from one protocol to another protocol. Route redistribution is supported only by dynamic routing protocols, such as RIP and OSPF.

Note: Selecting OSPF as the destination protocol causes OSPF adjacencies to be reestablished. During this reestablishment, a temporary loss of traffic occurs.

Syntax

To Redistribute Routes to RIP:

```
redistribute {ospf | local | static} [<access-list-name>]
```

You must be in RIP Router Configuration mode to enter this command.

To Redistribute Routes to OSPF:

```
redistribute {rip | local | static} [<access-list-name>]
```

You must be in OSPF Router Configuration mode to enter this command.

To Delete an Entry that Redistributes Routes to RIP:

```
no redistribute {ospf | local | static}
```

You must be in RIP Router Configuration mode to enter this command.

To Delete an Entry that Redistributes Routes to OSPF:

```
no redistribute {rip | local | static}
```

You must be in OSPF Router Configuration mode to enter this command.

<table>
<thead>
<tr>
<th>Table 126: redistribute Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>ospf</td>
</tr>
<tr>
<td>rip</td>
</tr>
</tbody>
</table>

1 of 2
Table 126: redistribute Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Redistributes local routes.</td>
</tr>
<tr>
<td>static</td>
<td>Redistributes static routes.</td>
</tr>
<tr>
<td>[<access-list-name>]</td>
<td>The access list that controls which routes are redistributed. Use this option if you want to redistribute only specific routes. The access list can either permit or deny specific routes for redistribution. If you do not enter this option, all routes are redistributed.</td>
</tr>
<tr>
<td></td>
<td>Note: Avaya recommends that you do not globally enable an access list that you use to redistribute specific routes.</td>
</tr>
<tr>
<td></td>
<td>Note: Route redistribution supports only standard access rules. You cannot use extended access rules to permit or deny specific routes for redistribution.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
show arp

Command Mode
User.

Description
Displays the ARP cache.

Syntax

show arp [<ip-addr>] [<if-name>] [static]

Table 127: show arp Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-addr></td>
<td>The IP address for which you want to view the ARP entry.</td>
</tr>
<tr>
<td><if-name></td>
<td>The interface for which you want to view ARP entries.</td>
</tr>
<tr>
<td>[static]</td>
<td>Displays only static ARP entries.</td>
</tr>
</tbody>
</table>

Sample Output

The following example displays the ARP cache entry for IP address 122.100.0.17.

> show arp 122.100.0.17

<table>
<thead>
<tr>
<th>Address</th>
<th>MAC Address</th>
<th>I/F</th>
<th>Type</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>122.100.0.17</td>
<td>ff:f:f:f:f:f:ff</td>
<td>mgmt</td>
<td>Local</td>
<td>Not Aged</td>
</tr>
</tbody>
</table>

Systems

show hosts

Command Mode
User.

Description
Displays DNS Client information.

Syntax
show hosts

Sample Output
The following command displays the DNS Client information.
> show hosts

Systems
show ip arp

Command Mode
User.

Description
Displays the Address Resolution Protocol (ARP) cache.

Syntax
show ip arp [<ip-addr>] [<if-name>] [static]

Table 128: show ip arp Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-addr></td>
<td>The IP address for which you want to view the ARP entry.</td>
</tr>
<tr>
<td><if-name></td>
<td>The interface for which you want to view ARP entries.</td>
</tr>
<tr>
<td>[static]</td>
<td>Displays only static ARP entries.</td>
</tr>
</tbody>
</table>

Sample Output

The following example displays the ARP cache entry for IP address 122.100.0.17.

```
> show ip arp 122.100.0.17

<table>
<thead>
<tr>
<th>Address</th>
<th>MAC Address</th>
<th>I/F</th>
<th>Type</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>122.100.0.17</td>
<td>ff:f:f:f:f:f:f</td>
<td>mgmt</td>
<td>Local</td>
<td>Not Aged</td>
</tr>
</tbody>
</table>
```

Systems

show ip interface

Command Mode
User.

Description
Displays configuration information for the IP interface.

Syntax
show ip interface [interface-name]

Table 129: show ip interface Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><interface-name></td>
<td>The name of the interface whose information you want to display.</td>
</tr>
</tbody>
</table>

Sample Output
The following command displays information for the interface labeled “boston”.

> show ip interface boston
boston is up, and administratively up
On Ethernet Console, is up
Internet address is 192.168.0.115, subnet
mask is 255.255.255.0
MTU is 1500 bytes
Proxy ARP is enabled
ICMP redirects are not sent

Systems
show ip irdp

Command Mode
User.

Description
Displays ICMP Router Discovery Protocol (IRDP) configuration.

Syntax
show ip irdp [<interface-name>]

Table 130: show ip irdp Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><interface-name></td>
<td>Interface-name is an optional argument. If specified, it requests ICMP</td>
</tr>
<tr>
<td></td>
<td>IRDP information for the specified interface.</td>
</tr>
</tbody>
</table>

Sample Output
The following example displays the IRDP configuration on the switch.

> show ip irdp
Router# show ip irdp
Console has ICMP Router Discovery Protocol enabled.
 Network address is 192.168.60.53, subnet mask is 255.255.255.0
 Advertisements sent using Multicast.
 Advertisements occur between every 450 and 600 seconds
 Advertisements valid for 1800 seconds.
 Preference set to 0.
ip_if1 has ICMP Router Discovery Protocol disabled.
 Network address is 10.1.1.10, subnet mask is 255.255.255.0
 Advertisements sent using Multicast.
 Advertisements occur between every 450 and 600 seconds
 Advertisements valid for 1800 seconds.
 Preference set to 0

Systems
show ip redistribute

Command Mode
User.

Description
Displays IP redistribute list entries.

Syntax
show ip redistribute

Sample Output
redistribute ospf route into rip
redistribute static route into rip
redistribute local route into rip using access-list 1

Systems
P580 and P882.
show ip route

Command Mode
User

Description
Displays information about the IP unicast routing table.

Syntax
show ip route [{rip | ospf | local | unknown | static}] [<ip-addr>] [<if-name>]

Table 131: show ip route Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rip</td>
<td>Displays all RIP routes.</td>
</tr>
<tr>
<td>ospf</td>
<td>Displays all OSPF routes.</td>
</tr>
<tr>
<td>local</td>
<td>Displays all local IP interfaces.</td>
</tr>
<tr>
<td>unknown</td>
<td>Displays all unknown routes.</td>
</tr>
<tr>
<td>static</td>
<td>Displays all static routes.</td>
</tr>
<tr>
<td><ip-addr></td>
<td>Displays routing information about the specified IP address.</td>
</tr>
<tr>
<td><if-name></td>
<td>Displays IP information about the interface.</td>
</tr>
</tbody>
</table>

Sample Output
The following example displays the IP Route static information on the switch.

> show ip route static
0.0.0.0 0.0.0.0 via 192.168.0.1 cost=1 pref=low

Systems
show ip route summary

Command Mode
User.

Description
Displays a summary of the routing table.

Syntax
show ip route summary

Sample Output
IP Route Summary:
Current number of routes: 3
Peak number of routes : 3
Total routes added : 4
Total routes deleted : 1
RIP route changes : 0
RIP queries : 0

Systems
show ip short-lived

Command Mode
- Global Configuration

Description
Displays the short-lived IP protocol filters that are currently enabled.

Syntax
```
show ip short-lived
```

Sample Output
After you enter the `show ip short-lived` command, the switch displays the filters that are currently enabled. For example:
```
ip short-lived tcp 112
ip short-lived udp 53
ip short-lived udp 123
```

Systems
P580 and P882.

show ip traffic

Command Mode
- User.

Description
Displays IP traffic statistics information.

Syntax
```
show ip traffic
```
Sample Output

The following example displays the IP traffic statistics information.

```plaintext
> show ip traffic
IP statistics:
  Received:
    115972 total, 15153 local destination
    0 packet header errors, 0 unknown protocol
    0 with address errors, 0 discarded
  Device is a gateway

    Fragments:
    0 reassembled, 0 couldn’t reassemble
    0 fragmented, 0 couldn’t fragment
  Sent:
    5132 generated, 0 forwarded
    0 no route, 0 discarded

ICMP statistics:
  Received:
    10 total, 0 ICMP errors, 0 unreachables
    0 time exceeded, 0 parameter, 0 quench
    0 redirects, 5 echo, 5 echo reply
    0 timestamp request, 0 timestamp reply
    0 mask requests, 0 mask replies
  Sent:
    10 total, 0 ICMP errors, 0 unreachables
    0 time exceeded, 0 parameter, 0 quench
    0 redirects, 5 echo, 5 echo reply
    0 timestamp request, 0 timestamp reply
    0 mask requests, 0 mask replies

UDP statistics:
  Received:
    10666 total, 0 errors, 0 no port
  Sent:
    0 total

TCP statistics:
  Received:
    4487 total, 0 errors
  Sent:
    4937 total
```

Systems

show tcp configuration

Command Mode

User.

Description

Displays the current TCP port settings for Telnet and HTTP.

Syntax

 show tcp configuration

Sample Output

The following example displays the current TCP port settings for Telnet and HTTP:

 > show tcp configuration
 Telnet port: 9998
 HTTP port: 9999

Systems

show tcp connections

Command Mode

User.

Description

Displays a list of open TCP connections.

Syntax

 show tcp connections

Systems

show tcp statistics

Command Mode

User.

Description

Displays TCP connection statistics.

Syntax

show tcp statistics

Sample Output

TCP statistics
Retransmit timeout algorithm : vanj
Retransmit timeout minimum : 0 (milliseconds)
Retransmit timeout maximum : 240000 (milliseconds)
Maximum num of connections : 150
Number of Active opens : 0
Number of Passive opens : 376
Attempted connection fails : 3
Estab. connection resets : 0
Established connections : 1
Segments received : 5081
Segments sent : 5546
Segments retransmitted : 214
Inactivity period : 900 (seconds)

Systems

show udp statistics

Command Mode

User.

Description

Displays UDP connection statistics.

Syntax

show udp statistics

Sample Output

UDP statistics
Total datagrams received : 10722
Datagrams without ports : 0
Datagrams in error : 0
Total Datagrams sent : 0

Systems

Chapter 12: IP-RIP

Overview

This chapter describes the following commands:

- default-metric
- ip rip authentication key
- ip rip authentication mode
- ip rip default-route-mode
- ip rip poison-reverse
- ip rip receive version
- ip rip send version
- ip rip send-receive-mode
- network
- output-delay
- router rip
- show ip rip statistics
- timers basic
- triggered updates
default-metric

Command Mode

Interface Configuration.

Description

Sets the default RIP route metric. The no form of this command restores the default value. The default setting is 1.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>default-metric <metric></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no default-metric</td>
</tr>
</tbody>
</table>

Table 132: default-metric Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><metric></td>
<td>The default RIP route metric value. The range is 0 to 15. The default setting is 1.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the default RIP metric value on the interface labeled “boston” to 10.

```
(config-if:boston)# default-metric 10
```

Systems

ip rip authentication key

Command Mode

Interface Configuration.

Description

Sets the authentication password used on the interface. The no form of this command clears the password.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip rip authentication key <password></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Clear:</td>
<td>no ip rip authentication key</td>
</tr>
</tbody>
</table>

Table 133: ip rip authentication key Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><password></td>
<td>The authentication password for the interface. You can use up to 16 characters.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the authentication string used on interface labeled “boston” as abc.

(config-if:boston)# ip rip authentication key abc

Systems

ip rip authentication mode

Command Mode

Interface Configuration.

Description

Specifies the type of authentication mode used in RIP Version 2 packets. Use the no form of this command to restore the default value of none.

Syntax

| To Configure: | ip rip authentication mode {simple | md5 | none} |
|---------------|-----------------------------------|
| To Restore Default: | no ip rip authentication mode |

Table 134: ip rip authentication mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{simple</td>
<td>md5</td>
</tr>
<tr>
<td></td>
<td>● simple - clear text authentication.</td>
</tr>
<tr>
<td></td>
<td>● md5 - keyed MD5 authentication.</td>
</tr>
<tr>
<td></td>
<td>● none - No authentication.</td>
</tr>
</tbody>
</table>

Sample Output

The following example specifies md5 the type of authentication mode to use for interface labeled “boston”.

(config-if:boston)# ip rip authentication mode md5

Systems

ip rip default-route-mode

Command Mode

Interface Configuration.

Description

Sets the RIP default route characteristics. The no form of this command disables the default route characteristics.

Syntax

To Configure: ip rip default-route-mode {talk-only | listen-only | talk-listen | disable}
To Restore Default: no ip rip default-route-mode

Table 135: ip rip default-route-mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| {talk-only| listen-only| talk-listen | disable} | The RIP default route characteristics.
 ● talk-only - The default route is advertised in RIP updates but ignored on incoming neighbor updates.
 ● listen-only - The default route is suppressed from RIP updates but accepted on incoming neighbor updates.
 ● talk-listen - The default route is advertised and accepted.
 ● disable - The default route is not advertised or accepted. |

Sample Output

The following example sets the RIP default route characteristics for interface labeled “boston” to talk-listen mode.

(config-if:boston)# ip rip default-route-mode talk-listen

Systems

ip rip poison-reverse

Command Mode

Interface Configuration.

Description

Enables split-horizon with poison reverse on an interface. The no form of this command disables the poison-reverse mechanism. The default state is split-horizon with poison reverse.

The split-horizon technique prevents information about routes from exiting the router interface through which the information was learned. This prevents routing loops.

Poison reverse updates explicitly indicate that a network or subnet is unreachable rather than implying they are not reachable. Poison reverse updates are sent to defeat large routing loops.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip rip poison-reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip rip poison-reverse</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables split-horizon with poison reverse on interface labeled “boston”.

```
(config-if:boston)# ip rip poison-reverse
```

Systems

ip rip receive version

Command Mode

Interface Configuration.

Description

Specifies a RIP version to receive on an interface basis. Use the no form of this command to restore the default setting of RIP Version 1.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip rip receive version [1] [2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no ip rip receive version</td>
</tr>
</tbody>
</table>

Table 136: ip rip receive version Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] [2]</td>
<td>The version of the RIP packets received on an interface.</td>
</tr>
<tr>
<td></td>
<td>● 1 - accept RIP Version 1 packets.</td>
</tr>
<tr>
<td></td>
<td>● 2 - accept RIP Version 2 packets.</td>
</tr>
</tbody>
</table>

Sample Output

The following example specifies that the interface labeled “boston” receive RIP version 2 packets.

(config-if:boston)# ip rip receive version 2

Systems

ip rip send version

Command Mode

Interface Configuration.

Description

Specifies a RIP version to send on an interface basis. Use the no form of this command to restore the default setting of RIP Version 1.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip rip send version [1] [2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no ip rip send version</td>
</tr>
</tbody>
</table>

Table 137: ip rip send version Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] [2]</td>
<td>The version of the RIP packets sent out the interface.</td>
</tr>
<tr>
<td></td>
<td>- 1 - send RIP Version 1 packets.</td>
</tr>
<tr>
<td></td>
<td>- 2 - send RIP Version 2 packets</td>
</tr>
</tbody>
</table>

Sample Output

The following specifies that the interface labeled “boston” send RIP version 2 packets.

(config-if:boston)# ip rip send version 2

Systems

ip rip send-receive-mode

Command Mode

Interface Configuration.

Description

Sets the RIP Send and Receive mode on an interface. The default state is talk-listen.

Syntax

ip rip send-receive-mode {talk-only | listen-only | talk-listen}

Table 138: ip rip send-receive-mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{talk-only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● talk-only - Set RIP to only transmit updates on the interface and</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● listen-only - set RIP to only receive updates on the interface and</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>● talk-listen - set RIP to transmit and receive updates on the</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

The following example sets rip send-receive mode on the interface labeled “boston” to listen-only.

(config-if:boston)# ip rip send-receive-mode listen-only

Systems

network

Command Mode

RIP Router Configuration.

Description

Enables RIP routing on a network or networks. The no form of this command disables RIP routing.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>network <ip-addr> [<wildcard-mask>]</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no network <ip-addr> [<wildcard-mask>]</td>
</tr>
</tbody>
</table>

Table 139: network Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-addr></td>
<td>IP address of the network of directly connected networks.</td>
</tr>
<tr>
<td><wildcard-mask></td>
<td>The inverse of a network mask. Enter a 32-bit number in four-part, dotted decimal format. Place ones in the bit positions that you want to mask. This parameter specifies a range of IP addresses. For example, to specify all IP addresses in the 10.10.70 subnet, enter 10.10.70.0 0.0.0.255.</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables RIP on the 11.0.0.0 subnet which is connected to the 11.0.4.5 interface:

```
(configure router:rip)# network 111.0.4.5 0.255.255.255
```

Systems

output-delay

Command Mode

RIP Router Configuration.

Description

Specifies the interpacket delay for RIP updates. The `no` form of this command removes a delay definition. The default delay time is 1 second.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>output-delay <code><delay></code></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no output-delay</td>
</tr>
</tbody>
</table>

Table 140: output-delay Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><delay></code></td>
<td>The delay between packets in a multiple-packet RIP update. The range is 0 to 50 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the interpacket delay for RIP updates to 10 seconds.

```
(configure router:rip)# output-delay 10
```

Systems

router rip

Command Mode

- Global Configuration.

Description

- Globally enables or disables RIP. The no form of the command disables RIP. The default state is Enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>router rip</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no router rip</td>
</tr>
</tbody>
</table>

Sample Output

- The following example enables RIP on the switch.

 (configure)# router rip

Systems

show ip rip statistics

Command Mode
User.

Description
Displays RIP interface statistics.

Syntax
show ip rip statistics

Sample Output
The following example displays IP interface statistics on interface 3.

> show ip rip statistics
intf3 10.0.3.45
State is DOWN
Triggered Updates Sent 0
Un-triggered Updates Sent 0
Updates Received 0
Bad Packets Received 0
Bad Routes Received 0

Systems
timers basic

Command Mode

RIP Router Configuration.

Description

Adjusts RIP network timers. The no form of this command restores the default timers. The default for the update timer is 30 seconds, and the invalid time default is 120 seconds.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>timers basic <update> <invalid></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no timers basic</td>
</tr>
</tbody>
</table>

Table 141: timers basic Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><update></td>
<td>Rate, in seconds, updates are sent. This is the fundamental timing parameter of the routing protocol. The valid range is 10 to 50 seconds. The default setting is 30 seconds.</td>
</tr>
<tr>
<td><invalid></td>
<td>Interval of time, in seconds, after which a route is declared invalid. This value should be at least three times the value of update. The valid range is 1 to 65,535 seconds. The default setting is 120 seconds. A route becomes invalid when there is an absence of updates that refresh the route. The route then enters holdown. The route is marked inaccessible and advertised as unreachable. However, the route is still used for forwarding packets.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the update value to 60 seconds.

(configure router:rip)# timers basic 60 120

Systems

triggered updates

Command Mode

RIP Router Configuration.

Description

Globally enables the use of RIP triggered updates. The no form of this command globally disables RIP triggered updates. The default state is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>triggered updates</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no triggered updates</td>
</tr>
</tbody>
</table>

Sample Output

The following example globally enables the triggered updates function.

configure router:rip)# triggered updates

Systems

Chapter 13: IPX

Overview

This chapter describes the following commands:

- `clear ipx route`
- `clear ipx service`
- `ipx advertise-default-route-only`
- `ipx default-route`
- `ipx delay`
- `ipx down`
- `ipx gns-reply-disable`
- `ipx gns-response-delay`
- `ipx network`
- `ipx output-rip-delay`
- `ipx output-sap-delay`
- `ipx rip`
- `ipx rip-filter`
- `ipx rip-max-packetsize`
- `ipx rip-multiplier`
- `ipx route`
- `ipx router`
- `ipx routing`
- `ipx sap`
- `ipx sap-max-packetsize`
- `ipx sap-multiplier`
- `ipx sap-name-filter`
- `ipx sap-network-filter`
- `ipx send-receive-mode`
- `ipx send-triggered-updates`
• ipx service
• ipx type-20-propagation
• ipx update interval
• ipx vlan
• show ipx cache
• show ipx interface
• show ipx rip statistics
• show ipx rip-filter
• show ipx route
• show ipx sap statistics
• show ipx sap-name-filter
• show ipx sap-network-filter
• show ipx service
• show ipx traffic
clear ipx route

Command Mode

Global Configuration.

Description

Deletes routes from the IPX routing table. This command only deletes routes learned via the RIP routing protocol. Static and local routes cannot be deleted using this command.

Syntax

clear ipx route {<network> | default | *}

Table 142: clear ipx route Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{network</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td>● network - The number of the network whose routing table entry you want to display. This is an eight-digit hexadecimal number that uniquely identifies a network cable segment. It can be a number in the range 1 to FFFFFFFD. You do not need to specify leading zeros in the network number. For example, for the network number 000000AA, you can enter AA.</td>
</tr>
<tr>
<td></td>
<td>● default - deletes the default route from the routing table.</td>
</tr>
<tr>
<td></td>
<td>● ***** - Deletes all routes in the routing table.</td>
</tr>
</tbody>
</table>

Sample Output

The following example clears the entry for network 5 from the IPX routing table.

(configure)# clear ipx route 5

Systems

clear ipx service

Command Mode

Global Configuration.

Description

Deletes services from the IPX service table. This command only deletes services learned via the SAP protocol. Static services cannot be deleted using this command.

Syntax

```plaintext
clear ipx service {<service-type> <service-name> | *}
```

Table 143: clear ipx service Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`{<service-type> <service-name></td>
<td>Delete services learned via the SAP protocol from the IPX service table.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

The following example deletes all SAP-learned services in the IPX routing table.

```plaintext
(configure)# clear ipx service *
```

Systems

ipx advertise-default-route-only

Command Mode

Interface Configuration.

Description

Advertises only the default RIP route. The no form of this command advertises all known routes out the interface.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ipx advertise-default-route-only</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ipx advertise-default-route-only</td>
</tr>
</tbody>
</table>

Sample Output

The following example advertises only the default RIP route configured on an interface labeled “boston”.

(config-if:boston)# ipx advertise-default-route-only

Systems

ipx default-route

Command Mode

Global Configuration.

Description

Forwards all packets for which a route to the destination network is unknown, to the default network. The no form of this command restores the default state which disables use of the default network.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ipx default-route</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ipx default-route</td>
</tr>
</tbody>
</table>

Sample Output

The following example forwards all packets to the ipx default route if the route is unknown:

(configure)# ipx default-route

Systems

ipx delay

Command Mode

Interface Configuration.

Description

Sets the ticks for an IPX interface. The no form of this command restores the system default, which is 1 tick.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ipx delay <ticks></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ipx delay</td>
</tr>
</tbody>
</table>

Table 144: ipx delay Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ticks></td>
<td>Number of IBM clock ticks of delay to use. One clock tick is 55 milliseconds (1/18th of a second). The range is 1 to 32000 ticks.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the ticks for the interface labeled “boston” to 20000.

(config-if:boston)# ipx delay 20000

Systems

ipx down

Command Mode

Interface Configuration.

Description

Administratively shuts down an IPX network. The no form restarts the network. The default state is disable, which means IPX is not shut down.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ipx down</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ipx down</td>
</tr>
</tbody>
</table>

Sample Output

The following example shuts down the IPX network on the interface labeled "boston".

(config-if:boston)# ipx down

Systems

ipx gns-reply-disable

Command Mode

Interface Configuration.

Description

Disables the sending of replies to IPX Get Nearest Server (GNS) queries. The no form restores the default state of enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ipx gns-reply-disable</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ipx gns-reply-disable</td>
</tr>
</tbody>
</table>

Sample Output

The following example disables the sending of replies to the IPX GNS on an interface labeled “boston”.

```
(config-if:boston)# ipx gns-reply-disable
```

Systems

ipx gns-response-delay

Command Mode

Interface Configuration.

Description

Sets the delay time (milliseconds) when responding to IPX GNS requests. The no form of this command restores the default. The default is zero, which indicates no delay.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ipx gns-response-delay <milliseconds></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ipx gns-response-delay</td>
</tr>
</tbody>
</table>

Table 145: ipx gns-response-delay Parameters,

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><milliseconds></td>
<td>The time, in milliseconds, that the switch waits after receiving a GNS request from an IPX client before responding with a server name to that client. The range is 0 to 5000 milliseconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the delay time for an interface labeled “boston” to respond to IPX GNS requests to 200 milliseconds.

```
(config-if:boston)# ipx gns-response-delay 200
```

Systems

ipx network

Command Mode

Interface Configuration.

Description

Enable IPX on a particular interface and select the network number and type of encapsulation (optional). The no form of this command disables IPX routing. The IPX routing default is disabled, and the default encapsulation type is arpa.

Syntax

| To Configure: | ipx network <network> [encapsulation {arpa | novell-ether | sap | snap}] |
|----------------------|---|
| To Disable: | [no] ipx network <network> |

Table 146: ipx network Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><network></td>
<td>The IPX network address. This is an eight-digit hexadecimal number that uniquely identifies a network cable segment. The range is 1 to FFFFFFFD.</td>
</tr>
<tr>
<td>encapsulation</td>
<td>The encapsulation (framing) type. Options are:</td>
</tr>
<tr>
<td>{arpa</td>
<td>novell-ether</td>
</tr>
<tr>
<td>arpa</td>
<td>Use Novell’s Ethernet_II encapsulation. This encapsulation is recommended for networks that handle both TCP/IP and IPX traffic.</td>
</tr>
<tr>
<td>novell-ether</td>
<td>Use Novell’s “Ethernet_802.3” encapsulation. This encapsulation consists of a standard 802.3 Media Access Control (MAC) header followed directly by the IPX header with a checksum of FFFF. It is the default encapsulation used by all versions of NetWare up to and including Version 3.11.</td>
</tr>
<tr>
<td>sap</td>
<td>Use Novell’s Ethernet_802.2 encapsulation. This encapsulation consists of a standard 802.3 MAC header followed by an 802.2 LLC header. This is the default encapsulation used by NetWare Version 3.12 and 4.0.</td>
</tr>
<tr>
<td>snap</td>
<td>Use Novell Ethernet_Snap encapsulation. This encapsulation consists of a standard 802.3 MAC header followed by an 802.2 SNAP LLC header.</td>
</tr>
</tbody>
</table>
Sample Output
The following example enables IPX routing on network 2 on an interface labeled “boston” and sets encapsulation to SNAP.

(config-if:boston)# ipx network 2 encapsulation snap

Systems

ipx output-rip-delay

Command Mode
Interface Configuration.

Description
Sets the interpacket delay for RIP updates sent on a single interface. The no form of this command results in no interpacket delay. The default state is enabled, which is a 55-millisecond delay.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ipx output-rip-delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ipx output-rip-delay</td>
</tr>
</tbody>
</table>

Sample Output
The following example enables the interpacket delay for IPX output RIP updates sent out on an interface labeled “boston”.

(config-if:boston)# ipx output-rip-delay

Systems
ipx output-sap-delay

Command Mode

Interface Configuration.

Description

Sets the interpacket delay for Service Advertising Protocol (SAP) updates sent on a single interface. The no form of this command results in no interpacket delay. The default state is enabled, which is a 55 millisecond delay.

Syntax

<table>
<thead>
<tr>
<th>To Enable</th>
<th>ipx output-sap-delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable</td>
<td>[no] ipx output-sap-delay</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the interpacket delay for SAP on an interface labeled “boston”.

(config-if:boston)# ipx output-sap-delay

Systems

ipx rip

Command Mode
 Interface Configuration.

Description
 Enables IPX RIP on an interface. The no form of this command disables IPX RIP on the
 interface. The default interface setting is IPX RIP enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ipx rip</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ipx rip</td>
</tr>
</tbody>
</table>

Sample Output
 The following example enables IPX RIP on an interface labeled “boston”.

 (config-if:boston)# ipx rip

Systems
ipx rip-filter

Command Mode

Interface Configuration.

Description

Controls which networks are present in RIP packets sent and received on the interface. The no form of this command removes the filter from an interface.

Syntax

To Configure:

```
ipx rip-filter <precedence> <start-network> <end-network>
{outbound | inbound | both} {filter | allow} [{filter-ticks} [{filter-hops}]]
```

To Remove:

```
[no] ipx rip-filter <precedence>
```

Table 147: ipx rip-filter Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><precedence></td>
<td>Indicates the precedence of this RIP filter in relation to other RIP filters on this interface. Lower numbers indicate a higher precedence. The range is 0-9999.</td>
</tr>
<tr>
<td><start-network></td>
<td>The first IPX network address this filter should match. The range is 0-FFFFFFFF.</td>
</tr>
<tr>
<td><end-network></td>
<td>The last IPX network address this filter should match. The range is 0-FFFFFFFF.</td>
</tr>
<tr>
<td>{outbound</td>
<td>inbound</td>
</tr>
<tr>
<td></td>
<td>● outbound - apply filter to RIP packets sent out the interface.</td>
</tr>
<tr>
<td></td>
<td>● inbound - apply filter to RIP packets received on the interface.</td>
</tr>
<tr>
<td></td>
<td>● both - apply filter to RIP packets in both directions.</td>
</tr>
<tr>
<td>{filter</td>
<td>allow}</td>
</tr>
<tr>
<td></td>
<td>● filter - do not add the network to the routing table (inbound RIP packets) or do not advertise the network (outbound RIP packets).</td>
</tr>
<tr>
<td></td>
<td>● allow - add the network to the routing table (inbound RIP packets) or advertise the network (outbound RIP packets).</td>
</tr>
</tbody>
</table>
Table 147: ipx rip-filter Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><filter-ticks></td>
<td>Modify the number of ticks to get to the network in the routing table (inbound RIP packets) or in the advertised information (outbound RIP packets). The range is 0 to 32000 ticks.</td>
</tr>
<tr>
<td><filter-hops></td>
<td>Modify the number of hops to get to the network in the routing table (inbound RIP packets) or in the advertised information (outbound RIP packets). The range is 0 to 16 hops.</td>
</tr>
</tbody>
</table>

Sample Output

The following example:

- sets the IPX RIP filter precedence to 5
- sets the start-network to 2
- sets the end-network to 3
- applies filters to RIP packets in both directions (both)
- adds the network to the routing table (allow)
- sets the filter ticks to 10000
- sets the filter hops to 5

on an interface labeled “boston”.

(config-if:boston)# ipx rip-filter 5 2 3 both allow 10000 5

Systems

ipx rip-max-packetsize

Command Mode

Interface Configuration.

Description

Enables the maximum packet size for RIP updates sent out the interface. To restore the default packet size, use the no form of this command. The default state is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ipx rip-max-packetsize</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ipx rip-max-packetsize</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables the maximum packet size for RIP updates on an interface labeled “boston”.

(config-if:boston)# ipx rip-max-packetsize

Systems

ipx rip-multiplier

Command Mode

Interface Configuration.

Description

Sets the interval at which a network's RIP entry ages out. The no form of this command restores the default. The default value is three times the RIP update interval.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ipx rip-multiplier <multiplier></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ipx rip-multiplier</td>
</tr>
</tbody>
</table>

Table 148: ipx rip-multiplier Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><multiplier></td>
<td>The multiplier used to calculate the interval at which RIP routing table entries age out. This can be any positive number. The value you specify is multiplied by the RIP update interval to determine the aging-out interval.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the IPX RIP age-out interval on an interface labeled "boston" to 40.

```
(config-if:boston)# ipx rip-multiplier 40
```

Systems

ipx route

Command Mode

 Global Configuration.

Description

 Adds a static route to the routing table. The no form of this command removes a route from the routing table.

Syntax

 To Configure: ipx route {<network> | default} <network.next-hop-node> [<ticks> [<hops>]]
 To Remove: [no] ipx route {<network> | default} <network.next-hop-node>

Table 149: ipx route Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| {network | default} | ● **network** - an eight-digit hexadecimal number that identifies the network on which you are establishing a static route. The range is 1 to FFFFFFFD and leading zeros can be omitted (for 000000BB, enter BB).
| | ● **default** - creates a static entry for the default-route. |
| <network.next-hop-node> | Network number and node address of the next hop to the server. |
| | ● **next-hop-node** - The argument node is the node number of the target Novell server. This is a 48-bit value represented by a MAC address (aa:bb:cc:dd:ee:ff). |
| <ticks> | Number of IBM clock ticks of delay to the network for which you are establishing a static route. The range is 1 to 32000. |
| <hops> | Number of hops to the network for which you are establishing a static route. The range is 1 to 16. |
Sample Output

The following example adds a static route to the routing table.

(configure)# ipx route 50 100.02:e0:3b:00:45:63

Systems

ipx router

Command Mode

Global Configuration.

Description

Enables the IPX RIP or IPX SAP protocol on a global basis. Use the no form of the command to disable the protocols. The default state is enabled.

Syntax

| To Enable: | ipx router {rip | sap} |
|------------------|-----------------------|
| To Disable: | [no] ipx router {rip | sap} |

Table 150: ipx router Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{rip</td>
<td>sap}</td>
</tr>
</tbody>
</table>

Sample Output

The following example disables IPX RIP on a global basis.

(configure)# no ipx router rip

Systems

ipx routing

Command Mode

Global Configuration.

Description

Enables IPX routing. The no form of this command disables IPX routing. The default state is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ipx routing</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ipx routing</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables IPX routing.

(configure)# ipx routing

Systems

ipx sap

Command Mode

Interface Configuration.

Description

Enables IPX SAP on an interface. The no form of this command disables IPX SAP on an interface. Default interface setting is IPX SAP enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ipx sap</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ipx sap</td>
</tr>
</tbody>
</table>

Sample Output

The following example disables IPX SAP on an interface labeled “boston”.

```
(config-if:boston)# no ipx sap
```

Systems

ipx sap-max-packetsize

Command Mode

Interface Configuration.

Description

Enables use of the maximum packet size for SAP updates sent out the interface. The no form of this command disables this function. The default state is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ipx sap-max-packetsize</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ipx sap-max-packetsize</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables use of the maximum packet size for SAP updates sent out the boston interface.

(config-if:boston)# ipx sap-max-packetsize

Systems

ipx sap-multiplier

Command Mode

Interface Configuration.

Description

Sets the interval at which a network or server’s SAP entry ages out. The no form of this command restores the default, which is three times the SAP update interval.

Syntax

To Configure: ipx sap-multiplier <multiplier>

To Restore Default: [no] ipx sap-multiplier

Table 151: ipx sap-multiplier Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><multiplier></td>
<td>The multiplier used to calculate the interval SAP routing table entries age out. This can be any positive number. The value you specify is multiplied by the SAP update interval to determine the aging-out interval.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the interval at which the SAP entry goes out to 20 on an interface labeled “boston”.

(config-if:boston)# ipx sap-multiplier 20

Systems

ipx sap-name-filter

Command Mode

Interface Configuration.

Description

Specifies which services (by name) are present in SAP packets sent and received on the interface. The no form of this command removes a filter from the interface.

Syntax

To Configure:

```
ipx sap-name-filter <precedence> <filter-name> <service-type> {outbound | inbound | both} {filter | allow} [<filter-hops>]
```

To Remove:

```
[no] ipx sap-name-filter <precedence>
```

Table 152: ipx sap-name-filter Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><precedence></td>
<td>Indicates the precedence of this SAP name filter in relation to other SAP name filters on this interface. Lower numbers indicate a higher precedence. The range is 0-9999.</td>
</tr>
<tr>
<td><filter-name></td>
<td>The name of the service that this filter matches. The filter-name is compared against the Service name for a match. A single asterisk may be present as the last character of filter-name, which matches all remaining characters. Up to 1 to 63 bytes are allowed.</td>
</tr>
<tr>
<td><service-type></td>
<td>The IPX service type (hexadecimal). This is between 0 and FFFF, where FFFF matches all service types.</td>
</tr>
<tr>
<td>{outbound</td>
<td>inbound</td>
</tr>
<tr>
<td></td>
<td>● outbound - Apply filter to SAP packets sent out the interface.</td>
</tr>
<tr>
<td></td>
<td>● inbound - Apply filter to SAP packets received on the interface.</td>
</tr>
<tr>
<td></td>
<td>● both - Apply filter to SAP packets in both directions.</td>
</tr>
</tbody>
</table>
Table 152: ipx sap-name-filter Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{filter</td>
<td>allow}</td>
</tr>
<tr>
<td></td>
<td>• filter - Do not add the service to the service table (inbound SAP packets) or do not advertise the service (outbound SAP packets).</td>
</tr>
<tr>
<td></td>
<td>• allow - Add the service to the service table (inbound SAP packets) or advertise the service (outbound SAP packets).</td>
</tr>
<tr>
<td><filter-hops></td>
<td>The number of hops to get to the service in the service table (inbound SAP packets) or in the advertised information (outbound SAP packets). The range is 0 to 16 hops.</td>
</tr>
</tbody>
</table>

Sample Output

The following example:

- sets the precedence to 2
- sets the filter-name to netbios
- sets the service type to 1
- applies filters to SAP packets in both directions (both)
- adds the service to the service table (allow)
- sets the filter hops to 4

on an interface labeled “boston”.

(config-if:boston)# ipx sap-name-filter 2 netbios 1 both allow 4

Systems

ipx sap-network-filter

Command Mode

Interface Configuration.

Description

Specifies which services (by network) are present in SAP packets sent and received on the interface. The no form of this command removes the filter from an interface.

Syntax

| To Configure: | ipx sap-network-filter <precedence> <filter-network> <service-type> {outbound | inbound | both} {filter | allow} [<filter-hops>] |
|---------------|--|
| To Remove: | [no] ipx sap-network-filter <precedence> |

Table 153: ipx sap-network-filter Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><precedence></td>
<td>Indicates the precedence of this SAP name filter in relation to other SAP name filters on this interface. Lower numbers indicate a higher precedence. The range is 0-9999.</td>
</tr>
<tr>
<td><filter-network></td>
<td>The network of the service that this filter matches. The range is 0 - FFFFFFFF where, FFFFFFFF matches all networks.</td>
</tr>
<tr>
<td><service-type></td>
<td>The type of the IPX SAP service, in hexadecimal. The range is 0 - FFFF where, FFFF matches all service types.</td>
</tr>
</tbody>
</table>
| {outbound | inbound | both} | The filter direction.
 * outbound - Apply filter to SAP packets sent out the interface.
 * inbound - Apply filter to SAP packets received on the interface.
 * both - Apply filter to SAP packets in both directions. |
| {filter | allow} | The action to take for the IPX service.
 * filter - Do not add the service to the service table (inbound SAP packets) or do not advertise the service (outbound SAP packets).
 * allow - Add the service to the service table (inbound SAP packets) or advertise the service (outbound SAP packets). |
| <filter-hops> | The number of hops to get to the service in the service table (inbound SAP packets) or in the advertised information (outbound SAP packets). The range is 0 to 16 hops. |
Sample Output

The following example:

- sets the SAP name filter precedence to 1
- sets the filter-network to 3
- sets the service-type to 2
- applies filters to SAP packets in both directions (both)
- adds the service to the service table (allow)
- sets the filter hops to 4

on an interface labeled “boston”.

(config-if:boston)# ipx sap-network-filter 1 3 2 both allow 4

Systems

ipx send-receive-mode

Command Mode

Interface Configuration.

Description

Sets the RIP/SAP send and receive characteristics of the IPX interface. The no form of this command restores the default, which is talk-listen.

Syntax

| To Configure: | ipx send-receive-mode {rip | sap} {talk-only | listen-only | talk-listen} |
|---------------|--|
| To Restore Default: | [no] ipx send-receive-mode {rip | sap} |

Table 154: ipx send-receive-mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{rip</td>
<td>sap}</td>
</tr>
<tr>
<td>{talk-only</td>
<td>listen-only</td>
</tr>
<tr>
<td></td>
<td>● listen-only - RIP or SAP only receives updates on the interface and does not transmit them.</td>
</tr>
<tr>
<td></td>
<td>● talk-listen - RIP or SAP transmits and receives updates on the interface.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the RIP send-receive characteristics for an interface labeled "boston" to talk-listen.

(config-if:boston)# ipx send-receive-mode rip talk-listen

Systems

ipx send-triggered-updates

Command Mode

Interface Configuration.

Description

Immediately sends RIP or SAP updates to the network in response to changes in the network topology. The no command disables triggered updates. The default setting is enabled.

Syntax

To Enable: ipx send-triggered-updates {rip | sap}
To Disable: [no] ipx send-triggered-updates {rip | sap}

Table 155: ipx send-triggered-updates Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{rip</td>
<td>sap}</td>
</tr>
</tbody>
</table>

Systems

ipx service

Command Mode

Global Configuration.

Description

Specifies static SAP entries. To remove static SAP entries, use the no form of this command. The default is that no static services are defined.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ipx service <service-type> <service-name> <network> <node> <socket> <network.next-hop-node> [<hops>]</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ipx service <service-type> <service-name></td>
</tr>
</tbody>
</table>

Table 156: ipx service Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><service-type></td>
<td>The number of the type of the service. The range is 0-FFFF.</td>
</tr>
<tr>
<td><service-name></td>
<td>Name of the server that provides the service. The range is 1 to 47 bytes long.</td>
</tr>
<tr>
<td><network></td>
<td>An eight-digit hexadecimal number that uniquely identifies a network cable segment. It can be a number in the range 1 to FFFFFFFD. You do not need to specify leading zeros in the network number. For example, for the network number 000000AA you can enter AA.</td>
</tr>
<tr>
<td><node></td>
<td>The node number of the target Novell server. This is a 48-bit value represented by a MAC address (aa:bb:cc:dd:ee:ff).</td>
</tr>
<tr>
<td><socket></td>
<td>The socket number for this service. The range is 0 - FFFF</td>
</tr>
<tr>
<td><network.next-hop-node></td>
<td>Network number and node address of the next hop to the server. <next-hop-node> - The argument node is the node number of the target Novell server. This is a 48-bit value represented by a MAC address (aa:bb:cc:dd:ee:ff).</td>
</tr>
<tr>
<td><hops></td>
<td>Number of hops to the server. The range is 1-16.</td>
</tr>
</tbody>
</table>
Sample Output

The following example adds a static service to the service table.

(configure)# ipx service 4FS_ENG01 36112114 00:00:00:00:01 451 100.02:e0:3b:00:45:63

Systems

ipx type-20-propagation

Command Mode

Interface Configuration.

Description

Specifies whether or not an IPX interface accepts and forwards IPX type 20 propagation packet broadcasts. The default setting is disabled.

Syntax

| To Enable: | ipx type-20-propagation {both | inbound | outbound} |
|------------|--|
| To Disable:| ipx type-20-propagation disabled |

Table 157: ipx type-20-propagation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{both</td>
<td>inbound</td>
</tr>
<tr>
<td></td>
<td>• inbound - The interface only accepts type 20 broadcast packets.</td>
</tr>
<tr>
<td></td>
<td>• outbound - The interface only forwards type 20 propagation broadcast packets to other network segments.</td>
</tr>
<tr>
<td></td>
<td>• disabled - The interface does not accept or forward type 20 propagation broadcast packets.</td>
</tr>
</tbody>
</table>
Sample Output

The following example forwards type 20 propagation broadcast packets to other network segments on an interface labeled “boston”.

(config-if:boston)# ipx type-20-propagation outbound

Systems

ipx update interval

Command Mode

Interface Configuration.

Description

Adjusts the RIP or SAP update interval. The no form of this command restores the default of 60 seconds.

Syntax

| To Configure: | ipx update interval {rip | sap} <seconds> |
|-------------------------|--|
| To Restore Default: | [no] ipx update interval |

Table 158: ipx update interval Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| {rip | sap} | ● rip - Adjusts the interval at which RIP updates are sent. The minimum interval is 10 seconds.
 | ● sap - Adjusts the interval at which SAP updates are sent. The minimum interval is 10 seconds. |
| <seconds> | The update interval. The range is 10 - 604800 seconds. |
Sample Output

The following example modifies the RIP update interval to 1000 seconds on an interface labeled “boston”.

(config-if:boston)# ipx update interval rip 1000

Systems

ipx vlan

Command Mode

Interface Configuration.

Description

Specifies the VLAN on which the IPX interface operates. The no form of this command assigns the IPX interface to the discard VLAN.

Syntax

| To Configure: | ipx vlan {<vlan-id> | name <vlan-name>} |
|------------------|-------------------|
| To Disable: | [no] ipx vlan |

Table 159: ipx vlan Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID of the VLAN.</td>
</tr>
<tr>
<td>name</td>
<td><vlan-name> - The name of the VLAN</td>
</tr>
</tbody>
</table>

Sample Output

The following example specifies that the IPX interface labeled “boston” resides on VLAN 200.

(config-if:boston)# ip vlan 200

Systems

show ipx cache

Command Mode

User.

Description

Displays the contents of the IPX fast-switching cache.

Syntax

show ipx cache

Sample Output

The following is an example of the output from the show ipx cache command.

PRE 6
Tree is IPX
Access Rule is None
Destination Address is 36112214
Source Address is 0
Destination Port is 0
Source Port is 0
Comp is DA
TTL is 0
Age is 0
Filter is No
Destination VLAN is tiny100
Source VLAN is 00:c0:4f:ae:6b:6d
Use is 1
Priority is 0
Format is Eth2
.
.
.

Systems

show ipx interface

Command Mode
User.

Description
Displays the details of IPX interfaces configured on the switch.

Syntax
show ipx interface [<intf-name>]

Table 160: show ipx interface Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><intf-name></td>
<td>The name of the interface to show.</td>
</tr>
</tbody>
</table>

Sample Output
The following is an example of the output that displays after you enter the show ipx interface command.

10005129 is up, and administratively up
On vlan ipxServer, is up
IPX address is 10005129.02:e0:3b:d4:48:03, encapsulation type Ethernet SNAP
MTU is 1492 bytes
Delay of this Novell network, in ticks, is 1
IPX Type 20 propagation packet forwarding mode is set to Inbound
IPX RIP is enabled on this interface
 IPX RIP periodic update packets have an interpacket gap of 55 msec
 IPX RIP updates are sent with up to 50 networks per packet
 Sending of IPX RIP triggered updates is enables
 IPX RIP update interval is 60 seconds
 IPX RIP aging interval multiplier is 3

Systems
show ipx rip statistics

Command Mode
User.

Description
Displays the following IPX RIP interface statistics:
- Triggered Updates Sent
- Non-triggered Updates Sent
- Updates Received
- Requests Received
- Bad Packets Received

Syntax
show ipx rip statistics

Systems

show ipx rip-filter

Command Mode
User.

Description
Displays IPX RIP filters.

Syntax
show ipx rip-filter

Systems
show ipx route

Command Mode
User.

Description
Displays the contents of the IPX Routing Table.

Syntax
show ipx route [{<network> | default}]

Sample Output
The following is an example of the output that the show ipx route command displays:

Codes: C - Connected primary network, S - Static, R - RIP
s - seconds
7 Total IPX routes.
IPX default route known

C 100 (Ethernet 802.3), 100
C 1001 (Ethernet II), 1001
C 1002 (Ethernet 802.2), 1002
C 1003 (Ethernet SNAP), 1003
C 10005129 (Ethernet SNAP), 10005129
R AAAAAAAA [2/2] via 10005129.00:c0:4f:ae:6b:6d, 10005129
S FFFFFFFF via 100.02:e0:3b:00:45:63, 100

Systems
show ipx sap statistics

Command Mode
User.

Command Mode
Displays the following IPX SAP interface statistics:
 ● Triggered Updates Sent
 ● Non-triggered Updates Sent
 ● GNS Responses Sent
 ● Updates Received
 ● Requests Received
 ● GNS Requests Received
 ● Bad Packets Received

Syntax
 show ipx sap statistics

Systems
show ipx sap-name-filter

Command Mode
User.

Description
Displays IPX SAP name filters.

Syntax
show ipx sap-name-filter

Systems

show ipx sap-network-filter

Command Mode
User.

Description
Displays IPX SAP network filters.

Syntax
show ipx sap-network-filter

Systems
show ipx service

Command Mode
User.

Description
Lists the IPX services added via static configuration or discovered through Service Advertising Protocol (SAP) advertisements.

Syntax
show ipx service

Sample Output
The following is an example of the output that displays after you enter the `show ipx service` command.

Codes: S - Static, P - Periodic
4 Total IPX services.

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Name</th>
<th>Address</th>
<th>Route</th>
<th>Hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ifc</td>
<td>S</td>
<td>FileServer2</td>
<td>60.00:00:00:00:00:01.0455</td>
<td>0/0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>SQA1</td>
<td>36112214.00:00:00:00:00:00:01.0451</td>
<td>2/2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>10005129</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>TREE1</td>
<td>36112214.00:00:00:00:00:00:00:01.0005</td>
<td>2/2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>10005129</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Systems
show ipx traffic

Command Mode

User.

Description

Displays the number and type of IPX packets transmitted and received.

Syntax

show ipx traffic

Sample Output

The following is an example of the output that displays after you enter the `show ipx traffic` command.

Rcvd: 3260 total, 56 format errors, 0 checksum errors, 0 bad hop count,
 0 unknown socket, 3204 local destination, 0 NetBIOS
Sent: 14104 generated, 0 forwarded, 57 no route, 1 output errors
Echo: Rcvd 0 requests, 1 replies
 Sent 1 requests, 0 replies

Systems

Chapter 14: Layer 3 Forwarding Cache

Overview

This chapter describes the following commands:

- `ip multicast route-cache aging`
- `ip multicast route-cache hash-mode`
- `ip multicast route-cache max-size`
- `ip multicast route-cache readd-timeout`
- `ip multicast route-cache update-timeout`
- `ip unicast route-cache aging`
- `ip unicast route-cache hash-mode`
- `ip unicast route-cache max-size`
- `ip unicast route-cache update-timeout`
- `ipx route-cache aging`
- `ipx route-cache hash-mode`
- `ipx route-cache max-size`
- `ipx route-cache update-timeout`
- `show ip multicast cache`
- `show ip unicast cache`
- `show ipx cache`
ip multicast route-cache aging

Command Mode

Global Configuration.

Description

Enables aging of IP multicast forwarding cache entries. The no form of this command disables aging. The default state is enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip multicast route-cache aging</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ip multicast route-cache aging</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables aging of IP routes in the IP forwarding cache.

```
(configure)# ip multicast route-cache aging
```

Systems

ip multicast route-cache hash-mode

Command Mode

Global Configuration.

Description

Configures the ip multicast route cache hashing mode. The **no** form of this command restores the default, which is **sa-da**.

Syntax

| To Configure: | ip multicast route-cache hash-mode {da-only | sa-da} |
|---------------|--|
| To Restore Default: | [no] ip multicast route-cache hash-mode |

Table 162: ip multicast route-cache hash-mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| {da-only | sa-da} | Enter the hash table lookup mode for IP multicast. Choices include:
 ● **da-only** - Destination address only.
 ● **sa-da** - Source Address-Destination Address. |

Sample Output

The following example enables IP multicast route cache hash mode for the source address/destination address.

```
(configure)# ip multicast route-cache hash-mode sa-da
```

Systems

ip multicast route-cache max-size

Command Mode
Global Configuration.

Description
Sets a maximum limit on the number of entries in the ip multicast route cache per forwarding chip. The no form of this command restores the default, which is 15000 entries.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip multicast route-cache max-size <multicast-max-size></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip multicast route-cache max-size</td>
</tr>
</tbody>
</table>

Table 163: ip multicast route-cache max-size Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><multicast-max-size></td>
<td>The maximum number of entries allowed in the multicast route cache.</td>
</tr>
</tbody>
</table>

Sample Output
The following example enables IP multicast route cache max size of 10000 entries.

(configure)# ip multicast route-cache max-size 10000

Systems
ip multicast route-cache readd-timeout

Command Mode

Global Configuration.

Description

This command is useful only for networks that are designed to route multicast traffic. If the switch is not running IGMP-Only or a multicast routing protocol on multiple IP interfaces, this command has no useful effect.

Upon receiving the first frame of a new flow, the forwarding entry cache software is designed to enter a cache entry in the hardware. If the forwarding entry cache software continues to receive frames for the same flow for a certain length of time, the software assumes that the hardware was unable to install the forwarding entry when last programmed, and makes a new attempt.

The length of time for which the software waits before attempting to re-add the forwarding entry is called the `readd-timeout`. The readd-timeout should be kept small so that a missed attempt at installing a forwarding entry will be recovered from quickly.

The default timeout is 2 seconds, and the range of adjustment is from 2 to 60 seconds. The `no` command restores the default setting.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip multicast route-cache readd-timeout <code><timeout-interval></code></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip multicast route-cache readd-timeout</td>
</tr>
</tbody>
</table>

Table 164: ip multicast route-cache readd-timeout Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><timeout-interval></code></td>
<td>Time, in seconds, that the software waits before attempting to readd a multicast forwarding entry.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the IP multicast route cache re-add timeout interval to 10 seconds.

```
(configure)# ip multicast route-cache readd-timeout 10
```

Systems

ip multicast route-cache update-timeout

Command Mode
Global Configuration.

Description
Sets the period of cache invalidation due to aging. The no form of this restores the default of 120 seconds.

Syntax

To Configure: {ip multicast route-cache update-timeout <ip-multicast-period>}
To Restore Default: [no] ip multicast route-cache update-timeout

Table 165: ip multicast route-cache update-timeout Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-multicast-period></td>
<td>The period, in seconds, that route cache entries are invalidated. The range is 20 to 360 seconds.</td>
</tr>
</tbody>
</table>

Sample Output
The following example sets the IP multicast route cache aging invalidation period to 200 seconds.

(configure)# ip multicast route-cache update-timeout 200

Systems
ip unicast route-cache aging

Command Mode

Global Configuration.

Description

Enables aging of IP unicast route cache entries. The no form of this command disables aging. The default state is enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip unicast route-cache aging</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ip unicast route-cache aging</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables aging of IP unicast routes in the forwarding cache.

```
(configure)# ip unicast route-cache aging
```

Systems

ip unicast route-cache hash-mode

Command Mode

Global Configuration.

Description

Configures the IP unicast route cache hashing mode. The no form of this command restores the default, which is da-only.

Syntax

| To Configure: | ip unicast route-cache hash-mode {da-only | sa-da} |
|---------------|---|
| To Restore Default: | [no] ip unicast route-cache hash-mode |

Table 166: ip unicast route-cache hash-mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| {da-only | sa-da} | The hash table lookup mode for IP unicast. Choices include:
 ● da-only - Destination address only.
 ● sa-da - Source Address-Destination Address. |

Sample Output

The following example configures the IP unicast route cache for the da-only mode.

```
(configure)# ip unicast route-cache hash-mode da-only
```

Systems

ip unicast route-cache max-size

Command Mode

Global Configuration.

Description

Sets a maximum limit on the number of entries in the ip unicast route cache per forwarding chip. The no form of this command restores the default, which is 15000 entries.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip unicast route-cache max-size <code><unicast-max-size></code></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip unicast route-cache max-size</td>
</tr>
</tbody>
</table>

Table 167: ip unicast route-cache max-size Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><unicast-max-size></code></td>
<td>Maximum number of entries allowed in the unicast route cache.</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures IP Unicast forwarding cache max size of 10000.

```
(configure)# ip unicast route-cache max-size 10000
```

Systems

ip unicast route-cache update-timeout

Command Mode
Global Configuration.

Description
Sets the period of ip unicast route cache invalidation due to aging. The no form of this command restores the default of 120 seconds.

Syntax

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-unicast-period></td>
<td>The period, in seconds, that route cache entries are invalidated. The range is 20-360 seconds.</td>
</tr>
</tbody>
</table>

Sample Output
The following example enables the ip unicast route-cache update-timeout command and sets it to 60 seconds.

```
(configure)# ip unicast route-cache update-timeout 60
```

Systems
ipx route-cache aging

Command Mode

Global Configuration.

Description

Enables and disables IPX route cache aging. The no form of this command disables aging. The default state is enabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ipx route-cache aging</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ipx route-cache aging</td>
</tr>
</tbody>
</table>

Sample Output

The following example disables ipx route cache aging.

(configure)# ipx route-cache aging disabled

Systems

ipx route-cache hash-mode

Command Mode

Global Configuration.

Description

Configures the IPX unicast route cache hashing mode. The no form of this command restores the default, which is da-only.

Syntax

| To Configure: | ipx route-cache hash-mode {da-only | sa-da} |
|-----------------------|--|
| To Restore Default: | [no] ipx route-cache hash-mode |

Table 169: ipx route-cache hash-mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{da-only</td>
<td>sa-da}</td>
</tr>
<tr>
<td></td>
<td>● da-only - destination address only.</td>
</tr>
<tr>
<td></td>
<td>● sa-da - source and destination addresses.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets ipx route cache hash mode to sa-da.

(configure)# ipx route-cache hash-mode sa-da

Systems

ipx route-cache max-size

Command Mode

Global Configuration.

Description

Sets a maximum limit on the number of entries in the IPX route cache. The no form of this command restores the default, which sets IPX route-cache max-size to the default of 15000 entries.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ipx route-cache max-size <ipx-max-size></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ipx route-cache max-size</td>
</tr>
</tbody>
</table>

Table 170: ipx route-cache max-size Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ipx-max-size></td>
<td>Maximum number of entries allowed in IPX route cache.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the maximum route cache size to 12000 entries.

(configure)# ipx route-cache max-size 12000

Systems

ipx route-cache update-timeout

Command Mode
Global Configuration.

Description
Sets the period of IPX route cache invalidation due to aging. The no form of this command restores the default of 120 seconds.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ipx route-cache update-timeout <ipx-period></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ipx route-cache update-timeout</td>
</tr>
</tbody>
</table>

Table 171: ipx route-cache update-timeout Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ipx-period></td>
<td>The period, in seconds, that route cache entries are invalidated.</td>
</tr>
</tbody>
</table>

Sample Output
The following example sets the update timeout period to 3 minutes.

(configure)# ipx route-cache update-timeout 180

Systems
show ip multicast cache

Command Mode

User.

Description

Displays the IP multicast L3 forwarding cache entries.

Syntax

show ip multicast cache

Sample Output

The following examples shows a typical IP multicast cache display:

> show ip multicast cache
PRE 6
Tree is IP_NUL
Access Rule is None
Destination Address is 255.0.1.1
Source Address is 10.0.1.199
Destination Port is 0
Source Port is 0
Comp is DASA
TTL is 0
Age is 7
Filter is Yes
Destination VLAN is vlan40
Source VLAN is vlan40
Mac Address is Derived from DA
Use is 1
Priority is 0
Format is Eth 2System Supported: P550R

Systems

show ip unicast cache

Command Mode

User

Description

Displays the IP unicast L3 forwarding cache entries.

Syntax

show ip unicast cache

Sample Output

The following example shows a typical IP unicast cache display:

> show ip unicast cache
PRE 2
Destination Address is 10.0.4.94
Source Address is 0.0.0.0
Destination Port is 0
Source Port is 0
Comp is DA
TTL is 0
Age is 7
Filter is No
Destination VLAN is vlan40
Source VLAN is n/a
Mac Address is 02:e0:3b:dd:c4:27
Use is 0
Priority is 7
Format is Eth 2

Systems

show ipx cache

Command Mode
User.

Description
Displays the IPX forwarding cache entries.

Syntax
show ipx cache

Sample Output
The following example shows a typical IPX cache display:

> show ipx cache
PRE 2
Destination Address is 10.0.4.94
Source Address is 0.0.0.0
Destination Port is 0
Source Port is 0
Comp is DA
TTL is 0
Age is 7
Filter is No
Destination VLAN is vlan40
Source VLAN is n/a
Mac Address is 02:e0:3b:dd:c4:27
Use is 0
Priority is 7
Format is Eth 2

Systems
Layer 3 Forwarding Cache
Chapter 15: LDAP

Overview

This chapter describes the following commands:

- `ldap execution-option`
- `ldap search-base`
- `ldap server primary`
- `ldap server secondary`
- `show ldap`

ldap execution-option

Command Mode

Global Configuration.

Description

Sets whether Avaya Policy Manager (APM) stops or continues to apply a policy if an error with a command occurs. The default setting is `stop-on-error`.

Syntax

```
To Stop: ldap execution-option stop-on-error
To Continue: ldap execution-option ignore-errors
```

Sample Output

The following example sets the ldap execution-option to ignore-errors.

```
(configure)# ldap execution-option ignore-errors
```

Systems

ldap search-base

Command Mode

Global Configuration.

Description

Defines the Lightweight Directory Access Protocol (LDAP) search base. The no form of this command removes a search base definition.

The search base default is ou=Devices, ou=CajunRules, o=Avaya.

Note:

If LDAP has not been configured, there is no default.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ldap search-base <search-base-dn></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ldap search-base <search-base-dn></td>
</tr>
</tbody>
</table>

Table 172: ldap search-base Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><search-base-dn></td>
<td>The Distinguished Name (DN) that defines the start point of the search.</td>
</tr>
<tr>
<td></td>
<td>Note: The name you enter must start and end with quotation marks.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets an LDAP search base to avaya.com.

(configure)# ldap search-base "o"

Systems

Idap server primary

Command Mode

Global Configuration.

Description

Changes the primary LDAP server’s IP address and port. The no form of this command removes the primary LDAP Server’s IP Address. The default IP address is: 0.0.0.0. The default port number is 389.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ldap server primary <ip-addr> [<port-num>]</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ldap server primary</td>
</tr>
</tbody>
</table>

Table 173: ldap server primary Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-addr></td>
<td>The IP address of the primary LDAP server.</td>
</tr>
<tr>
<td><port-num></td>
<td>The port number of the primary LDAP server.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the LDAP server’s primary IP address to 199.93.238.93.

(configure)# ldap server primary 199.93.238.93 389

Systems

ldap server secondary

Command Mode

 Global Configuration.

Description

Changes the secondary LDAP server's IP Address and port. The no form of this command removes the secondary LDAP Server's IP Address. The default port number is: \textbf{389}.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ldap server secondary <ip-addr> [<port-num>]</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ldap server secondary</td>
</tr>
</tbody>
</table>

Table 174: ldap server secondary Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{<ip-addr>}</td>
<td>The IP address of the secondary LDAP server.</td>
</tr>
<tr>
<td>\textit{<port-num>}</td>
<td>The port number of the secondary LDAP server.</td>
</tr>
</tbody>
</table>

Sample Output

The following example changes the secondary ldap server's IP address to 199.93.238.94.

\texttt{(configure)# ldap server secondary 199.93.238.94 389}

Systems

show ldap

Command Mode
User.

Description
Displays the current LDAP configuration information.

Syntax
show ldap

Sample Output
The following example displays the LDAP configuration information.

> show ldap
 LDAP Configuration

 Primary LDAP Server IP address: 10.10.9.41
 Primary LDAP Server Port: 389
 Secondary LDAP Server IP address: 10.10.9.42
 Secondary LDAP Server Port: 389
 LDAP Search base: ou=Devices,ou=CajunRules,o=avayactc.com
 Last Change: 22977
 LDAP Producer Signal: 120
 LDAP Consumer Signal: 120
 LDAP Execution Option: ignore-errors

Systems
Chapter 16: Logging

Overview

This chapter describes the following commands:

- logging clear
- logging console
- logging history
- logging history size
- logging protocol event
- logging shutdown size
- logging traps
- set syslog
- set syslog facility
- set syslog server_ip
- set syslog severity
- show alarms
- show logging
- show syslog buffer
- show syslog config
logging clear

Command Mode

 Global Configuration.

Description

 Clears the contents of the event log.

Syntax

 logging clear

Sample Output

 The following example clears the event log.

 (configure)# logging clear
 Delete Event Log (Y/N) y
 Event log has been cleared.

Systems

logging console

Command Mode

Global Configuration.

Description

Sets the type of syslog messages that are sent to the console. The no form of this command disables the type specified. The default setting is: {system | switch_fabric}

Syntax

```plaintext
To Enable:  logging console [{start | system | config | temp | resource | fan | power | service_port | user_port | auth_failure | bridge_stat | switch_fabric | ospf | dvmrp | rip | ldap | cli | snmp | appletalk | redundant_cpu | vrrp | unknown_mac | login_status | acl_log | ssl_ssh}]

To Disable: no logging console [{start | system | config | temp | resource | fan | power | service_port | user_port | auth_failure | bridge_stat | switch_fabric | ospf | dvmrp | rip | ldap | cli | snmp | appletalk | redundant_cpu | vrrp | unknown_mac | login_status | acl_log | ssl_ssh}]
```

Note:

Use the logging protocol event command to enable protocol event logging for specific protocols.

Table 175: logging console Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Logs starts of the system.</td>
</tr>
<tr>
<td>system</td>
<td>Logs system events.</td>
</tr>
<tr>
<td>config</td>
<td>Logs each configuration change (for example, enabling and disabling ports).</td>
</tr>
<tr>
<td>temp</td>
<td>Logs changes in temperature status. Temperature status messages could precede a switch shutdown, and are often critical.</td>
</tr>
<tr>
<td>resource</td>
<td>Logs changes in system resources.</td>
</tr>
<tr>
<td>fan</td>
<td>Logs fan status changes. Fan failures will eventually lead to overheating the system. The fan status message provides a good early warning for a failure that could eventually cause the switch to shut down.</td>
</tr>
</tbody>
</table>
Table 175: logging console Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>power</td>
<td>Logs the addition or removal of a power supply</td>
</tr>
<tr>
<td>service_port</td>
<td>Logs status changes in service ports. Use the <code>set port category</code> command to set a port as a service port. For information on this command, see Chapter 21: Port. This feature makes it possible for you to use different notification levels for critical (service ports), if desired.</td>
</tr>
<tr>
<td>user_port</td>
<td>Logs status changes in user ports. Use the <code>set port category</code> command to set a port as a user port. For information on this command, see Chapter 21: Port. This feature makes it possible for you to use different notification levels for critical (service ports), if desired.</td>
</tr>
<tr>
<td>auth_failure</td>
<td>Logs authentication failures. This is a security-related feature used to detect unauthorized SNMP activity.</td>
</tr>
<tr>
<td>bridge_stat</td>
<td>Logs changes in bridge status.</td>
</tr>
<tr>
<td>switch_fabric</td>
<td>Logs failures in the switch fabric. These failures are critical and should be monitored closely.</td>
</tr>
<tr>
<td>ospf</td>
<td>Logs OSPF events if OSPF protocol event logging is enabled.</td>
</tr>
<tr>
<td>dvmrp</td>
<td>Logs DVMRP events, if DVMRP event logging is enabled.</td>
</tr>
<tr>
<td>rip</td>
<td>Logs RIP events if RIP protocol event logging is enabled.</td>
</tr>
<tr>
<td>ldap</td>
<td>Logs LDAP events if LDAP protocol event logging is enabled.</td>
</tr>
<tr>
<td>cli</td>
<td>Logs CLI events, if CLI event logging is enabled.</td>
</tr>
<tr>
<td>snmp</td>
<td>Logs SNMP events, if SNMP protocol event logging is enabled.</td>
</tr>
<tr>
<td>applestalk</td>
<td>Logs AppleTalk events if AppleTalk protocol event logging is enabled.</td>
</tr>
<tr>
<td>redundant_cpu</td>
<td>Logs changes in status of a redundant CPU. Notification is sent if:</td>
</tr>
<tr>
<td></td>
<td>● The status changes from standby to active or vice versa.</td>
</tr>
<tr>
<td></td>
<td>● The active supervisor loses or establishes contact with the standby supervisor.</td>
</tr>
<tr>
<td>vrrp</td>
<td>Logs VRRP events, if VRRP protocol event logging is enabled.</td>
</tr>
<tr>
<td>unknown_mac</td>
<td>Logs unknown MAC addresses if received.</td>
</tr>
<tr>
<td>login_status</td>
<td>Logs User login or logout.</td>
</tr>
</tbody>
</table>
Command Mode

Global Configuration.

Description

Sets the type of syslog messages that are sent to the event log and shutdown log. The no form of this command disables the type specified. The default setting is {start | system | config | temp | resource | fan | power | service_port | user_port | auth_failure | bridge_stat | switch_fabric | snmp | redundant_cpu | unknown_mac | login_status | acl_log | ssl_ssh}.

Syntax

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl_log</td>
<td>Logs packets that match access control rules.</td>
</tr>
<tr>
<td>ssl_ssh</td>
<td>Logs SSH events.</td>
</tr>
</tbody>
</table>

Table 175: logging console Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl_log</td>
<td>Logs packets that match access control rules.</td>
</tr>
<tr>
<td>ssl_ssh</td>
<td>Logs SSH events.</td>
</tr>
</tbody>
</table>
Note:
Use the logging protocol event command to enable protocol event logging for specific protocols.

Table 176: logging history Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Logs starts of the system.</td>
</tr>
<tr>
<td>system</td>
<td>Logs system events.</td>
</tr>
<tr>
<td>config</td>
<td>Logs each configuration change (for example, enabling and disabling ports).</td>
</tr>
<tr>
<td>temp</td>
<td>Logs changes in temperature status. Temperature status messages could precede a switch shutdown, and are often critical.</td>
</tr>
<tr>
<td>resource</td>
<td>Logs changes in system resources.</td>
</tr>
<tr>
<td>fan</td>
<td>Logs fan status changes. Fan failures will eventually lead to overheating the system. The fan status message provides a good early warning for a failure that could eventually cause the switch to shut down.</td>
</tr>
<tr>
<td>power</td>
<td>Logs the addition or removal of a power supply</td>
</tr>
<tr>
<td>service_port</td>
<td>Logs status changes in service ports. Use the set port category command to set a port as a service port. For information on this command, see Chapter 21: Port. This feature makes it possible for you to use different notification levels for critical (service ports), if desired.</td>
</tr>
<tr>
<td>user_port</td>
<td>Logs status changes in user ports. Use the set port category command to set a port as a user port. For information on this command, see Chapter 21: Port. This feature makes it possible for you to use different notification levels for critical (service ports), if desired.</td>
</tr>
<tr>
<td>auth_failure</td>
<td>Logs authentication failures. This is a security-related feature used to detect unauthorized SNMP activity.</td>
</tr>
<tr>
<td>bridge_stat</td>
<td>Logs changes in bridge status.</td>
</tr>
<tr>
<td>switch_fabric</td>
<td>Logs failures in the switch fabric. These failures are critical and should be monitored closely.</td>
</tr>
<tr>
<td>ospf</td>
<td>Logs OSPF events if OSPF protocol event logging is enabled.</td>
</tr>
<tr>
<td>dvmrp</td>
<td>Logs DVMRP events, if DVMRP event logging is enabled.</td>
</tr>
<tr>
<td>rip</td>
<td>Logs RIP events if RIP protocol event logging is enabled.</td>
</tr>
</tbody>
</table>
Table 176: logging history Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ldap</td>
<td>Logs LDAP events if LDAP protocol event logging is enabled.</td>
</tr>
<tr>
<td>cli</td>
<td>Logs CLI events, if CLI event logging is enabled.</td>
</tr>
<tr>
<td>snmp</td>
<td>Logs SNMP events, if SNMP protocol event logging is enabled.</td>
</tr>
<tr>
<td>appletalk</td>
<td>Logs AppleTalk events if AppleTalk protocol event logging is enabled.</td>
</tr>
<tr>
<td>redundant_cpu</td>
<td>Logs changes in status of a redundant CPU. Notification is sent if:</td>
</tr>
<tr>
<td></td>
<td>● The status changes from standby to active or vice versa.</td>
</tr>
<tr>
<td></td>
<td>● The active supervisor loses or establishes contact with the standby supervisor.</td>
</tr>
<tr>
<td>vrrp</td>
<td>Logs VRRP events, if VRRP protocol event logging is enabled.</td>
</tr>
<tr>
<td>unknown_mac</td>
<td>Logs unknown MAC addresses if received.</td>
</tr>
<tr>
<td>login_status</td>
<td>Logs User login or logout.</td>
</tr>
<tr>
<td>acl_log</td>
<td>Logs packets that match access control rules.</td>
</tr>
<tr>
<td>ssl_ssh</td>
<td>Logs SSH events.</td>
</tr>
</tbody>
</table>

Systems

logging history size

Command Mode

Global Configuration.

Description

Change the number of syslog messages stored in the event log. The no form of this command resets the number of messages to the default value, which is 512.

Syntax

| To Configure: | logging history size {128 | 512 | 1024 | 2048} |
|---------------|---|
| To Restore Default: | no logging history size |

Table 177: logging history size Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{128</td>
<td>512</td>
</tr>
</tbody>
</table>

Sample Output

The following example specifies that 1024 messages can be stored in the event log.

(configure)# logging history size 1024

Systems

logging protocol event

Command Mode

Global Configuration.

Description

Sets the categories of the protocol events that generate notifications. If you enable event notification for CLI, SNMP, RIP, OSPF, DVMRP, LDAP, Apple Talk, or VRRP, you must set which categories of the protocol events generate notifications.

⚠️ Important:
If enabled, protocol event logging displays system messages that help Avaya Technical Support troubleshoot network problems. Avaya recommends that logging of protocol events be enabled only during troubleshooting sessions. If protocol event logging is enabled during normal network operation, the switch may display messages that users may incorrectly interpret as indications of protocol failures.

Note:
Enabling logging of protocol events may cause the event log to rapidly fill with protocol events.

The no command disables event notification for the specified category of protocol events. The default setting is that all protocol events are disabled.

Syntax

| To Enable: | logging protocol event {rip | ospf | dvmrp | ldap | cli | snmp | appletalk | vrrp}\n{fault | error | warning | info | trace | debug} |
|------------|--|
| To Disable:| no logging protocol event {rip | ospf | dvmrp | ldap | cli | snmp | appletalk | vrrp}\n{fault | error | warning | info | trace | debug} |
Logging

Table 178: logging protocol event Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{rip</td>
<td>ospf</td>
</tr>
<tr>
<td>{fault</td>
<td>error</td>
</tr>
</tbody>
</table>

Sample Output

The following example logs all of the LDAP fault messages.

```
(configure)# logging protocol event ldap fault
Completed set configuration for protocol events.
```

Systems

logging shutdown size

Command Mode

Global Configuration.

Description

Change the number of syslog messages stored in the shutdown log. The no form of this command resets the number of messages to the default value, which is 16.

Syntax

| To Configure: | logging shutdown size {16 | 32 | 64} |
|---------------------|--------------------------------------|
| To Restore Default: | no logging shutdown size |

Table 179: logging shutdown size Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{16</td>
<td>32</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the number of syslog messages to be stored in the shutdown log to 64.

```
(configure)# logging shutdown size 64
```

Systems

logging traps

Command Mode

Global Configuration.

Description

Sets the type of syslog messages that are sent to SNMP trap receivers. The no form of this command disables the type specified. The default setting is: {start | system | config | temp | resource | fan | power | service_port | auth_failure | bridge_stat | switch_fabric | redundant_cpu | unknown_mac | snmp}.

Syntax

To Enable:

logging traps {start | system | config | temp | resource | fan | power | service_port | user_port | auth_failure | bridge_stat | switch_fabric | redundant_cpu | unknown_mac | snmp | login_status}

To Disable:

no logging traps {start | system | config | temp | resource | fan | power | service_port | user_port | auth_failure | bridge_stat | switch_fabric | redundant_cpu | unknown_mac | snmp | login_status}

Table 180: logging traps Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Logs starts of the system.</td>
</tr>
<tr>
<td>system</td>
<td>Logs system events.</td>
</tr>
<tr>
<td>config</td>
<td>Logs each configuration change (for example, enabling and disabling ports).</td>
</tr>
<tr>
<td>temp</td>
<td>Logs changes in temperature status. Temperature status messages could precede a switch shutdown, and are often critical.</td>
</tr>
<tr>
<td>resource</td>
<td>Logs changes in system resources.</td>
</tr>
<tr>
<td>fan</td>
<td>Logs fan status changes. Fan failures will eventually lead to overheating the system. The fan status message provides a good early warning for a failure that could eventually cause the switch to shut down.</td>
</tr>
<tr>
<td>power</td>
<td>Logs the addition or removal of a power supply</td>
</tr>
</tbody>
</table>

1 of 2
Sample Output

The following example sends all of the switch_fabric syslog messages to the SNMP trap receivers.

(configure)# logging traps switch_fabric

Systems

set syslog

Command Mode

Global Configuration.

Description

Enables or disables syslog event reporting. The default setting is disabled.

Syntax

```plaintext
set syslog {enable | disable}
```

Systems

P580 and P882.

set syslog facility

Command Mode

Global Configuration.

Description

Sets the event types, also called “facilities,” for which syslog events are generated. The `no` command stops generating syslog events for the event type that you specify. The default setting is `{system | config | switch_fabric}`.

Syntax

| To Enable: | set syslog facility {start | system | config | temp | resource | fan | service_port | user_port | power | bridge_stat | switch_fabric | ospf | rip | ldap | appletalk | auth_failure | redundant_cpu | dvmrp | cli | snmp | unknown_mac | vrrp | login_status | acl_log | ssl_ssh | all} |
|------------|--|
| To Disable: | no set syslog facility {start | system | config | temp | resource | fan | service_port | user_port | power | bridge_stat | switch_fabric | ospf | rip | ldap | appletalk | auth_failure | redundant_cpu | dvmrp | cli | snmp | unknown_mac | vrrp | login_status | acl_log | ssl_ssh | all} |
Note:

Use the `logging protocol event` command to enable protocol event logging for specific protocols.

Table 181: set syslog facility Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Logs starts of the system.</td>
</tr>
<tr>
<td>system</td>
<td>Logs system events.</td>
</tr>
<tr>
<td>config</td>
<td>Logs each configuration change (for example, enabling and disabling ports).</td>
</tr>
<tr>
<td>temp</td>
<td>Logs changes in temperature status. Temperature status messages could precede a switch shutdown, and are often critical.</td>
</tr>
<tr>
<td>resource</td>
<td>Logs changes in system resources.</td>
</tr>
<tr>
<td>fan</td>
<td>Logs fan status changes. Fan failures will eventually lead to overheating the system. The fan status message provides a good early warning for a failure that could eventually cause the switch to shut down.</td>
</tr>
<tr>
<td>service_port</td>
<td>Logs status changes in service ports. Use the <code>set port category</code> command to set a port as a service port. For information on this command, see Chapter 21: Port. This feature makes it possible for you to use different notification levels for critical (service ports), if desired.</td>
</tr>
<tr>
<td>user_port</td>
<td>Logs status changes in user ports. Use the <code>set port category</code> command to set a port as a user port. For information on this command, see Chapter 21: Port. This feature makes it possible for you to use different notification levels for critical (service ports), if desired.</td>
</tr>
<tr>
<td>power</td>
<td>Logs the addition or removal of a power supply</td>
</tr>
<tr>
<td>bridge_stat</td>
<td>Logs changes in bridge status.</td>
</tr>
<tr>
<td>switch_fabric</td>
<td>Logs failures in the switch fabric. These failures are critical and should be monitored closely.</td>
</tr>
<tr>
<td>ospf</td>
<td>Logs OSPF events if OSPF protocol event logging is enabled.</td>
</tr>
<tr>
<td>rip</td>
<td>Logs RIP events if RIP protocol event logging is enabled.</td>
</tr>
<tr>
<td>ldap</td>
<td>Logs LDAP events if LDAP protocol event logging is enabled.</td>
</tr>
<tr>
<td>appletalk</td>
<td>Logs AppleTalk events if AppleTalk protocol event logging is enabled.</td>
</tr>
</tbody>
</table>
Logging

Table 181: set syslog facility Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth_failure</td>
<td>Logs authentication failures. This is a security-related feature used to detect unauthorized SNMP activity.</td>
</tr>
</tbody>
</table>
| redundant_cpu| Logs changes in status of a redundant CPU. Notification is sent if:
| | ● The status changes from standby to active or vice versa.
| | ● The active supervisor loses or establishes contact with the standby supervisor. |
| dvmrp | Logs DVMRP events, if DVMRP event logging is enabled. |
| cli | Logs CLI events, if CLI event logging is enabled. |
| snmp | Logs SNMP events, if SNMP protocol event logging is enabled. |
| unknown_mac | Logs unknown MAC addresses if received. |
| vrrp | Logs VRRP events, if VRRP protocol event logging is enabled. |
| login_status | Logs User login or logout. |
| acl_log | Logs packets that match access control rules. |
| ssl_ssh | Logs SSH events. |
| all | Logs all event types. |

Systems

P580 and P882.
set syslog server_ip

Command Mode

Global Configuration.

Description

Sets the IP addresses of remote syslog servers to which you want syslog events forwarded. The no command stops forwarding syslog events to the syslog server that you specify.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set syslog server_ip <ip_address></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no set syslog server_ip <ip_address></td>
</tr>
</tbody>
</table>

Table 182: set syslog server_ip Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip address></td>
<td>The IP address of the remote syslog server to which you want syslog events forwarded. You can specify a maximum of three remote syslog servers.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
set syslog severity

Command Mode
Global Configuration.

Description
Sets the severity of error messages that you want logged. Table 183 describes the different syslog severity levels. The switch logs error messages of the severity that you set and of all higher severities. For example, if you set the severity to **Warning**, error messages of severities Warning, Error, Alert, and Emergency are logged.

The default setting is error.

<table>
<thead>
<tr>
<th>Severity Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency</td>
<td>System Unusable</td>
</tr>
<tr>
<td>Alert</td>
<td>Immediate action needed</td>
</tr>
<tr>
<td>Error</td>
<td>Error Condition</td>
</tr>
<tr>
<td>Warning</td>
<td>Warning Condition</td>
</tr>
<tr>
<td>Normal</td>
<td>Normal but significant condition</td>
</tr>
<tr>
<td>Informational</td>
<td>Informational message only</td>
</tr>
</tbody>
</table>

Syntax

```
set syslog severity {emergency | alert | error | warning | normal | informational}
```

Note:
See Table 183 for an explanation of each keyword.

Systems
P580 and P882.
show alarms

Command Mode
User.

Description
Displays the contents of the active alarm table.

Syntax
show alarms

Sample Output
The following example displays the contents of the active alarm table.

> show alarms
----------- Active Alarms -----------

ID : 2 : Controller Failure : Missing (3) : Redundant Controller

ID : 10 : Port Status : No Link (5) : Port 3.1

ID : 11 : Port Status : No Link (5) : Port 3.2

ID : 12 : Port Status : No Link (5) : Port 4.1

Systems
show logging

Command Mode

User.

Description

Displays the contents of the event or shutdown log. The number of events can be specified at the end of the command.

Syntax

```
show logging [shutdown] [<num-events>]
```

Table 184: show logging Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shutdown</td>
<td>Displays the contents of the shutdown log.</td>
</tr>
<tr>
<td><num-events></td>
<td>The number of log messages to display.</td>
</tr>
</tbody>
</table>
Sample Output

The following example displays 25 messages from the shutdown log.

> show logging shutdown 25

<table>
<thead>
<tr>
<th>Log ID</th>
<th>Event ID</th>
<th>TimeStamp</th>
<th>Severity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>3</td>
<td>03-Sep-05 12:00:16</td>
<td>Informative(20)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Set minimum password length to 0 succeeded</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3</td>
<td>03-Sep-05 12:00:16</td>
<td>Informative(20)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Set account timeout limit to 60 succeeded</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>3</td>
<td>03-Sep-05 12:00:16</td>
<td>Informative(20)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Set login attempts succeeded</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>1</td>
<td>03-Sep-05 12:00:16</td>
<td>Informative(20)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>System cold started at 03-Sep-05 12:00:15</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>18</td>
<td>03-Sep-05 12:00:16</td>
<td>Informative(20)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The CPU in slot 1 is the Active CPU for this switch</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>9</td>
<td>03-Sep-05 12:00:16</td>
<td>Warning(40)</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>9</td>
<td>03-Sep-05 12:00:16</td>
<td>Warning(40)</td>
<td>0</td>
</tr>
</tbody>
</table>

--More--

Systems

show syslog buffer

Command Mode

User.

Description

Displays events in the syslog buffer.
Logging

Syntax

show syslog buffer

Sample Output

<table>
<thead>
<tr>
<th>log ID</th>
<th>Event ID</th>
<th>TimeStamp</th>
<th>Facility</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>03-Sep-22 02:55</td>
<td>Configuration</td>
<td>Informative(20)</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>03-Sep-22 02:55</td>
<td>Configuration</td>
<td>Informative(20)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>03-Sep-22 02:55</td>
<td>Configuration</td>
<td>Informative(20)</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>03-Sep-22 02:55</td>
<td>Status</td>
<td>Informative(20)</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>03-Sep-22 09:55</td>
<td>Power Status</td>
<td>Warning(40)</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>03-Sep-22 09:55</td>
<td>Redundant CPUS</td>
<td>Informative(20)</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>03-Sep-22 09:55</td>
<td>Fan Status</td>
<td>Alarm(60)</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
show syslog config

Command Mode
User.

Description
Displays the current configuration for syslog event reporting.

Syntax
show syslog config

Sample Output
Syslog Server: Enabled
Severity: informational
Server IP: 135.35.93.125
Facility:
 start
 system
 config
 temp
 resource
 fan
 service_port
 user_port
 power
 bridge_stat
 switch_fabric
 ospf
 rip
 ldap
 appletalk
 auth_failure
 redundant_cpu
 dvmrp
 cli
 snmp
 unknown_mac
 vrrp
 login_status
 acl_log
 ssl_ssh

Systems
P580 and P882.
Chapter 17: Module

Overview

This chapter describes the following commands:

- reset-module
- set module name
- set module notes
- show module

reset-module

Command Mode

Global Configuration.

Description

Resets an individual module other than the supervisor module.

Syntax

reset-module <mod-num>

Table 185: reset-module Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>The module number that you want to reset.</td>
</tr>
</tbody>
</table>

Note:

You cannot reset an individual module from the Web Agent.
Sample Output

The following example resets the module in slot 4.

(configure)# reset-module 4

Systems

set module name

Command Mode

Global Configuration.

Description

Creates the name for a module. Omitting the `<mod-name>` variable clears the module name.

Syntax

set module name `<mod-num>`[`<mod-name>`]

Table 186: set module name Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><mod-num></code></td>
<td>Specifies the number of the module whose name is to be cleared or set.</td>
</tr>
<tr>
<td><code><mod-name></code></td>
<td>Specifies the name of the module. If the module name is not specified, any previous name for the module is cleared.</td>
</tr>
</tbody>
</table>

Sample Output

The following example creates the name of the module in slot 3.

(configure)# set module name 3 "MIS dept module"
Module 3 name set

Systems

set module notes

Command Mode

Global Configuration.

Description

Creates a notes page for a module. Omitting the `<mod-notes>` variable clears the module notes.

Syntax

set module notes <mod-num> [<mod-notes>]

Table 187: set module notes Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><mod-num></code></td>
<td>Specifies the number of the module whose notes are to be cleared or set.</td>
</tr>
<tr>
<td><code><mod-notes></code></td>
<td>Specifies the notes to be assigned to the module. If the module notes are not specified, any previous notes for the module are cleared.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the note page for the module in slot 3.

```
(configure)# set module notes 3 "This module was installed on 01/21/02"
Module 3 notes set
```

Systems

show module

Command Mode

User.

Description

Displays information about the modules installed in the switch chassis. The default state displays information for all modules installed in the switch.

Syntax

show module [<mod-num>]

Table 188: show module Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module whose information is to be displayed.</td>
</tr>
</tbody>
</table>
Sample Output

The following example displays information about the modules installed in the switch chassis.

> show module

<table>
<thead>
<tr>
<th>Module</th>
<th>Model Number</th>
<th>Base Type</th>
<th>Ports</th>
<th>Fabric Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M5500R-SUP</td>
<td>Supervisor</td>
<td>0</td>
<td>1/1, 1/FORE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name Notes

Module 1

<table>
<thead>
<tr>
<th>Module</th>
<th>Model Number</th>
<th>Base Type</th>
<th>Ports</th>
<th>Fabric Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>M5502-1000SX-F</td>
<td>Gigabit</td>
<td>2</td>
<td>3/1, 3/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name Notes

Module 3

<table>
<thead>
<tr>
<th>Module</th>
<th>Model Number</th>
<th>Base Type</th>
<th>Ports</th>
<th>Fabric Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>M5502-1000LX-F</td>
<td>Gigabit</td>
<td>2</td>
<td>4/1, 4/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name Notes

Systems

show module inventory

Command Mode
User.

Description
Displays information about the hardware in the switch chassis.

Syntax
show module inventory {<mod-num> | bp | all}

Table 189: show module inventory Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>The slot number of the module.</td>
</tr>
<tr>
<td>bp</td>
<td>The backplane.</td>
</tr>
<tr>
<td>all</td>
<td>All hardware in the chassis.</td>
</tr>
</tbody>
</table>

Sample Output
The following example displays the inventory information for the module in slot 5.

> show module-inventory 5
Inventory version: 3
Serial Number: 040C0004
Module Base Type: 0000
Module Type: 001F
MAC Address: 02:e0:3b:04:dc:8c
Model Number: 8024-100TX
Hardware Version:
Date of Manufacture:
Name of Manufacturer: Jabil
Power Consumption: 0050

Systems
Chapter 18: NEDR and IEDR

Overview

This chapter describes the following commands:

- set huntgroup internal-error-shutdown
- set internal-error-threshold
- set port internal-error-shutdown
- set port network-error-detection
- show huntgroup internal-error-config
- show port internal-error-config
- show port network-error detection
set huntgroup internal-error-shutdown

Command Mode
Global Configuration.

Description
Globally enables or disables internal error detection and recovery (IEDR) for all ports in hunt groups.

Note:
All ports that have IEDR enabled, whether they are administratively disabled or enabled, assume the hunt group IEDR setting if they are placed in a hunt group. If a port has IEDR enabled before you place it in a hunt group, the show port internal-error-config command displays the port as IEDR-enabled regardless of the hunt group IEDR setting. However, the port in fact assumes the hunt group IEDR setting (whatever that setting is).

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set huntgroup internal-error-shutdown enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>set huntgroup internal-error-shutdown disable</td>
</tr>
</tbody>
</table>

Sample Output
The following example globally enables IEDR on all ports on a hunt group.

(configure)# set huntgroup internal-error-shutdown enable

Systems
set internal-error-threshold

Command Mode

Global Configuration.

Description

Sets the IEDR threshold for internal errors. When a port reaches this threshold, it is shut down.

By default this threshold is set to 10 internal errors in a 5-second time period. You can set the threshold to any number between 5 and 500 internal errors in a 5-second time period. This setting is global for all ports that have been enabled for IEDR including ports configured for Hunt groups.

Syntax

set internal-error-threshold <internal-threshold>

Table 190: set internal-error-threshold Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><internal-threshold></td>
<td>The threshold at which a port is shutdown if it has IEDR enabled. This threshold is measured in a number of errors per 5-second time period. The valid range is 5 to 500 internal errors. The default setting is 10.</td>
</tr>
</tbody>
</table>

Systems

set port internal-error-shutdown

Command Mode

Global Configuration.

Description

Enables or disables internal error detection and recovery (IEDR) on a port or ports

Syntax

| To Enable: | set port internal-error-shutdown {<mod-num> | <mod-swport-spec> | all-ports} enable |
| To Disable: | set port internal-error-shutdown {{<mod-num> | <mod-swport-spec>}} all-ports disable |

Table 191: set port internal-error-shutdown Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{<mod-num></td>
<td><mod-swport-spec>}</td>
</tr>
<tr>
<td>all-ports</td>
<td>Enables or disables IEDR on all ports on all modules in the switch.</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables IEDR on all ports on the module in slot 3.

(configure)# set port internal-error-shutdown 3 enable

Systems

set port network-error-detection

Command Mode
Global Configuration.

Description
Configure network error detection and recovery (NEDR) for a port or ports.

Syntax

| To Enable: | set port network-error-detection <mod-port-range> [action {notify | disable-port}] [rising-threshold <rising-threshold-value>] [falling-threshold <falling-threshold-value>] [interval <interval seconds>] |
| To Disable: | network-error-detection {<mod-port-range> | all} action off |

Table 192: set port network-error-detection Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| <mod-port-range> | The slot number of the module, and, either port number, or range of port numbers. Enter the port ranges in the format Px-Py. For example:
 - To specify port 1 on the module in slot 3, enter 3/1.
 - To specify ports 1 through 5 on the module in slot 3, enter 3/1-5. |
| all | Disables NEDR on all ports on all modules in the switch. all can be used only with off. |
| action {notify | disable-port | off} | Action that NEDR performs when the rate of errors exceeds the threshold. The options are:
notify - Logs the event in the event log
disable-port - Disables the port and logs the event in the event log. |

Note:
A port will be disabled if the rate of errors equals or exceeds the threshold. Make sure a redundant protocol is configured.
off - Disables NEDR on the port or ports that you specify. The default setting is notify.
The following command sets NEDR on ports 1-5 on module 3.

```
(configure)# set port network-error-detection 3/1-5
```

Systems

Table 192: set port network-error-detection Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><rising-threshold value></code></td>
<td>The rising threshold. The number of CRC errors that triggers NEDR to log an event in the event log or disable the port. The default setting is 100 (minimum is 1; maximum is 65535).</td>
</tr>
<tr>
<td>Note:</td>
<td>If you set the rising threshold value and the falling threshold value close together, events may be logged more often if the Notify option is selected.</td>
</tr>
<tr>
<td><code><falling-threshold value></code></td>
<td>The falling threshold. After exceeding the rising threshold, NEDR does not log another event in the event log until the rate of CRC errors falls below the falling threshold and then exceeds the rising threshold again. The default setting is half the rising threshold value (minimum is 0; maximum is 65535). Note: If you set the rising threshold value and the falling threshold value close together, events may be logged more often if the Notify option is selected.</td>
</tr>
<tr>
<td><code><interval-seconds></code></td>
<td>How often NEDR checks the number of errors occurring against the thresholds. Enter a number of seconds. The default setting is 2 seconds (minimum is 1; maximum is 65535).</td>
</tr>
</tbody>
</table>
show huntgroup internal-error-config

Command Mode
User

Description
Displays the IEDR setting (enabled or disabled) for hunt groups and the global IEDR threshold setting.

Syntax
show huntgroup internal-error-config

Systems

show port internal-error-config

Command Mode
User

Description
Displays a list of the ports that have IEDR enabled, the IEDR setting for hunt groups, and the global IEDR threshold setting.

Syntax
show port internal-error-config

Systems
show port network-error detection

Command Mode
User.

Description
Displays the ports that have NEDR enabled.

Syntax
```
show port network-error-detection
```

Systems
Chapter 19: OSPF

Overview

This chapter describes the following commands:

- area
- area ase-filter
- area default-cost
- area nssa
- area range
- area stub
- area translate-nssa-to-external
- area virtual-link
- ip ospf as-boundary-router
- ip ospf authentication-key
- ip ospf auto-vlink-create
- ip ospf cost
- ip ospf dead-interval
- ip ospf ext-route-metric
- ip ospf hello-interval
- ip ospf max-paths
- ip ospf message-digest-key md5
- ip ospf packet tracing
- ip ospf poll interval
- ip ospf reset-stats
- ip ospf retransmit-interval
- ip ospf router-id
- ip ospf transmit-delay
- network area
- passive-interface
area

Command Mode

OSPF Router Configuration.

Description

Defines an OSPF Area. To remove an area, use the no form of this command.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>area <area-id></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] area <area-id></td>
</tr>
</tbody>
</table>

Table 193: area Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><area-id></td>
<td>IP address that represents the area-id for the system.</td>
</tr>
</tbody>
</table>
Sample Output

The following command removes the OSPF Area from the indicated router.

```
(configure router:ospf)# no area 10.0.0.123
```

Systems

area ase-filter

Command Mode

OSPF Router Configuration.

Description

Enables the filtering of type 3 ASE LSAs into an OSPF Area. To disable the filtering of type 3 ASE LSAs, use the `no` form of this command.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>area <area-id> ase-filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] area <area-id> ase-filter</td>
</tr>
</tbody>
</table>

Table 194: area ase-filter Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><area-id></td>
<td>IP address that represents the area-id for the system.</td>
</tr>
</tbody>
</table>

Sample Output

The following command enables filtering of type 3 ASE LSAs into the indicated OSPF Area.

```
(configure router:ospf)# area 2.0.0.0 ase-filter
```

Systems

area default-cost

Command Mode

OSPF Router Configuration.

Description

Defines the cost for routes advertised into stub area by an area border router. To restore the default value, use the no form of this command. The valid range is 1 to 65535. The default setting is 1.

Syntax

```
To Configure | area <area-id> default-cost <cost>
To Restore Default: | [no] area <area-id> default-cost
```

Table 195: area default-cost Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><area-id></td>
<td>A decimal value or IP address that identifies an OSPF area.</td>
</tr>
<tr>
<td><cost></td>
<td>A cost value of the area. The valid range is 1 to 65535. The default setting is 1.</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets an area default cost of 3 on OSPF set on the specified router.

```
(configure router:ospf)# area 2.0.0.0 default-cost 3
```

The following command removes an area default cost from OSPF set on the specified router.

```
(configure router:ospf)# no area 2.0.0.0 default-cost
```

Systems

area nssa

Command Mode

OSPF Router Configuration.

Description

Configure an area as a Not So Stubby Area (NSSA). To remove the NSSA distinction from the area, use the no form of this command.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>area <area-id> nssa</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] area <area-id> nssa</td>
</tr>
</tbody>
</table>

Table 196: area nssa Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><area-id></td>
<td>A decimal value or IP address that identifies an OSPF area. Use no area <area-id> to remove an area from the software configuration.</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets nssa on the indicated area.

(configure router:ospf)# area 2.0.0.0 nssa

The following command removes nssa from the indicated area.

(configure router:ospf)# no area 2.0.0.0 nssa

Systems

area range

Command Mode

OSPF Router Configuration.

Description

Consolidates and summarizes routes at an area boundary. To disable this function, use the no form of this command.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>area <area-id> range <ip-address> <mask> [no-advertisement]</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] area <area-id> range <ip-address> <mask></td>
</tr>
</tbody>
</table>

Table 197: area range Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><area-id></td>
<td>IP address that represents the area-id for the system.</td>
</tr>
<tr>
<td><ip-address></td>
<td>IP address of the area range.</td>
</tr>
<tr>
<td><mask></td>
<td>IP address of the mask for the area range.</td>
</tr>
<tr>
<td>[no-advertisement]</td>
<td>Suppresses advertisements of this summary. When suppressing, advertisements of IP routes in this range are also suppressed.</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets an area range on the indicated area.

```
(configure router:ospf)# area 2.0.0.0 range 10.0.5.123 255.0.0.0
```

Systems

area stub

Command Mode

OSPF Router Configuration.

Description

Defines an area as a stub area. Use the no form of this command to remove the stub area distinction.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>area <area-id> stub</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] area <area-id> stub</td>
</tr>
</tbody>
</table>

Table 198: area stub Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><area-id></td>
<td>IP address that represents the area-id for the system.</td>
</tr>
</tbody>
</table>

Sample Output

The following command removes a stub area on the indicated area.

```
(configure router:ospf)# no area 2.0.0.0 stub
```

Systems

area translate-nssa-to-external

Command Mode

OSPF Router Configuration.

Description

Enables the translation of type 7 LSAs into type 5. To disable this feature use the no form of this command.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>area <area-id> translate-nssa-to-external</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] area <area-id> translate-nssa-to-external</td>
</tr>
</tbody>
</table>

Table 199: area translate-nssa-to-external Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><area-id></td>
<td>IP address that represents the area-id for the system.</td>
</tr>
</tbody>
</table>

Sample Output

The following command enables the translation of Type 7 LSAs into Type 5 on the indicated OSPF area.

```
(configure router:ospf)# area 2.0.0.0 translate-nssa-to-external
```

Systems

area virtual-link

Command Mode

OSPF Router Configuration.

Description

Defines an OSPF virtual link. To remove a virtual link, use the no form of this command.

Syntax

To Configure:

```
area <area-id> virtual-link <router-id> [hello-interval <hello-interval>]
[retransmit-interval <retransmit-interval>] [dead-interval <dead-interval>]
[transit-delay <transit-delay>] [[authentication-key <passwd> | message-digest-key <key-id> md5 <key>]]
```

To Disable:

```
[no] area <area-id> virtual-link <router-id>
```

Table 200: area virtual-link Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><area-id></td>
<td>IP address that represents the area-id for the system.</td>
</tr>
<tr>
<td><router-id></td>
<td>Router ID associated with the virtual link neighbor. The router ID appears in the show ip ospf display. It is internally derived by each router from the router's interface IP addresses. This value must be entered in the format of an IP address. There is no default.</td>
</tr>
<tr>
<td><hello-interval></td>
<td>Time in seconds between the hello packets that the Cisco IOS software sends on an interface. Unsigned integer value to be advertised in the software's hello packets. The value must be the same for all routers and access servers attached to a common network. The default is 10 seconds.</td>
</tr>
<tr>
<td><retransmit-interval></td>
<td>Time in seconds between link state advertisement retransmissions for adjacencies belonging to the interface. Expected round-trip delay between any two routers on the attached network. The value must be greater than the expected round-trip delay. The default is 5 seconds.</td>
</tr>
<tr>
<td><dead-interval></td>
<td>Time in seconds that a software's hello packets are not seen before its neighbors declare the router down. Unsigned integer value. The default is four times the hello interval, or 40 seconds. As with the hello interval, this value must be the same for all routers and access servers attached to a common network.</td>
</tr>
</tbody>
</table>
Table 200: area virtual-link Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><transit-delay></code></td>
<td>Estimated number of seconds it takes to transmit a link state update packet over this virtual link. The value range is 1-3600. The default is 1.</td>
</tr>
<tr>
<td><code><passwd></code></td>
<td>Password to be used by neighboring routers. Any continuous string of characters that you can enter from the keyboard up to 8 bytes long. This string acts as a key that will allow the authentication procedure to generate or verify the authentication field in the OSPF header. This key is inserted directly into the OSPF header when originating routing protocol packets. A separate password can be assigned to each network on a per-interface basis. All neighboring routers on the same network must have the same password to be able to route OSPF traffic.</td>
</tr>
<tr>
<td>message-digest-key <key-id> md5 <key></td>
<td>Key identifier and password to be used by neighboring routers and this router for MD5 authentication. The key id is a number in the range 1 to 255. The key is an alphanumeric string of up to 16 characters. All neighboring routers on the same network must have the same key identifier and key to be able to route OSPF traffic. There is no default value.</td>
</tr>
</tbody>
</table>

Systems

ip ospf as-boundary-router

Command Mode

Global Configuration.

Description

⚠️ Important:
This command is not supported by v6.0 and later application software.

Version 6.0 and later application software automatically detects the ASBR status:

- If route redistribution filters are configured for OSPF, the ASBR status is enabled.
- If all interfaces on the switch are in an OSPF stub area, the ASBR status is disabled, regardless of whether route redistribution filters are configured.

In earlier versions of application software, this command specifies if the router is an autonomous-system boundary router (ASBR). Use the no form of this command to disable ASBR status. The default state is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip ospf as-boundary-router</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ip ospf as-boundary-router</td>
</tr>
</tbody>
</table>

Systems

ip ospf authentication-key

Command Mode

Interface Configuration.

Description

Assign a password to be used by neighboring routers that are using OSPF’s simple password authentication. To remove a previously assigned OSPF password, use the **no** form of this command.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip ospf authentication-key <password></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ip ospf authentication-key</td>
</tr>
</tbody>
</table>

Table 201: ip ospf authentication-key Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><password></td>
<td>Any continuous string of characters that can be entered from the keyboard up to 8 bytes in length.</td>
</tr>
</tbody>
</table>

Sample Output

The following command assigns the password “abc” as the authentication key.

```plaintext
(config-if:intf3)# ip ospf authentication-key “abc”
```

The following command removes the password “abc” as the authentication key.

```plaintext
(config-if:intf3)# no ip ospf authentication-key
```

Systems

ip ospf auto-vlink-create

Command Mode

Global Configuration.

Description

Enables the automatic creation of virtual links. Use the no form of this command to disable this behavior.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip ospf auto-vlink-create</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ip ospf auto-vlink-create</td>
</tr>
</tbody>
</table>

Sample Output

The following command enables the automatic creation of virtual links.

(config-if:intf3)# ip ospf auto-vlink-create

Systems

ip ospf cost

Command Mode

Interface Configuration.

Description

Specifies the cost of sending a packet on an interface. The `no` form of this command restores the default setting of 1. The valid range is 1 to 65534.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip ospf cost <code><cost></code></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td><code>[no] ip ospf cost</code></td>
</tr>
</tbody>
</table>

Table 202: ip ospf cost Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><cost></code></td>
<td>Unsigned integer value expressed as the link state metric. It can be a value in the range 1 to 65534.</td>
</tr>
</tbody>
</table>

Sample Output

The following command enables the cost of sending a packet on an interface to 100.

```
(config-if:intf3)# ip ospf cost 100
```

Systems

ip ospf dead-interval

Command Mode

Interface Configuration.

Description

Sets the dead interval time for neighbors to declare this router down. Dead interval is the time that hello packets are not seen. This value must be the same for all routers attached to a common network. The value range is 1-65535 seconds. The default setting is 40 seconds.

To return to the default time, use the no form of this command.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip ospf dead-interval <seconds></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip ospf dead-interval</td>
</tr>
</tbody>
</table>

Table 203: ip ospf dead-interval Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><seconds></td>
<td>Time in seconds of how long hello packets must be unseen before the neighbor declares the router down. This value must be the same for all routers attached to a common network. The value range is 1-65535 seconds. The default setting is 40 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets the dead interval time to 60 seconds.

(config-if:intf3)# ip ospf dead-interval 60

Systems

ip ospf ext-route-metric

Command Mode
Global Configuration.

Description
Sets the metric type used for external routes to type1 or type2. Use the no form of this command to restore default values. The default values are:

- local (type1)
- rip (type2)
- static-hp (type2)
- static-lp (type-2)

Syntax

| To Configure: | ip ospf ext-route-metric {local | rip | static-hp | static-lp} {type1 | type2} |
|---------------|--|
| To Restore Default: | [no] ip ospf ext-route-metric {local | rip | static-hp | static-lp} |

Table 204: ip ospf ext-route-metric Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Specifies whether imported local routes are advertised in OSPF with type 1 (internal) or type 2 (external) metrics.</td>
</tr>
<tr>
<td>rip</td>
<td>Specifies whether imported RIP routes are advertised in OSPF with type 1 (internal) or type 2 (external) metrics.</td>
</tr>
<tr>
<td>static-hp</td>
<td>Specify whether imported high preference static routes are advertised in OSPF with type 1 (internal) or type 2 (external) metrics.</td>
</tr>
<tr>
<td>static-lp</td>
<td>Specify whether imported low preference static routes are advertised in OSPF with type 1 (internal) or type 2 (external) metrics.</td>
</tr>
</tbody>
</table>
Sample Output

The following command sets the metric type for RIP used for external routes to Type 2

(configure)# \texttt{ip ospf ext-route-metric rip type2}

Systems

ip ospf hello-interval

Command Mode

Interface Configuration.

Description

Specifies the hello interval time. The hello interval time is the time between hello packets that the router sends on the interface. The value range is 1 to 65535. The default setting is 10. The **no** command restores the default setting.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip ospf hello-interval \texttt{<seconds>}</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip ospf hello-interval</td>
</tr>
</tbody>
</table>

Table 205: ip ospf hello-interval Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{<seconds>}</td>
<td>Unsigned integer that specifies the interval in seconds. The value must be the same for all nodes on a specific network. The value range is 1 to 65535. The default setting is 10.</td>
</tr>
</tbody>
</table>
Sample Output

The following command sets the Hello interval time to 60 seconds.

```plaintext
(config-if:intf3)# ip ospf hello-interval 60
```

Systems

ip ospf max-paths

Command Mode

Global Configuration.

Description

Configures the maximum number of Simple Path First (SPF) paths that OSPF can use. The path range values are:

- Minimum 640
- Maximum 16000

The default setting is 4096. Use the `no` form of this command to restore the default value.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip ospf max-paths <paths></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip ospf max-paths</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets the maximum number of SPF paths to 1000.

```plaintext
(configure)# ip ospf max-paths 1000
```

Systems

ip ospf message-digest-key md5

Command Mode

Interface Configuration.

Description

Enables OSPF MD5 authentication.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip ospf message-digest-key <key-id> md5 <key></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ip ospf message-digest-key <keyid> md5 <key></td>
</tr>
</tbody>
</table>

Table 206: ip ospf message-digest-key md5 Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><key-id></td>
<td>An identifier in the range 1 to 255.</td>
</tr>
<tr>
<td><key></td>
<td>Alphanumeric password of up to 16 bytes.</td>
</tr>
</tbody>
</table>

Sample Output

The following command enables OSPF MD5 authentication on interface 3 with a key ID of 155, and a key labeled jerry.

(config-if:intf3)# ip ospf message-digest-key 155 md5 jerry

Systems

ip ospf packet tracing

Command Mode
 Global Configuration.

Description
 Enables or disables OSPF packet tracing.

Syntax

 | To Enable: | ip ospf packet tracing |
 | To Disable: | [no] ip ospf packet tracing |

Sample Output
 The following command enables packet tracing.
 (configure)# ip ospf packet tracing

Systems
ip ospf poll interval

Command Mode

Interface Configuration.

Description

Specifies the poll interval time. The valid range is 1 to 3600 seconds. The default setting is 120 seconds. The **no** command restores the default setting.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip ospf poll-interval <seconds></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip ospf poll-interval</td>
</tr>
</tbody>
</table>

Table 207: ip ospf poll-interval Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><seconds></td>
<td>Time in seconds between retransmissions. It must be greater than the expected round-trip delay between any two routers on the attached network. The range is 1 to 3600 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets the poll interval time on interface 123 to 2000 seconds.

```
(config-if:123)# ip ospf poll-interval 2000
```

Systems

ip ospf reset-stats

Command Mode
 Global Configuration.

Description
 Resets the OSPF global statistics.

Syntax
 ip ospf reset-stats

Sample Output
 The following command resets the OSPF global statistics.
 (configure)# ip ospf reset-stats

Systems
ip ospf retransmit-interval

Command Mode

Interface Configuration.

Description

Specifies the time between link state advertisement retransmissions for adjacencies belonging to the interface. The no command restores the default setting. The value range is 1-3600. The default is 5.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip ospf retransmit-interval <seconds></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip ospf retransmit-interval</td>
</tr>
</tbody>
</table>

Table 208: ip ospf retransmit-interval Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><seconds></td>
<td>Time in seconds between retransmissions. It must be greater than the expected round-trip delay between any two routers on the attached network. The range is 1 to 3600 seconds. The default is 5 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following command specifies the time retransmit interval time on interface 123 to 2000 seconds.

(config-if:123)# ip ospf retransmit-interval 2000

Systems

ip ospf router-id

Command Mode
Global Configuration.

Description
Sets the router-id for the system. Use the no command to restore the default setting (the lowest IP address configured on the system).

Note:
OSPF must be disabled for this command to take effect. If OSPF is enable on the system the change will not take effect until OSPF is stopped and started again.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip ospf router-id <router-id></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip ospf router-id</td>
</tr>
</tbody>
</table>

Table 209: ip ospf router-id Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>router-id</td>
<td>IP address that represents the router-id for the system.</td>
</tr>
</tbody>
</table>

Sample Output
The following command sets the router id for interface 123 to 10.0.8.123.

```
(config-if:123)# ip ospf router-id 10.0.7.123
```

Systems
ip ospf transmit-delay

Command Mode

Interface Configuration.

Description

Sets the estimated time it takes to transmit a link state update packet on the interface. The range is 1 to 3600 seconds. The default is 1 second. To restore the default value, use the no form of this command.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip ospf transmit-delay <seconds></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip ospf transmit-delay</td>
</tr>
</tbody>
</table>

Table 210: ip ospf transmit-delay Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><seconds></td>
<td>Time in seconds that it takes to transmit a link state update. The range is 1 to 3600 seconds. The default is 1 second.</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets the transmit delay time on interface 123 to 1000 seconds.

```
(config-if:123)# ip ospf transmit-delay 1000
```

Systems

network area

Command Mode

OSPF Router Configuration.

Description

Defines the interfaces on which OSPF runs and defines an area ID for those interfaces. To disable OSPF routing for interfaces defined with the \(<ip-address> <wildcard-mask>\) pair, use the no form of this command.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>network <ip-address> <wildcard-mask> area <area-id></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] network <ip-address> <wildcard-mask> area <area-id></td>
</tr>
</tbody>
</table>

Table 211: network area Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip address></td>
<td>IP address of the interface on which OSPF runs.</td>
</tr>
<tr>
<td><wildcard-mask></td>
<td>The inverse of a network mask. Enter a 32-bit number in four-part, dotted decimal format. Place ones in the bit positions that you want to mask. This parameter specifies a range of IP addresses. For example, to specify all IP addresses in the 10.10.70 subnet, enter 10.10.70.0 0.0.0.255.</td>
</tr>
<tr>
<td><area-id></td>
<td>Area ID for the interface.</td>
</tr>
</tbody>
</table>

Sample Output

The following command defines network area on the interface running at 10.0.7.123 and with area ID 1.1.1.1.

(configure router:ospf)# network 10.0.7.123 255.0.0.0 area 1.1.1.1

Systems

passive-interface

Command Mode

OSPF Router Configuration.

Description

Prevents OSPF from sending routing updates across the network. To disable passive interface, use the no form of this command.

Syntax

| To Enable: | passive-interface {<interface-name> | <ip-address>} |
| To Disable: | [no] passive-interface {<interface-name> | <ip-address>} |

Table 212: passive-interface Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><interface-name></td>
<td>Name of the interface on which OSPF runs.</td>
</tr>
<tr>
<td><ip-address></td>
<td>IP address of the interface on which OSPF runs.</td>
</tr>
</tbody>
</table>

Sample Output

The following command enables passive interface on the interface labeled boston with an ip address of 10.0.7.123.

(configure router:ospf)# passive-interface boston 10.0.7.123

Systems

router ospf

Command Mode
Global Configuration.

Description
Enables the OSPF protocol on this system. The no form of this command disables it globally. The default is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>router ospf</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] router ospf</td>
</tr>
</tbody>
</table>

Sample Output
The following example enables OSPF routing.

```
(configure)# router ospf
```

Systems

show ip ospf

Command Mode
User.

Description
Displays general information about OSPF routing.

Syntax

```
show ip ospf
```
Sample Output

The following example displays general information about OSPF routing.

```
> show ip ospf
Routing Process OSPF with ID 45.0.0.0
Supports only single TOS0 0 route
It is an area border and autonomous system boundary router
Redistributing External Routes from rip with metric TYPE 2
Number of areas in this router is 2
Area 0.0.0.0
Number of Interfaces in this area 2
SPF algorithm executed 53 times
Area 1.0.0.0
Number of Interfaces in this area 1
SPF algorithm executed 47 times
```

Systems

show ip ospf database

Command Mode

User.

Description

Displays lists of information related to the OSPF database for a specific router.

Syntax

```
show ip ospf database [(asbr-summary | router | network | summary | nssa-external | external)]
```

Table 213: show ip ospf database Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>asbr-summary</td>
<td>Displays information only about the autonomous system boundary router summary LSAs. Optional.</td>
</tr>
<tr>
<td>external</td>
<td>Displays information only about the external LSAs. Optional.</td>
</tr>
<tr>
<td>network</td>
<td>Displays information only about the network LSAs. Optional.</td>
</tr>
</tbody>
</table>

1 of 2
OSPF

Table 213: show ip ospf database Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nssa-external</td>
<td>Displays information only about the NSSA external LSAs. Optional.</td>
</tr>
<tr>
<td>router</td>
<td>Displays information only about the router LSAs. Optional.</td>
</tr>
</tbody>
</table>

Sample Output

The following command displays the OSFP database for router ID 10.0.1.45.

```
> show ip ospf database
OSPF Router with ID 10.0.1.45

<table>
<thead>
<tr>
<th>Area ID</th>
<th>Type</th>
<th>LSA ID</th>
<th>Router ID</th>
<th>Sequence</th>
<th>age</th>
<th>Cksm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>1</td>
<td>10.0.1.45</td>
<td>10.0.1.45</td>
<td>8000000e</td>
<td>296</td>
<td>5375</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>3</td>
<td>10.0.2.0</td>
<td>10.0.1.45</td>
<td>8000000e</td>
<td>335</td>
<td>52b8</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>1</td>
<td>10.0.1.45</td>
<td>10.0.1.45</td>
<td>8000000b</td>
<td>297</td>
<td>6268</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>3</td>
<td>10.0.1.0</td>
<td>10.0.1.45</td>
<td>8000000e</td>
<td>336</td>
<td>5dae</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>3</td>
<td>0.0.0.0</td>
<td>10.0.1.45</td>
<td>80000002</td>
<td>331</td>
<td>2bf8</td>
</tr>
</tbody>
</table>
```

Systems

show ip ospf interface

Command Mode

User.

Description

Displays the OSPF-related interface information.
Syntax

```
show ip ospf interface [<interface-name>]
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><interface-name></code></td>
<td>The OSPF interface name.</td>
</tr>
</tbody>
</table>

Sample Output

The following command displays the OSPF-related information for interface intf5.

```
> show ip ospf interface intf5
Ethernet intf5 is up, line protocol is up
Internet Address 10.0.5.45, Mask 255.255.255.0, Area 0.0.0.0
AS Router ID 45.0.0.0
Network Type BROADCAST, COST 1
State BACKUP-DR, Priority 1
DRId 43.0.0.0, IpAddress 10.0.5.43
BDR ipAddress 10.0.5.45
Timer Intervals Configured:
Hello 10
Dead 40
wait 40
Retransmit 5
Transit 1
Neighbor count 1, Adjacent Neighbor count 1
Adjacent with neighbor 43.0.0.0 neighbor’s ipaddr 10.0.5.43
```

Systems

show ip ospf neighbor

Command Mode
User.

Description
Displays OSPF-neighbor information on a per-interface basis.

Syntax
show ip ospf neighbor [{<interface-name> | <neighbor-id>}] [detail]

Table 215: show ip ospf neighbor Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><interface-name></td>
<td>The OSPF interface name.</td>
</tr>
<tr>
<td><neighbor-id></td>
<td>Neighbor ID.</td>
</tr>
<tr>
<td>detail</td>
<td>Displays all neighbors given in detail (list all neighbors).</td>
</tr>
</tbody>
</table>

Sample Output

The following command displays OSPF neighbor information for the interface labeled 123.

> show ip ospf neighbor

<table>
<thead>
<tr>
<th>Nbr-Id</th>
<th>Priority</th>
<th>State</th>
<th>Router ID</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.0.0.0</td>
<td>1</td>
<td>FULL</td>
<td>10.0.5.43</td>
<td>BROADCAST</td>
</tr>
<tr>
<td>43.0.0.0</td>
<td>1</td>
<td>FULL</td>
<td>10.0.3.43</td>
<td>BROADCAST</td>
</tr>
<tr>
<td>43.0.0.0</td>
<td>1</td>
<td>FULL</td>
<td>10.0.6.43</td>
<td>BROADCAST</td>
</tr>
</tbody>
</table>

Systems

show ip ospf stats

Command Mode
User.

Description
Displays OSPF statistics.

Syntax
show ip ospf stats

Sample Output
The following command displays OSPF statistics.

> show ip ospf stats
Ospf Global Stats
Ospf state: Active
num of new lsa received 165801
num of new lsa transmitted 76872
num of external lsa count 30
lsa checksum 950158

<table>
<thead>
<tr>
<th>Area Id</th>
<th>Spf Runs</th>
<th>ABR Count</th>
<th>LSA Count</th>
<th>ASBR Count</th>
<th>LSA CSum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>424</td>
<td>6</td>
<td>113</td>
<td>6</td>
<td>003BAC12</td>
</tr>
<tr>
<td>172.172.172.0</td>
<td>424</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0000DBD2</td>
</tr>
<tr>
<td>192.168.89.0</td>
<td>423</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>00008F3B</td>
</tr>
<tr>
<td>192.168.140.0</td>
<td>423</td>
<td>3</td>
<td>120</td>
<td>3</td>
<td>0039E693</td>
</tr>
<tr>
<td>192.168.190.0</td>
<td>395</td>
<td>0</td>
<td>71</td>
<td>0</td>
<td>0022FCB7</td>
</tr>
</tbody>
</table>

Systems
show ip ospf virtual-links

Command Mode
User.

Description
Displays parameters that explain the current state of OSPF virtual links.

Syntax
show ip ospf virtual-links

Sample Output
The following command displays parameters about the current state of the virtual links to the switch.

(configure)# show ip ospf virtual-link
Virtual link to router 43.0.0.0 is up
Transit area 1.0.0.0 via interface, Cost of using 1
Transit Delay is 1 seconds
Timer Intervals Configured:
Hello 10
Dead 40
wait 40
Retransmit 5
Transit 1

Systems
timers lsa-group-pacing

Command Mode

Global Configuration.

Description

Sets the number of LSAs that should be processed at one time, during a SPF calculation. The valid range is 1000 to 16000. The default setting is 1000. Use the **no** form of this command to restore the default value.

This command helps you gauge how much CPU time is devoted to the SPF calculation at one time.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>timers lsa-group-pacing <code><lsa-group-size></code></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] timers lsa-group-pacing</td>
</tr>
</tbody>
</table>

Table 216: timers lsa-group-pacing Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><lsa-group-size></code></td>
<td>The link state advertisement group size. The range is 1000 to 16000. The default setting is 1000.</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets the LSA timers to 1500.

```
(configure)# timers lsa-group-pacing 1500
```

Systems

timers spf

Command Mode

 Global Configuration.

Description

Configures the delay time (seconds) between runs of OSPF’s SPF calculation. Use the no form of this command to restore the default (3 seconds). The valid range is 3 to 65535.

Syntax

To Configure: timers spf <spf-holdtime>

To Restore Default: [no] timers spf

Table 217: timers spf Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><spf-holdtime></td>
<td>The time in seconds of the delay between runs of OSPF’s SPF calculation. The range is: minimum - 3 maximum - 65535</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets the spf holdtime to 60 seconds.

(configure)# timers spf 60

Systems

Chapter 20: Policy

Overview

This chapter describes the following commands:

- access-list
- ip access-group
- ip access-list
- ip acl-logging
- ip acl-logging logging-interval
- show access-group
- show access-lists
- show acl-match-timer
- show ip access-lists
access-list

Command Mode

Global Configuration.

Description

Creates a rule in an access control list (ACL). The rule that you set is applied on all of the ports on the switch.

Note:

You must enable the ACL on which you want to set a rule. Only one ACL can be enabled at a time.

The `no` command deletes an ACL rule or ACL.

Syntax

To Create a Standard ACL Rule:	access-list `<access-list-name>` `<access-list-index>` {permit [use-priority `<priority>`	use-diffserv [mask]	remark-diffserv `<dscp>` [mask]	use-l2]	deny	fwd1	fwd2	fwd3	fwd4	fwd5	fwd6	fwd7	fwd8} `<source-ip-addr>` `<source-wildcard>`	any	host `<source-ip-addr>`				
To Create an Extended ACL Rule:	access-list `<access-list-name>` `<access-list-index>` {permit [use-priority `<priority>`	use-diffserv [mask]	remark-diffserv `<dscp>` [mask]	use-l2]	deny	fwd1	fwd2	fwd3	fwd4	fwd5	fwd6	fwd7	fwd8} `<protocol-id>` `<source-ip-addr>` `<source-wildcard>`	any	host `<source-ip-addr>`	`<dest-ip-addr>` `<dest-wildcard>`	any	host `<dest-ip-addr>`	`<port>` `<port>` [established]
To Remove an ACL Rule or ACL:	no access-list `<access-list-name>` `<access-list-index>`																		

Table 218: access-list Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><access-list-name></code></td>
<td>A unique name that identifies the access control list.</td>
</tr>
<tr>
<td><code><access-list-index></code></td>
<td>The rule number within the access list. Index numbers can be 1 through 512.</td>
</tr>
<tr>
<td>permit</td>
<td>Forwards the packet without changing its priority.</td>
</tr>
<tr>
<td>use-priority</td>
<td>Assigns the default layer 3 priority that you define in the following <code><priority></code> parameter to the packet.</td>
</tr>
<tr>
<td><code><priority></code></td>
<td>The default layer 3 priority. Enter a number between 0 and 7.</td>
</tr>
<tr>
<td>use-diffserv</td>
<td>Classifies traffic by the DSCP in the packet.</td>
</tr>
<tr>
<td>[mask]</td>
<td>Masks the three least significant bits of the DSCP. If you mask the three least significant bits of the DSCP, the switch recognizes the remaining bits as the precedence field of the type of service (TOS) field and classifies the packets accordingly.</td>
</tr>
<tr>
<td>remark-diffserv</td>
<td>Replaces the DSCP in the packet with the DSCP that you enter for the following <code><dscp></code> parameter. The switch uses the DSCP that you enter for the <code><dscp></code> parameter to classify the packet.</td>
</tr>
<tr>
<td><code><dscp></code></td>
<td>The specific DSCP to replace the existing DSCP. The range is 0-63.</td>
</tr>
<tr>
<td>use-l2</td>
<td>Classifies traffic by the layer 2 priority of the packet. If you enter <code>use-l2</code>, the switch ignores the layer 3 default priorities and DiffServ priorities.</td>
</tr>
<tr>
<td>deny</td>
<td>Blocks the packet.</td>
</tr>
<tr>
<td>`fwd1</td>
<td>fwd2</td>
</tr>
<tr>
<td><code><protocol-id></code></td>
<td>The ID of the protocol that you want to assign a priority to. RFC 1700 defines the protocol IDs.</td>
</tr>
<tr>
<td><code><source-ip-addr></code></td>
<td>The source IP address of the subnet or host to which you want to assign a priority.</td>
</tr>
</tbody>
</table>
Table 218: access-list Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><source-wildcard></code></td>
<td>The inverse of a network mask. Enter a 32-bit number in four-part, dotted decimal format. Place ones in the bit positions that you want to mask. This parameter specifies a range of IP address. For example, to specify all IP addresses in the 10.10.70 subnet, enter 10.10.70.0 0.0.0.255.</td>
</tr>
<tr>
<td>any</td>
<td>A source of 0.0.0.0 and a source-wildcard of 255.255.255.255</td>
</tr>
<tr>
<td>host <code><source-ip-addr></code></td>
<td>The source IP address that you want to assign a priority to.</td>
</tr>
<tr>
<td>`[lt <port></td>
<td>eq <port></td>
</tr>
<tr>
<td><code><dest-ip-addr></code></td>
<td>The destination IP address of the subnet or host that you want to assign a priority to.</td>
</tr>
<tr>
<td><code><dest-wildcard></code></td>
<td>The inverse of a network mask. Enter a 32-bit number in four-part, dotted decimal format. Place ones in the bit positions that you want to mask. This parameter specifies a range of IP address. For example, to specify all IP addresses in the 10.10.70 subnet, enter 10.10.70.0 0.0.0.255.</td>
</tr>
<tr>
<td>any</td>
<td>A destination of 0.0.0.0 and a destination-wildcard of 255.255.255.255</td>
</tr>
<tr>
<td>host <code><dest-ip-addr></code></td>
<td>The destination IP address that you want to assign a priority to.</td>
</tr>
<tr>
<td>`[lt <port></td>
<td>eq <port></td>
</tr>
<tr>
<td><code>[established]</code></td>
<td>Permits TCP connections to be established that match the rule.</td>
</tr>
</tbody>
</table>
Sample Output

The following table provides examples of standard ACL rules.

Table 219: Sample Standard ACL Rules

<table>
<thead>
<tr>
<th>To...</th>
<th>Enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Use the DSCP in the packet to classify all traffic that has a source IP address in the 10.10.60 subnet.</td>
<td>access-list MyAccessList1 4 permit use-diffserv mask 10.10.60.0 0.0.0.255</td>
</tr>
<tr>
<td>● Mask the three least significant bits of the DSCP.</td>
<td></td>
</tr>
<tr>
<td>Assign a priority of 7 to all traffic that has a source IP address in the 10.10.70 subnet.</td>
<td>access-list MyAccessList1 5 permit use-priority 7 10.10.70.0 0.0.0.255</td>
</tr>
<tr>
<td>● Replace the existing DSCP with a DSCP of 5 for all traffic that has a source IP address in the 10.10.80 subnet.</td>
<td>access-list MyAccessList1 6 permit remark-diffserv 5 mask 10.10.80.0 0.0.0.255</td>
</tr>
<tr>
<td>● Mask the three least significant bits of the DSCP</td>
<td></td>
</tr>
<tr>
<td>Use the layer 2 priority of the packet to classify all traffic that has a source address in the 11.11.11 subnet</td>
<td>access-list MyAccessList1 7 permit use-l2 11.11.11.0 0.0.0.255</td>
</tr>
<tr>
<td>Use the DSCP in the packet to classify all traffic that has a source IP address of 199.93.239.168</td>
<td>access-list MyAccessList1 8 permit use-diffserv host 199.93.239.168</td>
</tr>
<tr>
<td>● Use the DSCP in the packet to classify all traffic that has a source IP address of 3.3.3.3</td>
<td>access-list MyAccessList1 9 permit use-diffserv mask host 3.3.3.3</td>
</tr>
<tr>
<td>● Mask the three least significant bits of the DSCP</td>
<td></td>
</tr>
<tr>
<td>Assign a priority of 2 to all traffic that has a source IP address of 1.1.1.1</td>
<td>access-list MyAccessList1 10 permit use-priority 2 host 1.1.1.1</td>
</tr>
<tr>
<td>Block all traffic that has a source IP address is 10.1.0.55</td>
<td>access-list MyAccessList1 11 deny 10.1.0.55</td>
</tr>
</tbody>
</table>
Sample Output

The following table provides examples of extended ACL rules.

<table>
<thead>
<tr>
<th>Table 220: Sample Extended ACL Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>To...</td>
</tr>
<tr>
<td>Use the DSCP in the packet to classify all traffic that has a:</td>
</tr>
<tr>
<td>- Source IP address of 199.93.239.168</td>
</tr>
<tr>
<td>- Destination address in the 1.1 subnet</td>
</tr>
<tr>
<td>Use the DSCP in the packet to classify all traffic that has a:</td>
</tr>
<tr>
<td>- Source IP address in the 3.0 subnet</td>
</tr>
<tr>
<td>- Destination address in the 5.0 subnet</td>
</tr>
<tr>
<td>- Mask the three least significant bits of the DSCP</td>
</tr>
<tr>
<td>Assign a priority of 2 to all TCP traffic that has a:</td>
</tr>
<tr>
<td>- Source IP address in the 1.1 subnet</td>
</tr>
<tr>
<td>- Source port that is greater than 24</td>
</tr>
<tr>
<td>- Destination IP address in the 6.6 subnet</td>
</tr>
<tr>
<td>- Destination port of 23</td>
</tr>
<tr>
<td>- Replace the existing DSCP of packets with a DSCP of 12 for all traffic that has a source IP address of 199.93.238.83.</td>
</tr>
<tr>
<td>- Mask the three least significant bits of the DSCP.</td>
</tr>
<tr>
<td>Replace the existing DSCP of the packet with a DSCP of 24 for all ICMP traffic that has a:</td>
</tr>
<tr>
<td>- Source IP address of 2.2.2.2</td>
</tr>
<tr>
<td>- Destination IP address of 4.4.4.4</td>
</tr>
</tbody>
</table>

1 of 2
Table 220: Sample Extended ACL Rules (continued)

<table>
<thead>
<tr>
<th>To...</th>
<th>Enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign a priority of 6 to all TCP traffic that has a:</td>
<td>access-list MyAccessList2 6 permit use-priority 6 tcp 10.10.10.0 0.0.0.255 11.11.11.0 0.0.0.255 eq 1</td>
</tr>
<tr>
<td>- Source IP address in the 10.10.10 subnet</td>
<td></td>
</tr>
<tr>
<td>- Destination IP address in the 11.11.11 subnet</td>
<td></td>
</tr>
<tr>
<td>- Destination port of 1</td>
<td></td>
</tr>
<tr>
<td>Use the layer 2 priority in the packet to classify all UDP traffic</td>
<td>access-list MyAccessList2 7 permit use-l2 udp any any</td>
</tr>
<tr>
<td>- Use the layer 2 priority in the packet to classify all TCP traffic</td>
<td>access-list MyAccessList2 8 permit use-l2 tcp 5.5.5.0 0.0.0.255 6.6.6.0 0.0.0.255 lt 2 established</td>
</tr>
<tr>
<td>that has a:</td>
<td></td>
</tr>
<tr>
<td>- Source IP address in the 5.5.5 subnet</td>
<td></td>
</tr>
<tr>
<td>- Destination IP address in the 6.6.6 subnet</td>
<td></td>
</tr>
<tr>
<td>- Destination port that is less than 2</td>
<td></td>
</tr>
<tr>
<td>- Permit TCP connections that meet this criteria</td>
<td></td>
</tr>
<tr>
<td>- Use the DSCP to classify all UDP traffic that has a:</td>
<td>access-list MyAccessList2 9 permit use-diffserv mask udp host 7.7.7.7 host 8.8.8.8 range 33 44</td>
</tr>
<tr>
<td>- Source IP address of 7.7.7.7</td>
<td></td>
</tr>
<tr>
<td>- Destination IP address of 8.8.8.8</td>
<td></td>
</tr>
<tr>
<td>- Destination port between 33 and 44</td>
<td></td>
</tr>
<tr>
<td>- Mask the three least significant bits of the DSCP</td>
<td></td>
</tr>
<tr>
<td>- Assign a priority of 7 to all TCP traffic that has a:</td>
<td>access-list MyAccessList2 10 permit use-priority 7 tcp host 9.9.9.9 host 3.3.3.3 range 55 66 established</td>
</tr>
<tr>
<td>- Source IP address of 9.9.9.9</td>
<td></td>
</tr>
<tr>
<td>- Destination IP address of 3.3.3.3</td>
<td></td>
</tr>
<tr>
<td>- Destination port between 55 and 66</td>
<td></td>
</tr>
<tr>
<td>- Permit TCP connections that meet this criteria</td>
<td></td>
</tr>
</tbody>
</table>

Systems

ip access-group

Command Mode

Global Configuration

Description

Enables an access control list (ACL) and optionally sets the default action to **deny**.

The **default-action-deny** option is a global setting and is not available in the Web Agent. If you use the CLI to enable the **default-action-deny** option and then use the Web Agent to enable a different ACL, the **default-action-deny** option remains enabled. When this option is enabled, the switch blocks all traffic that does not match an access rule in the enabled ACL.

⚠️ **CAUTION:**

Do not use the Web Agent to enable a different ACL if the default-action-deny option is enabled. Because the option remains enabled, you can unexpectedly lose connectivity to the switch.

To ensure that you never inadvertently lose all connectivity to the switch, you can add an access rule that always permits a specific connection. You must add the rule to all ACLs on the switch, though, so that regardless of the ACL that is enabled, the **default-action-deny** option does not block the connection.

For example, to ensure that you can always connect to the switch from a PC that has an IP address of 192.168.10.10, add the following access rule to all ACLs on the switch: `ip access-list <access-list-name> <access-list-index> permit 192.168.10.10 0.0.0.0`.

The no form of this command disables the access control list. The default action is by default set to **permit**.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip access-group <access-list-name> [default-action-deny]</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ip access-group <access-list-name></td>
</tr>
</tbody>
</table>
Table 221: ip access-group Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><access-list-name></code></td>
<td>The name of the access list.</td>
</tr>
</tbody>
</table>
| [default-action-deny] | Sets the default action to deny. When this option is enabled, the switch blocks all traffic that does not match an access rule in the enabled ACL. This option is a global setting and is not available in the Web Agent. If you use the CLI to enable this option and then use the Web Agent to enable a different ACL, the default-action-deny option remains enabled. To disable this option, enter `ip access-group <group name>` and omit the [default-action-deny] option. For `<group name>`, you can enter:
 - The name of the currently enabled access list to retain its enabled status.
 - OR
 - The name of a different access list to enable it. |

Sample Output

The following command enables the access-list `fwdrules`:

```
(configure)# ip access-group fwdrules
```

Systems

ip access-list

Command Mode

Global Configuration.

Description

Creates a rule in an access control list (ACL). The rule that you set is applied on all of the ports on the switch.

Note:

You must enable the ACL on which you want to set a rule. Only one ACL can be enabled at a time.

The no command deletes an ACL rule or ACL.

Syntax

To Create a Standard ACL Rule:	ip access-list <access-list-name> <access-list-index> {permit [(use-priority <priority>	use-diffserv [mask]	remark-diffserv <dscp> [mask]	use-l2])	deny	fwd1	fwd2	fwd3	fwd4	fwd5	fwd6	fwd7	fwd8} <source-ip-addr> <source-wildcard>	any	host <source-ip-addr>								
To Create an Extended ACL Rule:	ip access-list <access-list-name> <access-list-index> {permit [(use-priority <priority>	use-diffserv [mask]	remark-diffserv <dscp> [mask]	use-l2])	deny	fwd1	fwd2	fwd3	fwd4	fwd5	fwd6	fwd7	fwd8} <protocol-id> <source-ip-addr> <source-wildcard>	any	host <source-ip-addr> {{lt <port>	eq <port>	gt <port>	range <port>} <dest-ip-addr> <dest-wildcard>	any	host <dest-ip-addr> [[lt <port>	eq <port>	gt <port>	range <port> <port>]} {established]
To Remove an ACL Rule or ACL:	no ip access-list <access-list-name> [<access-list-index>]																						

This command performs the same operation as the access-list command. See that command for explanations of the keywords and variables and for examples.

Systems

ip acl-logging

Command Mode

Global Configuration

Description

Enables or disables ACL logging. The default setting for ACL logging is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip acl-logging enable <access-list-name> <rule-number></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>ip acl-logging disable <access-list-name> <rule-number></td>
</tr>
</tbody>
</table>

Table 222: ip acl-logging Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><access-list-name></td>
<td>The access list that contains the access rule for which you want to enable ACL logging.</td>
</tr>
<tr>
<td><rule-number></td>
<td>The number of the access rule for which you want to enable ACL logging.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
ip acl-logging logging-interval

Command Mode

Global Configuration

Description

Sets the interval for ACL logging. The valid range is 1 to 60 seconds. The default setting is 2 seconds.

Syntax

ip acl-logging logging-interval <time-in-seconds>

Table 223: ip acl-logging logging-interval Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><time-in-seconds></code></td>
<td>The interval at which you want ACL matches logged. Enter an interval from 1 to 60 seconds. The default setting is 2 seconds.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
show access-group

Command Mode
User.

Description
Displays the enabled access control list.

Syntax
show access-group

Systems

show access-lists

Command Mode
User.

Description
Displays the contents of access lists configured on the switch. The switch displays all access lists by default.

Syntax
show access-lists [<access-list-name>]

Table 224: show access-lists Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><access-list-name></td>
<td>The name of a specific access list to be displayed.</td>
</tr>
</tbody>
</table>
Sample Output

The following command displays the access lists.

> show access-lists
access-list 1 1 deny 0.0.0.0 255.255.255.255
access-list 100 12 deny ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255

Systems

show acl-match-timer

Command Mode

Global Configuration.

Description

Displays the interval for logging of ACL matches.

Syntax

show acl-match-timer

Sample Output

Interval between logging of Access Rule Matches is 2 second(s)

Systems

P580 and P882.
show ip access-lists

Command Mode

User.

Description

Displays the contents of the IP access lists configured on the switch. The switch displays all access lists by default.

Syntax

show ip access-lists <access-list-name>

Table 225: show ip access-lists Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><access-list-name></td>
<td>The name of a specific IP access list to be displayed.</td>
</tr>
</tbody>
</table>

Sample Output

The following command displays the contents of the IP access lists.

> show ip access-lists
 access-list 1 1 deny 0.0.0.0 255.255.255.255
 access-list 100 12 deny ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255

Systems

Policy
Chapter 21: Port

Overview

This chapter describes the following commands:

- clear port counters
- set port 3com-mapping-table
- set port allow-learning
- set port auto-flush
- set port auto-negotiation
- set port auto-negotiation-duplex-advertisement
- set port auto-negotiation-flow-control-advertisement
- set port auto-negotiation-speed-advertisement
- set port auto-vlan-create
- set port category
- set port disable
- set port duplex
- set port edge admin state
- set port enable
- set port flow-control
- set port frame-tags
- set port mirror
- set port internal-error-shutdown
- set port intrusion-trap
- set port intrusion-trap-timer
- set port known-mode
- set port mirror
- set port mirror Fabric_mode2
- set port name
- set port network-error-detection
Port

- `set port pace-priority-mode`
- `set port point-to-point admin status`
- `set port rate-limit-burst-size`
- `set port rate-limit-mode`
- `set port rate-limit-rate`
- `set port-redundancy`
- `set port-redundancy name`
- `set port remote-fault-detect`
- `set port spanning-tree-mode`
- `set port speed`
- `set port trunking-format`
- `set port vlan`
- `set port vlan-binding-method`
- `set port vtp-snooping`
- `show port`
- `show port counters`
- `show port mirror`
- `show port mirror Fabric_mode2`
- `show port physical`
- `show port status`
- `show port redundancy`
clear port counters

Command Mode

Global Configuration.

Description

Clears port ethernet statistics counters. Omitting input clears all port counters on the switch. Selecting a module number clears all port counters on the module. By default, the counters of all ports in the switch chassis are cleared.

Syntax

clear port counters [{<mod-num> | <mod-swport-spec>}]

Table 226: clear port counters Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module whose port counters are to be cleared.</td>
</tr>
<tr>
<td><mod-swport-spec></td>
<td>Specifies a particular port whose counters are to be cleared.</td>
</tr>
</tbody>
</table>

Sample Output

The following command clears the counters for all the ports on the module in slot 3:

```
(configure)# clear port counters 3
Module 3 ports counters cleared
```

The following command clears the counters of port 7 on the module in slot 5:

```
(configure)# clear port counters 5/7
Port 5/7 counters cleared
```

Systems

set port 3com-mapping-table

Command Mode

Global Configuration.

Description

Sets the 3Com mapping table for a specified switch port or all switch ports on a specified module.

Syntax

set port 3com-mapping-table {<mod-num> | <mod-swport-range>} [...,{<mod-num> | <mod-swport-range>}] <table-name>

Table 227: set port 3com-mapping-table Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module where the 3Com Mapping Table assignment of each switch is to be set.</td>
</tr>
<tr>
<td><mod-swport-range></td>
<td>Specifies a range of switch ports whose 3Com Mapping Table assignment is to be set.</td>
</tr>
<tr>
<td><table-name></td>
<td>Specifies the name of the 3Com mapping table.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the 3Com Mapping Table assignment for all switch ports on the module in slot 3.

(configure)# set port 3com-mapping-table 3 3ComDefault

Port 3Com-mapping-table set: 3/1, 3/2

Systems

set port allow-learning

Command Mode

Global Configuration.

Description

Disables or enables learning for a specified switch port or all switch ports on a specified module.

Syntax

| To Enable: | set port allow-learning {<mod-num> | <mod-swport-range>} [...,{<mod-num> | <mod-swport-range>}] enable |
|--|---|
| To Disable: | set port allow-learning {<mod-num> | <mod-swport-range>} [...,{<mod-num> | <mod-swport-range>}] disable |

Table 228: set port allow-learning Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module where the ability of every switch port on that module to learn new VLANs is enabled or disabled.</td>
</tr>
<tr>
<td><mod-swport-range></td>
<td>Specifies a range of switch ports whose ability to learn new VLANs is enabled or disabled.</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables VLAN learning for the second switch port on the module in slot 3 and switch ports 7 through 11 on the module in slot 5.

(configure)# set port allow-learning 3/2,5/7-11 enable
Port allow-learning set: 3/2,5,7,5/8,5/9,5/10,5/11

Systems

set port auto-flush

Command Mode

Global Configuration.

Description

When auto-flush is enabled and the link to a port fails, all entries in the address forwarding table that were learned for this port will be marked invalid. The default value for auto-flush is disabled.

Syntax

To Enable: set port auto-flush {<mod-num> | <mod-swport-range>} [...,{<mod-num> | <mod-swport-range>}] enable

To Disable: set port auto-flush {<mod-num> | <mod-swport-range>} [...,{<mod-num> | <mod-swport-range>}] disable

Table 229: set port auto-flush Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><module-number></td>
<td>The module number on which you want to set auto-flush. Auto-flush can be set at the module level or port level.</td>
</tr>
<tr>
<td><mod-swport-range></td>
<td>The port, or port range on which you want to enable auto-flush.</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables auto-flush for port 2, on module 4.

```
(configure)# set port auto-flush 4/2 enable
Port auto-flush set successful: 4/2.
```

Systems

set port auto-negotiation

Command Mode
 Global Configuration.

Description
 Enables or disables auto-negotiation on the specified port or ports.

Syntax

| To Enable: | set port auto-negotiation {<mod-num> | <mod-port-range>} [...,{<mod-num> | <mod-port-range>}] enable |
| To Disable: | set port auto-negotiation {<mod-num> | <mod-port-range>} [...,{<mod-num> | <mod-port-range>}] disable |

Table 230: set port auto-negotiation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies a module number where auto negotiation for every fast ethernet port on that module is enabled or disabled.</td>
</tr>
<tr>
<td><mod-port-range></td>
<td>Specifies a range of fast ethernet ports whose ability for auto negotiation is enabled or disabled.</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables auto-negotiation for the second fast ethernet port and ports 7 through 11 on the module in slot 5.

(configure)# set port auto-negotiation 5/2,5/7-11 enable

Systems

set port auto-negotiation-duplex-advertisement

Command Mode
Global Configuration.

Description
Configures auto negotiation advertisement of the duplex capability for a specified port or ports.

Syntax
set port auto-negotiation-duplex-advertisement {
<mod-num> | <mod-port-range>
} [...{<mod-num> | <mod-port-range>]} {full/half-duplex | half-duplex}

Table 231: set port auto-negotiation-duplex-advertisement Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module where auto negotiation and advertisement of the duplex capability for every fast ethernet port on that module is set to support full or half duplex operations, or just half duplex operations.</td>
</tr>
<tr>
<td><mod-port-range></td>
<td>Specifies a range of fast ethernet port whose ability for auto negotiation and advertisement of their duplex capability is set to support full or half duplex operations or just half duplex operations.</td>
</tr>
<tr>
<td>{full/half-duplex</td>
<td>half-duplex}</td>
</tr>
</tbody>
</table>

Sample Output
The following example sets the auto-negotiation advertisement of the duplex capability to full or half-duplex mode for fast ethernet port 2 and ports 7 through 11 on the module in slot 5.

(configure)# set port auto-negotiation-duplex-advertisement 5/2,5/7-11 full/half duplex

Port auto-negotiation duplex advertisement set:
5/2,5/7,5/8,5/9,5/10,5/11

Systems
set port auto-negotiation-flow-control-advertisement

Command Mode

Global Configuration.

Description

Sets the auto-negotiation flow control advertisement on a module or range of modules.

Syntax

set port auto-negotiation-flow-control-advertisement {<mod-num> | <mod-port-range>}

Table 232: set port auto-negotiation-flow-control-advertisement Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module where the auto negotiation and flow control advertisement is to be set.</td>
</tr>
<tr>
<td><mod-port-range></td>
<td>Specifies a range of fast ethernet ports whose ability for auto negotiation and flow control advertisement to be set.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the auto negotiation flow control advertisement of the module in slot 3.

(configure)# set port auto-negotiation-flow-control-advertisement 3

Systems

set port auto-negotiation-speed-advertisement

Command Mode

Global Configuration.

Description

Sets the auto-negotiation speed capability advertisement of fast ethernet ports to support speeds of 10Mbps, 100Mbps, or either.

Syntax

set port auto-negotiation-speed-advertisement {<mod-num> | <mod-port-range>} [...,{<mod-num> | <mod-port-range>}] {10Mbps | 100Mbps | 10/100Mbps}

Table 233: set port auto-negotiation-speed-advertisement Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module where the auto negotiation and advertisement of the speed capability for every fast ethernet port is set to support either 10Mbps or 100Mbps, or both.</td>
</tr>
<tr>
<td><mod-port-range></td>
<td>Specifies a range of fast ethernet ports whose ability for auto negotiation and advertisement of their speed capability is set to support either 10 Mbps, 100Mbps or both.</td>
</tr>
<tr>
<td>{10Mbps</td>
<td>100Mbps</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the auto negotiation advertisement of the speed capability to either 10 Mbps or 100 Mbps for the second fast ethernet port and ports 7 through 11 on the module in slot 5.

(configure)# set port auto-negotiation-speed-advertisement 5/2,5/7-11 10/100Mbps

Port auto-negotiation speed advertisement set: 5/2,5/7,5/8,5/9,5/10,5/11

Systems

set port auto-vlan-create

Command Mode

Global Configuration.

Description

Enables or disables auto VLAN creation for a specified switch port or all switch ports on a specified module. When enabled, it allows the switch to automatically create a VLAN each time the port receives a frame from an unknown VLAN.

Syntax

| To Enable: | set port auto-vlan-create {<mod-num> | <mod-swport-range>} [...,{<mod-num> | <mod-swport-range>}] enable |
|------------|---|
| To Disable:| set port auto-vlan-create {<mod-num> | <mod-swport-range>} [...,{<mod-num> | <mod-swport-range>}] disable |

Table 234: set port auto-vlan-create Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies a module number. If a module number is specified, auto-vlan-creation is set on all ports on the module</td>
</tr>
<tr>
<td><mod-swport-range></td>
<td>Specifies a switch port or a range of switch ports on which to set the auto-vlan-create-parameter.</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables port auto-vlan-create.

```
(configure)# set port auto-vlan-create 4/1 enable
Port auto-vlan-create set: 4/1.
```

Systems

set port category

Command Mode

Global Configuration.

Description

Sets the category of ports.

Syntax

set port category {<mod-num> | <mod-port-range>}[....{<mod-num> | <mod-port-range>}]
{service-port | user-port}

Table 235: set port category Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module where the port category type of every module is set.</td>
</tr>
<tr>
<td><mod-port-range></td>
<td>Specifies a range of ports whose category is to be set.</td>
</tr>
<tr>
<td>{service-port</td>
<td>● service-port - Indicates that the specified ports are set as service</td>
</tr>
<tr>
<td>user-port}</td>
<td>ports and intended for connections to servers or other switches.</td>
</tr>
<tr>
<td></td>
<td>● user-port - Indicates that the specified ports are set as user ports</td>
</tr>
<tr>
<td></td>
<td>and intended for connections to end user nodes.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the category of all the ports on the module in slot 3 and ports 7 through 11 on the module in slot 5 as user ports.

(configure)# set port category 3,5/7-11 user-port
Port category set: 3/1,3/2,5/7,5/8,5/9,5/10,5,11

Systems

set port disable

Command Mode
Global Configuration.

Description
Disables a specified port or ports.

Syntax
set port disable {<mod-num> | <mod-port-range>}[,...,{<mod-num> | <mod-port-range>}]

Sample Output
The following example disables all the ports on the module in slot 3 and ports 7 through 11 on the module in slot 5.

(configure)# set port disable 3,5/7-11
Port disable set: 3/1,3/2,5/7,5/8,5/9,5/10,5/11

Systems
set port duplex

Command Mode

Global Configuration.

Description

Sets the duplexity of fast ethernet ports.

Syntax

set port duplex {<mod-num> | <mod-port-range>}[...{<mod-num> | <mod-port-range>}] {full-duplex | half-duplex}

Table 237: set port duplex Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module where the duplexity of every fast ethernet port is set.</td>
</tr>
<tr>
<td><mod-port-range></td>
<td>Specifies a range of fast ethernet ports whose duplexity is to be set.</td>
</tr>
<tr>
<td>{full-duplex</td>
<td>half-duplex}</td>
</tr>
<tr>
<td></td>
<td>● full duplex - The duplexity of the port is set to full duplex.</td>
</tr>
<tr>
<td></td>
<td>● half duplex - The duplexity of the port is set to half duplex.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets fast ethernet ports 7 through 11 on the module in slot 5 to full duplex mode.

(configure)# set port duplex 5/7-11 full-duplex
Port duplex mode set: 5/7,5/8,5/9,5/10,5/11

Systems

set port edge admin state

Command Mode

Global Configuration.

Description

Specifies whether a port is an edge port or a nonedge port. An edge port is not connected to any other bridge. Only edge ports and point-to-point links can rapidly transition to forwarding state.

If you set edge admin state to edge-port, the OperEdgePort field of the show port command is also set to edge-port. However, if the port receives a BPDU, the Oper Edge Port setting changes to non-edge-port. (To receive a BPDU, the port must be connected to a bridge and thus is not an edge port.)

Syntax

set port edge admin state <mod-swport-range>[...<mod-swport-range>] {edge-port | non-edge-port}

Table 238: set port edge admin state Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-swport-range></td>
<td>The module and port or port range.</td>
</tr>
<tr>
<td>edge-port</td>
<td>Defines the port as an edge port.</td>
</tr>
<tr>
<td>non-edge port</td>
<td>Defines the bridge as a nonedge port.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
set port enable

Command Mode
Global Configuration.

Description
Enables a specified port or ports.

Syntax
set port enable {<mod-num> | <mod-port-range>}[,...,<mod-num> | <mod-port-range>]

Sample Output
The following example enables all the ports on the module in slot 3 and ports 7 through 11 on the module in slot 5.

(configure)# set port enable 3,5/7-11
Port enable set: 3/1,3/2,5/7,5/8,5/9,5/10,5/11

Systems
set port flow-control

Command Mode

Global Configuration.

Description

Set the port flow control.

Note:

Setting this parameter on any M5548-100TX port sets all physical ports on the module to the same value.

Syntax

```plaintext
set port flow-control [<mod-num> | <mod-port-range>][...,[<mod-num> | <mod-port-range>]]
{disable | enable | enable-receive-only | enable-send-only | enable-with-aggressive-backoff}
```

<table>
<thead>
<tr>
<th>Table 240: set port flow-control Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td><code><mod-num></code></td>
</tr>
<tr>
<td><code><mod-port-range></code></td>
</tr>
</tbody>
</table>

The flow control options are:

- **disable** - Disables flow control for specified ports. Turns off an attached device's ability to send flow-control packets to a local port.
- **enable** - Enables flow control for specified ports. Turns on an attached device's ability to send flow-control packets to a local port.
- **enable-receive-only** - Enables receive only for the specified gigabit ports. Indicates that a port only receives administrative status from a remote device.
- **enable-send-only** - Enables send only for the specified gigabit ports. Indicates that a port only sends administrative status from a remote device.
- **enable-with-aggressive-backoff** - Enables flow control with aggressive backoff for specified fast ethernet ports.
Sample Output

The following example sets the flow control on all the gigabit ports on the module in slot 3 to enable-receive-only.

```
(configure)# set port flow-control 3 enable-receive-only
Port flow control set: 3/1, 3/2
```

Systems

set port frame-tags

Command Mode

Global Configuration.

Description

Sets the switch ports to use or ignore frame tags.

Syntax

```
set port frame-tags {<mod-num> | <mod-swport-range>} [...,{<mod-num> | <mod-swport-range>}] {ignore | use}
```

Table 241: set port frame-tags Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><mod-num></code></td>
<td>Specifies the number of the module where every switch port on that module has the ability to use or ignore frame tag.</td>
</tr>
<tr>
<td><code><mod-swport-range></code></td>
<td>Specifies a range of switch ports that are able to use or ignore frame tags.</td>
</tr>
<tr>
<td>`{ignore</td>
<td>use}`</td>
</tr>
</tbody>
</table>
Sample Output

The following example sets the second switch port on the module in slot 3 and switch ports 7 through 11 on the module in slot 5 to use frame tags.

(configure)# set port frame-tags 3/2,5/7-11 use
Port frame-tags set: 3/2,5/7,5/8,5/9,5/10,5/11

Systems

set port huntgroup

Command Mode

Global Configuration.

Description

Sets or clears the hunt group assignment for a specified switch port.

Syntax

| To Configure: | set port huntgroup {<mod-num> | <mod-swport-range>} [...,{<mod-num> | <mod-swport-range>}] <huntgroup-name> |
|---------------|--|
| To Clear: | clear port huntgroup {<mod-num> | <mod-swport-range>} [...,{<mod-num> | <mod-swport-range>}] |

Table 242: set port huntgroup Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module in chassis, which, if specified alone, sets or clears the huntgroup assignment of every switch port on the module.</td>
</tr>
<tr>
<td><mod-swport-range></td>
<td>Specifies a switch port or a range of switch ports whose hunt group assignments are set or cleared.</td>
</tr>
<tr>
<td><huntgroup-name></td>
<td>Specifies the name of a defined huntgroup.</td>
</tr>
</tbody>
</table>
Sample Output

The following example sets the hunt group assignment of switch port 1 on the module in slot 5 to hunt group named \textit{sales}.

\begin{verbatim}
(configure)# set port huntgroup 5/1 huntgroup_sales
Port huntgroup set: 5/1.
\end{verbatim}

The following example clears the hunt group assignments for all switch ports on the module in slot 3.

\begin{verbatim}
(configure)# clear port huntgroup 3
Port huntgroup cleared: 3/1,3/2.
\end{verbatim}

Systems

\textbf{set port internal-error-shutdown}

\textbf{Command Mode}

Global Configuration.

\textbf{Description}

Sets switch ports to shutdown if their rate of internal errors exceeds the threshold setting. To set the threshold, use the \texttt{set-internal-error-threshold} command. For information on this and other IEDR commands, see \textit{Chapter 18: NEDR and IEDR, “NEDR and IEDR.”}

\textbf{Syntax}

\begin{tabular}{|c|l|}
\hline
\textbf{To Enable:} & set port internal-error-shutdown \{<mod-num>|<mod-swport-spec>|all-ports\} enable \\
\hline
\textbf{To Disable:} & set port internal-error-shutdown \{<mod-num>|<mod-swport-spec>|all-ports\} disable \\
\hline
\end{tabular}
set port intrusion-trap

Command Mode

Global Configuration.

Description

Enables or disables the switch port intrusion trap.

Syntax

| To Enable: | set port intrusion-trap {<mod-num> | <mod-swport-range>} [...,{<mod-num> | <mod-swport-range>} enable |
|--------------------|--|
| To Disable: | set port intrusion-trap {<mod-num> | <mod-swport-range>} disable |
Sample Output

The following example enables the switch port intrusion trap on module in slot 3.

```
(configure)# set port intrusion-trap 3
```

Systems

set port intrusion-trap-timer

Command Mode

Global Configuration.

Description

Sets the time interval at which intrusion traps are generated. The default setting for the intrusion trap timer is 1800 seconds (30 minutes). The valid range for the timer is 60 to 1800 seconds.

Syntax

```
set port intrusion-trap-timer {<mod-num> | <mod-swport-range>}
[...{<mod-num> | <mod-swport-range>}] <intrusion-trap-timer-value>
```

Table 245: set port intrusion-trap-timer Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module.</td>
</tr>
</tbody>
</table>
set port known-mode

Table 245: set port intrusion-trap-timer Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><mod-swport-range></code></td>
<td>Specifies a range of switch ports.</td>
</tr>
<tr>
<td><code><intrusion-trap-timer-value></code></td>
<td>Time interval at which intrusion traps are generated. The default setting for the intrusion trap timer is 1800 seconds (30 minutes). The valid range for the timer is 60 to 1800 seconds.</td>
</tr>
</tbody>
</table>

Systems

set port known-mode

Command Mode
Global Configuration.

Description
Enables or disables known mode for the specified switch port or ports.

Syntax

<table>
<thead>
<tr>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Enable:</td>
</tr>
</tbody>
</table>
| set port known-mode `<mod-num> | `<mod-swport-range>`\[
| | [..., `<mod-num> | `<mod-swport-range>`]] enable |
| **To Disable:** |
| set port known-mode `<mod-num> | `<mod-swport-range>`\[
| | [..., `<mod-num> | `<mod-swport-range>`]] disable |
Table 246: set port known-mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module where the known mode of every switch port is enabled or disabled.</td>
</tr>
<tr>
<td><mod-swport-range></td>
<td>Specifies a range of switch ports whose known mode is to be enabled or disabled.</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables known mode for the second switch port on the module in slot 3 and switch ports 7 through 11 on the module in slot 5.

(configure)# set port known-mode 3/2,5/7-11 enable
Port known-mode set: 3/2,5/7,5/8,5/9,5/10,5/11

Systems

set port mirror

Command Mode

Global Configuration.

Description

Set up or remove a port mirror on a switch in Fabric mode 1.

Syntax

| To Configure: | set port mirror <mod-port-range> source-port <mod-port-range> mirror-port <mod-port-spec> sampling {always | disable | periodic} [max-packets-sec <max-packets-sec-value>] [piggyback-port <mod-port-spec>] |
|------------------------|---|
| To Clear: | clear port mirror <mod-port-range> |
Table 247: set port mirror Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-port-range></td>
<td>Specifies a mirror port range. The first mod-port-range in the command string is the port mirror rule identifier. It should be the physical port range for the rules associated fabric port. The source-port mod-port-range is the single port or the complete physical port range for the fabric port under investigation.</td>
</tr>
<tr>
<td><mod-port-spec></td>
<td>Specifies a particular port.</td>
</tr>
<tr>
<td>mirror-port</td>
<td>Port from which you want to send the traffic. This port can be on another module in the switch.</td>
</tr>
<tr>
<td>piggyback-port</td>
<td>The port that is used for bidirectional port mirroring. The specified port is unavailable for other uses.</td>
</tr>
<tr>
<td></td>
<td>Note: Eighty-series modules do not support piggyback ports.</td>
</tr>
<tr>
<td>sampling</td>
<td>Specifies how source port traffic is to be sampled (always, disabled or periodic based on max-packets-sec).</td>
</tr>
<tr>
<td>max-packets-sec</td>
<td>The maximum number of packets per second that are served by the mirror port. Only used when sampling is set to periodic. Valid values are 0, and 52 to 1,000,000.</td>
</tr>
<tr>
<td></td>
<td>Note: To mirror inbound traffic only, select a source port and a mirror port, not a piggyback port.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets a port mirror sampling rule for a single source port that has 2 fabric ports.

(configure)# set port mirror 4/1-10 source-port 4/2 mirror-port 4/3 sampling always piggyback-port 4/4

Port mirroring rule configured.

Systems

set port mirror Fabric_mode2

Command Mode

Global Configuration.

Description

Set up or remove a port mirror on a switch in Fabric mode 2.

Syntax

| To Configure: | set port mirror Fabric_mode2 source-port `<mod-port-range>` mirror-port `<mod-port-spec>` channel `<channel>` direction {tx | rx | both | sa | da} sampling {always | disable | periodic} [sa `<MAC-address>`] [da `<MAC-address>`] [max-packets-sec `<max-packets-sec-value>`] |
|---------------|--|
| To Clear: | clear port mirror Fabric_mode2 channel `<channel>` |

Table 248: set port mirror Fabric_mode2 Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><mod-port-range></code></td>
<td>Either the single port or the range of ports that you want to mirror. See Table 249 for the specific port ranges that you can mirror.</td>
</tr>
</tbody>
</table>
| `<mod-port-spec>` | The port to which you want to mirror traffic. Both the source port and mirror port must either:
 ● Be on the same vlan and have the same vlan binding
 or
 ● Have vlan binding set to **bind to all**
Note: Avaya recommends that you mirror traffic to a port of the same speed or faster than the source port. |
| `<channel>` | The mirror channel that you want to use. Four channels are available. Enter a number from 1 to 4. |
Table 248: set port mirror Fabric_mode2 Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{tx</td>
<td>rx</td>
</tr>
<tr>
<td>{always</td>
<td>disable</td>
</tr>
<tr>
<td>[sa <MAC-address>]</td>
<td>The source MAC address that you want to mirror traffic for. Use this option only if you entered sa for the direction of traffic.</td>
</tr>
<tr>
<td>[da <MAC-address>]</td>
<td>The destination MAC address that you want to mirror traffic for. Use this option only if you entered da for the direction of traffic.</td>
</tr>
<tr>
<td><max-packets-sec-value></td>
<td>The maximum number of packets per second that you want the mirror port to receive. Use this option only if you entered Periodic for the sampling frequency.</td>
</tr>
</tbody>
</table>
Table 249: Port Ranges for Fabric Mode 2 Port Mirroring

<table>
<thead>
<tr>
<th>Module</th>
<th>Port ranges that you can mirror</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-port gigabit modules</td>
<td>- 1–2</td>
</tr>
<tr>
<td></td>
<td>- 3–4</td>
</tr>
<tr>
<td></td>
<td>- Any single port</td>
</tr>
<tr>
<td></td>
<td>You can mirror any four single ports simultaneously (one port per channel). However you cannot mirror a port range and a single port within that range simultaneously.</td>
</tr>
<tr>
<td></td>
<td>Example: You can mirror port 1 on channel 1, port 2 on channel 2, and port 3 on channel 3 simultaneously. However, you cannot mirror ports 1 through 2 on channel 1 and port 2 on channel 2 simultaneously.</td>
</tr>
<tr>
<td>8-port gigabit modules</td>
<td>- 1–4</td>
</tr>
<tr>
<td></td>
<td>- 5–8</td>
</tr>
<tr>
<td></td>
<td>- Any single port</td>
</tr>
<tr>
<td></td>
<td>You can mirror any four single ports simultaneously (one port per channel). However you cannot mirror a port range and a single port within that range simultaneously.</td>
</tr>
<tr>
<td></td>
<td>Example: You can mirror port 1 on channel 1, port 2 on channel 2, and port 3 on channel 3 simultaneously. However, you cannot mirror ports 1 through 4 on channel 1 and port 2 on channel 2 simultaneously.</td>
</tr>
<tr>
<td>24-port 10/100 modules</td>
<td>- 1–12 — any 1 port or the entire range.</td>
</tr>
<tr>
<td></td>
<td>- 13–24 — any 1 port or the entire range.</td>
</tr>
<tr>
<td></td>
<td>If you mirror a single port, you can mirror only 1 port per range at a time.</td>
</tr>
<tr>
<td></td>
<td>Example: You can mirror port 1 on channel 1 and port 13 on channel 2 simultaneously. However, you cannot mirror port 1 on channel 1 and port 2 on channel 2 simultaneously.</td>
</tr>
<tr>
<td>48-port 10/100 modules</td>
<td>- 1–12 — any 1 port or the entire range.</td>
</tr>
<tr>
<td></td>
<td>- 13–24 — any 1 port or the entire range.</td>
</tr>
<tr>
<td></td>
<td>- 25–36 — any 1 port or the entire range.</td>
</tr>
<tr>
<td></td>
<td>- 36–48 — any 1 port or the entire range.</td>
</tr>
<tr>
<td></td>
<td>If you mirror a single port, you can mirror only 1 port per range at a time.</td>
</tr>
<tr>
<td></td>
<td>Example: You can mirror port 1 on channel 1 and port 13 on channel 2 simultaneously. However, you cannot mirror port 1 on channel 1 and port 2 on channel 2 simultaneously.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
set port name

Command Mode

Global Configuration.

Description

Sets the name for a port. Omitting the `<port-name>` variable clears the port name.

Syntax

set port name `<mod-port-spec> [<port-name>]`

Table 250: set port name Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><mod-port-spec></code></td>
<td>Specifies a particular port by its module and port numbers.</td>
</tr>
<tr>
<td><code><port-name></code></td>
<td>Specifies the name to be assigned to the port. If a port name is not</td>
</tr>
<tr>
<td></td>
<td>specified, the name of the port is cleared.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the name of the second port on the module in slot 3.

```
(configure)# set port name 3/2 "Really fast port"
Port name set: 3/2
```

Systems

set port network-error-detection

Command Mode
 Global Configuration.

Description
 Configure network error detection and recovery (NEDR) for a port or ports.

Syntax

| To Enable: | set port network-error-detection <mod-port-range> [action {notify | disable-port}] [rising-threshold <rising-threshold-value>] [falling-threshold <falling-threshold-value>] [interval <interval seconds>] |
|---------------------|--|
| To Disable: | network-error-detection {<mod-port-range> | all} action off |

Table 251: set port network-error-detection Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| <mod-port-range> | The slot number of the module, and, either port number, or range of port numbers. Enter the port ranges in the format Px-Py. For example:
 ● To specify port 1 on the module in slot 3, enter 3/1.
 ● To specify ports 1 through 5 on the module in slot 3, enter 3/1-5. |
| all | Disables NEDR on all ports on all modules in the switch. all can be used only with off. |
| action {notify | disable-port | off} | Action that NEDR performs when the rate of errors exceeds the threshold. The options are:
 ● notify - Logs the event in the event log
 ● disable-port - Disables the port and logs the event in the event log.

 Note:
 A port will be disabled if the rate of errors equals or exceeds the threshold. Make sure a redundant protocol is configured.
 ● off - Disables NEDR on the port or ports that you specify. The default setting is notify. |
Table 251: `set port network-error-detection` Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| `<rising-threshold value>` | The rising threshold.
| | The number of CRC errors that triggers NEDR to log an event in the event log or disable the port. The default setting is 100 (minimum is 1; maximum is 65535). |
| | **Note:** If you set the rising threshold value and the falling threshold value close together, events may be logged more often if the Notify option is selected. |
| `<falling-threshold value>` | The falling threshold.
| | After exceeding the rising threshold, NEDR does not log another event in the event log until the rate of CRC errors falls below the falling threshold and then exceeds the rising threshold again. The default setting is half the rising threshold value (minimum is 0; maximum is 65535). |
| | **Note:** If you set the rising threshold value and the falling threshold value close together, events may be logged more often if the Notify option is selected. |
| `<interval-seconds>` | How often NEDR checks the number of errors occurring against the thresholds. Enter a number of seconds. The default setting is 2 seconds (minimum is 1; maximum is 65535). |

Sample Output

The following command sets NEDR on ports 1-5 on module 3.

```
(configure)# set port network-error-detection 3/1-5
```

Systems

set port pace-priority-mode

Command Mode

Global Configuration.

Description

Enables or disables pace priority mode on a specified port or ports.

Syntax

| To Enable: | set port pace-priority-mode {<mod-num> | <mod-port-range>} [...,{<mod-num> | <mod-port-range>}] enable |
| To Disable: | set port pace-priority-mode {<mod-num> | <mod-port-range>} [...,{<mod-num> | <mod-port-range>}] disable |

Table 252: set port pace-priority-mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies a module number where pace priority mode is enabled or disabled for every port on the module.</td>
</tr>
<tr>
<td><mod-port-range></td>
<td>Specifies a range of ports where pace priority mode is enabled or disabled.</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables the pace priority mode on all the ports on the module in slot 3 and ports 7 through 11 on the module in slot 5.

```
(configure)# set port pace-priority-mode 3,5/7-11 enable
```

Port pace priority enable set: 3/1,3/2,5/7,5/8, 5/9,5/10,5/11

Systems

set port point-to-point admin status

Command Mode

Global Configuration.

Description

Specifies whether a port is connected to a shared LAN segment or a point-to-point LAN segment. A point-to-point LAN segment is connected to exactly one other bridge (normally with a direct cable between them). Only point-to-point links and edge ports can rapidly transition to forwarding state.

If you set this field to Auto, the switch automatically detects whether the port is connected to a shared link or a point-to-point link. Ports operating in half duplex are set to non-point-to-point, and ports operating in full duplex are set to point-to-point. You can, however, manually set the type of link.

Syntax

```
set port point-to-point admin status {
  <mod-num> | <mod-swport-range>
}[...{<mod-num> | <mod-swport-range>}] {force-true | force-false | auto}
```

Table 253: set port point-to-point admin status Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-swport-range></td>
<td>The module and port or port range.</td>
</tr>
<tr>
<td>force-true</td>
<td>Defines the port as connected to a point-to-point link.</td>
</tr>
<tr>
<td>force-false</td>
<td>Defines the port as connected to a shared LAN segment.</td>
</tr>
<tr>
<td>auto</td>
<td>Automatically detects whether the port is connected to a shared link or a point-to-point link. Ports operating in half duplex are set to non-point-to-point, and ports operating in full duplex are set to point-to-point. If you select this setting, the OperPointToPoint field of the show port command displays the link type that is detected.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
set port rate-limit-burst-size

Command Mode

Global Configuration.

Description

Sets the rate limit burst size for fast ethernet ports.

Note:

Setting this parameter on any M5548-100TX port sets all physical ports on the module to the same value.

Syntax

set port rate-limit-burst-size {<mod-num> | <mod-port-range>} [...,{<mod-num> | <mod-port-range>] {1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048}

Table 254: set port rate-limit-burst-size Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module where the rate limit burst size for each fast ethernet port on the module is to be set.</td>
</tr>
<tr>
<td><mod-port-range></td>
<td>Specifies the range of fast ethernet where the rate limit burst size is to be set.</td>
</tr>
<tr>
<td>{1</td>
<td>2</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the rate limit burst size for the second fast ethernet port and ports 7-11 on the module in slot 5 to 512.

(configure)# set port rate-limit-burst-size 5/2,5/7-11 512

Port rate limit burst size set: 5/2,5/7,5/8,5/9,5/10,5/11

Systems

set port rate-limit-mode

Command Mode

Global Configuration.

Description

Sets the rate limit mode for fast ethernet ports.

Syntax

set port rate-limit-mode {<mod-num> | <mod-port-range>}[...,{<mod-num> | <mod-port-range>}]
{disable | enable | enable-include-known-multicasts}

Table 255: set port rate-limit-mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module where the rate limit mode for fast</td>
</tr>
<tr>
<td></td>
<td>ethernet ports are to be set.</td>
</tr>
<tr>
<td><mod-port-range></td>
<td>Specifies a range of fast ethernet ports whose rate limit mode is to be</td>
</tr>
<tr>
<td></td>
<td>set.</td>
</tr>
<tr>
<td>{disable</td>
<td>enable</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the rate limit mode for the second fast ethernet port and ports 7 through 11 on the module in slot 5.

 (configure)# set port rate-limit-mode 5/2,5/7-11 enable
 Port rate limit mode set: 5/2,5/7,5/8,5/9,5/10,5/11

Systems

set port rate-limit-rate

Command Mode
Global Configuration.

Description
Sets the rate limit rate for fast ethernet ports.

Syntax
set port rate-limit-rate {<mod-num> | <mod-port-range>}[...,{<mod-num> | <mod-port-range>}] {1% | 2% | 5% | 10% | 20% | 40% | 80%}

Table 256: set port rate-limit-rate Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module where the rate limit rate for each fast</td>
</tr>
<tr>
<td></td>
<td>ethernet port on the module is to be set.</td>
</tr>
<tr>
<td><mod-port-range></td>
<td>Specifies a port or a range of fast ethernet ports whose rate limit rate is</td>
</tr>
<tr>
<td></td>
<td>to be set.</td>
</tr>
<tr>
<td>{1%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Sample Output
The following example sets the rate limit rate for the second fast ethernet port and ports 7 through 11 on the module in slot 5 to 80%.

(configure)# set port rate-limit-rate 5/2,5/7-11 80%
Port rate limit rate set: 5/2,5/7,5/8,5/9,5/10,5/11

Systems
set port-redundancy

Command Mode

Global Configuration.

Description

Enables or disables all existing redundancy pairs.

Syntax

set port-redundancy {enable | disable}

Systems

P580 and P882.

set port-redundancy name

Command Mode

Global Configuration.

Description

Creates or deletes a port redundancy pair. After creating a redundancy pair, use the set port-redundancy command to enable port redundancy globally for all configured pairs.

Note:
You must globally disable Spanning Tree and Rapid Spanning Tree before you can create a port redundancy pair.

Syntax

<table>
<thead>
<tr>
<th>To Create:</th>
<th>set port-redundancy name <redundant-name> <primary-port> <secondary-port></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Delete:</td>
<td>no port-redundancy <redundant-name></td>
</tr>
</tbody>
</table>
Command Reference Guide for the Avaya P580 and P882 Multiservice Switches, v6.2

set port remote-fault-detect

Command Mode

Global Configuration.

Description

Enables or disables remote fault detections for gigabit ports. Remote fault detection makes it possible for a Gigabit port at one end of a link to signal status to the other end of the link, even if it does not have an operational receive link.

Note:

Auto-negotiation and remote fault detection can not be enabled at the same time. Auto-negotiation must be disabled to enable remote fault detection. When auto-negotiation is enabled, remote fault detection is automatically disabled.

Syntax

| To Enable: | set port remote-fault-detect {<mod-num> | <mod-port-range>} [...,{<mod-num> | <mod-port-range>}] enable |
|--|--|
| To Disable: | set port remote-fault-detect {<mod-num> | <mod-port-range>} [...,{<mod-num> | <mod-port-range>}] disable |
Table 258: set port remote-fault-detect Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module where the ability to detect remote link</td>
</tr>
<tr>
<td></td>
<td>errors for each gigabit port on the module is to be set.</td>
</tr>
<tr>
<td><mod-port-range></td>
<td>Specifies a port or a range of gigabit ports whose ability to detect</td>
</tr>
<tr>
<td></td>
<td>remote link errors are enabled or disabled.</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables remote fault detection in gigabit ports 1 and 2 on the module in slot 3 of an Avaya Multiservice switch.

```plaintext
(configure)# set port remote-fault-detect 3/1,3/2 enable
Port remote fault detection enable set: 3/1,3/2
```

Systems

set port spanning-tree-mode

Command Mode

Global Configuration.

Description

Enables or disables spanning tree mode for specified switch ports.

Syntax

| To Enable: | set port spanning-tree-mode {<mod-num> | <mod-swport-range>} |
|---|----------------------|
| | [...,{<mod-num> | <mod-swport-range>}] enable |

| To Disable: | set port spanning-tree-mode {<mod-num> | <mod-swport-range>} |
| | [...,{<mod-num> | <mod-swport-range>}] disable |
Table 259: set port spanning-tree-mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><mod-num></code></td>
<td>Specifies the number of the module where the spanning tree mode is to be enabled or disabled for every switch port on the module.</td>
</tr>
<tr>
<td><code><mod-swport-range></code></td>
<td>Specifies a range of switch ports whose spanning tree mode is to be enabled or disabled.</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables the spanning tree mode for the second switch port on the module in slot 3 and switch port 7 through 11 on the module in slot 5 of an Avaya Multiservice Switch.

```
(set) # set port spanning-tree-mode 3/2,5/7-11 enable
Port spanning-tree-mode set: 3/2,5/7,5/8,5/9, 5/10,5/11
```

Systems

set port speed

Command Mode

Global Configuration.

Description

Sets the port speed.

Syntax

```
set port speed {<mod-num> | <mod-port-range>} [...{<mod-num> | <mod-port-range}>]
{10Mbps | 100Mbps | 1Gbps}
```
Sample Output

The following example sets the speed for fast ethernet ports 7 through 11 on the module in slot 5 of an Avaya Multiservice switch to 100Mbps.

```
(configure)# set port speed 5/7-11 100Mbps
Port speed set: 5/7,5/8,5/9,5/10,5/11
```

Systems

set port trunking-format

Command Mode

Global Configuration.

Description

Sets the trunking format for switch ports. The default setting is clear.

Syntax

```
set port trunking-format {<mod-num> | <mod-swport-range>}[...,}{<mod-num> | <mod-swport-range>]} {clear | ieee-802.1Q | multi-layer | 3com}
```
The following example sets the trunking option for the second switch port on the module in slot 3 and switch ports 7 through 11 on the module in slot 5 of an Avaya Multiservice switch to the IEEE standard.

```bash
(configure)# set port trunking-format 3/2,5/7-11 ieee-802.1Q
```

Port trunking-format set: 3/2,5/7,5/8,5/9,5,10,5/11

Sample Output

Table 261: set port trunking-format Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><mod-num></code></td>
<td>Specifies the number of the module where the trunking mode is to be set for each switch port on the module.</td>
</tr>
<tr>
<td><code><mod-swport-range></code></td>
<td>Specifies a range of switch ports whose trunking mode is to be set.</td>
</tr>
<tr>
<td>clear</td>
<td>Specifies the trunking option, which does no VLAN tagging.</td>
</tr>
<tr>
<td>ieee-802.1Q</td>
<td>Specifies the IEEE 802.1Q ethernet VLAN tagging trunking option.</td>
</tr>
<tr>
<td>multi-layer</td>
<td>Specifies a widely available proprietary VLAN tagging trunking option.</td>
</tr>
<tr>
<td>3com</td>
<td>Specifies the 3Com VLAN tagging trunking option.</td>
</tr>
</tbody>
</table>

Systems

set port vlan

Command Mode

Global Configuration.

Description

Sets the VLAN for a specified switch port or all switch ports on a specified module.

Syntax

set port vlan {<mod-num> | <mod-swport-range>}[...,{<mod-num> | <mod-swport-range>}]<vlan-id>

Table 262: set port vlan Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies a module number. If a module number is specified, the VLAN is set for all ports on the module.</td>
</tr>
<tr>
<td><mod-swport-range></td>
<td>Specifies a switch port or a range of switch ports where a VLAN is to be set.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>The ID of the VLAN.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets a vlan on a specific port.

(configure)# set port vlan 3/1 1
Port VLAN set: 3/1

Systems

set port vlan-binding-method

Command Mode
Global Configuration.

Description
Sets VLAN binding method for a specified switch port or all switch ports on a specified module.

Syntax
set port vlan-binding-method {<mod-num> | <mod-swport-range>}
[...{<mod-num> | <mod-swport-range>}] {bind-to-all | bind-to-received | static}

Table 263: set port vlan-binding-method Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies a module number. If a module number is specified, the VLAN binding method is set for all ports on the module.</td>
</tr>
<tr>
<td><mod-swport-range></td>
<td>Specifies a switch port or a range of switch ports on which to set the VLAN binding method.</td>
</tr>
<tr>
<td>bind-to-all</td>
<td>Binds the port to all VLANs known to the switch.</td>
</tr>
<tr>
<td>bind-to-received</td>
<td>Binds this port to any VLAN it receives traffic from.</td>
</tr>
<tr>
<td>static</td>
<td>Assigns VLAN membership manually, using the VLAN switch ports.</td>
</tr>
</tbody>
</table>

Sample Output
The following example sets the VLAN binding to bind-to-all.

```
(configure)# set port vlan-binding-method 3/1 bind-to-all
Port vlan-binding-method set: 3/1
```

Systems
set port vtp-snooping

Command Mode
Global Configuration.

Description
Disables or enables vtp-snooping for specified switch ports. The default state is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
</tr>
</thead>
<tbody>
<tr>
<td>set port vtp-snooping {<mod-num></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>To Disable:</th>
</tr>
</thead>
<tbody>
<tr>
<td>set port vtp-snooping {<mod-num></td>
</tr>
</tbody>
</table>

Table 264: set port vtp-snooping Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module.</td>
</tr>
<tr>
<td><mod-swport-range></td>
<td>Specifies a particular port or a range of ports on a module.</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables the vtp-snooping option for the second switch port on the module in slot 3 and switch ports 7 through 11 on the module in slot 5.

(configure)# set port vtp-snooping 3/2,5/7-11 enable
Port vtp-snooping set: 3/2,5/7,5/8,5/9,5/10,5/11

Systems
show port

Command Mode
User.

Description
Displays the configuration of specified switch ports. By default, the configuration of all switch ports is displayed.

Syntax

```
show port [{<mod-num> | <mod-swport-range>}[...,{<mod-num> | <mod-swport-range>}]]
```

Table 265: show port Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><mod-num></code></td>
<td>Specifies the number of the module where the configuration of every switch port is to be displayed.</td>
</tr>
<tr>
<td><code><mod-swport-range></code></td>
<td>Specifies a range of ports on a module whose configuration is to be displayed.</td>
</tr>
</tbody>
</table>

Sample Output

The following example displays the configuration information of port 3 (partial).

```
> show port 3
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Port VLAN (ID:Name)</th>
<th>Trunk Mode</th>
<th>VLAN Binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>3/1</td>
<td>1:Default</td>
<td>clear</td>
<td>static</td>
</tr>
<tr>
<td>3/2</td>
<td>1:Default</td>
<td>clear</td>
<td>static</td>
</tr>
</tbody>
</table>

Systems

show port counters

Command Mode

User.

Description

Displays the port statistics on a module. If no `<mod-num>` or `<mod-swport-spec>` is specified, then the port statistics for all switch ports on all modules are displayed. If only a `<mod-num>` is specified, then port statistics for all switch ports on the specified module are displayed.

Syntax

```
show port counters [{<mod-num> | <mod-swport-spec>}]  
```

Table 266: show port counters Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><mod-num></code></td>
<td>Specifies the number of the module in the chassis for which port statistics are to be displayed.</td>
</tr>
<tr>
<td><code><mod-swport-spec></code></td>
<td>Specifies a particular switch port whose specific port statistics are to be displayed.</td>
</tr>
</tbody>
</table>
Sample Output

The following example displays the ethernet interface statistics for port 1 of module 3.

> show port counters 3/1

<table>
<thead>
<tr>
<th>Port 3/1</th>
<th>Cleared: 02-Jan-18 14:01:31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive Utilization:</td>
<td>0%</td>
</tr>
<tr>
<td>Receive Bytes:</td>
<td>0</td>
</tr>
<tr>
<td>Receive Unicast Packets:</td>
<td>0</td>
</tr>
<tr>
<td>Receive Multicast Packets:</td>
<td>0</td>
</tr>
<tr>
<td>Receive Discards:</td>
<td>0</td>
</tr>
<tr>
<td>Receive Errors</td>
<td>54</td>
</tr>
<tr>
<td>Transmit Utilization:</td>
<td>0%</td>
</tr>
<tr>
<td>Transmit Bytes</td>
<td>463,744</td>
</tr>
<tr>
<td>Transmit Unicast Packets</td>
<td>0</td>
</tr>
</tbody>
</table>

 Systems

show port mirror

Command Mode
User.

Description
Displays the port mirroring configuration for a specific source port or range or all source ports or ranges on a switch in Fabric mode 1. If no `<mod-num>` or `<mod-port-range>` is specified, then the port mirroring configuration of all switch ports is displayed. If a `<mod-num>` is specified, then all port mirroring sampling rules are displayed for the module.

Syntax

```
show port mirror [{<mod-num> | <mod-port-range>}]  
```
Sample Output

The following example displays the port mirroring configuration information on the switch.

> show port mirror

<table>
<thead>
<tr>
<th>Configure Source</th>
<th>Source Port</th>
<th>Mirror Port</th>
<th>Piggy Port</th>
<th>Sampler Type</th>
<th>Max Packets per Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/1-10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4/11-20</td>
<td>4/11</td>
<td>4/12</td>
<td>4/13</td>
<td>always</td>
<td>-</td>
</tr>
<tr>
<td>5/1</td>
<td>5/1</td>
<td>4/4</td>
<td>-</td>
<td>periodic</td>
<td>200</td>
</tr>
</tbody>
</table>

Systems

show port mirror Fabric_mode2

Command Mode
User.

Description
Displays the source ports, mirror port, direction being mirrored, MAC address filter, sampler type, and maximum packet per second for all port mirrors that are currently set up.

Syntax
show port mirror Fabric_mode2

Sample Output

The following example displays the port mirroring information on the Avaya Multiservice switch (partial).

> show port mirror Fabric_mode2

<table>
<thead>
<tr>
<th>Channel</th>
<th>Source Port</th>
<th>Mirror Port</th>
<th>Direction/Filter</th>
<th>Sampler Type</th>
<th>Max Packets Per Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Systems
P580 and P882.
show port physical

Command Mode
User.

Description
Displays the configuration of the specified physical port or ports.

Syntax
show port physical [(<mod-num> | <mod-port-range>) [...,(<mod-num> | <mod-port-range>)[]]]

Table 268: show port physical Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module where the configuration of every switch port is to be displayed.</td>
</tr>
<tr>
<td><mod-port-range></td>
<td>Specifies a range of ports on a module whose configuration is to be displayed.</td>
</tr>
</tbody>
</table>

Sample Output

The following example displays the physical port configuration for the module in slot 6.
> show port physical 6

<table>
<thead>
<tr>
<th>Port</th>
<th>Name</th>
<th>Category</th>
<th>Pace Priority</th>
<th>Mode</th>
<th>Remote Fault</th>
<th>Detect</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/1</td>
<td>Port 6/1</td>
<td>user-port</td>
<td>disable</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6/2</td>
<td>Port 6/2</td>
<td>user-port</td>
<td>disable</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6/3</td>
<td>Port 6/3</td>
<td>user-port</td>
<td>disable</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6/4</td>
<td>Port 6/4</td>
<td>user-port</td>
<td>disable</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6/5</td>
<td>Port 6/5</td>
<td>user-port</td>
<td>disable</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Systems
show port status

Command Mode

User.

Description

Displays port status information. The status information of all ports is displayed by default.

Syntax

show port status [{<mod-num> | <mod-port-range>}[...,{<mod-num> | <mod-port-range>}]]

Table 269: show port status Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>Specifies the number of the module where the status of every port on that module is displayed.</td>
</tr>
<tr>
<td><mod-port-range></td>
<td>Specifies a range of ports whose status information is to be displayed.</td>
</tr>
</tbody>
</table>

Sample Output

The following example displays the status of the ports on the modules in the switch.

> show port status

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Mode</th>
<th>Status</th>
<th>Auto-Neg</th>
<th>Speed</th>
<th>Duplex</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/1</td>
<td>Gigabit</td>
<td>Enabled</td>
<td>No Link</td>
<td>Disabled</td>
<td>1 Gb/s</td>
<td>Full Duplex</td>
</tr>
<tr>
<td>4/1</td>
<td>Gigabit</td>
<td>Enabled</td>
<td>No Link</td>
<td>Disabled</td>
<td>1 Gb/s</td>
<td>Full Duplex</td>
</tr>
<tr>
<td>4/2</td>
<td>Gigabit</td>
<td>Enabled</td>
<td>No Link</td>
<td>Disabled</td>
<td>1 Gb/s</td>
<td>Full Duplex</td>
</tr>
<tr>
<td>6/1</td>
<td>10/100</td>
<td>Enabled</td>
<td>No Link</td>
<td>Enabled</td>
<td>Auto-Neg</td>
<td>Auto-Neg</td>
</tr>
<tr>
<td>6/8</td>
<td>10/100</td>
<td>Enabled</td>
<td>No Link</td>
<td>Enabled</td>
<td>Auto-Neg</td>
<td>Auto-Neg</td>
</tr>
<tr>
<td>6/17</td>
<td>10/100</td>
<td>Enabled</td>
<td>No Link</td>
<td>Enabled</td>
<td>Auto-Neg</td>
<td>Auto-Neg</td>
</tr>
</tbody>
</table>

Systems

show port redundancy

Command Mode

User.

Description

Displays the global port redundancy setting, enabled or disabled, and the configured redundancy pairs.

Syntax

show port-redundancy [<redundant-name>]

Table 270: show port-redundancy Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><redundant-name></td>
<td>The redundancy pair for which you want to view the configuration.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
Chapter 22: Power Cool RAM

Overview

This chapter describes the following commands:

- show system fans
- show system power
- show system ram

show system fans

Command Mode

User.

Description

Displays the status of the cooling system.

Syntax

show system fans

Sample Output

The following example lists the status of the switch fans.

> show system fans
FanStatus
Module Fan Pair 1 Operational
Module Fan Pair 2 Operational
Fabric Fan 1 Operational
Fabric Fan 2 Operational

Systems

show system power

Command Mode

User.

Description

Displays the status of the power supplies installed in the chassis.

Syntax

show system power

Sample Output

The following example displays the status of the power supplies installed in the chassis.

```
> show system power
Power Supply Status Type
  1 Present Power 1 SP627
  2 Present Power 1 SP627
  3 Present Power 1 SP627

Total System Power 600 Watts
Current Power Available 355 Watts
```

Systems

show system ram

Command Mode

User.

Description

Displays the status of Random Access Memory (RAM).

Syntax

show system ram

Sample Output

The following example displays the RAM status.

> show system ram
Total RAM 64.00 MBytes
Operational Image 5.80 MBytes

Dynamically Allocated Memory
Used 4.89 MBytes
Max Used 5.90 MBytes
Available 53.31 MBytes

Allocation Failures 0

System RAM Trap
High Water Mark 57.60 MBytes

Systems

Chapter 23: 80-Series QoS

Overview

This chapter describes the following commands:

- access-list
- reset port queue counters
- set aft entry
- set diffserv plp
- set diffserv priority
- set port default-priority
- set port ignore-tag-priority
- set port mask-diffserv
- set port police
- set port queue service cbq
- set port queue service cbwfq
- set port queue service strict-priority
- set port queue service wfq
- set port use-diffserv
- show diffserv table
- show port
- show port police
- show port queue buffer
- show port queue counters
- show port queue service

⚠️ Important:
The QoS features are supported only on 80-series modules. 50-Series modules do not support these features.
access-list

Command Mode

Global Configuration.

Description

Creates a rule in an access control list (ACL). The rule that you set is applied on all of the ports on the switch.

Note:
You must enable the ACL on which you want to set a rule. Only one ACL can be enabled at a time.
The no command deletes an ACL rule or ACL.

Syntax

To Create a Standard ACL Rule:	access-list <access-list-name> <access-list-index> {permit [{use-priority <priority>	use-diffserv [mask]	remark-diffserv <dscp> [mask]	use-l2}]	deny	fwd1	fwd2	fwd3	fwd4	fwd5	fwd6	fwd7	fwd8} {<source-ip-addr> <source-wildcard>	any	host <source-ip-addr>}								
To Create an Extended ACL Rule:	access-list <access-list-name> <access-list-index> {permit [{use-priority <priority>	use-diffserv [mask]	remark-diffserv <dscp> [mask]	use-l2}]	deny	fwd1	fwd2	fwd3	fwd4	fwd5	fwd6	fwd7	fwd8} {<protocol-id> {<source-ip-addr> <source-wildcard>	any	host <source-ip-addr>} [{lt <port>	eq <port>	gt <port>	range <port> <port>}]} {<dest-ip-addr> <dest-wildcard>	any	host <dest-ip-addr>} [[lt <port>	eq <port>	gt <port>	range <port> <port>]} [established]
To Remove an ACL Rule or ACL:	no access-list <access-list-name> [<access-list-index>]																						
Table 271: access-list Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><access-list-name></code></td>
<td>A unique name that identifies the access control list.</td>
</tr>
<tr>
<td><code><access-list-index></code></td>
<td>The unique rule number within the access list.</td>
</tr>
<tr>
<td><code>permit</code></td>
<td>Forwards the packet without changing its priority.</td>
</tr>
<tr>
<td><code>use-priority</code></td>
<td>Assigns the priority that you define in the following <code><priority></code> parameter to the packet.</td>
</tr>
<tr>
<td><code><priority></code></td>
<td>The priority that you want to assign to packets that match this ACL. Enter a number between 0 and 7.</td>
</tr>
<tr>
<td><code>use-diffserv</code></td>
<td>Classifies traffic by the DSCP in the packet.</td>
</tr>
<tr>
<td><code>[mask]</code></td>
<td>Masks the three least significant bits of the DSCP. If you mask the three least significant bits of the DSCP, the switch recognizes the remaining bits as the precedence field of the type of service (TOS) field and classifies the packets accordingly.</td>
</tr>
<tr>
<td><code>remark-diffserv</code></td>
<td>Replaces the DSCP in the packet with the DSCP that you enter for the following <code><dscp></code> parameter. The switch uses the DSCP that you enter for the <code><dscp></code> parameter to classify the packet.</td>
</tr>
<tr>
<td><code><dscp></code></td>
<td>The DSCP that you want to replace the DSCP of the packet.</td>
</tr>
<tr>
<td><code>use-l2</code></td>
<td>Classifies traffic by the layer 2 priority of the packet. If you enter <code>use-l2</code>, the switch ignores the ACL rule priority and DiffServ priority.</td>
</tr>
<tr>
<td><code>deny</code></td>
<td>Blocks the packet.</td>
</tr>
<tr>
<td>`fwd1</td>
<td>fwd2</td>
</tr>
<tr>
<td><code><protocol-id></code></td>
<td>The ID of the protocol that you want to assign a priority to. RFC791 defines the protocol IDs.</td>
</tr>
<tr>
<td><code><source-ip-addr></code></td>
<td>The source IP address of the subnet that you want to assign a priority to.</td>
</tr>
</tbody>
</table>
The inverse of a network mask. Enter a 32-bit number in four-part, dotted decimal format. Place ones in the bit positions that you want to mask.

This parameter specifies a range of IP address. For example, to specify all IP addresses in the 10.10.70 subnet, enter **10.10.70.0 0.0.0.255**.

any

A source of 0.0.0.0 and a source-wildcard of 255.255.255.255

host <source-ip-addr>

The source IP address that you want to assign a priority to.

```
[lt <port> | eq <port> | gt <port> | range <port>]
```

A source port or range of source ports that pass between two hosts or switches using the Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP).

Enter a number between 0 and 65,535.

For a complete list of well-known port numbers, see the following URL:

http://www.iana.org/assignments/port-numbers

<dest-ip-addr>

The destination IP address of the subnet that you want to assign a priority to.

<dest-wildcard>

The inverse of a network mask. Enter a 32-bit number in four-part, dotted decimal format. Place ones in the bit positions that you want to mask.

This parameter specifies a range of IP address. For example, to specify all IP addresses in the 10.10.70 subnet, enter **10.10.70.0 0.0.0.255**.

any

A destination of 0.0.0.0 and a destination-wildcard of 255.255.255.255

host <dest-ip-addr>

The destination IP address that you want to assign a priority to.

```
[lt <port> | eq <port> | gt <port> | range <port>]
```

A destination port or range of destination ports that pass data between two hosts or switches using the Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP).

Enter a number between 0 and 65,535.

For a complete list of well-known port numbers, see the following URL:

http://www.iana.org/assignments/port-numbers

[established]

Permits TCP connections to be established that match the rule.
Sample Output

The following table provides examples of standard ACL rules.

Table 272: Examples: Standard ACL Rules

<table>
<thead>
<tr>
<th>To...</th>
<th>Enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Use the DSCP in the packet to classify all traffic that has a source IP address in the 10.10.60 subnet.
 ● Mask the three least significant bits of the DSCP.</td>
<td>(configure)# access-list MyAccessList1 4 permit use-diffserv mask 10.10.60.0 0.0.0.255</td>
</tr>
<tr>
<td>Assign a priority of 7 to all traffic that has a source IP address in the 10.10.70 subnet.</td>
<td>(configure)# access-list MyAccessList1 5 permit use-priority 7 10.10.70.0 0.0.0.255</td>
</tr>
<tr>
<td>● Replace the existing DSCP with a DSCP of 5 for all traffic that has a source IP address in the 10.10.80 subnet.
 ● Mask the three least significant bits of the DSCP</td>
<td>(configure)# access-list MyAccessList1 6 permit remark-diffserv 5 mask 10.10.80.0 0.0.0.255</td>
</tr>
<tr>
<td>Use the layer 2 priority of the packet to classify all traffic that has a source address in the 11.11.11 subnet</td>
<td>(configure)# access-list MyAccessList1 7 permit use-l2 11.11.11.0 0.0.0.255</td>
</tr>
<tr>
<td>Use the DSCP in the packet to classify all traffic that has a source IP address of 199.93.239.168</td>
<td>(configure)# access-list MyAccessList1 8 permit use-diffserv host 199.93.239.168</td>
</tr>
<tr>
<td>● Use the DSCP in the packet to classify all traffic that has a source IP address of 3.3.3.3
 ● Mask the three least significant bits of the DSCP</td>
<td>(configure)# access-list MyAccessList1 9 permit use-diffserv mask host 3.3.3.3</td>
</tr>
<tr>
<td>Assign a priority of 2 to all traffic that has a source IP address of 1.1.1.1</td>
<td>(configure)# access-list MyAccessList1 10 permit use-priority 2 1.1.1.1</td>
</tr>
<tr>
<td>Block all traffic that has a source IP address of 10.1.0.55</td>
<td>(configure)# access-list MyAccessList1 11 deny 10.1.0.55</td>
</tr>
</tbody>
</table>
Sample Output

The following table provides examples of extended ACL rules.

Table 273: Examples: Extended ACL Rules

<table>
<thead>
<tr>
<th>To...</th>
<th>Enter...</th>
</tr>
</thead>
</table>
| Use the DSCP in the packet to classify all traffic that has a:
 ● Source IP address of 199.93.239.168
 ● Destination address in the 1.1.1 subnet | (configure)# access-list MyAccessList2
1 permit use-diffserv ip host 199.93.239.168 1.1.1.0 0.0.0.255 |
| Use the DSCP in the packet to classify all traffic that has a:
 ● Source IP address in the 3.0 subnet
 ● Destination address in the 5.0 subnet
 ● Mask the three least significant bits of the DSCP | (configure)# access-list MyAccessList2 2 permit use-diffserv mask ip 3.0.0.0 0.255.255.255 5.0.0.0 0.255.255.255 |
| Assign a priority of 2 to all TCP traffic that has a:
 ● Source IP address in the 1.1 subnet
 ● Source port that is greater than 24
 ● Destination IP address in the 6.6 subnet
 ● Destination port of 23 | (configure)# access-list MyAccessList2 3 permit use-priority 2 tcp 1.1.0.0 0.0.255.255 gt 24 6.6.0.0 0.0.255.255 eq 23 |
| Replace the existing DSCP of packets with a DSCP of 12 for all traffic that has a source IP address of 199.93.238.83.
 ● Mask the three least significant bits of the DSCP. | (configure)# access-list MyAccessList2 4 permit remark l2 mask ip host 199.93.238.83 any |
| Replace the existing DSCP of the packet with a DSCP of 24 for all ICMP traffic that has a:
 ● Source IP address of 2.2.2.2
 ● Destination IP address of 4.4.4.4 | (configure)# access-list MyAccessList2 5 permit remark 24 icmp host 2.2.2.2 host 4.4.4.4 |
| Assign a priority of 6 to all TCP traffic that has a:
 ● Source IP address in the 10.10.10 subnet
 ● Destination IP address in the 11.11.11 subnet
 ● Destination port of 1 | (configure)# access-list MyAccessList2 6 permit use-priority 6 tcp 10.10.10.0 0.0.0.255 11.11.11.0 0.0.0.255 eq 1 |
| Use the layer 2 priority in the packet to classify all UDP traffic | (configure)# access-list MyAccessList2 7 permit use-l2 udp any any |
Table 273: Examples: Extended ACL Rules (continued)

<table>
<thead>
<tr>
<th>To...</th>
<th>Enter...</th>
</tr>
</thead>
</table>
| ● Use the layer 2 priority in the packet to classify all TCP traffic that has a:
 - Source IP address in the 5.5.5 subnet
 - Destination IP address in the 6.6.6 subnet
 - Destination port that is less than 2
 ● Permit TCP connections that meet this criteria | (configure)# access-list MyAccessList2 8 permit use-l2 tcp 5.5.5.0 0.0.0.255 6.6.6.0 0.0.0.255 lt 2 established |
| ● Use the DSCP to classify all UDP traffic that has a:
 - Source IP address of 7.7.7.7
 - Destination IP address of 8.8.8.8
 - Destination port between 33 and 44
 ● Mask the three least significant bits of the DSCP | (configure)# access-list MyAccessList2 9 permit use-diffserv mask udp host 7.7.7.7 host 8.8.8.8 range 33 44 |
| ● Assign a priority of 7 to all TCP traffic that has a:
 - Source IP address of 9.9.9.9
 - Destination IP address of 3.3.3.3
 - Destination port between 55 and 66
 ● Permit TCP connections that meet this criteria | (configure)# access-list MyAccessList2 10 permit use-priority 7 tcp host 9.9.9.9 host 3.3.3.3 range 55 66 established |

Systems

- P550R and P880, 80-series modules only.
- P580 and P882.
reset port queue counters

Command Mode
User.

Description
Resets the queue statistics to 0.

Syntax
reset port queue counters {
<mod-num> | <mod-swport-range>}
[,..., {<mod-num> | <mod-swport-range>}] {ingress | egress | all} [queue <queue>]

Table 274: reset port queue counters Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>The slot number of a module. If you specify <mod-num>, the switch resets the QoS statistics for all ports on the module that you specify.</td>
</tr>
<tr>
<td><mod-swport-range></td>
<td>The slot number of a module, and, either a port number, or a range of port numbers having the format Px-Py. For example:</td>
</tr>
<tr>
<td></td>
<td>● To specify port 1 on the module in slot 3, enter 3/1.</td>
</tr>
<tr>
<td></td>
<td>● To specify ports 1 through 5 on the module in slot 3, enter 3/1-5.</td>
</tr>
<tr>
<td></td>
<td>If you specify <mod-swport-range>, the switch resets the QoS statistics for the port or range of ports that you specify.</td>
</tr>
<tr>
<td>{ingress</td>
<td>egress</td>
</tr>
<tr>
<td></td>
<td>● Enter ingress to view the QoS statistics for ingress queues.</td>
</tr>
<tr>
<td></td>
<td>● Enter egress to view the QoS statistics for egress queues.</td>
</tr>
<tr>
<td></td>
<td>● Enter all to view the QoS statistics for both ingress and egress queues.</td>
</tr>
<tr>
<td><queue></td>
<td>The queue number, which can range from 0 to 7. If you do not specify a queue number, the switch resets the QoS statistics for all queues on the port.</td>
</tr>
</tbody>
</table>
Sample Output

The following example resets the QoS statistics on the ingress ports on the module in slot 3.

> reset port queue counters 3 ingress

Systems

- P550R and P880, 80-series modules only.
- P580 and P882.

set aft entry

Command Mode

Global Configuration.

Description

Configures the priority of a source MAC address or destination MAC address. The no command deletes the Address Forwarding Table (AFT) entry for the source or destination MAC address.

Syntax

| To Configure: | set aft entry <mac-address> vlan {<vlan-id> | name <vlan-name>}
| | port-binding {filter | forward <mod-port-spec>}
| | [persistence {ageout | permanent}] [priority {normal | high}]
| | [sa-priority {port | aft <entry-priority> | max-port-aft <entry-priority>}]
| | [da-priority {port | aft <entry-priority> | max-port-aft <entry-priority>}]

| To Delete: | clear aft entry <mac-address> vlan {<vlan-id> | name <vlan-name>}

Table 275: set aft entry Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mac-address></td>
<td>The MAC address associated with this entry.</td>
</tr>
<tr>
<td>vlan</td>
<td>The keyword for per VLAN commands.</td>
</tr>
<tr>
<td></td>
<td>vlan-id - The numerical ID of a specific VLAN.</td>
</tr>
</tbody>
</table>

1 of 2
Table 275: set aft entry Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The keyword for the VLAN name. vlan-name - The name of the VLAN.</td>
</tr>
<tr>
<td>port-binding</td>
<td>Options include:</td>
</tr>
<tr>
<td></td>
<td>● filter - AFT entries with a filter port binding are dropped when</td>
</tr>
<tr>
<td></td>
<td>received.</td>
</tr>
<tr>
<td></td>
<td>● forward - The port from which the mac address is forwarded.</td>
</tr>
<tr>
<td></td>
<td>● mod-port-spec - Specifies a particular port.</td>
</tr>
<tr>
<td>persistence</td>
<td>Options include:</td>
</tr>
<tr>
<td></td>
<td>● ageout - The entry is aged as per-learned entries.</td>
</tr>
<tr>
<td></td>
<td>● permanent - The entry is not aged out.</td>
</tr>
<tr>
<td>priority</td>
<td>Options include:</td>
</tr>
<tr>
<td></td>
<td>● normal - The AFT entry has normal priority.</td>
</tr>
<tr>
<td></td>
<td>● high - The AFT entry has high priority.</td>
</tr>
<tr>
<td>sa-priority port</td>
<td>Uses the priority of the physical port, Cisco ISL tag, or 802.1p tag to</td>
</tr>
<tr>
<td></td>
<td>determine the layer 2 priority of frames.</td>
</tr>
<tr>
<td>sa-priority aft</td>
<td>Uses the priority that is assigned to the source MAC address in the</td>
</tr>
<tr>
<td></td>
<td>Address Forwarding Table (AFT) to determine the layer 2 priority of</td>
</tr>
<tr>
<td></td>
<td>frames.</td>
</tr>
<tr>
<td><entry-priority></td>
<td>The priority that you want to assign to the source MAC address. Enter a</td>
</tr>
<tr>
<td></td>
<td>number between 0 and 7. This priority is stored in the AFT entry for the</td>
</tr>
<tr>
<td></td>
<td>MAC address that you specify.</td>
</tr>
<tr>
<td>sa-priority</td>
<td>Determines the priority of a frame by using the higher of the:</td>
</tr>
<tr>
<td>max-port-aft</td>
<td>● Physical port priority or tag priority</td>
</tr>
<tr>
<td></td>
<td>● Source MAC address priority</td>
</tr>
<tr>
<td>da-priority port</td>
<td>Uses the priority of the physical port, Cisco ISL tag, 802.1p tag, or</td>
</tr>
<tr>
<td></td>
<td>source MAC address to determine the layer 2 priority of frames.</td>
</tr>
<tr>
<td>da-priority aft</td>
<td>Uses the priority that is assigned to the destination MAC address in the</td>
</tr>
<tr>
<td></td>
<td>AFT to determine the priority of the frame.</td>
</tr>
<tr>
<td><entry-priority></td>
<td>The priority that you want to assign to the destination MAC address. Enter</td>
</tr>
<tr>
<td></td>
<td>a number between 0 and 7.</td>
</tr>
<tr>
<td>da-priority</td>
<td>Determines the priority of the frame by using the higher of the:</td>
</tr>
<tr>
<td>max-port-aft</td>
<td>● Physical port priority or tag priority</td>
</tr>
<tr>
<td></td>
<td>● Destination MAC address priority</td>
</tr>
</tbody>
</table>
Sample Output

The following table provides examples of this command.

Table 276: Examples: set aft entry

<table>
<thead>
<tr>
<th>To...</th>
<th>Enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Associate MAC address 00:00:00:00:00:55 with port 1 on the module in slot 3 and with VLAN 50.</td>
<td>(configure)# set aft entry 00:00:00:00:00:55 VLAN 50 port-binding forward 3/1 sa-priority aft 7</td>
</tr>
<tr>
<td>● Forward frames that have a source or destination MAC address of 00:00:00:00:00:55.</td>
<td></td>
</tr>
<tr>
<td>● Assign a priority of 7 to frames that have a source MAC address of 00:00:00:00:00:55.</td>
<td></td>
</tr>
<tr>
<td>● Associate MAC address 00:00:00:00:00:55 with port 1 on the module in slot 3 and with VLAN 50.</td>
<td>(configure)# set aft entry 00:00:00:00:00:55 VLAN 50 port-binding forward 3/1 sa-priority max-port-aft 5</td>
</tr>
<tr>
<td>● Forward frames that have a source or destination MAC address of 00:00:00:00:00:55.</td>
<td></td>
</tr>
<tr>
<td>● Assign a priority of 5 with the source MAC address of 00:00:00:00:00:55.</td>
<td></td>
</tr>
<tr>
<td>● Assign the higher of the port priority, tag priority, or source MAC address priority (5) to frames that have a source MAC address of 00:00:00:00:00:55.</td>
<td></td>
</tr>
</tbody>
</table>
Table 276: Examples: set aft entry (continued)

<table>
<thead>
<tr>
<th>To...</th>
<th>Enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Associate MAC address 00:00:00:00:00:55 with port 1 on the module in slot 3 and with VLAN 50.</td>
<td>(configure)# set aft entry 00:00:00:00:00:55 VLAN 50 port-binding forward 3/1 da-priority aft 7</td>
</tr>
<tr>
<td>● Forward frames that have a source or destination MAC address of 00:00:00:00:00:55.</td>
<td></td>
</tr>
<tr>
<td>● Assign a priority of 7 to packets that have a destination MAC address of 00:00:00:00:00:55.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>To...</th>
<th>Enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Associate MAC address 00:00:00:00:00:55 with port 1 on the module in slot 3 and with VLAN 50.</td>
<td>(configure)# set aft entry 00:00:00:00:00:55 VLAN 50 port-binding forward 3/1 da-priority max-port-aft 5</td>
</tr>
<tr>
<td>● Forward frames that have a source or destination MAC address of 00:00:00:00:00:55.</td>
<td></td>
</tr>
<tr>
<td>● Associate a priority of 5 with the destination MAC address 00:00:00:00:00:55.</td>
<td></td>
</tr>
<tr>
<td>● Assign the higher of the port priority, tag priority, or destination MAC address priority (5) to frames that have a destination MAC address of 00:00:00:00:00:55.</td>
<td></td>
</tr>
</tbody>
</table>

Systems

- P550R and P880, 80-series modules only.
- P580 and P882.
set diffserv plp

⚠️ Important:
This command is for future functionality and is not currently supported.

Command Mode
Global Configuration.

Description
Assigns a packet loss probability (PLP) to a DiffServ code point (DSCP).

Syntax
set diffserv plp {low | high} dscp <dscp-start-range> [<dscp-end-range>]

Table 277: set diffserv plp Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{low</td>
<td>high}</td>
</tr>
<tr>
<td><dscp-start-range></td>
<td>The first DSCP in the range of DSCPs that you want to assign the PLP to. DSCPs range from 0 to 63.</td>
</tr>
<tr>
<td>[<dscp-end-range>]</td>
<td>The last DSCP in the range of DSCPs that you want to assign the PLP to. DSCPs range from 0 to 63.</td>
</tr>
</tbody>
</table>

Note:
While the PLP for a DSCP can be configured and displayed, the PLP is applied only when RED is enabled on a port.

Systems
- P550R and P880, 80-series modules only.
- P580 and P882.
set diffserv priority

Command Mode

Global Configuration.

Description

Assigns a priority to a DiffServ code point (DSCP) in the DiffServ Mapping Table.

Syntax

set diffserv priority <priority> dscp <dscp-start-range> [dscp-end-range]

Table 278: set diffserv priority Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><priority></td>
<td>The priority that you want to assign. Enter a number between 0 and 7.</td>
</tr>
<tr>
<td><dscp-start-range></td>
<td>The first DSCP in the range of DSCPs that you want to assign the priority to. DSCPs range from 0 to 63.</td>
</tr>
<tr>
<td>[dscp-end-range]</td>
<td>The last DSCP in the range of DSCPs that you want to assign the priority to. DSCPs range from 0 to 63.</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets a priority of 7 to DSCPs 15 through 63.

```
(configure)# set diffserv priority 7 dscp 15 63
```

Systems

- P550R and P880, 80-series modules only.
- P580 and P882.
set port default-priority

Command Mode
Global Configuration.

Description
Sets the priority of a physical port.

Syntax
set port default-priority {{<mod-num> | <mod-swport-range>}
[... , {<mod-num> | <mod-swport-range>}] | all-ports} <priority>

Table 279: set port default-priority Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>The slot number of a module. If you specify <mod-num>, the priority is set for all ports on the module.</td>
</tr>
</tbody>
</table>
| <mod-swport-range>| The slot number of a module, and, either a port number, or a range of port numbers having the format Px-Py. For example:
 ● To specify port 1 on the module in slot 3, enter 3/1.
 ● To specify ports 1 through 5 on the module in slot 3, enter 3/1-5.
If you specify <mod-swport-range>, the priority is set for the port or range of ports on the module that you specify. |
| all-ports | All ports in the chassis. If you specify all-ports, all ports on all modules in the chassis are set with the same priority. |
| <priority> | The priority that you want to assign to the port or port range. Enter a number between 0 and 7. The highest priority is 7. |
Sample Output

The following command sets the priority to 0 for all ports on the module in slot 3.

(configure)# set port default-priority 3 0

The following command sets the priority to 5 for ports 1 through 5 on the module in slot 3.

(configure)# set port default-priority 3/1-5 5

The following command sets the priority to 2 for ports 1 through 5 on the module in slot 3 and for port 1 on the module in slot 6.

(configure)# set port default-priority 3/1-5,6/1 2

Systems

- P550R and P880, 80-series modules only.
- P580 and P882.

set port ignore-tag-priority

Command Mode

Global Configuration.

Description

Sets a port to ignore any layer 2 tag priority (including 802.1p tags). The default setting is off.

Syntax

| To Enable: | set port ignore-tag-priority \{<mod-num> | <mod-swport-range>\} [...,{<mod-num> | <mod-swport-range>}] | all-ports] on |
|------------|---|
| To Disable: | set port ignore-tag-priority \{<mod-num> | <mod-swport-range>\} [...,{<mod-num> | <mod-swport-range>}] | all-ports] off |
Sample Output

The following command sets all ports on the module in slot 3 to ignore the 802.1p tag priority

```
(configure)# set port ignore-tag-priority 3 on
```

The following command sets ports 1 through 5 on the module in slot 3 to *not* ignore the 802.1p tag priority

```
(configure)# set port ignore-tag-priority 3/1-5 off
```

The following command sets ports 1 through 5 on the module in slot 3 and port 1 on the module in slot 6 to ignore the 802.1p tag priority.

```
(configure)# set port ignore-tag-priority 3/1-5,6/1 on
```

Systems

- P550R and P880, 80-series modules only.
- P580 and P882.

Table 280: set port ignore-tag-priority Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><mod-num></code></td>
<td>The slot number of a module. If you specify <code><mod-num></code>, the switch ignores tag priorities on all ports of the module.</td>
</tr>
</tbody>
</table>
| `<mod-swport-range>` | The slot number of a module, and, either a port number, or a range of port numbers having the format `Px-Py`. For example:
 - To specify port 1 on the module in slot 3, enter `3/1`.
 - To specify ports 1 through 5 on the module in slot 3, enter `3/1-5`.
 If you specify `<mod-swport-range>`, the switch ignores tag priorities on the port or range of ports on the module in the slot that you specify. |
| all-ports | All ports in the chassis. If you specify all-ports, all ports on all modules in the chassis are set with the same priority. |
| `{on | off}` | Indicates whether you want the port to ignore tag priority. Enter on for the port to ignore the tag priority. |
set port mask-diffserv

Command Mode

Global Configuration.

Description

Sets a port to mask the three least significant bits of the DSCP when the switch is using the DSCP to classify bridged IP traffic. If you mask the three least significant bits of the DSCP, the switch recognizes the remaining bits as the precedence field of the Type of Service (ToS) field and classifies the packets accordingly.

Syntax

| To Enable: | set port mask-diffserv {{<mod-num> | <mod-swport-range>}} [...,{<mod-num> | <mod-swport-range>]} | all-ports} on |
|-----------|--|-----------------|
| To Disable: | set port mask-diffserv {{<mod-num> | <mod-swport-range>}} [...,{<mod-num> | <mod-swport-range>]} | all-ports} off |

Table 281: set port mask-diffserv Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>The slot number of a module. If you specify <mod-num>, all ports on the module mask the three least significant bits of the DSCP.</td>
</tr>
<tr>
<td><mod-swport-range></td>
<td>The slot number of a module, and, either a port number, or a range of port numbers having the format Px-Py. For example: ● To specify port 1 on the module in slot 3, enter 3/1. ● To specify ports 1 through 5 on the module in slot 3, enter 3/1-5. If you specify <mod-swport-range>, the port or range of ports on the module that you specify mask the three least significant bits of the DSCP.</td>
</tr>
<tr>
<td>{all-ports}</td>
<td>All ports in the chassis. If you enter all-ports, all ports in the chassis are set to mask the three least significant bits of the DSCP.</td>
</tr>
<tr>
<td>{on</td>
<td>off}</td>
</tr>
</tbody>
</table>
Sample Output

The following command sets all ports on the module in slot 3 to mask the three least significant bits of the DSCP, enter:

(configure)# set port mask-diffserv 3 on

Systems

● P550R and P880, 80-series modules only.
● P580 and P882.

set port police

Command Mode

Global Configuration.

Description

Enables or disables policing for ingress traffic on a port.

Syntax

| To Configure: | set port police {{<mod-num> | <mod-swport-range>}
| | [..., {{<mod-num> | <mod-swport-range>}} | all-ports}
| | queue <queue> {bit-rate <rate> normal-burst <normal-burst>}

| To Disable: | set port police {{<mod-num> | <mod-swport-range>}
| | [..., {{<mod-num> | <mod-swport-range>}} | all-ports}
| | queue <queue> disable |
Table 282: set port police Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>The slot number of a module. If you specify <mod-num>, policing is enabled for all ports on the module in the slot that you specify.</td>
</tr>
<tr>
<td><mod-swport-range></td>
<td>The slot number of a module, and, either a port number, or a range of port numbers having the format Px-Py. For example:</td>
</tr>
<tr>
<td></td>
<td>● To specify port 1 on the module in slot 3, enter 3/1.</td>
</tr>
<tr>
<td></td>
<td>● To specify ports 1 through 5 on the module in slot 3, enter 3/1-5.</td>
</tr>
<tr>
<td></td>
<td>If you specify <mod-swport-range>, policing is enabled for the port or range of ports on the module in the slot that you specify.</td>
</tr>
<tr>
<td>all-ports</td>
<td>All ports in the chassis. If you specify all-ports, policing is enabled on all modules in the chassis.</td>
</tr>
<tr>
<td><queue></td>
<td>The queue number, which can range from 0 to 7.</td>
</tr>
<tr>
<td><rate></td>
<td>The maximum bits per second that you want to assign to the queue. For Fabric mode 1, enter:</td>
</tr>
<tr>
<td></td>
<td>● 0 to disable the queue</td>
</tr>
<tr>
<td></td>
<td>Or</td>
</tr>
<tr>
<td></td>
<td>● 220 Kbps to 1.5 Gbps</td>
</tr>
<tr>
<td></td>
<td>For Fabric mode 2, enter:</td>
</tr>
<tr>
<td></td>
<td>● 0 to disable the queue</td>
</tr>
<tr>
<td></td>
<td>Or</td>
</tr>
<tr>
<td></td>
<td>● 270 Kbps to 1.5 Gbps</td>
</tr>
<tr>
<td><normal-burst></td>
<td>This threshold sets the maximum size of burst that is guaranteed transfer. The normal burst can range from 0 to 15,000. Avaya recommends a setting of 4.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables policing.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets port police on all ports on module 3.

(configure)# set port police 3 all-ports

Systems

- P550R and P880, 80-series modules only.
- P580 and P882.
set port queue service cbq

Command Mode

Global Configuration.

Description

Sets a port, port range, or module to use class-based queuing (CBQ) queue servicing.

Syntax

set port queue service {{<mod-num> | <mod-swport-range>}} [..., {{<mod-num> | <mod-swport-range>}} | all-ports} cbq queue <queue> bit-rate <rate>

Table 283: set port queue service cbq Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>The slot number of a module. If you specify <mod-num>, all ports on the module are set to use CBQ.</td>
</tr>
</tbody>
</table>
| <mod-swport-range> | The slot number of a module, and, either a port number, or a range of port numbers having the format Px-Py. For example:
 - To specify port 1 on the module in slot 3, enter 3/1.
 - To specify ports 1 through 5 on the module in slot 3, enter 3/1-5.
If you specify <mod-swport-range>, the port or range of ports that you specify is set use CBQ. |
| all-ports | All ports in the chassis. If you specify all-ports, all ports on all modules in the chassis are set to use CBQ. |
| <queue> | The queue number, which can range from 0 to 7. |
| <rate> | The maximum bits per second that you want to assign to the queue. If the switch is operating in Fabric mode 1, the rate can range from 220 Kbps to 1.5 Gbps. If the switch is operating in Fabric mode 2, the rate can range from 270 Kbps to 1.5 Gbps. Entering a rate of 0 disables the queue. |

Systems

- P550R and P880, 80-series modules only.
- P580 and P882.
set port queue service cbwfq

Command Mode

Global Configuration.

Description

Sets a port, port range, or module to use class-based weighted fair queuing (CBWFQ) queue servicing.

Syntax

set port queue service {{<mod-num> | <mod-swport-range>}[..., {{<mod-num> | <mod-swport-range>}]} | all-ports} cbwfq queue <queue> bit-rate <rate> normal-burst <normal-burst> [exceed {drop | max-burst <max-burst> [weight <weight>]}]

Table 284: set port queue service cbwfq Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>The slot number of a module. If you specify <mod-num>, all ports on the module are set to use CBQ.</td>
</tr>
<tr>
<td><mod-swport-range></td>
<td>The slot number of a module, and, either a port number, or a range of port numbers having the format Px-Py. For example:</td>
</tr>
<tr>
<td></td>
<td>● To specify port 1 on the module in slot 3, enter 3/1.</td>
</tr>
<tr>
<td></td>
<td>● To specify ports 1 through 5 on the module in slot 3, enter 3/1-5.</td>
</tr>
<tr>
<td></td>
<td>If you specify <mod-swport-range>, the port or range of ports that you specify is set use CBQ.</td>
</tr>
<tr>
<td>all-ports</td>
<td>All ports in the chassis. If you specify all-ports, all ports on all modules in the chassis are set to use CBQ.</td>
</tr>
<tr>
<td><queue></td>
<td>The queue number, which can range from 0 to 7.</td>
</tr>
<tr>
<td><rate></td>
<td>The maximum bits per second that you want to assign to the queue.</td>
</tr>
<tr>
<td></td>
<td>If the switch is operating in Fabric mode 1, the rate can range from 220 Kbps to 1.5 Gbps.</td>
</tr>
<tr>
<td></td>
<td>If the switch is operating in Fabric mode 2, the rate can range from 270 Kbps to 1.5 Gbps.</td>
</tr>
<tr>
<td></td>
<td>Entering a rate of 0 disables the queue.</td>
</tr>
</tbody>
</table>

1 of 2
The maximum size of burst that is guaranteed transfer. Bursts that are smaller than this size are guaranteed transfer. Bursts that are larger than this size are either serviced by WFQ or dropped (whichever action that you specify). The default setting is servicing by WFQ and the default weight for the queues.

The normal burst can range from 0 to 15,000 bytes. Avaya recommends a value of 6000.

Enter this setting in a multiple of four. If you do not enter a multiple of four, the switch rounds down the number that you enter to a multiple of four. For example, if you enter a normal burst size of 43 bytes, the switch converts the setting to 40 bytes. If you enter a normal burst size of 0, 1, 2 or 3, the switch stores a value of 0 and no data is forwarded from the queue.

The action that you want the switch to take if the bit rate exceeds the guaranteed bit rate that you specify. The switch can either drop packets or forward them based on the weight of the queue.

Indicates that you want the switch to drop packets when the bit rate exceeds the guaranteed bit rate.

The maximum size burst that is serviced by WFQ once the normal burst has been exceeded. Bursts that are smaller than this size are serviced by WFQ. Bursts that are larger than this size are dropped. If you set this threshold to the same value as normal burst, the maximum burst capability is disabled.

The maximum burst can range from the normal burst size to 15,000. Avaya recommends a value of 6000.

Increase the maximum burst setting as the burstiness of the traffic increases.

Note:

The maximum burst setting must be greater than or equal to the normal burst.

Enter this setting in a multiple of four. If you do not enter a multiple of four, the switch rounds down the number that you enter to a multiple of four. For example, if you enter a maximum burst size of 43 bytes, the switch converts the setting to 40 bytes. If you enter a maximum burst size of 0, 1, 2 or 3, the switch stores a value of 0 and no data is forwarded from the queue.

The weight that you want to assign to the queue. Weights can range from 1 to 254.
80-Series QoS

Systems

- P550R and P880, 80-series modules only.
- P580 and P882.

set port queue service strict-priority

Command Mode

Global Configuration.

Description

Sets a port, port range, or module to use strict priority queue servicing.

Syntax

```
set port queue service {{<mod-num> | <mod-swport-range>} [...,{<mod-num> | <mod-swport-range>}] | all-ports} strict-priority
```

Table 285: set port queue service strict-priority Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><mod-num></code></td>
<td>The slot number of a module. If you specify <code><mod-num></code>, all ports on the module are set to use strict priority queueing.</td>
</tr>
</tbody>
</table>
| `<mod-swport-range>` | The slot number of a module, and, either a port number, or a range of port numbers having the format Px-Py. For example:
 - To specify port 1 on the module in slot 3, enter 3/1.
 - To specify ports 1 through 5 on the module in slot 3, enter 3/1-5.
 If you specify `<mod-swport-range>`, the port or range of ports on the module that you specify is set to use strict priority queueing. |
| all-ports | All ports in the chassis. If you specify **all-ports**, all ports on all modules in the chassis are set to use strict priority queueing. |
Sample Output

The following example set ports 1 through 12 on module 5 to use strict priority queueing.

(configure)# set port queue service 5/1-12 strict-priority

Systems

- P550R and P880, 80-series modules only.
- P580 and P882.

set port queue service wfq

Command Mode

Global Configuration.

Description

Sets a port, port range, or module to use weighted fair queueing (WFQ) queue servicing. WFQ is the default queue-servicing algorithm.

Syntax

```
set port queue service {{<mod-num> | <mod-swport-range>}[...,{<mod-num> | <mod-swport-range>}] | all-ports} wfq {queue <queue> weight <weight> | default}
```

Table 286: set port queue service wfq Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><mod-num></code></td>
<td>The slot number of a module. If you specify <code><mod-num></code>, all ports on the module are set to use WFQ.</td>
</tr>
</tbody>
</table>
| `<mod-swport-range>` | The slot number of a module, and, either a port number, or a range of port numbers having the format P<x>-P<y>. For example:
 - To specify port 1 on the module in slot 3, enter 3/1.
 - To specify ports 1 through 5 on the module in slot 3, enter 3/1-5. If you specify `<mod-swport-range>`, the port or range of ports that you specify is set to use WFQ. |
| all-ports | All ports in the chassis. If you specify `all-ports`, all ports on all modules in the chassis are set to use WFQ. |
| `<queue>` | The queue number, which can range from 0 to 7. |
set port use-diffserv

Command Mode
Global Configuration.

Description
Sets a port to classify bridged IP traffic by its DiffServ code point (DSCP).

Syntax

| To Enable: | set port use-diffserv {<mod-num> | <mod-swport-range>} [...,{<mod-num> | <mod-swport-range>}} | all-ports | on |
| To Disable: | set port use-diffserv {<mod-num> | <mod-swport-range>} [...,{<mod-num> | <mod-swport-range>}} | all-ports | off |

Systems

- P550R and P880, 80-series modules only.
- P580 and P882.
The following command sets ports 4 through 12 on the module in slot 6 to classify bridged IP traffic by DSCP:

```
(configure)# set port use-diffserv 6/4-12 on
```

Sample Output

The following command sets ports 4 through 12 on the module in slot 6 to classify bridged IP traffic by DSCP:

```
(configure)# set port use-diffserv 6/4-12 on
```

Systems

- P550R and P880, 80-series modules only.
- P580 and P882.
show diffserv table

Command Mode
User.

Description
Display the priority that is assigned to each DSCP.

Note:
The `show diffserv table` CLI command displays the packet loss probability (PLP) for each DSCP. However, the switch does not currently support PLP.

Syntax
`show diffserv table`

Sample Output
The following example displays the diffserv table.

> `show diffserv table`

Systems
- P550R and P880, 80-series modules only.
- P580 and P882.
show port

Command Mode

User.

Description

Displays the QoS settings for a physical port. This command also displays the priority of the port, if the port is set to ignore 802.1p tag priority, and if the port is set to use the DSCP for bridged IP traffic.

Syntax

show port [{<mod-num> | <mod-swport-range>}[...,{<mod-num> | <mod-swport-range>}]]

Table 288: show port Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>The slot number of a module. If you specify <mod-num>, the switch displays the QoS settings for all ports on the module in the slot that you specify.</td>
</tr>
</tbody>
</table>
| <mod-swport-range> | The slot number of a module, and, either a port number, or a range of port numbers having the format Px-Py. For example:
● To specify port 1 on the module in slot 3, enter 3/1.
● To specify ports 1 through 5 on the module in slot 3, enter 3/1-5.
If you specify <mod-swport-range>, the switch displays the QoS settings for the port or range of ports on the module in the slot that you specify. |

Sample Output

The following example displays the QoS settings for module 3.

> show port 3

Systems

- P550R and P880, 80-series modules only.
- P580 and P882.
show port police

Command Mode
User.

Description
Displays the settings for policing.

Syntax
show port police {<mod-num> | <mod-swport-range>}[,..., {<mod-num> | <mod-swport-range>}]

Table 289: show port police Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>The slot number of a module. If you specify <mod-num>, the switch displays the policing settings for all ports on the module in the slot that you specify.</td>
</tr>
<tr>
<td><mod-swport-range></td>
<td>The slot number of a module, and, either a port number, or a range of port numbers having the format Px-Py. For example:</td>
</tr>
<tr>
<td></td>
<td>● To specify port 1 on the module in slot 3, enter 3/1.</td>
</tr>
<tr>
<td></td>
<td>● To specify ports 1 through 5 on the module in slot 3, enter 3/1-5.</td>
</tr>
<tr>
<td></td>
<td>If you specify <mod-swport-range>, the switch displays the policing settings for the port or range of ports on the module in the slot that you specify.</td>
</tr>
</tbody>
</table>

Sample Output
The following example displays the policing settings for all ports on module 3.

> show port police 3

Systems

● P550R and P880, 80-series modules only.

● P580 and P882.
show port queue buffer

Command Mode

User.

Description

Displays the amount of memory that is assigned to each queue.

Syntax

show port queue buffer {{<mod-num> | <mod-swport-range>}
[...,{<mod-num> | <mod-swport-range>]] | all-ports}

Table 290: show port queue buffer Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>The slot number of a module. the switch displays the number of packet</td>
</tr>
<tr>
<td></td>
<td>buffers that are allocated to the egress queues on all ports on the</td>
</tr>
<tr>
<td></td>
<td>module that you specify.</td>
</tr>
<tr>
<td><mod-swport-range></td>
<td>The slot number of a module, and, either a port number, or a range of</td>
</tr>
<tr>
<td></td>
<td>port numbers having the format Px-Py. For example:</td>
</tr>
<tr>
<td></td>
<td>● To specify port 1 on the module in slot 3, enter 3/1.</td>
</tr>
<tr>
<td></td>
<td>● To specify ports 1 through 5 on the module in slot 3, enter 3/1-5.</td>
</tr>
<tr>
<td></td>
<td>The switch displays the number of packet buffers that are allocated to</td>
</tr>
<tr>
<td></td>
<td>the egress queues on the port or range of ports that you specify.</td>
</tr>
<tr>
<td>{all-ports}</td>
<td>All ports in the chassis. The switch displays the number of packet</td>
</tr>
<tr>
<td></td>
<td>buffers that are allocated to the egress queues on all ports in the</td>
</tr>
<tr>
<td></td>
<td>chassis.</td>
</tr>
</tbody>
</table>

Sample Output

The following example displays the amount of memory that is assigned to all ports on the module in slot 3.

> show port queue buffer 3 all-ports

Systems

● P550R and P880, 80-series modules only.
● P580 and P882.
show port queue counters

Command Mode

User.

Description

Syntax

show port queue counters {<mod-num> | <mod-swport-range>}
[...{<mod-num> | <mod-swport-range>}] {ingress | egress | all} [queue <queue>]

Table 291: show port queue counters Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>The slot number of a module. If you specify <mod-num>, the switch displays the QoS statistics for all ports on the module that you specify.</td>
</tr>
</tbody>
</table>
| <mod-swport-range> | The slot number of a module, and, either a port number, or a range of port numbers having the format Px-Py. For example:
• To specify port 1 on the module in slot 3, enter 3/1.
• To specify ports 1 through 5 on the module in slot 3, enter 3/1-5.
If you specify <mod-swport-range>, the switch displays the QoS statistics for the port or range of ports that you specify. |
| ingress | egress | all | The direction of traffic that you want to view the QoS Statistics for.
• Enter ingress to view the QoS statistics for ingress queues.
• Enter egress to view the QoS statistics for egress queues.
• Enter all to view the QoS statistics for both ingress and egress queues. |
| <queue> | The queue number, which can range from 0 to 7. If you do not specify a queue number, the switch displays all QoS statistics for the port or module. |
show port queue service

Sample Output

The following example displays all QoS statistics for the module in slot 3.

> show port queue counters 3 all

Systems

- P550R and P880, 80-series modules only.
- P580 and P882.

show port queue service

Command Mode

User.

Description

Displays the settings for queue servicing.

Syntax

show port queue service {<mod-num> | <mod-swport-range>} [..., {<mod-num> | <mod-swport-range>}]

Table 292: show port queue service Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-num></td>
<td>The slot number of a module. If you specify <mod-num>, the switch displays queue-service settings for all ports on the module in the slot that you specify.</td>
</tr>
</tbody>
</table>
| <mod-swport-range> | The slot number of a module, and, either a port number, or a range of port numbers having the format \(P_x-P_y \). For example:
 - To specify port 1 on the module in slot 3, enter 3/1.
 - To specify ports 1 through 5 on the module in slot 3, enter 3/1-5.
If you specify <mod-swport-range>, the switch displays the queue-service settings for the port or range of ports that you specify. |
80-Series QoS

Sample Output

The following example displays the queue service settings for port 1 on the module in slot 3

> show port queue service 3/1

Systems

• P550R and P880, 80-series modules only.
• P580 and P882.
Chapter 24: RADIUS

Overview

This chapter describes the following commands:

- set radius authentication
- set radius authentication group
- set radius authentication realm
- set radius authentication retry-number
- set radius authentication retry-time
- set radius authentication server
- set radius authentication source-ip
- set radius authentication switch-service-type-required
- set radius authentication udp-port
- show radius authentication
RADIUS

set radius authentication

Command Mode
 Global Configuration.

Description
 Enables or disables RADIUS client.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set radius authentication enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>set radius authentication disabled</td>
</tr>
</tbody>
</table>

Sample Output

 The following command enables RADIUS on the switch:

 (configure)# set radius authentication enable

Systems

set radius authentication group

Command Mode

Global Configuration.

Description

Sets the group to which the switch belongs. If a group is set, then the group name is included in Access Request messages that are sent to the RADIUS server. By default, the switch does not belong to a group.

The group name can be 22 alpha characters.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>set radius authentication group <group>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Clear:</td>
<td>clear radius authentication group</td>
</tr>
</tbody>
</table>

Table 293: set radius authentication group Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><group></td>
<td>The group to which the switch belongs. The group name can be 22 characters.</td>
</tr>
</tbody>
</table>

Sample Output

The following command assigns the switch to group *avaya switches*:

```
(configure)# set radius authentication group avaya switches
```

The following command clears the group membership of the switch:

```
(configure)# clear radius authentication group
```

Systems

set radius authentication realm

Command Mode

Global Configuration.

Description

Sets the realm of user accounts that are authorized to log in to the switch. Realms are used to organize user accounts.

If a realm is set, @ and the realm name are appended to user login names. For example, the realm name could be Avaya Switches. When user admin logs in, the switch sends the Access Request message for admin@AvayaSwitches. If you set a realm for the switch, you must assign user accounts that are authorized to log in to the switch to the same realm on the RADIUS server.

The realm name can be 22 alpha characters.

Syntax

| To Configure: | set radius authentication realm <realm> |
| To Clear: | clear radius authentication realm |

Table 294: set radius authentication realm Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><realm></td>
<td>The realm of user accounts that are authorized to log in to the switch. The realm name can be 22 alpha characters.</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets the realm of authorized user accounts to avaya:

```
(configure)# set radius authentication realm avaya
```

The following command clears the realm of authorized user accounts:

```
(configure)# clear radius authentication realm
```

Systems

set radius authentication retry-number

Command Mode

Global Configuration.

Description

Sets the number of times the switch attempts to contact the RADIUS server to authenticate a user. The default value is 1 retry and the valid range is 0 to 10 retries.

Syntax

set radius authentication retry-number <retry-number>

Table 295: set radius authentication retry-number Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><retry-number></td>
<td>The number of times to resend the Access Request message if the RADIUS server does not respond. The default value is 1 retry and the valid range is 0 to 10 retries.</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets the number of authentication retries to 4:

```
(configure)# set radius authentication retry-number 4
```

Systems

set radius authentication retry-time

Command Mode

Global Configuration.

Description

Sets the amount of time in seconds that the switch waits before attempting to reauthenticate a login. The default value is 7 seconds and the valid range is 1 to 30 seconds.

Syntax

set radius authentication retry-number <retry-time-in-seconds>

Table 296: set radius authentication retry-number Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><retry-time-in-seconds></td>
<td>The amount of time in seconds that the switch waits before attempting to reauthenticate a login. The default value is 7 seconds and the valid range is 1 to 30 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets the retry time to 10 seconds:

(configure)# set radius authentication retry-time 10

Systems

set radius authentication server

Command Mode

Global Configuration.

Description

Sets either the primary or secondary RADIUS server settings.

Syntax

| To Configure: | set radius authentication server <ip-addr> <shared-secret> [encrypted-type1] [[primary | secondary]] |
|---------------|--|
| To Clear: | clear radius authentication server [[primary | secondary]] |

Table 297: set radius authentication server Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-addr></td>
<td>IP Address of the RADIUS server.</td>
</tr>
<tr>
<td><shared-secret></td>
<td>Case sensitive shared secret. This must be exactly the same as on the RADIUS server. Spaces are not allowed.</td>
</tr>
<tr>
<td>[encrypted-type1]</td>
<td>Do not use this option. This option is used by the switch when saving passwords in the startup.txt file.</td>
</tr>
<tr>
<td>[{primary</td>
<td>secondary}]</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets the primary RADIUS server to IP address 192.157.1.0 and shared secret to secret primary.

(configure)# set radius authentication server 192.157.1.0 secret primary

Systems

set radius authentication source-ip

Command Mode

Global Configuration.

Description

Sets the IP interface address the switch will use as the source IP address in the Access Request messages. This value must be an IP interface address on the switch. If set, and the IP interface becomes disabled, RADIUS will not function because the switch will not be able to send or receive RADIUS messages.

If left 0.0.0.0 (the default), the switch automatically selects a source IP address from one of its active interfaces. If you use this setting, you must add each of the switch IP addresses to the Client file on the RADIUS server since you are not manually setting the source IP address.

Syntax

<table>
<thead>
<tr>
<th>To Configure</th>
<th>To Clear</th>
</tr>
</thead>
<tbody>
<tr>
<td>set radius authentication source-ip <ip-addr></td>
<td>clear radius authentication source-ip</td>
</tr>
</tbody>
</table>

Table 298: set radius authentication source-ip Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-addr></td>
<td>IP address that is used as the source IP address for Access Request messages.</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets the source IP address to 192.168.1.1:

```
(configure)# set radius authentication source-ip 192.168.1.1
```

Systems

set radius authentication switch-service-type-required

Command Mode

Global Configuration.

Description

If you enable switch-service-type-required, the switch recognizes only Access Accept messages that have the correct group name included. This setting prevents the switch from incorrectly allowing access to users that may have a user account on the RADIUS server but should not be allowed access to the switch. If this setting is disabled, any user account that is not assigned to a group could log in to the switch.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set radius authentication switch-service-type-required enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>set radius authentication switch-service-type-required disabled</td>
</tr>
</tbody>
</table>

Sample Output

The following command enables the switch-service-type-required setting:

(configure)# set radius authentication switch-service-type-required enabled

Systems

set radius authentication udp-port

Command Mode

Global Configuration.

Description

Sets the UDP port number used for RADIUS dekagrams. The default is port 1812 with the only options being 1812 or 1645. This must match the UDP port number configured on the RADIUS server.

Syntax

set radius authentication udp-port <1812-or-1645>

Sample Output

The following command sets the udp-port to 1645:

(configure)# set radius authentication udp-port 1645

Systems

show radius authentication

Command Mode
User.

Description
Displays the current RADIUS configuration. All parameters are displayed with the exception of the shared secrets.

Syntax
show radius authentication

Sample Output
The following command displays the current RADIUS settings:

(configure)# show radius authentication
RADIUS Authentication Configuration
===================================
Enable State: Disabled
Primary Server: 10.10.10.6
Secondary Server: 10.10.10.1
Source Ip: 10.10.5.6
Realm:
Group:
Retry Number: 1
Retry Time: 7 seconds
UDP Port: 1812
Cajun-Service-Type required: Enabled

Systems
Chapter 25: SNMP

Overview

This chapter describes the following commands:

- `snmp-server`
- `snmp-server atm-community`
- `snmp-server community`
- `snmp-server contact`
- `snmp-server engineid`
- `snmp-server group`
- `snmp-server location`
- `snmp-server notify`
- `snmp-server notify user`
- `snmp-server password`
- `snmp-server user`
- `snmp-server view`
- `show snmp`
- `show snmp community`
- `show snmp engineid`
- `show snmp group`
- `show snmp notify-user`
- `show snmp user`
- `show snmp view`
snmp-server

Command Mode

Global Configuration.

Description

Enables or disables the three versions of SNMP: SNMPv1, v2, and v3. This command overrides secure mode, which disables SNMPv1 and v2 and enables SNMPv3. For information on secure mode, see Chapter 4, “Security,” in *User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2*.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>snmp-server enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no snmp-server</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.

snmp-server atm-community

Command Mode

Global Configuration.

Description

Creates or modifies a community string to access the ATM Uplink module. The no command deletes the community string.

Syntax

| To Configure: | snmp-server atm-community <community-string> <slot> {ro | rw} [<ip-addr>] |
|----------------|--|
| To Delete: | no snmp-server atm-community <community-string> [<ip-addr>] |

526 Command Reference Guide for the Avaya P580 and P882 Multiservice Switches, v6.2
Table 299: snmp-server atm-community Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><community-string></code></td>
<td>The name of the community string. The community string can range from 1 to 26 characters. Do not assign a community string and SNMPv3 user the same name.</td>
</tr>
<tr>
<td><code><slot></code></td>
<td>The slot number of the ATM Uplink module.</td>
</tr>
<tr>
<td><code>ro</code></td>
<td>Assigns read-only access to the community string.</td>
</tr>
<tr>
<td><code>rw</code></td>
<td>Assigns read-write access to the community string.</td>
</tr>
<tr>
<td><code>[^<ip-addr>]</code></td>
<td>The IP address from which the community string is valid.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.

snmp-server community

Command Mode

Global Configuration.

Description

Creates or modifies a community string to access the switch. The **no** command deletes the community string.

Syntax

| To Configure: | snmp-server community `<community-string>` {group `<groupname>` [`<ip-addr>` [notify]] } |
| To Delete: | no snmp-server community `<community-string>` [`<ip-address>`] |
Table 300: snmp-server community Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><community-string></code></td>
<td>The name of the community string. The community string can range from 1 to 26 characters. Do not assign a community string and SNMPv3 user the same name.</td>
</tr>
<tr>
<td><code><groupname></code></td>
<td>Name of the group to which you are assigning the community string. Important: Do not assign the community string to a group that requires authentication or encryption. Community strings do not support authentication or encryption.</td>
</tr>
<tr>
<td><code><ip-addr></code></td>
<td>The IP address from which the community string is valid. Trap messages are sent to this IP address if you enter the <code>notify</code> option.</td>
</tr>
<tr>
<td><code>[notify]</code></td>
<td>Sends trap messages to the IP address that you specify.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
snmp-server contact

Command Mode

Global Configuration.

Description

Sets the administrative contact for the switch. The switch displays the administrative contact when you enter the show snmp command. The default setting is System Administrator. The no command restores the default setting.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>snmp-server contact <contact-name></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no snmp-server contact</td>
</tr>
</tbody>
</table>

Table 301: snmp-server contact Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><contact-name></td>
<td>The name of the administrative contact for the switch. The contact name can range from 1 to 127 characters.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
snmp-server engineid

Command Mode

Global Configuration.

Description

Changes the engine ID of the switch. The default engine ID is based on the IP address of the switch.

After changing the engine ID, you must change all SNMPv3 user passwords. For information on changing SNMPv3 user passwords, see “snmp-server password.”

Syntax

snmp-server engineid [<engine-ld>]

Table 302: snmp-server engineid Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><engine-ld></td>
<td>A 12-byte hexadecimal value. Separate each byte with a colon. Example: 00:00:00:09:0a:fe:ff:12:97:33:45:12.</td>
</tr>
</tbody>
</table>

⚠️ Important:

The last byte of the engine ID must not be greater than EE. If you enter a value greater than EE, you may not be able to access the ATM Uplink module MIBs.

The engine ID of an ATM Uplink module is the engine ID of the switch, where the slot number of the ATM Uplink module is added to the last byte. EE is the greatest value that allows for the addition of any one of the 17 slots.

Systems

P580 and P882.
snmp-server group

Command Mode

Global Configuration.

Description

Creates or modifies a group.

The no command deletes a specific group or all groups of a specific group name (if multiple groups have the same group name). If multiple groups have the same group name, you must enter the appropriate security keyword (noAuth, auth, or priv) to delete one of the groups. If you do not enter a security keyword, all groups of the group name that you enter are deleted.

⚠️ CAUTION:

Avaya recommends that you not modify the predefined groups. When you install v6.0, the existing community strings are assigned to these predefined groups. If you modify them, the community strings may lose their access to the switch. For more information on the migration of existing community strings, Chapter 5, “Configuring SNMP,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.

Syntax

To Configure:

```
snmp-server group <groupname> {noAuth | auth | priv}
[read <readview>] [write <writeview>] [notify <notifyview>]
```

To Delete:

```
no snmp-server group <groupname> {noAuth | auth | priv}
```

Table 303: snmp-server group Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><groupname></td>
<td>The name of the group that you want to create or modify. The group name can range from 1 to 32 alphanumeric characters.</td>
</tr>
<tr>
<td>noAuth</td>
<td>Requires neither authentication or encryption of PDUs.</td>
</tr>
<tr>
<td>auth</td>
<td>Requires authentication but not encryption of PDUs.</td>
</tr>
<tr>
<td>priv</td>
<td>Requires authentication and encryption of PDUs.</td>
</tr>
<tr>
<td><readview></td>
<td>The MIB view to which you want the group to have read access.</td>
</tr>
</tbody>
</table>
Table 303: snmp-server group Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><writeview></td>
<td>The MIB view to which you want the group to have write access.</td>
</tr>
<tr>
<td><notifyview></td>
<td>The MIB view for which you want the group to receive trap messages.</td>
</tr>
</tbody>
</table>

Systems
P580 and P882.

snmp-server location

Command Mode
Global Configuration.

Description
Sets the physical location of the switch. The switch displays the physical location of the switch when you enter the `show snmp` command. The `no` command clears the location.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>snmp-server location <server-location></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Clear:</td>
<td>no snmp-server location</td>
</tr>
</tbody>
</table>

Table 304: snmp-server location Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><server-location></td>
<td>The physical location of the switch. The location can range from 1 to 127 characters.</td>
</tr>
</tbody>
</table>

Systems
P580 and P882.
snmp-server notify

Command Mode

Global Configuration.

Description

Sets the trap receiver for a community string. The no command clears the trap receiver.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>snmp-server notify <ip-addr> <community-string></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Clear:</td>
<td>no snmp-server notify <ip-addr> <community-string></td>
</tr>
</tbody>
</table>

Table 305: snmp-server notify Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-addr></td>
<td>The IP address to which you want trap messages sent.</td>
</tr>
<tr>
<td><community-string></td>
<td>The existing community string for which you are setting the trap receiver.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
snmp-server notify user

Command Mode

Global Configuration.

Description

Configures an SNMPv3 user to receive secure trap messages. When sending a trap message to an SNMPv3 user, the switch uses the user’s authentication and encryption parameters to encode the trap.

The traps that an SNMPv3 user receives are determined by the Notify view assigned to his or her user group. Users receive traps only from the object identifiers (OIDs) that are included in the views associated with their group.

Use the no form of this command to stop the switch from sending trap messages to an SNMPv3 user at a specific trap receiver.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>snmp-server notify <ip-addr> user <user-name></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Clear:</td>
<td>no snmp-server notify <ip-addr> user <user-name></td>
</tr>
</tbody>
</table>

Table 306: snmp-server notify user Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-addr></td>
<td>The IP address to which you want trap messages sent.</td>
</tr>
<tr>
<td><user-name></td>
<td>The existing SNMPv3 user that you are authorizing to receive the trap.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
snmp-server password

Command Mode

Global Configuration.

Description

Changes a user password. You must change user passwords when the engine ID changes. The switch prompts you to enter the new password or passwords. The passwords are case-sensitive and can range from 8 to 64 characters. For security reasons, the CLI does not display the passwords when you enter them.

Syntax

snmp-server password <username>

Table 307: snmp-server password Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><username></td>
<td>The user name for which you want to change the password. The passwords are case-sensitive and can range from 8 to 64 characters.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
snmp-server user

Command Mode
Global Configuration.

Description
Creates or modifies an SNMPv3 user. The no command deletes an SNMPv3 user.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>snmp-server user <username> [group <groupname>]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[[localized] auth {sha</td>
</tr>
</tbody>
</table>

| To Delete: | no snmp-server user <username> |

Table 308: snmp-server user Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><username></td>
<td>User name for the SNMPv3 user. The user name can range from 1 to 32 alphanumeric characters.</td>
</tr>
<tr>
<td></td>
<td>Important: Do not assign a community string and SNMPv3 user the same name.</td>
</tr>
<tr>
<td><groupname></td>
<td>Name of the group to which you are assigning the user.</td>
</tr>
<tr>
<td>localized</td>
<td>Use this keyword if you want to enter the authentication password and privacy password in their localized form instead of text. Localized passwords consist of the engine ID plus the password and are then hashed by either HMAC-SHA or HMAC-MD5.</td>
</tr>
<tr>
<td>sha</td>
<td>Authenticates the user by means of HMAC-SHA.</td>
</tr>
<tr>
<td>md5</td>
<td>Authenticates the user by means of HMAC-MD5.</td>
</tr>
</tbody>
</table>
Table 308: snmp-server user Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| <auth-password> | The authentication password for the user:
 - Text passwords can range from 8 to 64 characters.
 - Localized HMAC-SHA-hashed passwords must be 20 bytes.
 - Localized HMAC-MD5-hashed passwords must be 16 bytes.
 Enter all localized passwords in the format of nn:nn:nn.... |
| <priv-password> | The encryption password for the user:
 - Text passwords can range from 8 to 64 characters.
 - Localized, HMAC-SHA- or HMAC-MD5-hashed encryption passwords must be 16 bytes.
 Enter all localized passwords in the format of nn:nn:nn.... |

Systems

P580 and P882.

snmp-server view

Command Mode

Global Configuration.

Description

Creates or modifies a MIB view. The no command deletes a view or removes an OID from a view.

Syntax

| To Configure: | snmp-server view <viewname> <OIDST> [[included | excluded]] |
|--|---|
| To Delete: | no snmp-server view <viewname> [<OIDST>] |
show snmp

Command Mode

Global Configuration.

Description

Displays the status of SNMP (enabled or disabled) and the administrative contact and physical location of the switch, if set.

Syntax

show snmp

Sample Output

SNMP engine is enabled
Contact Information: System Administrator
Location Information: [Location Not Set]

Systems

P580 and P882.

Table 309: snmp-server view Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><viewname></td>
<td>The name of the view that you want to create or modify. The view name can range from 1 to 32 alphanumeric characters.</td>
</tr>
<tr>
<td><OIDST></td>
<td>The object identifier (OID) for the object that you want to either include or exclude from the view. You must enter the numeric OID. Use the wildcard character * to specify a sub-tree family. If used in the no command, the OID is removed from the view.</td>
</tr>
<tr>
<td>{included</td>
<td>excluded}</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
show snmp community

Command Mode

Privileged.

Description

Displays the currently configured community strings.

Syntax

show snmp community [<community-string>]

Table 310: show snmp community Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><community-string></td>
<td>The community string for which you want to view the configuration.</td>
</tr>
</tbody>
</table>

Sample Output

<table>
<thead>
<tr>
<th>COMMUNITY</th>
<th>GROUP/ATM</th>
<th>NOTIFY</th>
<th>IP ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>atm</td>
<td>ATM7</td>
<td>YES</td>
<td>1.2.3.4</td>
</tr>
<tr>
<td>public</td>
<td>normalRO</td>
<td>YES</td>
<td>1.2.3.4</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
show snmp engineid

Command Mode
Global Configuration.

Description
Displays the currently configured engine ID of the switch.

Syntax
```
show snmp engineid
```

Sample Output
```
Engine ID: 00:00:1a:e9:01:0a:14:01:11:00:00:00
```

Systems
P580 and P882.

show snmp group

Command Mode
Privileged.

Description
Displays the currently configured groups.

Syntax
```
show snmp group [<groupname>]
```

Table 311: show snmp group Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><groupname></code></td>
<td>The group for which you want to view the configuration.</td>
</tr>
</tbody>
</table>
show snmp notify-user

Sample Output

<table>
<thead>
<tr>
<th>GROUP</th>
<th>SECURITY LEVEL</th>
<th>READ VIEW</th>
<th>WRITE VIEW</th>
<th>NOTIFY VIEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td>noAuth</td>
<td>internet</td>
<td>internet</td>
<td>internet</td>
</tr>
<tr>
<td>adminRO</td>
<td>noAuth</td>
<td>admin</td>
<td></td>
<td>admin</td>
</tr>
<tr>
<td>adminRW</td>
<td>noAuth</td>
<td>admin</td>
<td>admin</td>
<td>admin</td>
</tr>
<tr>
<td>initial</td>
<td>noAuth</td>
<td>restricted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>internet</td>
<td>priv</td>
<td>internet</td>
<td>internet</td>
<td>internet</td>
</tr>
<tr>
<td>noAccess</td>
<td>noAuth</td>
<td></td>
<td>internet</td>
<td></td>
</tr>
<tr>
<td>normalRO</td>
<td>noAuth</td>
<td>normal</td>
<td></td>
<td>normal</td>
</tr>
<tr>
<td>normalRW</td>
<td>noAuth</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.

show snmp notify-user

Command Mode

Global Configuration.

Description

Displays the SNMPv3 users that are configured to receive the traps.

Syntax

show snmp notify-user
SNMP

Sample Output

```
<table>
<thead>
<tr>
<th>USER</th>
<th>NOTIFY IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>root</td>
<td>10.0.50.25</td>
</tr>
<tr>
<td>adminRW</td>
<td>10.20.8.2</td>
</tr>
<tr>
<td>initial</td>
<td>10.20.10.1</td>
</tr>
</tbody>
</table>
```

Systems

P580 and P882.

show snmp user

Command Mode

Privileged.

Description

Displays the currently configured SNMPv3 users.

Syntax

```
show snmp user [<username>]
```

Table 312: show snmp user Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><username></td>
<td>The user for which you want to view the configuration.</td>
</tr>
</tbody>
</table>
Sample Output

<table>
<thead>
<tr>
<th>USER</th>
<th>GROUP</th>
<th>AUTH</th>
<th>PROT</th>
<th>PRIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td>admin</td>
<td>NO</td>
<td>NONE</td>
<td>NO</td>
</tr>
<tr>
<td>initial</td>
<td>initial</td>
<td>NO</td>
<td>NONE</td>
<td>NO</td>
</tr>
<tr>
<td>joe</td>
<td>normalRW</td>
<td>YES</td>
<td>SHA</td>
<td>NO</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.

show snmp view

Command Mode

Privileged.

Description

Displays the currently configured views.

Syntax

```
show snmp view [viewname]
```

Table 313: show snmp view Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><viewname></td>
<td>The view for which you want to view the configuration.</td>
</tr>
</tbody>
</table>
Sample Output

<table>
<thead>
<tr>
<th>VIEW NAME</th>
<th>TYPE</th>
<th>SUBTREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td>included</td>
<td>1.3.6.1.*</td>
</tr>
<tr>
<td>admin</td>
<td>excluded</td>
<td>1.3.6.1.6.3.15.*</td>
</tr>
<tr>
<td>admin</td>
<td>excluded</td>
<td>1.3.6.1.6.3.16.*</td>
</tr>
<tr>
<td>normal</td>
<td>included</td>
<td>1.3.6.1.*</td>
</tr>
<tr>
<td>normal</td>
<td>excluded</td>
<td>1.3.6.1.6.3.12.*</td>
</tr>
<tr>
<td>normal</td>
<td>excluded</td>
<td>1.3.6.1.6.3.13.*</td>
</tr>
<tr>
<td>normal</td>
<td>excluded</td>
<td>1.3.6.1.6.3.14.*</td>
</tr>
<tr>
<td>normal</td>
<td>excluded</td>
<td>1.3.6.1.6.3.15.*</td>
</tr>
<tr>
<td>normal</td>
<td>excluded</td>
<td>1.3.6.1.6.3.16.*</td>
</tr>
<tr>
<td>normal</td>
<td>excluded</td>
<td>1.3.6.1.6.3.18.*</td>
</tr>
<tr>
<td>normal</td>
<td>excluded</td>
<td>1.3.6.1.4.1.81.37.*</td>
</tr>
<tr>
<td>normal</td>
<td>excluded</td>
<td>1.3.6.1.4.1.1751.2.53.*</td>
</tr>
<tr>
<td>normal</td>
<td>excluded</td>
<td>1.3.6.1.4.1.2167.3.1.3.*</td>
</tr>
<tr>
<td>internet</td>
<td>included</td>
<td>1.3.6.1.*</td>
</tr>
<tr>
<td>restricted</td>
<td>included</td>
<td>1.3.6.1.2.1.1.*</td>
</tr>
<tr>
<td>restricted</td>
<td>included</td>
<td>1.3.6.1.2.1.11.*</td>
</tr>
<tr>
<td>restricted</td>
<td>included</td>
<td>1.3.6.1.6.3.10.2.1.*</td>
</tr>
<tr>
<td>restricted</td>
<td>included</td>
<td>1.3.6.1.6.3.11.2.1.*</td>
</tr>
<tr>
<td>restricted</td>
<td>included</td>
<td>1.3.6.1.6.3.15.1.1.*</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
Chapter 26: SSH

Overview

This chapter describes the following Secure Shell (SSH) commands:

- clear ssh
- ip ssh
- ssh
- ssh keygen
- ssh timeout
- show ssh

clear ssh

Command Mode

Global Configuration.

Description

Ends an SSH session.

Syntax

`clear ssh <session-id>`

Table 314: clear ssh Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><session-id></code></td>
<td>ID of the session that you want to clear. Use the <code>show ssh sessions</code> command to view current SSH sessions and their IDs.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882
ip ssh

Command Mode

Global Configuration.

Description

Enables or disables SSH and changes the port number for SSH.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip ssh {port [<tcp-new-port>] [enable]</th>
<th>[enable]}</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip ssh</td>
<td></td>
</tr>
</tbody>
</table>

Table 315: ip ssh Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><tcp-new-port></td>
<td>The port number you want to use for SSH. Valid SSH ports are 22 and 9000 to 65,535. The default port for SSH is port 22.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables SSH.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
ssh

Command Mode
Global Configuration.

Description
Establishes an SSH connection to a remote host.

Syntax
ssh [cipher {3des-cbc | blowfish-cbc}] [port <tcp-port>] [user <username>] {<ip-addr> | <hostname>}

Table 316: ssh Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3des-cbc</td>
<td>Uses 3DES encryption for the SSH session. If you do not specify a cipher,</td>
</tr>
<tr>
<td></td>
<td>the client can use 3DES or Blowfish. Normally, if the remote host supports</td>
</tr>
<tr>
<td></td>
<td>3DES, that is the cipher that is used.</td>
</tr>
<tr>
<td>blowfish-cbc</td>
<td>Uses Blowfish encryption for the SSH session.</td>
</tr>
<tr>
<td><tcp-port></td>
<td>The TCP port that you want the client to use for the session. If you do</td>
</tr>
<tr>
<td></td>
<td>not specify a TCP port, the client uses port 22. Valid ports are 22 and</td>
</tr>
<tr>
<td></td>
<td>9000 to 65,535.</td>
</tr>
<tr>
<td><username></td>
<td>The user name that you want to use to connect to the remote host. If you</td>
</tr>
<tr>
<td></td>
<td>do not specify a user name, the user name entering this command is used.</td>
</tr>
<tr>
<td><ip-addr></td>
<td>The IP address of the remote host to which you want to connect.</td>
</tr>
<tr>
<td><hostname></td>
<td>The name of the remote host to which you want to connect.</td>
</tr>
</tbody>
</table>

Systems
P580 and P882.
ssh keygen

Command Mode

Global Configuration.

Description

Generates an SSH server key.

⚠️ Important:

If SSH is enabled and you regenerate the SSH server key, you must disable and then reenable SSH for the change to take effect. To disable and reenable SSH, use the `ip ssh` command.

Syntax

```plaintext
ssh keygen [rsa | dsa] [key-size {768 | 1024 | 2048}]
```

Table 317: ssh keygen Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rsa</td>
<td>Generates an RSA key.</td>
</tr>
<tr>
<td>dsa</td>
<td>Generates a DSA key.</td>
</tr>
<tr>
<td>{768</td>
<td>1024</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
ssh timeout

Command Mode

Global Configuration.

Description

Sets the number of seconds at which an idle connection is disconnected, or restores the default setting of 600 seconds.

Syntax

ssh timeout [<seconds>]

Table 318: ssh timeout Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><seconds></td>
<td>The number of seconds at which you want idle connections disconnected. The valid range is 0 to 1800 seconds. The default setting is 600 seconds. A time out of 0 seconds disables the time out feature. If you do not specify this option, the default setting of 600 seconds is restored.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
show ssh

Command Mode
User

Description
Displays the SSH configuration, SSH server key, or current sessions.

Syntax
show ssh {config | public-key | sessions}

Table 319: show ssh Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config</td>
<td>Displays the SSH configuration. The following information is displayed: ● State of SSH ● Maximum number of sessions ● Idle time out. See “ssh timeout.” ● TCP port ● Login retry count ● Available ciphers</td>
</tr>
</tbody>
</table>

Sample Output
Sample output of the show ssh sessions command is as follows:

<table>
<thead>
<tr>
<th>SessionId</th>
<th>User</th>
<th>RemoteIp:Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>jsmith</td>
<td>10.10.6.100:1760</td>
</tr>
<tr>
<td>1</td>
<td>sjensen</td>
<td>10.10.8.110:1770</td>
</tr>
<tr>
<td>2</td>
<td>gschroeder</td>
<td>10.10.7.130:1771</td>
</tr>
<tr>
<td>3</td>
<td>tblair</td>
<td>10.10.6.100:1777</td>
</tr>
</tbody>
</table>
Sample output of the `show ssh config` command is as follows:

SSH Server Configuration

State: Enabled
Max Sessions: 7
Timeout: 600
TCP Port: 22
Retry Count: 3
Ciphers: 3des-cbc, blowfish-cbc

Systems

P580 and P882.
Chapter 27: SSL

Overview

This chapter describes the following Secure Socket Layer (SSL) commands:

- `ip https`
- `show ssl cert`
- `show ssl certreq`
- `show ssl ciphers`
- `show ssl config`
- `ssl backcert`
- `ssl certreq`
- `ssl restart`
- `ssl selfcert`

ip https

Command Mode

Global Configuration.

Description

Enables or disables SSL/HTTPS.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip https {port [<tcp-new-port>] [enable]</th>
<th>[enable]}</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip https</td>
<td></td>
</tr>
</tbody>
</table>
SSL

Table 320: ip https Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><tcp-new-port></td>
<td>The port number you want to use for SSL/HTTPS. Valid ports are 443 or 9000 to 65,535. The default port for SSL/HTTPS is 443.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables SSL/HTTPS.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.

show ssl cert

Command Mode

User.

Description

Displays the current SSL server certificate.

Syntax

show ssl cert
Sample Output

Certificate:

Data:
 Version: 3 (0x2)
 Serial Number: 1057592590 (0x3f09950e)
 Signature Algorithm: md5WithRSAEncryption
 Issuer: C=US, ST=Massachusetts, L=Concord, O=Avaya Inc., OU=CCIG, CN=Avaya MultiService Switch/Email=cajunsecurity@avaya.com
 Validity
 Not Before: Jul 7 15:43:10 2003 GMT
 Not After : Jul 6 15:43:10 2013 GMT
 Subject: C=US, ST=Massachusetts, L=Concord, O=Avaya Inc., OU=CCIG, CN=Avaya MultiService Switch/Email=cajunsecurity@avaya.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:aa:69:db:41:17:b0:4f:3c:fb:6c:98:29:ab:c8:
 93:0d:32:c7:ac:60:42:ea:39:02:4e:16:2c:1e:b2:
 12:8a:ea:19:32:94:d0:d5:1b
 Exponent: 65537 (0x10001)
 Signature Algorithm: md5WithRSAEncryption
 04:9e

Systems

P580 and P882.
show ssl certreq

Command Mode
User.

Description
Displays the current certificate signing request (CSR).

Syntax
show ssl certreq

Sample Output
Certificate Request:
 Data:
 Version: 0 (0x0)
 Subject: C=us, ST=ma, L=concord, O=avaya, OU=ccig, CN=ccig/
 Email=techpubs@avaya.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 d4:b1:e8:24:7c:ab:5b:09:c9:29:10:c5:93:08:0e:
 Exponent: 65537 (0x10001)
 Attributes:
 a0:00
 Signature Algorithm: md5WithRSAEncryption
 52:d1
show ssl ciphers

Command Mode
User.

Description
Displays the supported SSL ciphers. The P580 and P882 Multiservice switches support the following cipher suites:

- SSLv3 cipher suites:
 - SSL_RSA_WITH_DES_CBC_SHA
 - SSL_RSA_WITH_3DES_EDE_CBC_SHA
- TLSv1 cipher suites
 - TLS_RSA_WITH_DES_CBC_SHA
 - TLS_RSA_WITH_3DES_EDE_CBC_SHA

Syntax
show ssl ciphers

Sample Output

<table>
<thead>
<tr>
<th>Cipher Suite</th>
<th>Key Exchange</th>
<th>Authentication</th>
<th>Encryption</th>
<th>Mac</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES-CBC3-SHA</td>
<td>RSA</td>
<td>RSA</td>
<td>3DES(168)</td>
<td>SHA1</td>
</tr>
<tr>
<td>DES-CBC-SHA</td>
<td>RSA</td>
<td>RSA</td>
<td>DES(56)</td>
<td>SHA1</td>
</tr>
</tbody>
</table>

Systems
P580 and P882.
show ssl config

Command Mode
User.

Description
Displays the current SSL configuration. The following information is displayed:

- Version of SSL and TLS
- TCP Port
- State of SSL

Syntax
show ssl config

Sample Output

SSL Configuration

Version: SSLv3, TLSv1
TCP Port: 443
State: Enable

Systems
P580 and P882.
ssl backcert

Command Mode

Global Configuration.

Description

Reverts to a backup version of the SSL server certificate. If you revert to a backup certificate, the current certificate is renamed and made the backup for later reuse.

Syntax

ssl backcert

Systems

P580 and P882.

ssl certreq

Command Mode

Global Configuration.

Description

Creates a public-private key pair and a certificate signing request (CSR). You need the following information to create the CSR:

- Two-digit country code
- State or province (full name)
- City
- Organization or company name
- Division or branch name
- Common name (host name of the server)
- E-mail address

After you create the CSR, it is saved to a temporary file in the nonvolatile RAM (NVRAM). Use the "ssl selfcert" command to self sign the CSR.
SSL

Syntax

```plaintext
ssl certreq [512 | 1024]
```

Table 321: ssl certreq Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>Creates a public-private key pair of 512 bits.</td>
</tr>
<tr>
<td>1024</td>
<td>Creates a public-private key pair of 1024 bits.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.

ssl restart

Command Mode

Global Configuration.

Description

Restarts SSL. You must restart SSL after updating the SSL server certificate information.

Syntax

```plaintext
ssl restart
```

Systems

P580 and P882.
ssl selfcert

Command Mode

Global Configuration.

Description

Self-signs a certificate signing request (CSR).

After self-signing a CSR, you must restart SSL for the certificate to take effect. For information on how to restart SSL, see “ssl restart.”

Syntax

ssl selfcert

Systems

P580 and P882.
Chapter 28: Rapid Spanning Tree Protocol

Overview

This chapter describes the following commands:

- `set port edge admin state`
- `set port point-to-point admin status`
- `set port spanning-tree-mode`
- `set port spantree force-protocol-migration`
- `set port spantree priority`
- `set spantree`
- `set spantree config`
- `set spantree default-path-cost`
- `set spantree fwddelay`
- `set spantree hello`
- `set spantree hold-count`
- `set spantree maxage`
- `set spantree portcost`
- `set spantree priority`
- `set spantree version`
- `show spantree`
- `show spantree blocked`
- `show spantree config`
- `show spantree port`
- `show spantree version`
set port edge admin state

Command Mode

Global Configuration.

Description

Specifies whether a port is an edge port or a nonedge port. An edge port is not connected to any other bridge. Only edge ports and point-to-point links can rapidly transition to forwarding state.

If you set edge admin state to edge-port, the **OperEdgePort** field of the **show port** command is also set to edge-port. However, if the port receives a BPDU, the Oper Edge Port setting changes to non-edge-port. (To receive a BPDU, the port must be connected to a bridge and thus is not an edge port.)

Syntax

```
set port edge admin state <mod-swport-range> [...,<mod-swport-range>] {edge-port | non-edge-port}
```

Table 322: set port edge admin state Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-swport-range></td>
<td>The module and port or port range.</td>
</tr>
<tr>
<td>edge-port</td>
<td>Defines the port as an edge port.</td>
</tr>
<tr>
<td>non-edge port</td>
<td>Defines the bridge as a nonedge port.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
set port point-to-point admin status

Command Mode

Global Configuration.

Description

Specifies whether a port is connected to a shared LAN segment or a point-to-point LAN segment. A point-to-point LAN segment is connected to exactly one other bridge (normally with a direct cable between them). Only point-to-point links and edge ports can rapidly transition to forwarding state.

If you set this field to Auto, the switch automatically detects whether the port is connected to a shared link or a point-to-point link. Ports operating in half duplex are set to non-point-to-point, and ports operating in full duplex are set to point-to-point. You can, however, manually set the type of link.

Syntax

set port point-to-point admin status {<mod-num> | <mod-swport-range>} [...,{<mod-num> | <mod-swport-range>}] {force-true | force-false | auto}

Table 323: set port point-to-point admin status Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-swport-range></td>
<td>The module and port or port range.</td>
</tr>
<tr>
<td>force-true</td>
<td>Defines the port as connected to a point-to-point link.</td>
</tr>
<tr>
<td>force-false</td>
<td>Defines the port as connected to a shared LAN segment.</td>
</tr>
<tr>
<td>auto</td>
<td>Automatically detects whether the port is connected to a shared link or a point-to-point link. Ports operating in half duplex are set to non-point-to-point, and ports operating in full duplex are set to point-to-point. If you select this setting, the OperPointToPoint field of the show port command displays the link type that is detected.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
set port spanning-tree-mode

Command Mode

Global Configuration.

Description

Enables or disables Spanning Tree on a port.

Syntax

| To Enable: | set port spanning-tree-mode {<mod-num> | <mod-swport-range>} [...][{<mod-num> | <mod-swport-range>}] enable |
| To Disable: | set port spanning-tree-mode {<mod-num> | <mod-swport-range>} [...][{<mod-num> | <mod-swport-range>}] disable |

Table 324: set port spanning-tree-mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-swport-range></td>
<td>The module and port or port range.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables Spanning Tree on a port. If you disable Spanning Tree on a port, it does not participate in Spanning Tree</td>
</tr>
<tr>
<td>enable</td>
<td>Enables Spanning Tree on a port.</td>
</tr>
</tbody>
</table>

Systems

P550R, P580, P880, and P82.
set port spantree force-protocol-migration

Command Mode

 Global Configuration.

Description

Forces a bridge port to send out RSTP BPDUs. By forcing a bridge port to send RSTP BPDUs, you can determine whether legacy 802.1D bridges are present on a LAN segment.

If you remove a legacy 802.1D bridge from a segment, other RSTP bridges on the segment cannot detect the removal so they continue sending STP BPDUs. However, if you force a bridge port to send RSTP BPDUs, they trigger other RSTP bridges on the segment to generate RSTP BPDUs again.

If the switch is running common Spanning Tree, this command has no effect.

Syntax

```
set port spantree force-protocol-migration <mod-swport-range> [...,<mod-swport-range>]
{802.1D | vlan {<vlan-id> | name <vlan-name>}}
```

Table 325: set port spantree force-protocol-migration Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-swport-range></td>
<td>The module and port or port range.</td>
</tr>
<tr>
<td>802.1D</td>
<td>Use this keyword if the switch is running IEEE 802.1D Spanning Tree. For a detailed description of IEEE 802.1D Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.</td>
</tr>
</tbody>
</table>
Table 325: set port spantree force-protocol-migration Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID of the bridge in which the bridge port is participating. Use the <code>vlan <vlan-id></code> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2</td>
</tr>
<tr>
<td><vlan-name></td>
<td>The VLAN name of the bridge in which the bridge port is participating. Use the <code>vlan name <vlan-name></code> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2</td>
</tr>
</tbody>
</table>

set port spantree priority

Command Mode

Global Configuration.

Description

Sets the priority of a bridge port. A higher priority port (has a lower priority number) is more likely to be chosen as the primary path in the spanning tree when there are two or more paths of equal cost.

The valid range for this field is 0 to 240 in increments of 16. The default setting is 128.

Syntax

```
set port spantree priority <mod-swport-range> [...,<mod-swport-range>] <bport-priority> {802.1D | vlan {<vlan-id> | name <vlan-name>}
```
Table 326: set port spantree priority Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><mod-swport-range></td>
<td>The module and port or port range.</td>
</tr>
<tr>
<td><bport-priority></td>
<td>Priority of the port as a decimal value. A higher priority port (has a lower priority number) is more likely to be chosen as the primary path in the spanning tree when there are two or more paths of equal cost. The valid range for this field is 0 to 240 in increments of 16. The default setting is 128.</td>
</tr>
<tr>
<td>802.1D</td>
<td>Use this keyword if the switch is running IEEE 802.1D Spanning Tree. For a detailed description of IEEE 802.1D Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>The VLAN ID of the bridge in which the bridge port is participating. Use the <code>vlan <vlan-id></code> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2</td>
</tr>
<tr>
<td><vlan-name></td>
<td>The VLAN name of the bridge in which the bridge port is participating. Use the <code>vlan name <vlan-name></code> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
set spantree

Command Mode

Global Configuration.

Description

Enable or disable individual spanning tree bridges. The default state is enabled.

Syntax

| To Enable: | set spantree enable {802.1D | vlan {<vlan-id> | name <vlan-name>}} |
| To Disable: | set spantree disable {802.1D | vlan {<vlan-id> | name <vlan-name>}} |

Table 327: set spantree Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the bridge.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the bridge.</td>
</tr>
<tr>
<td>802.1D</td>
<td>Use this keyword if the switch is running IEEE 802.1D Spanning Tree. For a detailed description of IEEE 802.1D Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>The VLAN ID of the bridge. Use the vlan <vlan-id> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2</td>
</tr>
<tr>
<td><vlan-name></td>
<td>The VLAN name of the bridge. Use the vlan name <vlan-name> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2</td>
</tr>
</tbody>
</table>
Sample Output

The following example disables spanning tree 802.1D protocol on a bridge:

```
(configure)# set spantree disable 802.1D
Bridge successfully disabled
```

Systems

set spantree config

Command Mode

Global Configuration.

Description

Sets the Spanning Tree Protocol configuration. The default setting is per-VLAN.

Syntax

```
set spantree config {ieee | per-vlan | dual-layer | disable}
```

Table 328: set spantree config Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ieee</td>
<td>The entire switch is a single IEEE 802.1D-compliant bridge.</td>
</tr>
<tr>
<td>per-vlan</td>
<td>Each VLAN functions as a separate IEEE 802.1D-compliant bridge. VLAN bridges can only be displayed when in per-vlan or dual-layer mode.</td>
</tr>
<tr>
<td>dual-layer</td>
<td>A proprietary version of per-VLAN, where the vlan id is embedded as a tag within the bridge PDUs.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables spanning tree on the switch.</td>
</tr>
</tbody>
</table>
Rapid Spanning Tree Protocol

Sample Output

The following example sets the spanning tree protocol to ieee.

```
(configure)# set spantree config ieee
Config successfully set to ieee
```

Systems

set spantree default-path-cost

Command Mode

Global Configuration.

Description

Sets the type of default path costs that ports in a specific bridge will use. Options are:

- **common-spanning-tree**—uses the 16-bit default path costs from IEEE Std. 802.1D-1998:

 - For 10 MB ports, 100
 - For 100 MB ports, 19
 - For 1 GB ports, 4
 - For 10 GB ports, 3

- **rapid-spanning-tree**—uses the 32-bit default path costs from IEEE Std. 802.1t:

 - 10 Mbps port—2,000,000
 - 100 Mbps port—200,000
 - 1 Gbps port—20,000
 - 10 Gbps port—2,500

Note:

The switch must be running Rapid Spanning Tree to use the Rapid Spanning Tree default path costs. If the switch is running common Spanning Tree, it uses the common Spanning Tree default path costs regardless of default path cost setting.
set spantree default-path-cost

Syntax

set spantree default-path-cost {common-spanning-tree | rapid-spanning-tree} {802.1D | vlan
{<vlan-id> | name <vlan-name>}}

Table 329: set spantree default-path-cost Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>common-spanning-tree</td>
<td>The 16-bit default path costs from IEEE Std. 802.1D-1998.</td>
</tr>
<tr>
<td>rapid-spanning-tree</td>
<td>The 32-bit default path costs from IEEE Std. 802.1t.</td>
</tr>
<tr>
<td>802.1D</td>
<td>Use this keyword if the switch is running IEEE 802.1D Spanning Tree. For a detailed description of IEEE 802.1D Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2</td>
</tr>
<tr>
<td><vlan-id></td>
<td>The VLAN ID of the bridge. Use the vlan <vlan-id> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2</td>
</tr>
<tr>
<td><vlan-name></td>
<td>The VLAN name of the bridge. Use the vlan name <vlan-name> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
set spantree fwddelay

Command Mode

Global Configuration.

Description

Sets the Spanning Tree forward delay time for a bridge. The forward delay time is the time a port takes to change to the forwarding state. The default time is 15 seconds.

Syntax

set spantree fwddelay <fwddelay-value> {802.1D | vlan {<vlan-id> | name <vlan-name>}}

Table 330: set spantree fwddelay Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><fwddelay-value></td>
<td>The forward delay value for the bridge, in seconds. The range is 4-30 seconds. The default setting is 15 seconds.</td>
</tr>
<tr>
<td>802.1D</td>
<td>Use this keyword if the switch is running IEEE 802.1D Spanning Tree. For a detailed description of IEEE 802.1D Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>The VLAN ID of the bridge. Use the vlan <vlan-id> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.</td>
</tr>
<tr>
<td><vlan-name></td>
<td>The VLAN name of the bridge. Use the vlan name <vlan-name> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.</td>
</tr>
</tbody>
</table>
Sample Output

The following example sets the spanning tree forward delay to 12 seconds.

(configure)# set spantree fwddelay 12 802.1D
Bridge Forward Delay Time Successfully set to 12

Systems

set spantree hello

Command Mode

Global Configuration.

Description

Sets the spanning tree bridge hello time. The bridge hello time is the time between generation of BPDUs by the root bridge. The default time is 2 seconds.

Syntax

set spantree hello <hellotime-value> {802.1D | vlan {<vlan-id> | name <vlan-name>}}

Table 331: set spantree hello Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><hellotime-value></td>
<td>The hello time value for the bridge, in seconds. The ranges is 1-10 seconds. The default setting is 2 seconds.</td>
</tr>
<tr>
<td>802.1D</td>
<td>Use this keyword if the switch is running IEEE 802.1D Spanning Tree. For a detailed description of IEEE 802.1D Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.</td>
</tr>
</tbody>
</table>
Rapid Spanning Tree Protocol

Sample Output

The following example sets the spanning tree hello time to 5 seconds:

```
(configure)# set spantree hello 5 802.1D

Bridge Hello Time Successfully set to 5
```

Systems

Table 331: set spantree hello Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID of the bridge. Use the <code>vlan <vlan-id></code> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2</td>
</tr>
<tr>
<td><vlan-name></td>
<td>The VLAN name of the bridge. Use the <code>vlan name <vlan-name></code> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2</td>
</tr>
</tbody>
</table>
set spantree hold-count

Command Mode

Global Configuration.

Description

Sets the hold count for a bridge.

The *hold count* is the maximum number of BPDUs that are sent out a port in a hello time interval. During any one hello time interval, no more BPDUs than the number that you enter for `<hold-count-value>` will be sent out a port.

Syntax

```
set spantree hold-count <hold-count-value> {802.1D | vlan {<vlan-id> | name <vlan-name>}}
```

Table 332: set spantree hold-count Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><hold-count-value></code></td>
<td>The maximum number of BPDUs that are sent out a port in a hello time interval. During any one hello time interval, no more BPDUs than the number that you enter in this field will be sent out a port. The valid range for this field is 1 to 10 seconds. The default setting is 3 seconds.</td>
</tr>
<tr>
<td>802.1D</td>
<td>Use this keyword if the switch is running IEEE 802.1D Spanning Tree. For a detailed description of IEEE 802.1D Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.</td>
</tr>
</tbody>
</table>
set spantree maxage

Command Mode

Global Configuration.

Description

Sets the maximum amount of time that the bridge retains bridging information. When the maximum age expires, the bridge assumes it has lost connection to the network and sends out requests to be readded to the spanning tree. The default age time is 20 seconds.

Syntax

set spantree maxage <maxage-value> {802.1D | vlan {<vlan_id> name <vlan-name>}}
Sample Output

The following example sets the spanning tree maximum age to 25 seconds.

(configure)# set spantree maxage 25 802.1D
Bridge MaxAge Successfully set to 25

Systems

Table 333: set spantree maxage Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><maxage-value></td>
<td>The maximum amount of time that the bridge retains bridging information. When the maximum age expires, the bridge assumes it has lost connection to the network and sends out requests to be readded to the spanning tree. The valid range for this field is 6 to 40 seconds. The default setting is 20 seconds.</td>
</tr>
<tr>
<td>802.1D</td>
<td>Use this keyword if the switch is running IEEE 802.1D Spanning Tree. For a detailed description of IEEE 802.1D Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>The VLAN ID of the bridge. Use the <code>vlan <vlan-id></code> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.</td>
</tr>
<tr>
<td><vlan-name></td>
<td>The VLAN name of the bridge. Use the <code>vlan name <vlan-name></code> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.</td>
</tr>
</tbody>
</table>
set spantree portcost

Command Mode

Global Configuration.

Description

Sets the path cost for this port. The ports that you prefer be used by the spanning tree should have the lowest path cost.

If the switch is running common Spanning Tree, the valid range for this field is 0 to 65535.
If the switch is running Rapid Spanning Tree, the valid range for this field is 0 to 200,000,000.
The default setting is 0. If this field is set to 0, the port uses the default path cost for the bridge.

Common Spanning Tree defaults are:
- 10 Mbps port—100
- 100 Mbps port—19
- 1 Gbps port—4
- 10 Gbps port—3

Rapid Spanning Tree defaults are:
- 10 Mbps port—2,000,000
- 100 Mbps port—200,000
- 1 Gbps port—20,000
- 10 Gbps port—2,500

Syntax

set spantree portcost <mod-swport-range> [...]<mod-swport-range> <port-cost-value> {802.1D | vlan {<vlan-id> | name <vlan-name>}}
The following example sets the path cost for the bridge.

```
(configure)# set spantree portcost 5/1 15 802.1D
Port 5/1 path cost successfully set to 15.
```

Systems

set spantree priority

Command Mode

Global Configuration.

Description

Sets the bridge priority for a particular bridge. Enter the priority as hexadecimal value.

The valid range for this field is 0x0000 (0) to 0xF000 (61,440) in increments of 0x1000 (4,096).
The default setting is 0x8000 (32,768).

Note:

When you upgrade the switch to v6.0 application software, all bridge priorities are
reset to the default setting of 0x8000. Bridge priorities from earlier versions of
software are not preserved.

Syntax

set spantree priority <bridge-priority> {802.1D | vlan {<vlan-id> | name <vlan-name>}}

Table 335: set spantree priority Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><bridge-priority></td>
<td>The bridge priority, specified as a two byte value in hexadecimal (0x8000). The valid range for this field is 0x0000 (0) to 0xF000 (61,440) in increments of 0x1000 (4,096). The default setting is 0x8000 (32,768).</td>
</tr>
<tr>
<td>802.1D</td>
<td>Use this keyword if the switch is running IEEE 802.1D Spanning Tree. For a detailed description of IEEE 802.1D Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>The VLAN ID of the bridge. Use the vlan <vlan-id> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.</td>
</tr>
<tr>
<td><vlan-name></td>
<td>The VLAN name of the bridge. Use the vlan name <vlan-name> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.</td>
</tr>
</tbody>
</table>
set spantree version

Command Mode

Global Configuration.

Description

Sets the version of spanning tree that you want the switch to run.

Syntax

set spantree version {common-spanning-tree | rapid-spanning-tree}

Table 336: set spantree version Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>common-spanning-tree</td>
<td>Sets the switch to run Spanning Tree Protocol (STP). When running this mode, the switch generates STP BPDUs.</td>
</tr>
<tr>
<td>rstp</td>
<td>Sets the switch to run Rapid Spanning Tree Protocol (RSTP).</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
show spantree

Command Mode
User.

Description
Displays information about one or all spanning trees.

Syntax
```
show spantree {all | 802.1D | vlan {<vlan-id> | name <vlan-name>}}
```

Table 337: show spantree Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| all | Display all the bridges in configuration mode.
 ● IEEE mode - Displays only the 802.1D bridge.
 ● per-vlan or dual-layer mode - Displays all of the VLAN bridges. |
| 802.1D | Use this keyword if the switch is running IEEE 802.1D Spanning Tree. For a detailed description of IEEE 802.1D Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2. |
| <vlan-id> | The VLAN ID of the bridge.
 Use the `vlan <vlan-id>` keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2 |
| <vlan-name> | The VLAN name of the bridge.
 Use the `vlan name <vlan-name>` keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2 |
Sample Output

The following example shows all of the spanning tree bridges that are configured on the switch:

> show spantree all

<table>
<thead>
<tr>
<th>Name/Vlan</th>
<th>Status</th>
<th>Bridge ID</th>
<th>Root Port</th>
<th>Root Cost</th>
<th>Designated Root</th>
<th>Top Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Enabled</td>
<td>0x800100306DBBA000</td>
<td>0x0000</td>
<td>0</td>
<td>0x800100306DBBA000</td>
<td>0</td>
</tr>
<tr>
<td>vlan1</td>
<td>Enabled</td>
<td>0x806500306DBBA000</td>
<td>0x0000</td>
<td>0</td>
<td>0x806500306DBBA000</td>
<td>1</td>
</tr>
<tr>
<td>vlan2</td>
<td>Enabled</td>
<td>0x806600306DBBA000</td>
<td>0x0000</td>
<td>0</td>
<td>0x806600306DBBA000</td>
<td>1</td>
</tr>
<tr>
<td>vlan3</td>
<td>Enabled</td>
<td>0x806700306DBBA000</td>
<td>0x0000</td>
<td>0</td>
<td>0x806700306DBBA000</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name/Vlan</th>
<th>TimeSince TopChange</th>
<th>MaxAge</th>
<th>HelloTime</th>
<th>FwdDelay</th>
<th>Bridge MaxAge</th>
<th>Bridge HelloTime</th>
<th>Bridge FwdDelay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>04:36:40</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>vlan1</td>
<td>04:35:44</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>vlan2</td>
<td>04:35:44</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>vlan3</td>
<td>04:35:44</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>2</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name/Vlan</th>
<th>Priority</th>
<th>HoldCount</th>
<th>PathCostDefault</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0x8000</td>
<td>3</td>
<td>rapid-spanning-tree</td>
</tr>
<tr>
<td>vlan1</td>
<td>0x8000</td>
<td>3</td>
<td>rapid-spanning-tree</td>
</tr>
<tr>
<td>vlan2</td>
<td>0x8000</td>
<td>3</td>
<td>rapid-spanning-tree</td>
</tr>
<tr>
<td>vlan3</td>
<td>0x8000</td>
<td>3</td>
<td>rapid-spanning-tree</td>
</tr>
</tbody>
</table>

Systems

show spantree blocked

Command Mode

User.

Description

Displays, by VLAN, the ports that are currently in the Blocking state.

Syntax

show spantree blocked

Sample Output

<table>
<thead>
<tr>
<th>Mod/Port</th>
<th>PortId</th>
<th>Priority</th>
<th>Number</th>
<th>Role</th>
<th>State</th>
<th>Admin Cost</th>
<th>Oper Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/2</td>
<td>0x80AA</td>
<td>0x80(128)</td>
<td>170</td>
<td>Backup</td>
<td>Discard</td>
<td>0</td>
<td>20000</td>
</tr>
<tr>
<td>6/2</td>
<td>0x80DA</td>
<td>0x80(128)</td>
<td>218</td>
<td>Backup</td>
<td>Discard</td>
<td>0</td>
<td>200000</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
show spantree config

Command Mode
 User.

Description
 Displays the current global spanning tree configuration.

Syntax
 show spantree config

Sample Output
 The following example displays the spanning tree configuration on the switch.
 > show spantree config
 Spanning Tree Config: Per-Vlan

Systems
show spantree port

Command Mode
User.

Description
Shows the port attributes for all bridge ports in a particular bridge.

Syntax
show spantree port {802.1D | vlan {<vlan-id> | name <vlan-name>}}

Table 338: show spantree port Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1D</td>
<td>Displays all bridge ports in the 802.1D bridge. 802.1D bridges can be viewed only when the switch is running 802.1D Spanning Tree.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>The VLAN ID of the bridge for which you want to view bridge ports. Use the vlan <vlan-id> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2</td>
</tr>
<tr>
<td><vlan-name></td>
<td>The VLAN name of the bridge for which you want to view bridge ports. Use the vlan name <vlan-name> keyword and variable when the switch is running per-VLAN or dual-layer Spanning Tree. For a detailed description of per-VLAN and dual-layer Spanning Tree, see Chapter 7, “Configuring Rapid Spanning Tree,” in User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2</td>
</tr>
</tbody>
</table>
Sample Output

The following example displays the port attributes for the bridge ports on the VLAN configured for 802.1D.

```plaintext
> show spantree port vlan 802.1D
```

<table>
<thead>
<tr>
<th>Name/Vlan</th>
<th>Status</th>
<th>Bridge ID</th>
<th>Root Port</th>
<th>Root Cost</th>
<th>Designated Root</th>
<th>Top Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan3</td>
<td>Enabled</td>
<td>0x806800306DBBA000</td>
<td>0x0000</td>
<td>0</td>
<td>0x806800306DBBA000</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mod/Port</th>
<th>PortId</th>
<th>Priority</th>
<th>Number</th>
<th>Role</th>
<th>State</th>
<th>Admin Cost</th>
<th>Oper Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/4</td>
<td>0x80AC</td>
<td>0x80(128)</td>
<td>172</td>
<td>Desig</td>
<td>Forward</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>7/1</td>
<td>0x8109</td>
<td>0x80(128)</td>
<td>265</td>
<td>Disable</td>
<td>Discard</td>
<td>0</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mod/Port</th>
<th>Designated Root</th>
<th>DesCost</th>
<th>Designated Bridge</th>
<th>DesPort</th>
<th>FwdTrans</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/4</td>
<td>0x806800306DBBA000</td>
<td>0</td>
<td>0x806800306DBBA000</td>
<td>0x80AC</td>
<td>2</td>
</tr>
<tr>
<td>7/1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mod/Port</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/4</td>
<td>STP</td>
</tr>
<tr>
<td>7/1</td>
<td>-</td>
</tr>
</tbody>
</table>

Systems

show spantree version

Command Mode

User.

Description

Displays the version of Spanning Tree that the switch is running: either common Spanning Tree or Rapid Spanning Tree Protocol (RSTP).

Syntax

show spantree version

Sample Output

Spanning Tree Config: Per-Vlan
Protocol Version: common-spanning-tree (0)

Systems

P580 and P882.
Chapter 29: Switch Fabric

Overview

This chapter describes the following commands:

- `set fabric configure-redundant-hardware`
- `set fabric enable-redundant-element`
- `set fabric toggle-active-controller`
- `show fabric status`

```
set fabric configure-redundant-hardware
```

Command Mode

Global Configuration.

Description

Enables or disables redundant (switch fabric) hardware. The default setting is disabled. This command does not have reverse mapping. It is not saved to the running or startup configuration file. The configuration is both user and run-time modified.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set fabric configure-redundant-hardware enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>set fabric configure-redundant-hardware disable</td>
</tr>
</tbody>
</table>

Sample Output

The following example disables the redundant hardware.

```
(configure)# set fabric configure-redundant-hardware disable
```

Systems

set fabric enable-redundant-element

Command Mode
Global Configuration.

Description
Sets the enabled redundant element.
This command does not have reverse mapping. It is not saved to the running or startup configuration file. The configuration is both user and run-time modified.

Syntax
set fabric enable-redundant-element {normal | 1 | 2 | 3 | 4 | 5 | 6}

Note:
This command is for debug purposes only and is not recommended for use in a production environment.

Table 339: set fabric enable-redundant-element Parameters
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{normal</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>● Normal means that the normally enabled redundant element is turned on.</td>
</tr>
<tr>
<td></td>
<td>● 1-6 means that element associated with the number is turned on.</td>
</tr>
</tbody>
</table>

Systems
set fabric toggle-active-controller

Command Mode

Global Configuration.

Description

Toggles the active controller between the current active controller and the (standby) redundant controller.

This command does not have reverse mapping. It is not saved to the running or startup configuration file. The configuration is both user and run-time modified.

Syntax

set fabric toggle-active-controller

Note:
This command is for debug purposes only and is not recommended for use in a production environment.

Systems

show fabric status

Command Mode

User.

Description

Displays the switch fabric status.

Syntax

show fabric status

Sample Output

The following example displays the fabric status.

> show fabric status
Component State
Switch Controller: # 0 Active
Redundant Controller: Available
Switch Elements: Normal # 0
Redundant Element: Available
Enabled Redundant Element Normal

Redundant Hardware Configured

Systems

Chapter 30: System

Overview

This chapter describes the following commands:

- `boot system flash`
- `calendar set`
- `clear utilization high-threshold`
- `clear utilization monitoring`
- `clear utilization threshold-event`
- `clock set`
- `clock summer-time recurring`
- `clock timezone`
- `copy`
- `copy <filename> running-config`
- `copy <filename> startup-config`
- `copy <filename_opt_path> tftp`
- `copy card-image bootflash`
- `copy card-image flash`
- `copy <filename1> pcmcia <filename2>`
- `copy pcmcia <filename1> <filename2>`
- `copy running-config`
- `copy running-config startup-config`
- `copy running-config tftp`
- `copy startup-config`
- `copy startup-config running-config`
- `copy startup-config tftp`
- `copy tftp`
- `copy tftp bootflash`
- `copy tftp flash`
System

- `copy tftp pcmcia`
- `copy tftp running-config`
- `copy tftp startup-config`
- `cpu_redundancy console`
- `cpu_redundancy hello-interval`
- `cpu-redundancy mac-prefix`
- `cpu_redundancy synchronize`
- `delete pcmcia`
- `dir`
- `erase`
- `erase legacy-configs`
- `erase scripts`
- `erase startup-config`
- `get 48_port_mode`
- `get Fabric_mode`
- `hostname`
- `ip http help server`
- `nvram initialize`
- `pcmcia initialize`
- `reload`
- `reset`
- `secure-mode`
- `set 48_port_mode`
- `set debug`
- `set Fabric_mode`
- `set utilization high-threshold`
- `set utilization monitoring`
- `set utilization threshold-event`
- `setup`
- `show boot`
- `show calendar`
- `show clock`
boot system flash

Command Mode
Global Configuration.

Description
Specifies which system image the switch loads at startup. Configures the image to boot from the FEPROM. The no form of this command restores the default system flash setting (app1).

Tip:
If you set the startup image to CARD APP1 or CARD APP2, insert the PCMCIA card that contains a valid software image into the slot of the supervisor before you reset the switch. If the PCMCIA slot does not contain a card or the inserted card does not have a valid software image when you reset the switch, the switch will start up in Boot mode.
System

Syntax

```
boot system flash {app1 | app2 | cardapp1 | cardapp2}
```

Table 340: boot system flash Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>app1</td>
<td>app2</td>
</tr>
<tr>
<td>cardapp1</td>
<td>cardapp2</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the system image that the switch loads at startup to cardapp2 on the pcmcia.

```
(configure)# boot system flash cardapp2
Boot flag set to ‘cardapp2’.
```

Systems

P580 and P882.
calendar set

Command Mode
Privileged.

Description
Sets the system calendar.

Syntax
calendar set <time> {<date> <month> | <month> <date>} <year>

Table 341: calendar set Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><time></td>
<td>The time in the format hh:mm:ss.</td>
</tr>
<tr>
<td><date></td>
<td>Current day in the month by date.</td>
</tr>
<tr>
<td><month></td>
<td>Current month by name.</td>
</tr>
<tr>
<td><year></td>
<td>Current year in four digits.</td>
</tr>
</tbody>
</table>

Sample Output
The following command sets the calendar date.

(configure)# calendar set 14:08:00 05 October 1999

Systems
clear utilization high-threshold

Command Mode

Global Configuration.

Description

Resets the high utilization threshold to its default setting of 95 percent. You can reset the high utilization threshold for the CPU, forwarding engines on 80-series media modules, or forwarding engine on the supervisor module.

For the switch to generate events when the high-utilization threshold is exceeded, event logging must be enabled for utilization monitoring. To enable event logging for utilization monitoring, use the set utilization threshold-event command.

Syntax

clear utilization high-threshold {cpu | FIRE | FORE}

Table 342: clear utilization high-threshold Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu</td>
<td>Resets the high threshold for CPU utilization. 100% CPU utilization is the total capacity of the supervisor module to forward slow path traffic. When 100% utilization is reached, the performance of the switch may degrade.</td>
</tr>
<tr>
<td>FIRE</td>
<td>Resets the high threshold for utilization of the forwarding engines on 80-series media modules. 100% FIRE utilization is the total capacity of the forwarding engines on 80-series media modules to forward in band traffic. When 100% utilization is reached, the performance of the switch may degrade.</td>
</tr>
<tr>
<td>FORE</td>
<td>Resets the high threshold for utilization of the forwarding engine on the supervisor module. 100% FORE utilization is the total capacity of the supervisor module to forward out-of-band traffic. When 100% utilization is reached, the performance of the switch may degrade.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
clear utilization monitoring

Command Mode

Global Configuration.

Description

Disables utilization monitoring for the CPU or forwarding engines. The default setting for utilization monitoring is disabled.

Syntax

```
clear utilization monitoring {cpu | forwarding-engine}
```

Table 343: clear utilization monitoring Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu</td>
<td>Disables monitoring of CPU utilization.</td>
</tr>
<tr>
<td>forwarding-engine</td>
<td>Disables monitoring of 80-series forwarding engines.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
clear utilization threshold-event

Command Mode
Global Configuration.

Description
Disables event logging for utilization monitoring of the CPU or forwarding engines. When event logging is enabled, the switch generates an event if the high-utilization threshold is exceeded. The default setting for event logging of utilization monitoring is disabled.

Syntax

```
clear utilization threshold-event {cpu | forwarding-engine}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu</td>
<td>Disables event logging for CPU utilization.</td>
</tr>
<tr>
<td>forwarding-engine</td>
<td>Disables event logging for utilization of 80-series forwarding engines.</td>
</tr>
</tbody>
</table>

Systems
P580 and P882.
clock set

Command Mode

Privileged.

Description

Sets the system clock.

Syntax

clock set <time> {<date> <month> | <month> <date>} <year>

Table 345: clock set Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><time></td>
<td>The time in the format hh:mm:ss.</td>
</tr>
<tr>
<td><day></td>
<td>Current day in the month by name.</td>
</tr>
<tr>
<td><month></td>
<td>Current month by name.</td>
</tr>
<tr>
<td><year></td>
<td>Current year in four digits.</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets the clock to 2:08 p.m. (14:08:00) on October 5, 2003.

(configure)# clock set 14:08:00 05 October 2003

Systems

clock summer-time recurring

Command Mode
Global Configuration.

Description
Configures the switch to automatically change to summer time hours (U.S. Daylight Savings Time). The command format allows for an annual configuration and a one-time change for a particular year. To disable automatic summer time use the no form of this command. If parameters are excluded for recurring summer time hours, then summer time is set to default.

Syntax

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><week></td>
<td>Week of the month (1 to 5 (where 5=last)).</td>
</tr>
<tr>
<td><day></td>
<td>Day of the week (for example: Sunday, Monday).</td>
</tr>
<tr>
<td><month></td>
<td>Month (for example: January, February).</td>
</tr>
<tr>
<td><date></td>
<td>Date of the month (1 to 31).</td>
</tr>
<tr>
<td>hh:mm</td>
<td>Time (military format) in hours and minutes.</td>
</tr>
<tr>
<td><offset></td>
<td>The number of minutes to add during summer time (default 60). (Optional)</td>
</tr>
</tbody>
</table>

Sample Output

The following command sets the recurring summer time hours from the first week of April on Sunday at 2:00 a.m. to the second week in January on Monday at 2:00 a.m.

```
(configure)# clock summer-time recurring 1 Sunday Apr 02:00 2 Mon Jan 02:00
Set of recurring summer time hours succeeded
```

Systems
clock timezone

Command Mode
Privileged.

Description
Sets the time zone.

Syntax
clock timezone {<zone-name> | <hours> [<minutes>]}

Table 347: clock timezone Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><zone-name></td>
<td>The timezone in a three letter abbreviation.</td>
</tr>
<tr>
<td><hours></td>
<td>Hours offset from UTC (+/-). You must enclose the hour value in " ".</td>
</tr>
<tr>
<td><minutes></td>
<td>Minutes offset from UTC.</td>
</tr>
</tbody>
</table>

Sample Output
The following command set the time zone to Central Standard time.

```
# clock timezone cst
```

Systems
copy

Command Mode
Privileged.

Description
Copy a specified file in NVRAM to another specified file in NVRAM.

Syntax
copy <source filename> <dest filename>

Table 348: copy Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><source filename></td>
<td>The name of the source file in NVRAM. It must be an ASCII script file, with a 1-8 letter base filename, and file extension of ".txt"</td>
</tr>
<tr>
<td><dest filename></td>
<td>The name of the destination file in NVRAM. It must be an ASCII script file, with a 1-8 letter base filename, and file extension of ".txt"</td>
</tr>
</tbody>
</table>

Sample Output
The following example shows the copy <source filename> <dest filename> command.

`# copy ripcfg.txt test.txt`
Copied file '/NVRAM/ripcfg.txt' to file '/NVRAM/test.txt'

Systems
copy <filename> running-config

Command Mode

Global Configuration.

Description

Executes the specified file in NVRAM. The running (current) configuration displays as a merge of the executed file and the existing configuration, with the executed file taking precedence.

Syntax

```
copy <filename> running-config
```

Table 349: copy <filename> running-config Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><filename></td>
<td>The name of the file in NVRAM. It must be an ASCII script file, with a 1-8 letter base filename, and file extension of ".txt"</td>
</tr>
</tbody>
</table>

Sample Output

The following example shows the `copy <filename> running-config` command.

```
(configure)# copy 51.txt running-config
Executing script ’/NVRAM/51.txt’...
Script output written to file ’logfile.txt’.
```

Systems

copy <filename> startup-config

Command Mode
Privileged.

Description
Copies the specified file located in NVRAM to the startup (bootup) configuration.

Syntax
copy <filename> startup-config

Table 350: copy <filename> startup-config Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><filename></td>
<td>The name of the file in NVRAM. It must be an ASCII script file, with a 1-8 letter base filename, and file extension of ".txt"</td>
</tr>
</tbody>
</table>

Sample Output
The following example shows the copy <filename> startup-config command.

```
# copy ripcfg.txt startup-config
Copied file '/NVRAM/ripcfg.txt' to file '/NVRAM/startup.txt'
```

Systems
copy <filename_opt_path> tftp

Command Mode

Privileged.

Description

Uploads a specified file in NVRAM to a specified TFTP server.

Syntax

copy <filename_opt_path> tftp <ip-addr>

Table 351: copy <filename_opt_path> tftp Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><filename_opt_path></td>
<td>The name of the file in NVRAM. It must be an ASCII script file, with a 1-8 letter base filename, and file extension of ".txt"</td>
</tr>
<tr>
<td><ip-addr></td>
<td>The IP address of the TFTP server</td>
</tr>
</tbody>
</table>

Sample Output

The following example shows the `copy <filename_opt_path> tftp <ip-addr>` command.

```
# copy jadams/test.txt tftp 205.181.0.205
Copied file ‘test.txt’ to file ‘jadams/test.txt’ on TFTP server 205.181.0.205
```

Systems

copy card-image bootflash

Command Mode

Privileged.

Description

Copies card FLASH images to and from the PCMCIA flash card.

Syntax

```
copy card-image bootflash {boot | cardboot} {boot | cardboot}
```

Table 352: copy card-image bootflash Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{boot</td>
<td>cardboot}</td>
</tr>
</tbody>
</table>

Sample Output

The following example copies the boot image from boot to cardboot.

```
# copy card-image bootflash boot cardboot
```

Systems

P580 and P882.
copy card-image flash

Command Mode

Global Configuration.

Description

Copies card FLASH images to and from the PCMCIA flash card.

Syntax

copy card-image flash {app1 | app2 | cardapp1 | cardapp2} {app1 | app2 | cardapp1 | cardapp2}

Table 353: copy card-image flash Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{app1</td>
<td>app2</td>
</tr>
</tbody>
</table>

Sample Output

The following example copies the flash image from app1 to cardapp2.

```
(configure)# copy card-image flash app1 cardapp2
Copied file 'jadams/test.txt' from TFTP server 205.181.0.205 to 'test.txt'
```

Systems

P580 and P882.
copy <filename1> pcmcia <filename2>

Command Mode

Global Configuration.

Description

Copies a file <filename1> from the /NVRAM file system to the /pcmcia file system <filename2>.

Syntax

copy <filename1> pcmcia <filename2>

Table 354: copy <filename1> pcmcia <filename2> Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><filename1></td>
<td>File from /NVRAM files system.</td>
</tr>
<tr>
<td><filename2></td>
<td>File to /pcmcia file system.</td>
</tr>
</tbody>
</table>

Sample Output

The following example copies a file from NVRAM to PCMCIA.

(configure)# copy boston.txt pcmcia boston2.txt
Copied file ‘boston.txt’ from /NVRAM system to /pcmcia system.

Systems

P580 and P882.
copy pcmcia <filename1> <filename2>

Command Mode
 Global Configuration.

Description
 Copies a file <filename1> from the /pcmcia file system to the NVRAM file system <filename2>.

Syntax
 copy pcmcia <filename1> <filename2>

Table 355: copy pcmcia <filename1> <filename2> Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><filename1></td>
<td>File from /pcmcia files system.</td>
</tr>
<tr>
<td><filename2></td>
<td>File to /NVRAM file system.</td>
</tr>
</tbody>
</table>

Sample Output
 The following example copies a file from PCMCIA to NVRAM.

 (configure)# copy pcmcia jerry.txt jerry2.txt
 Copied file ‘jerry.txt’ from /pcmcia system to /NVRAM system.

Systems
 P580 and P882.
copy running-config

Command Mode

Privileged.

Description

Saves the running configuration to a file in NVRAM.

Syntax

```
copy running-config <filename>
```

Table 356: copy running-config Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><filename></td>
<td>The name of the destination file in NVRAM. It must be an ASCII script file, with a 1-8 letter base filename, and file extension of ".txt"</td>
</tr>
</tbody>
</table>

Sample Output

The following example shows the `copy running-config` command.

```
# copy running-config text.txt
Wrote running-config to '/NVRAM/test.txt'
```

Systems

copy running-config startup-config

Command Mode
Privileged.

Description
Saves the running (current) configuration as the startup (bootup) configuration in NVRAM.

Syntax
copy running-config startup-config

Sample Output
The following example shows the copy running-config startup-config command.

```
# copy running-config startup-config
Wrote running-config to '/NVRAM/startup.txt'
```

Systems

copy running-config tftp

Command Mode
Privileged.

Description
Uploads the running (current) configuration to the specified filename on the specified TFTP server.

Syntax
copy running-config tftp <filename_opt_path> <ip-addr>
Sample Output

The following example shows the copy running-config tftp command.

```bash
# copy running-config tftp jadams/running.txt 205.181.0.205
Copied running-config to file 'jadams/running.txt' on TFTP server 205.181.0.205
```

Systems

copy startup-config

Command Mode

Privileged.

Description

Copy the startup (bootup) configuration to the specified file in NVRAM.

Syntax

```bash
copy startup-config <filename>
```

Table 358: copy startup-config Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><filename></td>
<td>The name of the destination file in NVRAM. It must be an ASCII script file, with a 1-8 letter base filename, and file extension of ".txt".</td>
</tr>
</tbody>
</table>
Sample Output

The following example shows the copy startup-config command.

```bash
# copy startup-config text.txt
Copied file '/NVRAM/startup.txt' to file '/NVRAM/test.txt'
```

Systems

copy startup-config running-config

Command Mode

Global Configuration.

Description

Executes the startup (bootup) configuration. The running (current) configuration displays as a merge of the executed file and the existing configuration, with the executed file taking precedence.

Syntax

```
copy startup-config running-config
```

Systems

The following example shows the copy startup-config running-config command.

```
(configure)# copy startup-config running-config
Executing script '/NVRAM/startup.txt'...
Script output written to file 'logfile.txt'.
```

Systems

copy startup-config tftp

Command Mode

Privileged.

Description

Uploads the startup (bootup) configuration to the specified file on the specified TFTP server.

Syntax

copy startup-config tftp <filename_opt_path> <ip-addr>

Table 359: copy startup-config tftp Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><filename_opt_path></td>
<td>The name of the destination file in NVRAM. It must be an ASCII script file, with a 1-8 letter base filename, and file extension of ".txt".</td>
</tr>
<tr>
<td><ip-addr></td>
<td>The IP address of the TFTP server.</td>
</tr>
</tbody>
</table>

Sample Output

The following example shows the copy startup-config tftp command.

```
# copy startup-config tftp jadams/startup.txt 205.181.0.205
Copied startup-config to file ’jadams/startup.txt’ on TFTP server 205.181.0.205
```

Systems

copy tftp

Command Mode

Privileged.

Description

Copies the specified file from the specified TFTP server to NVRAM.

Syntax

```
copy tftp <filename_opt_path> <ip-addr>
```

Table 360: copy tftp Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><filename_opt_path></code></td>
<td>The name of the file on the TFTP server and in NVRAM, which may include a relative sub-directory name on the TFTP server. It must have a 1-8 letter base filename, and a three letter file extension.</td>
</tr>
<tr>
<td><code><ip-addr></code></td>
<td>The IP address of the TFTP server.</td>
</tr>
</tbody>
</table>

Sample Output

The following example copies a file from a TFTP server to NVRAM.

```
# copy tftp jadams/test.txt 205.181.0.205
Copied file 'jadams/test.txt' from TFTP server 205.181.0.205 to 'test.txt'
```

Systems

copy tftp bootflash

Command Mode
Global Configuration.

Description
Copies a specified binary boot image from a specified TFTP server to bootflash.

Syntax
copy tftp bootflash <image_opt_path> <tftp-server>

Table 361: copy tftp bootflash Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><image_opt_path></td>
<td>The name of the binary image on the TFTP server; which may include a relative sub-directory name.</td>
</tr>
<tr>
<td><tftp-server></td>
<td>The IP address of the TFTP server.</td>
</tr>
</tbody>
</table>

Sample Output
The following example copies a boot image from a TFTP server to bootflash.

 (configure)# copy tftp bootflash m55rboot_v3.0.0.bin 205.181.0.205
 Received good file header.
 Memory erase in progress.
 Memory erase successfully completed.
 Transfer in progress ...
 Transferred 125952 bytes of m55rboot_v3.0.0.bin
 Transferred 197120 bytes of m55rboot_v3.0.0.bin
 Transferred 266240 bytes of m55rboot_v3.0.0.bin
 Transferred 334848 bytes of m55rboot_v3.0.0.bin
 Transferred 403456 bytes of m55rboot_v3.0.0.bin
 Transferred 467456 bytes of m55rboot_v3.0.0.bin
 Transferred 521096 bytes of m55rboot_v3.0.0.bin
 Copied file ‘m55rboot_v3.0.0.bin’ from TFTP server 205.181.0.205 to BOOT

Systems
copy tftp flash

Command Mode

Global Configuration.

Description

Copies a specified binary image from a specified TFTP server to the flash location APP1 or APP2.

Syntax

```
copy tftp flash {app1 | app2} <image_opt_path> <ip-addr>
```

Table 362: copy tftp flash Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{app1</td>
<td>app2}</td>
</tr>
<tr>
<td><image_opt_path></td>
<td>The name of the binary image on the TFTP server; which may include a relative sub-directory name.</td>
</tr>
<tr>
<td><ip-addr></td>
<td>The IP address of the TFTP server.</td>
</tr>
</tbody>
</table>

Sample Output

The following example copies a boot image from a TFTP server to bootflash.

```
(configure)# copy tftp flash app1 m5500r_a4.0.2.bin 205.181.0.205
Received good file header.
Memory erase in progress.
Memory erase successfully completed.
Transfer in progress ... 
  Transferred 143872 bytes of m5500r_a4.0.2.bin
  Transferred 219136 bytes of m5500r_a4.0.2.bin
  Transferred 295936 bytes of m5500r_a4.0.2.bin
  Transferred 372736 bytes of m5500r_a4.0.2.bin
  Transferred 449536 bytes of m5500r_a4.0.2.bin
.
Copied file ‘m5500r_a4.0.2.bin’ from TFTP server 205.181.0.205 to APP1
```

Systems

copy tftp pcmcia

Command Mode
Global Configuration.

Description
Copies a specified binary image from a specified TFTP server to the PCMCIA flash card.

Syntax
```
copy tftp pcmcia {cardapp1 | cardapp2} <image_opt_path> <ip-addr>
```

Table 363: copy tftp pcmcia Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{cardapp1</td>
<td>cardapp2}</td>
</tr>
<tr>
<td><image_opt_path></td>
<td>The name of the binary image on the TFTP server. This field name may include a relative sub-directory name.</td>
</tr>
<tr>
<td><ip-addr></td>
<td>The IP address of the TFTP server.</td>
</tr>
</tbody>
</table>

Sample Output
The following example copies a boot image from a TFTP server to cardapp2 on the PCMCIA card:

```
(configure)# copy tftp pcmcia cardapp2 m5500r_a4.0.2.bin 205.181.0.205
Received good file header.
Memory erase in progress.
Memory erase successfully completed.
Transfer in progress ... Transfered 143872 bytes of m5500r_a5.0.12.bin
Transfered 219136 bytes of m5500r_a5.0.12.bin
Transfered 295936 bytes of m5500r_a5.0.12.bin
Transfered 372736 bytes of .
```

Systems
P580 and P882.
copy tftp running-config

Command Mode

Global Configuration.

Description

Copies a specified filename from a specified TFTP server, and executes a script. The running configuration displays as merge of the executed file and the existing configuration, with the executed file taking precedence.

Syntax

copy tftp running-config <filename_opt_path> <ip-addr>

Table 364: copy tftp running-config Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><filename_opt_path></td>
<td>The name of the file on the TFTP server; may include a relative sub-directory name. It must be an ASCII script file, with a 1-8 letter base filename, and file extension of ".txt".</td>
</tr>
<tr>
<td><ip-addr></td>
<td>The IP address of the TFTP server.</td>
</tr>
</tbody>
</table>

Sample Output

The following example copies the indicated file to the running-config file.

```
(configure)# copy tftp running-config jadams/ripcfg.txt 205.181.0.205
Executing script '/NVRAM/ripcfg.txt'...
Script output written to file 'logfile.txt'.
Copied file 'jadams/ripcfg.txt' from TFTP server 205.181.0.205 to running-config\
```

Systems

copy tftp startup-config

Command Mode
Privileged.

Description
Copies a specified file from a specified TFTP server to the startup (bootup) configuration in NVRAM.

Syntax
copy tftp startup-config <filename_opt_path> <ip-addr>

Table 365: copy tftp startup-config Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><filename_opt_path></td>
<td>The name of the file on the TFTP server; may include a relative sub-directory name. It must be an ASCII script file, with a 1-8 letter base filename, and file extension of ".txt".</td>
</tr>
<tr>
<td><ip-addr></td>
<td>The IP address of the TFTP server.</td>
</tr>
</tbody>
</table>

Sample Output
The following example copies the indicated file to the startup configuration file.

```
# copy tftp startup-config jadams.txt 205.181.0.205
Copied file `jadams.txt` from TFTP server 205.181.0.205 to startup-config
```

Systems
cpu_redundancy console

Command Mode

Global Configuration.

Description

Changes the ethernet console IP address for the supervisor module in the specified slot.

Syntax

cpu_redundancy console {slot1 | slot2} <ip-addr>

Table 366: cpu_redundancy console Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><ip-addr></td>
<td>The new IP address of the Ethernet console.</td>
</tr>
</tbody>
</table>

Sample Output

The following example changes the ethernet console IP address of the supervisor module in slot 2.

(configure)# cpu_redundancy console slot2 1.1.1.1

Systems

cpu_redundancy hello-interval

Command Mode

Global Configuration.

Description

Sets the hello time in seconds for the standby supervisor. The valid range is 1 to 300 seconds. The default setting is 5 seconds. The no command restores the default setting.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>cpu_redundancy hello-interval <seconds></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no cpu_redundancy hello-interval</td>
</tr>
</tbody>
</table>

Table 367: cpu_redundancy hello-interval Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><seconds></td>
<td>Hello-time in seconds. The valid range is 1 to 300 seconds. The default setting is 5 seconds.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the hello time for the standby supervisor to 2 seconds.

(configure)# cpu_redundancy hello-interval 2

Systems

cpu-redundancy mac-prefix

Command Mode

Global Configuration.

Description

Resets the MAC prefix for the standby supervisor.

Syntax

```
cpu_redundancy mac-prefix reset
```

Systems

cpu_redundancy synchronize

Command Mode

Global Configuration.

Description

Synchronizes the active and standby supervisor modules.

Syntax

```
cpu_redundancy synchronize
```

Sample Output

The following example synchronizes the active and standby supervisor modules.

```
(configure)# cpu_redundancy synchronize
```

Systems

delete pcmcia

Command Mode

Global Configuration.

Description

Deletes a file from the /pcmcia flash card file system.

Syntax

delete pcmcia <filename>

Table 368: delete pcmcia Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><filename></td>
<td>File to delete from the /pcmcia card file system.</td>
</tr>
</tbody>
</table>

Sample Output

The following example deletes jerry2.txt from the /pcmcia card file system.

(configure)# delete pcmcia jerry2.txt
Jerry2.txt deleted

Systems

P580 and P882.
dir

Command Mode
User.

Description
Displays a directory listing of a single file or all files located in NVRAM.

Syntax
dir [<filename>]

Table 369: dir Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><filename></td>
<td>The name of the file in NVRAM. It must have a 1-8 letter base filename, and a 3 letter file extension. No wildcards are permitted.</td>
</tr>
</tbody>
</table>

Sample Output

The following example displays all of the files currently in NVRAM.

> dir
Device Name Capacity (Bytes) Available (Bytes) Utilization
NV Device 523968 480064 9%

-#- -Length- ---Date/Time--- ----Name----
1 5 03-Aug-28 04:06 panic.int
2 35457 03-Oct-23 14:50 shutdown.log
3 13 03-Sep-30 15:23 console.int
4 76 03-Sep-30 15:23 modem.int
5 3 03-Sep-30 15:24 swFabric.int
6 1 03-Aug-28 11:06 buffer.int
7 36 03-Sep-30 15:24 aftPle.int
8 505 03-Sep-30 15:24 rmonSmpl.int
9 1214 03-Oct-07 15:50 startup.txt
11 25 03-Aug-28 11:07 loopbk.int
13 1025 03-Aug-28 11:06 server.crt
15 2142 03-Sep-30 15:24 logfile.txt

Systems
erase

Command Mode

Privileged.

Description

Erases the specified file from NVRAM.

Syntax

```
erase <filename>
```

Table 370: erase Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><filename></code></td>
<td>The name of the file in NVRAM. It must have a 1-8 letter base filename, and a three letter file extension. No wildcards are permitted.</td>
</tr>
</tbody>
</table>

Sample Output

The following example erases the test.txt file from NVRAM.

```
# erase test.txt
File `/NVRAM/test.txt` deleted.
```

Systems

erase legacy-configs

Command Mode

Privileged.

Description

Erases all legacy (v3.x and earlier) configurations (.cfg files) from NVRAM. If you do not plan on going back to 3.x code, this command makes it possible for you to free NVRAM space on your system easily.

Syntax

erase legacy-configs

Sample Output

The following example erases all legacy configurations from NVRAM.

```
# erase legacy-configs
Successfully deleted all Configuration files from the system.
```

Systems

erase scripts

Command Mode

Privileged.

Description

Erases all ASCII script files (.txt files) from NVRAM. This command is useful for cleaning up NVRAM, but you should copy the startup configuration to a TFTP server first, or copy the running configuration to the startup configuration afterward.

Syntax

erase scripts
System

Sample Output

The following example erases all ASCII script files from NVRAM.

```
# erase scripts
Successfully deleted all Text files from the system.
```

Systems

erase startup-config

Command Mode

Privileged.

Description

Erases the startup (bootup) configuration from NVRAM.

Syntax

```
erase startup-config
```

Sample Output

The following example erases the startup configuration from NVRAM.

```
# erase startup-config
File '/nvram/startup.txt' deleted.
```

Systems

get 48_port_mode

Command Mode

Global Configuration.

Description

Displays the status of 48-port mode.
If you install an 80-series, 48-port, 10/100 module with Telco connectors (M8048R-100TC) in a switch, you must enable 48-port mode for the module to operate.

Syntax

get 48_port_mode

Sample Output

The following example displays the status of 48-port mode:

(configure)# get 48_port_mode
Current Configuration is 48-Port Modules Enabled

Systems

get Fabric_mode

Command Mode

Global Configuration.

Description

Displays the Fabric mode that the switch is currently operating in.

To change the Fabric mode setting and speed that the switch operates at, use the set Fabric_mode command. For information on the set Fabric_mode command, see “set Fabric_mode.”

Syntax

get Fabric_mode

Sample Output

The following example displays the Fabric mode that the switch is operating in:

```
(configure)# get Fabric_mode
Current Configuration is Fabric Mode 1
Current system speed is 55 MHz
```

Systems

hostname

Command Mode

Global Configuration.

Description

Specifies the hostname that is displayed in the system prompts and default configuration filenames. Use the no form of the command to disable the hostname currently being used.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>hostname <host-name></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] hostname</td>
</tr>
</tbody>
</table>

Table 371: hostname Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><host-name></td>
<td>Name of the host.</td>
</tr>
</tbody>
</table>

Sample Output

The following command configures the hostname as *Avaya 23*.

```
(configure)# hostname Avaya 23
Avaya 23(configure)#
```

Systems

ip http help server

Command Mode

Global Configuration.

Description

Configures the HTTP server for online help. The no form of this command clears the server location.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip http help server <url> <directory></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ip http help server</td>
</tr>
</tbody>
</table>

Table 372: ip http help server Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><url></td>
<td>The universal resource locator (URL) for the help server.</td>
</tr>
<tr>
<td><directory></td>
<td>The name of the directory containing the help files.</td>
</tr>
</tbody>
</table>

Sample Output

The following example configures the HTTP server for online help.

```
(configure)# ip http help server 1.1.1.1 help
```

Systems

nvram initialize

Command Mode

Global Configuration.

Description

Resets all switch settings except the following to their default values:

- Startup image
- Fabric mode
- 48-port mode

Syntax

```
nvram initialize
```

Sample Output

The following example initializes NVRAM.

```
(configure)# nvram initialize
This command will restore all configuration settings to factory defaults.
Are you sure you want to continue? (Y/N)
NV is initialized ... reboot to take effect.
```

Systems

pcmcia initialize

Description

Configure

Description

Initializes the PCMCIA card.

Syntax

```
pcmcia initialize
```
Sample Output

The following example initializes the PCMCIA card installed in the PCMCIA carrier on the Supervisor module.

(configure)# pcmcia initialize

Systems

P580 and P882.

reload

Command Mode

Global Configuration.

Description

Reloads the switch software.

Syntax

reload

Sample Output

The following example reloads the switch software.

(configure)# reload
Booting the operational system, please wait

Initializing the event subsystem ... done
Initializing the agent subsystem ... initializing AppleTalk...done
done
Initializing the platform ...
 Resetting Thunderbolt ...done.
 Setting module to MASTER and resetting chips ...done.
 Creating Ethernet Console ...done.
 Creating Display Manager ...done.
done
.
.
.

Systems

reset

Command Mode

 Global Configuration.

Description

 Resets the switch and reloads the software.

Syntax

 reset

Sample Output

 The following example resets the switch and reloads the software.

 (configure)# reset

Systems

secure-mode

Command Mode

 Global Configuration.

Description

 Enables and disables secure mode. Secure mode restricts management of the switch to the following secure protocols:

 ● HTTPS
 ● SSH
 ● SNMPv3

 When you enable secure mode, all non-secure protocols, such as Telnet, HTTP, and SNMPv1 and v2 are automatically disabled.

Syntax

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Enable:</td>
<td>secure-mode</td>
</tr>
<tr>
<td>To Disable:</td>
<td>no secure-mode</td>
</tr>
</tbody>
</table>

Systems

set 48_port_mode

Command Mode

Global Configuration.

Description

Enables 48-port mode on the switch.

If you install an 80-series, 48-port, 10/100 module with Telco connectors (M8048R-100TC) in a switch, you must enable 48-port mode for the module to operate.

Syntax

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>To Enable:</td>
<td>set 48_port_mode enable</td>
</tr>
<tr>
<td>To Disable:</td>
<td>set 48_port_mode disable</td>
</tr>
</tbody>
</table>

Systems

set debug

Command Mode

Global Configuration.

Description

Enables debug mode for troubleshooting. The default is off.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>set debug on</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>set debug off</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables debug command.

```
(configure)# set debug on
```

Systems

set Fabric_mode

Command Mode

Global Configuration.

Description

Sets the Fabric mode setting and speed that the switch operates at. Fabric mode 1 operates at 55 MHz. Fabric mode 2 operates at 66 MHz.

Only P580 and P882 chassis that contain all 80-series modules support Fabric mode 2.

To view the current Fabric mode setting, use the get Fabric_mode command. For information on the get Fabric_mode command, see “get Fabric_mode.”
Syntax

set Fabric_mode {1 | 2}

Table 373: set Fabric_mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| {1 | 2} | ● Enter 1 to set the switch to Fabric mode 1 and 55 MHz.
| | OR
| | ● Enter 2 to set the switch to Fabric mode 2 and 66 MHz. |

Systems

set utilization high-threshold

Command Mode

Global Configuration.

Description

Sets the high utilization threshold at which the switch generates an event. You can set a high utilization threshold for the CPU, forwarding engines on 80-series media modules, or forwarding engine on the supervisor module. The default setting for the utilization threshold is 95 percent. Clearing the utilization threshold resets it to 95 percent, its default setting.

For the switch to generate events when the high-utilization threshold is exceeded, event logging must be enabled for utilization monitoring. To enable event logging for utilization monitoring, use the set utilization threshold-event command.
set utilization high-threshold

Syntax

| To Configure: | set utilization high-threshold {cpu | FIRE | FORE} <utilization-percent> |
|---------------|---|
| To Restore Default: | clear utilization high-threshold {cpu | FIRE | FORE} |

Table 374: set utilization high-threshold Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu</td>
<td>Sets the high threshold for CPU utilization. 100% CPU utilization is the total capacity of the supervisor module to forward slow path traffic. When 100% utilization is reached, the performance of the switch may degrade.</td>
</tr>
<tr>
<td>FIRE</td>
<td>Sets the high threshold for utilization of the forwarding engines on 80-series media modules. 100% FIRE utilization is the total capacity of the forwarding engines on 80-series media modules to forward in band traffic. When 100% utilization is reached, the performance of the switch may degrade.</td>
</tr>
<tr>
<td>FORE</td>
<td>Sets the high threshold for utilization of the forwarding engine on the supervisor module. 100% FORE utilization is the total capacity of the supervisor module to forward out-of-band traffic. When 100% utilization is reached, the performance of the switch may degrade.</td>
</tr>
<tr>
<td><utilization-percent></td>
<td>The high threshold at which you want the switch to log an event in the event log. Enter a value from 50 through 99. The default setting is 95.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
set utilization monitoring

Command Mode

Global Configuration.

Description

Enables utilization monitoring for the CPU or forwarding engines. The default setting for utilization monitoring is disabled.

Syntax

To Enable: set utilization monitoring {cpu | forwarding-engine}
To Disable: clear utilization monitoring {cpu | forwarding-engine}

Table 375: set utilization monitoring Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu</td>
<td>Enables monitoring of CPU utilization.</td>
</tr>
<tr>
<td>forwarding-engine</td>
<td>Enables monitoring of 80-series forwarding engines.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
set utilization threshold-event

Command Mode

 Global Configuration.

Description

Enables event logging for utilization monitoring of the CPU or forwarding engines. When event logging is enabled, the switch generates an event if the high-utilization threshold is exceeded.

The default setting for event logging of utilization monitoring is disabled. If you enable event logging for utilization monitoring but do not specify a utilization threshold, the switch logs an event if the CPU utilization or forwarding engine utilization exceeds 95 percent. To change the utilization threshold, use the `set utilization high-threshold` command.

Syntax

| To Enable: | set utilization threshold-event {cpu | forwarding-engine} |
|------------|--|
| To Disable: | clear utilization threshold-event {cpu | forwarding-engine} |

Table 376: set utilization threshold-event Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu</td>
<td>Enables event logging for CPU utilization.</td>
</tr>
<tr>
<td>forwarding-engine</td>
<td>Enables event logging for utilization of 80-series forwarding engines.</td>
</tr>
</tbody>
</table>

Systems

 P580 and P882.
setup

Command Mode

Global Configuration.

Description

Sets up the console IP address, password, mask and gateway.

Syntax

```
setup
```

Sample Output

The following example resets the switch and reloads the software.

```
(configure)# setup
Welcome to Switch Setup. The brief series of questions that follows will help you to configure this switch. After completing this process, you will be able to manage the switch using:

- the switch-based HTTP server
- the Element Management System.

Text in [] is the default answer for each question. To accept the default, press ENTER.

Would you like to change the super user password [Yes]?

.
.
.

**Systems**

show boot

Command Mode

User.

Description

Displays BOOT environment information.

Syntax

show boot

Sample Output

The following example displays the boot environment information.

> show boot
Checking for valid image in BOOT.
File Information:
File Format Type = Binary
Target Location = Boot
Data Compression = None
Product Information:
Version Number = v2.00.0
Serial Number = 000-00-0000
Model Number = 5500R
Image Information:
Entry Address = 0x00020000
Non-compressed Image:
Size = 0x000779f8 bytes
Checksum = 0xb474
Checksum of image in FEPROM is 0xb474.
Checksum of image in DRAM is 0x9c1f.

Systems

show calendar

Command Mode

User.

Description

Displays the calendar settings.

Syntax

show calendar

Sample Output

The following command displays the calendar settings.

(configure)# show calendar
The date is 06/21/2007
The time is 22:05:34 for Eastern Time (GMT-5)

Systems

show clock

Command Mode

User.

Description

Displays the system clock. The [details] option displays the summer-time setting (if any).

Syntax

show clock [details]

Table 377: show clock Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>details</td>
<td>Display detailed clock information.</td>
</tr>
</tbody>
</table>

Sample Output

The following command show the clock details.

(configure)# show clock details
The date is 06/21/2007
The time is 22:04:39 for Eastern Daylight-5)
Summer time hours are in effect
Summer time offset in minutes: 60
Summer time recurring date limits:
   Start - first Sunday of Apr at 02:00
   End   - last Sunday of Oct at 02:00
SNTP client is disabled

Systems

**show cpu**

**Command Mode**

User.

**Description**

Displays configuration and status information for the supervisor module.

**Syntax**

```
show cpu {config | status}
```

**Table 378: show cpu Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config</td>
<td>Displays Configuration information for the supervisor modules in slots 1 and 2.</td>
</tr>
<tr>
<td>status</td>
<td>Displays Status information for the supervisor modules in slots 1 and 2.</td>
</tr>
</tbody>
</table>

**Sample Output**

The following example displays the cpu configuration information.

```
> show cpu config
Configuration Information

Redundant Slot 1 CPU Console Ip Address 0.0.0.0
Redundant Slot 2 CPU Console Ip Address 0.0.0.0
Redundant CPU Default Gateway 0.0.0.0
Switch MAC Prefix 00.30.6D.73.63.ff
Slot 1 Internal IP Address 10.2.2.1
Slot 2 Internal IP Address 0.0.0.0
Internal IP Mask 255.255.255.240
Hello interval 5
```

**Systems**

show cpu_redundancy

Command Mode

User.

Description

Displays configuration and status information about the redundant supervisor.

Syntax

show cpu_redundancy {config | status}

Table 379: show cpu_redundancy Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config</td>
<td>Displays configuration information for the redundant supervisor slots 1 and 2.</td>
</tr>
<tr>
<td>status</td>
<td>Displays status information for the redundant supervisor slots 1 and 2.</td>
</tr>
</tbody>
</table>

Systems

show file_name

Command Mode
Privileged.

Description
Displays the contents of a specified file in NVRAM.

Syntax
show file_name <filename>

Sample Output
The following example displays the contents of the startup.txt file located in NVRAM.

```
show file_name startup.txt
Documentation# show file_name startup.txt
Contents of file '/NVRAM/startup.txt':
!
! Avaya Switch Agent v5.0.x
!
set intelligent-multicast client-port-pruning enable
set intelligent-multicast client-port-pruning time 60
!
hostname ""
-snmp-server location "[Location Not Set]"
-snmp-server contact "System Administrator"
clock summer-time recurring 1 Sunday Apr 02:00 5 Sunday Oct 02:00 60
username "root" password encrypted-type1 "$tSfIcnbTP.pXRf7BrhGW31" access-type.
```

Systems
show flash

Command Mode
User.

Description
Displays the layout and contents of flash memory.

Syntax
show flash

Sample Output
The following example displays the layout and the content of the switch’s flash memory.

> show flash
Checking for valid image in BOOT.
File Information:
  File Format Type = Binary
  Target Location = Boot
  Data Compression = None
Product Information:
  Version Number = v2.00.0
  Serial Number = 000-00-0000
  Model Number = 5500R
Image Information:
  Entry Address = 0x00020000
  Non-compressed Image:
    Size = 0x000779f8 bytes
    Checksum = 0xb474
  Checksum of image in FEPROM is 0xb474.
  Checksum of image in DRAM is 0x1e12.

Systems
show running-config

Command Mode
Privileged.

Description
Displays the current running configuration.

Syntax
show running-config

Sample Output
The following example displays the current running configuration.

```
show running-config
Current configuration:
!
! Avaya Switch Agent v5.0.x
!
set intelligent-multicast client-port-pruning enable
set intelligent-multicast client-port-pruning time 60
!
hostname ""
snmp-server location "[Location Not Set]"
snmp-server contact "System Administrator"
ip http help server "http://199.93.237.91:2010" "help"
clock summer-time recurring 1 Sunday Apr 02:00 5 Sunday Oct 02:00 60
username "root" password encrypted-type1 "$tSfIcnbTP.pxRf7BrhGW31"
 access-type admin
username "diag" password encrypted-type1 "$PQO.vGxkvDHkEDCJ2YsoD1"
 access-type read-write
username "manuf" password encrypted-type1 "$seHFLP9b16m2v/534Wck90"
 access-type read-write
snmp-server community "public" ro

.
```

Systems
show secure-mode

Command Mode

User.

Description

Displays the secure mode setting.

Syntax

show secure-mode

Sample Output

Secure mode enabled

Systems

P580 and P882.

show sntp

Command Mode

Global Configuration.

Description

Displays information about the Simple Network Time Protocol (SNTP).

Syntax

show sntp

Sample Output

The following example displays information about the SNTP settings on the switch.

(configure)# show sntp
SNTP client is enabled
SNTP server IP address is 199.93.238.247
**show startup-config**

**Command Mode**
Privileged.

**Description**
Displays any existing startup configurations (startup.txt file)

**Syntax**

```
show startup-config
```

**Sample Output**

The following example displays the startup-config.

```
show startup-config
Documentation# show startup-config
Contents of file '/nvram/startup.txt':
!
! Avaya Inc. Switch Agent v5.0
!
set intelligent-multicast client-port-pruning enable
set intelligent-multicast client-port-pruning time 60
!
hostname ""
snmp-server location "[Location Not Set]"
snmp-server contact "System Administrator"
clock summer-time recurring 1 Sunday Apr 02:00 5 Sunday Oct 02:00 60
username "root" password encrypted-type1 "$tSFicnTbpxRf7BrhGW31"
```

**Systems**

show time zone

Command Mode
User.

Description
Displays a list of time zone abbreviations for use in the clock timezone command.

Syntax
show time zone

Sample Output
The following example displays the list of time zones set on the switch.

(configure)# show time zone
eni       Eniwetok (GMT-12)
kwa       Kwaialien (GMT-12)
mid       Midland Island (GMT-11)
haw       Hawaii (GMT-10)
ala       Alaska (GMT-9)
pst       Pacific Time (GMT-8)
ari       Arizona (GMT-7)
mst       Mountain Time (GMT-7)
cst       Central Time USA (GMT-6)
mex       Mexico City (GMT-6)
sac       Saskatchewan (GMT-6)
bog       Bogota (GMT-5)
lim       Lima (GMT-5)
est       Eastern Time (GMT-5)
ind       Indiana (GMT-5)
atl       Atlantic Time (GMT-4)
car       Caracas (GMT-4)
new       Newfoundland (GMT-3:30)
bra       Brasilia (GMT-3)
bue       Buenos Aires (GMT-3)
geo       Georgetown (GMT-3)
mat       Mid Atlantic (GMT-2)
--More--

Systems
show utilization results

Command Mode
User.

Description
Displays utilization statistics for the CPU or forwarding engines.

Syntax
show utilization results {{cpu} | {forwarding-engine <chip-fabport> <chip-index>}}

Table 381: show utilization results Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu</td>
<td>Displays the CPU utilization statistics</td>
</tr>
<tr>
<td>forwarding-engine</td>
<td>Displays the forwarding engine utilization statistics.</td>
</tr>
<tr>
<td>&lt;chip-fabport&gt;</td>
<td>The fabric port for which you want to view forwarding engine utilization</td>
</tr>
<tr>
<td></td>
<td>statistics.</td>
</tr>
<tr>
<td>&lt;chip-index&gt;</td>
<td>The forwarding engine for which you want to view utilization statistics.</td>
</tr>
</tbody>
</table>

Note:
Sample Output

> show utilization results cpu
Average CPU Utilization over the 60 second sample window: 0 percent

Individual Sample Utilizations (sorted from most recent to oldest):
Sample 0: 2 percent
Sample 1: 2 percent
Sample 2: 2 percent
Sample 3: 5 percent
Sample 4: 3 percent
Sample 5: 2 percent
Sample 6: 2 percent
Sample 7: 2 percent
Sample 8: 3 percent
Sample 9: 3 percent
Sample 10: 2 percent
Sample 11: 3 percent

Systems

P580 and P882.

show utilization settings

Command Mode
User.

Description
Displays the current settings for utilization monitoring.

Syntax

show utilization settings
Sample Output

CPU monitoring is enabled
Forwarding Engine monitoring is enabled

CPU threshold level is 95 percent
Forwarding Engines:
FIRE threshold level is 95 percent
FORE threshold level is 95 percent

CPU threshold event generation is enabled
Forwarding Engine threshold event generation is enabled

Systems

P580 and P882.

show version

Command Mode

User.

Description

Displays the software version currently running on the switch.

Syntax

show version

Sample Output

The following example displays the software version currently running on the switch.

> show version
Avaya Switch Agent v5.3.1

Systems

Chapter 31: Temperatures

Overview

This chapter describes the following commands:

- clear temperatures
- set temperature shutdown
- set temperature warning
- show temperatures

clear temperatures

Command Mode

Global Configuration.

Description

Resets all configured warning and shutdown temperatures (in Celsius) to their default values. The default values are listed in Table 382.

Table 382: Default Shutdown and Warning Temperatures

<table>
<thead>
<tr>
<th>Component</th>
<th>Shutdown</th>
<th>Upper Warning</th>
<th>Lower Warning</th>
<th>Low Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Sensor</td>
<td>100°</td>
<td>85°</td>
<td>5°</td>
<td>0°</td>
</tr>
<tr>
<td>All others</td>
<td>65°</td>
<td>60°</td>
<td>5°</td>
<td>0°</td>
</tr>
</tbody>
</table>

Syntax

clear temperatures
Temperatures

Sample Output

The following example resets all configured warning and shutdown temperatures to their default settings.

```
(configure)# clear temperatures
```

Systems


---

### set temperature shutdown

**Command Mode**

Global Configuration.

**Description**

Sets the shutdown temperature for a specific component of the switch. The default setting for the CPU sensor is 100°C. The default setting for all other components is 65°C.

**Syntax**

```
set temperature {supervisor-slot | backplane-sensor | cpu-sensor | probe} shutdown <temperature>
```

**Table 383: set temperature shutdown Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{supervisor-slot</td>
<td>backplane-sensor</td>
</tr>
</tbody>
</table>

**Note:**

After you change the temperature settings for the active supervisor, you must synchronize the active and standby supervisors to copy the temperature settings to the standby supervisor.
Sample Output

The following example sets the CPU sensor shutdown temperature to 95° (Celsius).

(configure)# set temperature cpu-sensor shutdown 95

Systems


---

### set temperature warning

**Command Mode**

Global Configuration.

**Description**

Sets the warning temperature (in Celsius) for a specific component of the switch. The default values are listed in Table 384.

**Table 384: Default Warning Temperatures**

<table>
<thead>
<tr>
<th>Component</th>
<th>Upper Warning</th>
<th>Lower Warning</th>
<th>Low Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Sensor</td>
<td>85°</td>
<td>5°</td>
<td>0°</td>
</tr>
<tr>
<td>All others</td>
<td>60°</td>
<td>5°</td>
<td>0°</td>
</tr>
</tbody>
</table>
Temperatures

Syntax

set temperature {supervisor-slot | backplane-sensor | cpu-sensor | probe} warning {upper | lower | low-limit} <temperature>

Table 385: set temperature warning Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{supervisor-slot</td>
<td>backplane-sensor</td>
</tr>
<tr>
<td>warning</td>
<td>Required parameter indicating that a warning limit is being modified.</td>
</tr>
<tr>
<td>{upper</td>
<td>lower</td>
</tr>
<tr>
<td>Upper warning:</td>
<td>• Backplane is 5 to 65 degrees</td>
</tr>
<tr>
<td></td>
<td>• CPU is 5 to 100 degrees</td>
</tr>
<tr>
<td></td>
<td>• Supervisor Module is 5 to 65 degrees.</td>
</tr>
<tr>
<td>Lower warning:</td>
<td>• Backplane is -128 to 5 degrees</td>
</tr>
<tr>
<td></td>
<td>• CPU is degrees 0 to 100</td>
</tr>
<tr>
<td></td>
<td>• Supervisor Module is 0 to 65 degrees.</td>
</tr>
<tr>
<td>Low-limit:</td>
<td>• Backplane is -128 to +5 degrees</td>
</tr>
<tr>
<td></td>
<td>• CPU is -128 to +100 degrees</td>
</tr>
<tr>
<td></td>
<td>• Supervisor Module is -128 to +65 degrees.</td>
</tr>
<tr>
<td>&lt;temperature&gt;</td>
<td>Temperature in degrees Celsius for the warning.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the backplane-sensor upper warning temperature to 44° (Celsius).

(configure)# set temperature backplane-sensor warning upper 44

Systems

# show temperatures

**Command Mode**

User.

**Description**

Displays the current temperatures and the configured temperature limits. There is no reverse mapping to this command.

**Syntax**

```
show temperatures
```

**Sample Output**

The following example displays the current switch temperatures.

```
> show temperature

<table>
<thead>
<tr>
<th></th>
<th>Slot 2 Sensor</th>
<th>Backplane Sensor</th>
<th>CPU Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown (C)</td>
<td>65</td>
<td>65</td>
<td>100</td>
</tr>
<tr>
<td>Upper Warning (C)</td>
<td>60</td>
<td>60</td>
<td>85</td>
</tr>
<tr>
<td>Current</td>
<td>27</td>
<td>29</td>
<td>24</td>
</tr>
<tr>
<td>Lower Warning (C)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Low Limit (C)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

**Systems**

Temperatures
Chapter 32: User Interface

Overview

This chapter describes the following commands:

- configure
- connect
- custom-access-type
- disable
- enable
- end
- exit
- help
- length
- password
- set custom-access-type
- set debug
- set login
- show custom-access-type
- show history
- show login
- show sessions
- show username
- telnet
- terminal databits
- terminal flowcontrol
- terminal length
- terminal output pause
- terminal parity
- terminal speed
User Interface

- terminal stopbits
- terminal width
- username
- width

configure

Command Mode
Privileged.

Description
Enters the Global Configuration mode.

Syntax
configure

Sample Output
The following example enters Global Configuration mode on the switch CLI:

# configure
(configure)#

Systems
**connect**

**Command Mode**

Privileged.

**Description**

Log in to a host that supports Telnet.

**Syntax**

connect {<ip-addr> | <hostname>}

**Table 386: connect Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;ip-addr&gt;</td>
<td>The IP address of the host in 4-part, dotted-decimal notation.</td>
</tr>
<tr>
<td>&lt;hostname&gt;</td>
<td>The name of the host.</td>
</tr>
</tbody>
</table>

**Sample Output**

The following example connects to the host with the IP address 123.23.23.2.

```
connect 123.23.23.2
```

**Systems**

custom-access-type

Command Mode

Global Configuration.

Description

Creates a custom access type. The switch supports a maximum of 30 custom access types.

Syntax

To Create:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>custom-access-type &lt;catName&gt; [sys-configuration [ro]] [module-port-mgmt [ro]] [events-mgmt [ro]] [l2-switching [ro]] [routing [ro]]</td>
<td>The name of the custom access type. You can enter up to 31 characters. Do not use spaces.</td>
</tr>
</tbody>
</table>

To Delete:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no custom-access-type &lt;catName&gt;</td>
<td>The name of the custom access type. You can enter up to 31 characters. Do not use spaces.</td>
</tr>
</tbody>
</table>

Table 387: custom-access-type Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;catName&gt;</td>
<td>The name of the custom access type. You can enter up to 31 characters. Do not use spaces.</td>
</tr>
<tr>
<td>[sys-configuration]</td>
<td>Allows users to access system configuration settings. If you do not enter this option, users who are assigned to the custom access type cannot access system configuration settings.</td>
</tr>
<tr>
<td>[ro]</td>
<td>Enables read-only permission. If you do not enter this option, users who are assigned to the custom access type have read-write permission for the feature.</td>
</tr>
<tr>
<td>[module-port-mgmt]</td>
<td>Allows users to access module and port settings. If you do not enter this option, users who are assigned to the custom access type cannot access module and port settings.</td>
</tr>
<tr>
<td>[events-mgmt]</td>
<td>Allows users to access event settings. If you do not enter this option, users who are assigned to the custom access type cannot access event settings.</td>
</tr>
</tbody>
</table>
Table 387: custom-access-type Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[l2-switching]</td>
<td>Allows users to access layer 2 switching settings. If you do not enter this option, users who are assigned to the custom access type cannot access layer 2 switching settings.</td>
</tr>
<tr>
<td>[routing]</td>
<td>Allows users to access routing settings. If you do not enter this option, users who are assigned to the custom access type cannot access routing settings.</td>
</tr>
</tbody>
</table>

Sample Output

For example, the following command creates a custom access type that allows users read-only permission for module and port settings and read-write permission for layer 2 switching settings:

```
(configure)# custom-access-type CAT1 module-port-mgmt ro l2-switching
```

Users who are assigned to the CAT1 custom access type cannot view or modify settings for system configuration, events, or routing.

Systems

P580 and P882.

disable

Command Mode

Privileged.

Description

Exits Privileged mode. Returns to User mode.

Syntax

disable
User Interface

Sample Output

The following example exits Privileged mode.

# disable

Systems


enable

Command Mode

User.

Description

Enters the Privileged mode.

Syntax

enable

Sample Output

The following example enters Privileged mode:

> enable

#

Systems

end

Command Mode

Global Configuration.

Description

Exits Global Configuration mode and returns to Privileged mode.

Syntax

end

Sample Output

The following example exits Global Configuration mode.

```
(configure)# end
#
```

Systems

exit

Command Mode
All modes.

Description
Exits the current mode and reenters the previous mode.

Syntax
exit

Sample Output
The following example exits Global Configuration mode.

(configure)# exit
#

Systems

help

Command Mode
User.

Description
Displays a list of commands that are available in the current command mode and a brief description of each command.

Syntax
help
Sample Output

This example displays the commands that are available in User mode.

> help
  dir [<filename>]
  Displays the list of files in NVRAM, or a specific filename
  enable
  Enter privileged mode
  exit
  Exit current mode and re-enter previous mode
  help
  Display full help list of all commands available in the current mode
  ip mtrace
  no ip mtrace
  enable/disable mtrace globally.
  legacy-cli
  Enter Legacy CLI Mode

Systems


length

Command Mode

User.

Description

Sets the terminal screen length. The default value is 24. Use the no form of this command to restore the default value of 24.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>length &lt;length&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no length</td>
</tr>
</tbody>
</table>
Sample Output

The following example sets the number of lines to print to 50:

```plaintext
> length 50
```

Systems


---

**password**

**Command Mode**

User.

**Description**

Changes a user password. All users can change their own passwords.

**Syntax**

```plaintext
password <passwd>
```

**Table 389: password Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| `<passwd>` | A new password. Passwords can consist of a maximum of 31 characters. Do not use a combination of the following special characters for the password: ; , ?, \(\), #, $, %, ^, & or *.

**Systems**

P580 and P882.
set custom-access-type

Command Mode

Global Configuration.

Description

Modifies an existing custom-access-type.

Syntax

```
set custom-access-type <catName> [sys-configuration {ro | rw | none}] [module-port-mgmt {ro | rw | none}] [events-mgmt {ro | rw | none}] [l2-switching {ro | rw | none}] [routing {ro | rw | none}]
```

Note:

Unlike the `custom-access-type` command that you use to create a custom access type, you must specify read-only, read-write, or no permission when you use the `set custom-access-type` command to modify a custom access type.

Table 390: set custom-access-type Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;catName&gt;</code></td>
<td>The name of the custom access type that you want to modify.</td>
</tr>
<tr>
<td>[sys-configuration]</td>
<td>Changes the permission for system configuration settings. If you do not enter this option, the current permission is retained.</td>
</tr>
<tr>
<td>{ro</td>
<td>rw</td>
</tr>
<tr>
<td></td>
<td>● ro (read-only) allows users only to view settings for the feature.</td>
</tr>
<tr>
<td></td>
<td>● rw (read-write) allows users to view and modify settings for the feature.</td>
</tr>
<tr>
<td></td>
<td>● none allows users to neither view or modify settings for the feature.</td>
</tr>
<tr>
<td>[module-port-mgmt]</td>
<td>Changes the permission for module and port settings. If you do not enter this option, the current permission is retained.</td>
</tr>
<tr>
<td>[events-mgmt]</td>
<td>Changes the permission for event settings. If you do not enter this option, the current permission is retained.</td>
</tr>
<tr>
<td>[l2-switching]</td>
<td>Changes the permission for layer 2 switching settings. If you do not enter this option, the current permission is retained.</td>
</tr>
<tr>
<td>[routing]</td>
<td>Changes the permission for routing settings. If you do not enter this option, the current permission is retained.</td>
</tr>
</tbody>
</table>
Sample Output

For example, the following command gives custom access type CAT1 read-write permission for module and port settings and read-only permission for system configuration settings:

```
(configure)# custom-access-type CAT1 sys-configuration ro module-port-mgmt rw
```

The permissions for all other features are unchanged.

Systems

P580 and P882.

---

**set debug**

**Command Mode**

Global Configuration.

**Description**

Enables or disables debug mode. If enabled, this mode displays system messages that help Avaya Technical Support troubleshoot network problems.

⚠️ **Important:**

Avaya recommends that debug mode be enabled only during troubleshooting sessions. If debug mode is enabled during normal network operation, the switch may display messages that users incorrectly interpret as indications of system failures. For more information on advanced troubleshooting, see *User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2*.

By default, this mode is disabled.

**Syntax**

```
set debug {on | off}
```

**Table 391: set debug Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>Enables debug mode.</td>
</tr>
<tr>
<td>off</td>
<td>Disables debug mode.</td>
</tr>
</tbody>
</table>

**Systems**

set login

Command Mode

Global Configuration.

Description

Configures user account security.

Syntax

set login [attempts <num-login-attempts>] [timeout-limit <timeout-limit>] [min-password-length <min-password-length>]

Table 392: set login Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;num-login-attempts&gt;</td>
<td>Number of login attempts that you want to allow users. When a user exceeds the limit for login attempts, his or her user account is disabled and the switch displays an error message. Valid values for this field are 3 to 99 login attempts.</td>
</tr>
<tr>
<td>&lt;timeout-limit&gt;</td>
<td>Number of seconds that you want a user account disabled when the limit for login attempts is exceeded. Once the timeout limit expires, the user can attempt to login again.</td>
</tr>
<tr>
<td>&lt;min-password-length&gt;</td>
<td>Minimum number of characters that you want to allow for user passwords. If a user attempts to create a password with fewer characters, the switch displays the following error message: Password too short – must be at least &lt;x&gt; characters.</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
show custom-access-type

Command Mode
User.

Description
Displays the custom access types that are currently configured on the switch.

Syntax
show custom-access-type

Systems
P580 and P882.
show history

Command Mode

User.

Description

Displays an alphabetic list of the last 20 commands entered in the current session.

Syntax

show history

Sample Output

The following example displays the last commands entered in the current session:

> show history
show appletalk nbp
show appletalk route
show appletalk traffic
show appletalk zone
show boot
show buffering fabric-port
show buffering fabric-port
.  
.

Systems

show login

Command Mode
Privileged.

Description
Displays the current settings for user account security. The following settings are displayed:
- Login attempt limit
- Timeout limit
- Minimum password length

Syntax
show login

Sample Output
Login attempt limit: 3
Timeout limit: 60 seconds
Minimum password length: 0 characters

Systems
P580 and P882.
show sessions

Command Mode
User.

Description
Displays the active Telnet, serial, and PPP CLI sessions.

Syntax
show sessions

Sample Output
The following example displays the active sessions:

```plaintext
> show sessions
Session ID Line ID Location
1 6vty 205.181.0.56:yyyy
```

Systems

show username

Command Mode
User.

Description
Displays user account settings. The following information is displayed for each user account:
- User name
- Access type
- Management type
- Expiration date
- Status
User Interface

Syntax

username [<name>]

Table 393: show username Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;name&gt;</td>
<td>The user account for which you want to view settings. If you do not enter this option, all user accounts are displayed.</td>
</tr>
</tbody>
</table>

Sample Output

<table>
<thead>
<tr>
<th>User Name</th>
<th>Access Type</th>
<th>Management Type</th>
<th>Exp Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>root</td>
<td>Administrator</td>
<td>All</td>
<td>-</td>
<td>Enable</td>
</tr>
<tr>
<td>diag</td>
<td>Diagnostic</td>
<td>All</td>
<td>-</td>
<td>Enable</td>
</tr>
<tr>
<td>manuf</td>
<td>Manufacturing</td>
<td>All</td>
<td>-</td>
<td>Enable</td>
</tr>
<tr>
<td>nm</td>
<td>Read-write</td>
<td>All</td>
<td>12-31-2003</td>
<td>Enable</td>
</tr>
<tr>
<td>bob</td>
<td>Read-only</td>
<td>Remote-CLI, Web</td>
<td>8-31-2004</td>
<td>Enable</td>
</tr>
<tr>
<td>bill</td>
<td>Administrator</td>
<td>All</td>
<td>-</td>
<td>Enable</td>
</tr>
</tbody>
</table>

Systems

P580 and P882.
telnet

Command Mode

Privileged.

Description

Starts a Telnet session to the host that you specify.

Syntax

telnet {ip-address} | host-name} [tcp-port]

Table 394: telnet Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;ip-address&gt;</td>
<td>The IP address of the host to which you want to start a Telnet session.</td>
</tr>
<tr>
<td>&lt;hostname&gt;</td>
<td>The DNS host name of the host to which you want to start a Telnet session.</td>
</tr>
<tr>
<td>tcp-port</td>
<td>The TCP port number for Telnet requests. You need to enter this parameter only if the TCP port for Telnet is set to a port number other than 23.</td>
</tr>
</tbody>
</table>

Sample Output

The following example starts a Telnet session to the switch at 192.161.55.83:

```
telnet 192.161.55.83
translating 192.161.55.83...ok
connecting to host 192.161.55.83 (192.161.55.83)...open
escape character is '^[c'
type '^[c' to close Telnet Connection
Login:
```

The following example starts a Telnet session to the switch at 192.168.0.126. The switch is set to use TCP port 9998 for Telnet requests:

```
telnet 192.168.0.126 9998
```

Systems

terminal databits

Command Mode

Global Configuration.

Description

Sets the databits width on the terminal port (also called console port).

Syntax

```
terminal databits {7 | 8}
```

Table 395: terminal databits Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{7</td>
<td>8}</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the terminal databits width to 8:

```
(configure)# terminal databits 8
```

Systems

terminal flowcontrol

Command Mode

Global Configuration.

Description

Sets the flow control for the terminal port (also called console port).

Syntax

terminal flowcontrol {none | xon/xoff}

Table 396: terminal flowcontrol Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{none</td>
<td>xon/xoff}</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the terminal flow control parameter to xon/xoff:

```
(configure)# terminal flowcontrol xon/xoff
```

Systems

terminal length

Command Mode

User, Privileged, or Global Configuration.

Description

Sets the number of lines on the terminal screen for the current session. The no form of this command restores the default length to 24 lines.

Syntax

<table>
<thead>
<tr>
<th>To Set:</th>
<th>terminal length &lt;length&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] terminal length</td>
</tr>
</tbody>
</table>

Table 397: terminal length Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;length&gt;</td>
<td>The number of lines to print before displaying the --more-- prompt (5+ Lines).</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the number of lines on the terminal screen for the current session to 50:

> terminal length 50

Systems

terminal output pause

Command Mode
User.

Description
Enables output from the terminal to pause when the configured screen length is reached. A pause is indicated by a --more-- prompt. The no form of this command disables this function.

In addition, you can terminate a current print job by pressing Control + C at the --more-- prompt. Continue printing by pressing either Enter or the Spacebar.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>terminal output pause</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no terminal output pause</td>
</tr>
</tbody>
</table>

Sample Output

The following example disables the terminal output pause function:

> no terminal output pause

Systems

**terminal parity**

**Command Mode**

Global Configuration.

**Description**

Sets the parity parameter on the console port.

**Syntax**

```
terminal parity {none | even | odd}
```

**Table 398: terminal parity Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{none</td>
<td>even</td>
</tr>
</tbody>
</table>

**Sample Output**

The following example sets the terminal parity parameter to none:

```
(configure)# terminal parity none
```

**Systems**

terminal speed

Command Mode
Global Configuration.

Description
Sets the baud rate on the console port. The default baud rate is 9600.

Syntax
```
terminal speed \{300 | 1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 | 115200\}
```

Table 399: terminal speed Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{300</td>
<td>1200</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the terminal speed to 19200:

```
(configure)# terminal speed 19200
```

Systems

terminal stopbits

Command Mode

Global Configuration.

Description

Sets the stopbits parameter on the console port.

Syntax

terminal stopbits {1 | 2}

Table 400: terminal stopbits Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1</td>
<td>2}</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the terminal stopbits to 1:

(configure)# terminal stopbits 1

Systems

terminal width

Command Mode
User.

Description
Sets the number of character columns on the terminal screen. The no form of this command restores the default value of 80 characters.

Syntax

<table>
<thead>
<tr>
<th>To Set:</th>
<th>terminal width &lt;characters&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no terminal width</td>
</tr>
</tbody>
</table>

Table 401: terminal width Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;characters&gt;</td>
<td>The screen width (40+ characters).</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the terminal width to 120 characters:

> terminal width 120

Systems

username

Command Mode
Privileged.

Description
Creates a new user account. You can create up to 27 user accounts.

Syntax

<table>
<thead>
<tr>
<th>To Create:</th>
<th>username &lt;name&gt; password [encrypted-type1] &lt;passwd&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[access-type {read-only</td>
</tr>
<tr>
<td></td>
<td>[mgmt-type [all] [local-cli] [remote-cli] [web]]</td>
</tr>
</tbody>
</table>

| To Delete:             | no username <name>                                 |

| To Set Expiration Period and Expiration Warning | username <name> [exp-period <exp-period>]
|                                                | [exp-warning <exp-warning>]                      |

| To Enable or Disable: | username <name> status {enable | disable}       |

Table 402: username Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;name&gt;</td>
<td>The user name that you want to create. User names can consist of a maximum of 31 characters.</td>
</tr>
<tr>
<td>[encrypted-type1]</td>
<td>Indicates that user password is an MD5-encrypted string. If you enter the [encrypted-type1] option, you must enter an MD5-encrypted string for the &lt;passwd&gt; argument.</td>
</tr>
<tr>
<td>&lt;passwd&gt;</td>
<td>The password for the user name. Passwords can consist of a maximum of 31 characters.</td>
</tr>
</tbody>
</table>

Note:
Do not use a combination of the following special characters for the password ;, ?, \,(,),#, $, %, ^, &, or *.

1 of 2
Table 402: username Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| [access-type {read-only | read-write | admin | <catName>}] | The access type for the user. Options are:  
  - read-only  
  - read-write  
  - admin  
  - <catName>  
  The <catName> variable assigns a custom access type to the user. For information about custom access types, see Chapter 2, “Setting Up the Switch,” in the User Guide for the Avaya P580 and P882 Multiservice Switches, Software Version 6.2.  
  The default access type is read-only. |
| [mgmt-type [all] [local-cli] [remote-cli] [web]] | The management interfaces to which you want the user to have access. Options are:  
  - all—All management interfaces.  
  - local-cli—CLI on the PC that is connected to the serial port on the supervisor module.  
  - remote-cli—CLI by means of a Telnet connection.  
  - web—Web Agent.  
  The default setting is all. |
| <exp-period> | Number of weeks for which the user account is valid. The expiration period can range from 3 to 999 weeks. The default setting is 0, no expiration. When a user account expires, you must reset the account. Use the username <name> status {enable | disable} command to reset the account. |
| <exp-warning> | Number of weeks before user account expiration that you want the user warned. The expiration warning can range from 0 to the expiration period. A setting of 0 indicates that no warning is generated. |

**Sample Output**

The following example creates the username *boston* with a password of *mass* and an access-type of admin:

```
username boston password mass access-type admin
```

**Systems**

P580 and P882.
**width**

**Command Mode**

User.

**Description**

Sets the number of character columns on the terminal screen. The **no** form of this command restores the default value of 80 characters.

**Syntax**

<table>
<thead>
<tr>
<th>To Set:</th>
<th>width &lt;width&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>no width</td>
</tr>
</tbody>
</table>

**Table 403: width Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;width&gt;</td>
<td>The screen width (40+) characters.</td>
</tr>
</tbody>
</table>

**Sample Output**

The following example sets the number of character columns on the terminal screen to 50:

```
> width 50
```

**Systems**

Overview

This chapter describes:

- set 3com-mapping-table
- set vlan
- set vlan frame-format
- set vlan <vlan-id> <mod-swport-range>
- set vtp-snooping domain
- show 3com-mapping-table
- show vlan
- show vtp-snooping configure
**set 3com-mapping-table**

Global Configuration.

**Description**

Creates or deletes a 3Com mapping table.

**Syntax**

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>set 3com-mapping-table &lt;table-name&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[...table-entry &lt;entry-num&gt; vlan &lt;vlan-id&gt;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>To Delete:</th>
<th>clear 3com-mapping-table &lt;table-name&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[...table-entry &lt;entry-num&gt; [,]</td>
</tr>
</tbody>
</table>

**Table 404: set 3com-mapping-table Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;table-name&gt;</td>
<td>The name of the mapping table to be deleted.</td>
</tr>
<tr>
<td>&lt;entry-num&gt;</td>
<td>The entry number in the table.</td>
</tr>
<tr>
<td>&lt;vlan-id&gt;</td>
<td>Specifies a VLAN by its VLAN ID.</td>
</tr>
<tr>
<td>&lt;name-name&gt;</td>
<td>Specifies a VLAN by its name.</td>
</tr>
</tbody>
</table>

**Sample Output**

The following example clears an entry from a 3Com mapping table.

```
(configure)# clear 3com-mapping-table TestTable table-entry 2
Entry (tag) 2 in table "TestTable" was successfully cleared
```

**Systems**

set vlan

Command Mode
Global Configuration.

Description
Creates a VLAN or modifies the name of an existing VLAN. The **clear** command deletes a VLAN.

**Important:**
If the VLAN that you specify does *not* exist, this command creates the VLAN. If the VLAN that you specify does exist, this command renames the VLAN and ignores any optional arguments that you enter.

| To Configure: | set vlan <vlan-id> [name <vlan-name>] [autoincrement-HT-size {true | false}] [init-HT-size <size>] |
|---------------|------------------------------------------------------------------------------------------------------|
| To Delete:    | clear vlan {<vlan-id> | name <vlan-name>}                                                                 |

**Table 405: set vlan Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vlan-id&gt;</td>
<td>The VLAN ID.</td>
</tr>
<tr>
<td>[name &lt;vlan-name&gt;]</td>
<td>The VLAN name.</td>
</tr>
<tr>
<td>[autoincrement-HT-size {true</td>
<td>false}]</td>
</tr>
<tr>
<td>[init-HT-size &lt;size&gt;]</td>
<td>Specifies the initial hash table size. The table size can be 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 or 8192. The default setting is 1024.</td>
</tr>
</tbody>
</table>

**Systems**
set vlan frame-format

Command Mode

Global Configuration.

Description

Modifies the frame tagging format of the specified switch ports that are bound to the specified VLAN.

Syntax

set vlan {<vlan-id> | name <vlan-name>} <mod-swport-range> [...,<mod-swport-range>] frame-format {clear | from-port}

Table 406: set vlan frame-format Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vlan-id&gt;</td>
<td>The VLAN that the switch port is bound to by its VLAN ID.</td>
</tr>
<tr>
<td>&lt;vlan-name&gt;</td>
<td>The VLAN the switch port is bound to by its name.</td>
</tr>
<tr>
<td>&lt;mod-swport-range&gt;</td>
<td>A single switch port or range of switch ports on a module.</td>
</tr>
<tr>
<td>frame-format {clear</td>
<td>from-port}</td>
</tr>
<tr>
<td></td>
<td>● <strong>from-port</strong> means that the frames are sent out with whatever tag the switch ports trunking attribute is set to, if any.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the frame format for vlan 1 4/1 to clear:

```
(configure)# set vlan 1 4/1 frame-format clear
VLAN ID 1, switch port 4/1 frame-format set to "clear"
```

Systems

set vlan <vlan-id> <mod-swport-range>

Command Mode

Global Configuration.

Description

Binds additional ports to a VLAN if trunking is enabled on the specified port. Non-trunk ports support only a single, default VLAN per port. Binding multiple VLANs to a non-trunk port is NOT recommended and can have adverse effects on network performance. To set the single, default VLAN for a non-trunk port, use the `set port vlan` command.

All untagged frames are forwarded to the default VLAN, which you use the `set port vlan` command to set. All tagged frames are forwarded to the VLAN indicated by the tag.

Note:

If automatic VLAN creation is disabled on an:

- 80-series port, packets tagged for a VLAN that does not exist on the switch are dropped.
- 50-series port, packets tagged for a VLAN that does not exist on the switch are forwarded to the default VLAN.


When you use the `set vlan {<vlan-id> | name <vlan-name>} <mod-swport-range>` command to bind multiple VLANs to a port, the port becomes part of the flooding domain of the selected VLAN. This command provides an alternative to using the binding types `bind to all` and `bind to receive` that makes it possible for you to add ports to a subset of VLANs on the switch.

⚠️ Important:

This configuration may cause undesirable results, for example, destination unicast storms, and should be used only under special circumstances and only with the assistance of customer support.
VLAN

Syntax

| To Bind Ports: | set vlan {<vlan-id> | name <vlan-name>} <mod-swport-range>[,...,<mod-swport-range>] |
|----------------|-----------------------------------------------------------------|
| To Remove Ports: | clear vlan {<vlan-id> | name <vlan-name>} <mod-swport-range>[,...,<mod-swport-range>] |

Table 407: set vlan <vlan-id> <mod-swport-range> Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vlan-id&gt;</td>
<td>The VLAN ID to add or remove ports to or from.</td>
</tr>
<tr>
<td>[name &lt;vlan-name&gt;]</td>
<td>The VLAN to add or remove ports to or from.</td>
</tr>
<tr>
<td>&lt;mod-swport-range&gt;</td>
<td>A single switch port or range of switch ports on a module.</td>
</tr>
</tbody>
</table>

Sample Output

In the following example, 5/1 refers to port 1 on module 5. 5/1-20 refers to ports 1 through 20 on module 5. This command also accepts a comma-delimited list of ports or port ranges.

```
(configure)# set vlan 100 4/1, 4/3-4
WARNING: Port 4.1 is being bound to a VLAN other than the default VLAN when trunking format of the port is set to Clear
Switch port 4/1 bound to VLAN ID 100
WARNING: Port 4.3 is being bound to a VLAN other than the default VLAN when trunking format of the port is set to Clear
Switch port 4/3 bound to VLAN ID 100
WARNING: Port 4.4 is being bound to a VLAN other than the default VLAN when trunking format of the port is set to Clear
Switch port 4/4 bound to VLAN ID 100
```

```
(configure)# clear vlan 100 4/1, 4/3-4
Switch port 4/1 unbound from VLAN ID 100
Switch port 4/3 unbound from VLAN ID 100
Switch port 4/4 unbound from VLAN ID 100
```

Systems

set vtp-snooping domain

Command Mode

Global Configuration.

Description

Defines the VTP domain name from which the switch learns VLANs from Cisco VTP frames. The clear form of this command clears any learned or defined domain name. The default setting is a null string.

If VTP snooping is globally enabled and you do not set a VTP domain name, the switch automatically learns the domain name from the Cisco VTP server.

Syntax

To Define: set vtp-snooping domain <vtp-domain-name>

To Clear: clear vtp-snooping domain

Table 408: set vtp-snooping domain Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vtp-domain-name&gt;</td>
<td>The Cisco VTP domain name to which this switch listens for VTP messages.</td>
</tr>
</tbody>
</table>

Sample Output

The following example set the VTP snooping domain name to Corporate.

(configure)# set vtp-snooping domain Corporate
vtp-snooping parameter modified.

Systems

show 3com-mapping-table

Command Mode

User.

Description

Displays the 3Com mapping tables. All tables are displayed by default.

Syntax

show 3com-mapping-table [table-name]

Table 409: show 3com-mapping-table Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[table-name]</td>
<td>The name of the 3Com mapping table. If not included, this command will</td>
</tr>
<tr>
<td></td>
<td>display all of the tables configured on the switch.</td>
</tr>
</tbody>
</table>

Sample Output

The following example shows the 3Com Mapping Table for the switch.

> show 3com-mapping-table

Table Name: "3ComDefault"
Table Entries: [entry num: vlan name (vlan id)]
1: Default (1 ) 2:Discard (4097) 3: Discard (4097) 4:Discard(4097)
5: Discard (4097) 6: Discard (4097) 7: Discard (4097) 8: Discard(4097)
9: Discard (4097) 10:Discard (4097) 11: Discard(4097) 12: Discard(4097)
13: Discard (4097) 14:Discard(4097) 15:Discard (4097) 16: Discard(4097)

Systems

show vlan

Command Mode
User.

Description
Displays information about all VLANs on the switch or the VLAN that you specify.

Syntax

<table>
<thead>
<tr>
<th>To Display All VLANs:</th>
<th>show vlan [detailed]</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Display One VLAN:</td>
<td>show vlan {&lt;vlan-id&gt;</td>
</tr>
</tbody>
</table>

Table 410: show vlan Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[detailed]</td>
<td>Shows a detailed output of the VLANs that currently exist on the system including switch ports that are bound to that VLAN.</td>
</tr>
<tr>
<td>&lt;vlan-id&gt;</td>
<td>The VLAN ID.</td>
</tr>
<tr>
<td>[name &lt;vlan-name&gt;]</td>
<td>The VLAN name.</td>
</tr>
</tbody>
</table>

Sample Output
The following example displays detailed information about the VLANs currently configured on the switch.

(configure)# show vlan detailed

<table>
<thead>
<tr>
<th>ID</th>
<th>VLAN Name</th>
<th>Group ID</th>
<th>AFT Index</th>
<th>Learned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Default</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>*autoVlan2</td>
<td>4</td>
<td>9</td>
<td>Aut</td>
</tr>
<tr>
<td>10</td>
<td>jerry2</td>
<td>10</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>jerry3</td>
<td>20</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>*autoVlan25</td>
<td>25</td>
<td>12</td>
<td>Aut</td>
</tr>
<tr>
<td>30</td>
<td>*autoVlan30</td>
<td>30</td>
<td>13</td>
<td>Aut</td>
</tr>
<tr>
<td>50</td>
<td>*autoVlan50</td>
<td>50</td>
<td>14</td>
<td>Aut</td>
</tr>
<tr>
<td>4097</td>
<td>Discard</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

Systems
show vtp-snooping configure

Command Mode

User.

Description

Displays the configured and learned VTP snooping configuration information. The default is None.

Syntax

show vtp-snooping configuration

Sample Output

The following example displays vtp-snooping configuration information.

(configure)# show vtp-snooping configuration
VTP Snooping State:    Enable
Domain Name:    Corporate
Configuration Revision Number: 28
Updater Identity:    199.160.0.140
Update Timestamp:    99/10/05.10:02:50

Systems

Chapter 34: VRRP

Overview

This chapter describes:

- `router vrrp`
- `ip vrrp`
- `ip vrrp <vr-id> address`
- `ip vrrp auth-key`
- `ip vrrp override addr owner`
- `ip vrrp preempt`
- `ip vrrp priority`
- `ip vrrp timer`
- `show ip vrrp`

router vrrp

Command Mode

Global Configuration.

Description

Enables and disables VRRP routing globally. Use the `no` form of this command to disable VRRP routing.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>router vrrp</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no router vrrp</td>
</tr>
</tbody>
</table>
Sample Output

The following example enables vrrp globally.

(configure)# router vrrp

Systems


---

ip vrrp

Command Mode

Interface Configuration.

Description

Enables or disables VRRP (Virtual Router Redundancy Protocol) on an interface. Use the no form of this command to disable VRRP on an interface.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip vrrp</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip vrrp</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables VRRP on an interface labeled boston.

(config-if:boston)# ip vrrp

Systems

ip vrrp <vr-id> address

Command Mode

Interface Configuration.

Description

Creates a virtual router with the specified VRID and address. Use the no form of this command to remove a virtual router.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip vrrp &lt;vr-id&gt; address &lt;ip-address&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Remove:</td>
<td>[no] ip vrrp &lt;vr-id&gt; address &lt;ip-address&gt;</td>
</tr>
</tbody>
</table>

Table 411: ip vrrp <vr-id> address Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vr-id&gt;</td>
<td>The ID of the virtual router. The range is 1-255.</td>
</tr>
<tr>
<td>&lt;ip-address&gt;</td>
<td>The IP address of the virtual router.</td>
</tr>
</tbody>
</table>

Sample Output

The following example creates a virtual router with a vr-id of 1 and address of 10.0.1.2 on an interface labeled boston.

(config-if:boston)# ip vrrp 1 address 10.0.1.2

Systems

**ip vrrp auth-key**

**Command Mode**

Interface Configuration.

**Description**

Enables or disables the virtual router simple text password authentication for the virtual router ID. Use the **no** form of this command to disable simple password authentication for the virtual router.

**Syntax**

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip vrrp &lt;vr-id&gt; auth-key &lt;key-string&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>[no] ip vrrp &lt;vr-id&gt; auth-key</td>
</tr>
</tbody>
</table>

**Table 412: ip vrrp auth-key Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vr-id&gt;</td>
<td>Virtual router ID.</td>
</tr>
<tr>
<td>&lt;key-string&gt;</td>
<td>Simple password string.</td>
</tr>
</tbody>
</table>

**Sample Output**

The following example enables simple text authorization and creates a password of jerry for virtual router vr-id 1 on an interface labeled boston.

```
(config-if:boston)# ip vrrp 1 auth-key jerry
```

**Systems**

ip vrrp override addr owner

Command Mode

Interface Configuration.

Description

Enables or disables the address owner override to a virtual router. The default is disabled.

Syntax

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip vrrp &lt;vr-id&gt; override addr owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip vrrp &lt;vr-id&gt; override addr owner</td>
</tr>
</tbody>
</table>

Table 413: ip vrrp override addr owner Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vr-id&gt;</td>
<td>Virtual router ID.</td>
</tr>
</tbody>
</table>

Sample Output

The following example enables address owner override on virtual router vr id 1 an interface labeled boston.

(config-if:boston)# ip vrrp 1 override address owner

Systems

### ip vrrp preempt

**Command Mode**

Interface Configuration.

**Description**

Enables or disables preempt mode for a virtual router. The default is **Enabled**.

**Syntax**

<table>
<thead>
<tr>
<th>To Enable:</th>
<th>ip vrrp &lt;vr-id&gt; preempt</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Disable:</td>
<td>no ip vrrp &lt;vr-id&gt; preempt</td>
</tr>
</tbody>
</table>

**Table 414: ip vrrp preempt**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vr-id&gt;</td>
<td>Virtual router ID.</td>
</tr>
</tbody>
</table>

**Sample Output**

The following example enables preempt mode to virtual router vr id 1 on an interface labeled **boston**.

```
(config-if:boston)# ip vrrp 1 preempt
```

**Systems**

ip vrrp priority

Command Mode

Interface Configuration.

Description

Sets the virtual router priority value for the virtual router ID. Use the `no` form of this command to restore the default value of 100.

Syntax

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip vrrp &lt;vr-id&gt; priority &lt;priority-value&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip vrrp &lt;vr-id&gt; priority</td>
</tr>
</tbody>
</table>

Table 415: ip vrrp priority Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vr-id&gt;</td>
<td>Virtual router ID.</td>
</tr>
<tr>
<td>&lt;priority-value&gt;</td>
<td>The priority value. The range is 1 - 254. 100 is the default value.</td>
</tr>
</tbody>
</table>

Sample Output

The following example sets the priority value for virtual router 1 to 254 on an interface labeled `boston`.

```
(config-if:boston)# ip vrrp 1 priority 254
```

Systems

**ip vrrp timer**

**Command Mode**

Interface Configuration.

**Description**

Set the advertisement timer value for the virtual router ID. Use the **no** form of this command to restore the default value of 1.

**Syntax**

<table>
<thead>
<tr>
<th>To Configure:</th>
<th>ip vrrp &lt;vr-id&gt; timer &lt;timer-value&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Restore Default:</td>
<td>[no] ip vrrp &lt;vr-id&gt; timer</td>
</tr>
</tbody>
</table>

**Table 416: ip vrrp timer Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vr-id&gt;</td>
<td>Virtual router ID.</td>
</tr>
<tr>
<td>&lt;timer-value&gt;</td>
<td>The advertisement transmit time. The range is 1 - 255. The default value is 1.</td>
</tr>
</tbody>
</table>

**Sample Output**

The following example sets the ip vrrp timer to 4 for virtual router 1 on an interface labeled boston.

```
(config-if:boston)# ip vrrp 1 timer 4
```

**Systems**

show ip vrrp

Command Mode
User.

Description
Displays VRRP information if it is enabled on the switch.

Syntax
show ip vrrp [<if-name>] [router-id <vr-id>] [detail]

Table 417: show ip vrrp Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;if-name&gt;</td>
<td>Filter by interface name.</td>
</tr>
<tr>
<td>&lt;vr-id&gt;</td>
<td>Filter by virtual router ID.</td>
</tr>
<tr>
<td>[details]</td>
<td>Display detailed information.</td>
</tr>
</tbody>
</table>

Sample Output
The following example displays vrrp information.

> show ip vrrp

<table>
<thead>
<tr>
<th>Interface</th>
<th>VRID</th>
<th>IP Address</th>
<th>Pri</th>
<th>Timer</th>
<th>State</th>
<th>Since</th>
</tr>
</thead>
<tbody>
<tr>
<td>boston</td>
<td>1</td>
<td>9.0.0.10</td>
<td>255</td>
<td>1</td>
<td>MASTER</td>
<td>09:42:13</td>
</tr>
</tbody>
</table>

Systems
Index

A

access list commands
- access-list ........................................ 406
- ip access-group .................................. 412
- ip access-list ..................................... 414
- ip acl-logging .................................... 415
- ip acl-logging logging-interval .................. 416
- show access-group ................................ 416
- show access-lists ................................ 417
- show acl-match-timer .............................. 418
- show ip access-lists ............................... 419
- access lists ....................................... 419
- display contents .................................. 417

accessing
- CLI .................................................. 30
- command modes .................................... 26

accessing command modes ................................ 26

access-list .......................................... 406

access-list-name .................................... 413

AFT commands
- clear aft instance invalid-learned-entries vlan .. 32
- clear aft instance learned-entries vlan .............. 33
- set aft auto-sizing-threshold ....................... 35
- set aft entry ...................................... 36
- set aft instance vlan (auto-increment) ............... 40
- set aft instance vlan (hash-table-size) .............. 41
- set aft super-agetime ................................ 42
- show aft config .................................... 43
- show aft entry ..................................... 44
- show aft instance ................................... 45
- appletalk access-group ............................ 48
- appletalk access-list .............................. 49
- appletalk address .................................. 51
- appletalk admin-state ............................. 52
- appletalk cable-range .............................. 53
- appletalk commands
- appletalk access-group ............................ 48
- appletalk access-list .............................. 49
- appletalk address .................................. 51
- appletalk admin-state ............................. 52
- appletalk cable-range .............................. 53
- appletalk echo ..................................... 54
- appletalk mac-format .............................. 55
- appletalk routing .................................. 56
- appletalk static cable-range ....................... 57
- appletalk vlan ...................................... 58
- appletalk zone ...................................... 59
- clear appletalk arp ................................ 60

appletalk commands, (continued)
- clear appletalk route .............................. 61
- clear appletalk traffic ............................ 62
- ping appletalk ..................................... 62
- show appletalk access-lists ....................... 63
- show appletalk arp ............................... 64
- show appletalk globals ............................ 65
- show appletalk interface ......................... 66
- show appletalk nbp ................................ 67
- show appletalk route .............................. 68
- show appletalk static cable-range ................. 69
- show appletalk traffic ............................ 70
- show appletalk zone .............................. 71
- appletalk echo ..................................... 54
- appletalk mac-format .............................. 55
- appletalk routing .................................. 56
- appletalk static cable-range ....................... 57
- appletalk vlan ...................................... 58
- appletalk zone ...................................... 59

B

basic functions
- help .................................................. 27

boot system flash .................................... 597

buffering commands
- set buffering fabric-port (age-timer) ............... 74
- set buffering fabric-port (hipri-alloc) ............. 75
- set buffering fabric-port (hipri-service-ratio) ........ 76
- set buffering fabric-port (priority threshold) ....... 77
- set buffering port (age-timer) ...................... 78
- set buffering port (hipri-allocation) ............... 79
- set buffering port (hipri-service-ratio) ............. 80
- set buffering port (pri-threshold) ................... 81
- show buffering fabric-port ......................... 82
- show buffering port ................................ 83
Index

C

Calendar commands
   calendar set ........................................... 599
   clock set ........................................... 603
   show calendar ........................................ 648
   show clock ........................................... 649
   calendar set ........................................... 599

CGMP
   viewing statistics ..................................... 174

CGMP snooping
   setting ................................................ 157

CGMP snooping statistics
   clearing .............................................. 148

Ciphers
   show ssl ciphers ...................................... 557
   clear aft instance invalid-learned-entries vlan .. 32
   clear aft instance learned-entries vlan .......... 33
   clear appltalk arp .................................. 60
   clear appltalk route ................................ 61
   clear appltalk traffic ................................ 62
   clear arp-cache ...................................... 191
   clear cgmp statistics ................................ 148
   clear igmp-snooping statistics ...................... 149
   clear intelligent-multicast client-port .......... 150
   clear intelligent-multicast router-port-vlan ... 151
   clear intelligent-multicast session ............... 152
   clear intelligent-multicast static-client-port .. 153
   clear intelligent-multicast static-session ...... 154
   clear ip route ........................................ 192
   clear ip x route ...................................... 267
   clear ip x service .................................... 268
   clear igmp client statistics ....................... 152, 155
   clear port counters .................................. 423
   clear ssh ............................................. 545
   clear tcp ............................................. 193
   clear temperatures ................................... 661
   clear utilization high-threshold .................... 600
   clear utilization monitoring ......................... 601
   clear utilization threshold-event ................... 602

Clearing
   CGMP snooping statistics ................................ 148
   LGMP client statistics ................................ 155

CLI
   accessing ............................................. 30
   client
      LGMP ............................................... 182
   client port pruning interval
      setting ............................................. 159
   client ports
      displaying .......................................... 176
   clients
      viewing ............................................. 180

Clock
   show time zone ....................................... 657

Clock commands
   calendar set .......................................... 599
   clock set ............................................. 603
   clock summer-time recurring ....................... 604
   clock timezone ....................................... 605
   show calendar ......................................... 648
   show clock ............................................ 649
   clock set ............................................. 603
   clock summer-time recurring ....................... 604
   clock timezone ....................................... 605
   command line history ................................ 29
   command mode summaries .............................. 25
   command syntax conventions ......................... 28
   commands .............................................. 29
   no form ................................................ 29

Configure
   UI command .......................................... 668

Connect
   UI command .......................................... 669, 671

Console commands
   set console baud ...................................... 86
   set console databits ................................ 87
   set console flowcontrol ............................. 88
   set console initcmd ................................ 89
   set console parity .................................. 90
   set console stopbits ................................ 91
   set console transfer ppp ............................ 92
   set console type ..................................... 93
   show console ......................................... 94
   copy (running-config) ................................ 607
   copy (startup-config) ................................ 608
   copy (tftp) ........................................... 609
   copy running-config ................................ 614
   copy running-config startup-config ............... 615
   copy running-config tftp ................................ 615
   copy startup-config ................................ 616
   copy startup-config running-config ............... 617
   copy startup-config tftp ............................. 618
   copy tftp ................................................................ 610, 611, 612, 613, 619, 622
   copy tftp bootflash ................................. 620, 637
   copy tftp flash ....................................... 621
   copy tftp running-config ............................. 623
   copy tftp startup-config ............................. 624
   cpu-redundancy console ................................ 625
   cpu-redundancy Hello-Interval ....................... 626
   cpu-redundancy mac-prefix ........................... 627
   creating
      management multicast router ports ............. 162
Index

**D**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daylight Savings Time</td>
<td>604</td>
</tr>
<tr>
<td>clock summer-time recurring</td>
<td></td>
</tr>
<tr>
<td>Debug mode</td>
<td>678</td>
</tr>
<tr>
<td>default metric</td>
<td>250</td>
</tr>
<tr>
<td>default-action-deny</td>
<td>413</td>
</tr>
<tr>
<td>default-route-mode</td>
<td>253</td>
</tr>
<tr>
<td>delete pcmcia</td>
<td>628</td>
</tr>
<tr>
<td>deleting</td>
<td></td>
</tr>
<tr>
<td>management multicast router ports</td>
<td>162</td>
</tr>
<tr>
<td>dir</td>
<td>629</td>
</tr>
<tr>
<td>disabling</td>
<td></td>
</tr>
<tr>
<td>client port pruning interval</td>
<td>159</td>
</tr>
<tr>
<td>intelligent multicast router pruning</td>
<td>163</td>
</tr>
<tr>
<td>intelligent multicasting</td>
<td>158</td>
</tr>
<tr>
<td>LGMP client</td>
<td>169</td>
</tr>
<tr>
<td>router pruning</td>
<td>163</td>
</tr>
<tr>
<td>session pruning</td>
<td>165</td>
</tr>
<tr>
<td>displaying</td>
<td></td>
</tr>
<tr>
<td>access list contents</td>
<td>417</td>
</tr>
<tr>
<td>CGMP statistics</td>
<td>174</td>
</tr>
<tr>
<td>client ports</td>
<td>176</td>
</tr>
<tr>
<td>global configuration</td>
<td>177</td>
</tr>
<tr>
<td>intelligent multicast sessions</td>
<td>179</td>
</tr>
<tr>
<td>IP access lists, contents of</td>
<td>419</td>
</tr>
<tr>
<td>management configured client ports</td>
<td>180</td>
</tr>
<tr>
<td>management configured sessions</td>
<td>181</td>
</tr>
<tr>
<td>module information</td>
<td>358</td>
</tr>
<tr>
<td>DVMRP</td>
<td></td>
</tr>
<tr>
<td>setting neighbor timeout interval</td>
<td>105</td>
</tr>
<tr>
<td>DVMRP commands</td>
<td>99</td>
</tr>
<tr>
<td>ip dvmrp</td>
<td>100</td>
</tr>
<tr>
<td>ip dvmrp interface type</td>
<td>102</td>
</tr>
<tr>
<td>ip dvrmr interface-metric</td>
<td>101</td>
</tr>
<tr>
<td>ip dvrmr min-route-flash-update</td>
<td>103</td>
</tr>
<tr>
<td>ip dvrmr neighbor-probe-interval</td>
<td>104</td>
</tr>
<tr>
<td>ip dvrmr neighbor-timeout</td>
<td>105</td>
</tr>
<tr>
<td>ip dvrmr prune-message-lifetime</td>
<td>106</td>
</tr>
<tr>
<td>ip dvrmr remote-tunnel-address</td>
<td>107</td>
</tr>
<tr>
<td>ip dvrmr route-limit</td>
<td>108</td>
</tr>
<tr>
<td>ip dvrmr stats-reset</td>
<td>109</td>
</tr>
<tr>
<td>ip dvrmr timers basic</td>
<td>110</td>
</tr>
<tr>
<td>ip multicast prune-source</td>
<td>111</td>
</tr>
<tr>
<td>ip multicast t tl-threshold</td>
<td>112</td>
</tr>
<tr>
<td>router dvmrp</td>
<td>113</td>
</tr>
<tr>
<td>show ip dvmrp</td>
<td>113</td>
</tr>
<tr>
<td>show ip dvmrp designated forwarders</td>
<td>115</td>
</tr>
<tr>
<td>show ip dvmrp downstream dependent routers</td>
<td>116</td>
</tr>
<tr>
<td>show ip dvrmr forwarding cache</td>
<td>117</td>
</tr>
<tr>
<td>show ip dvrmr interface</td>
<td>118</td>
</tr>
<tr>
<td>show ip dvrmr interface neighbors</td>
<td>119</td>
</tr>
<tr>
<td>show ip dvrmr routes</td>
<td>120</td>
</tr>
</tbody>
</table>

**E**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>672</td>
</tr>
<tr>
<td>UI commands</td>
<td></td>
</tr>
<tr>
<td>enabling</td>
<td></td>
</tr>
<tr>
<td>client port pruning interval</td>
<td>159</td>
</tr>
<tr>
<td>intelligent multicast router pruning</td>
<td>163</td>
</tr>
<tr>
<td>intelligent multicasting</td>
<td>158</td>
</tr>
<tr>
<td>LGMP client</td>
<td>169</td>
</tr>
<tr>
<td>router pruning</td>
<td>163</td>
</tr>
<tr>
<td>session pruning</td>
<td>165</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>UI command</td>
<td>674</td>
</tr>
<tr>
<td>erase</td>
<td>630</td>
</tr>
<tr>
<td>erase legacy-configs</td>
<td>631</td>
</tr>
<tr>
<td>erase scripts</td>
<td>631</td>
</tr>
<tr>
<td>erase startup-config</td>
<td>632</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>UI command</td>
<td>674</td>
</tr>
<tr>
<td>exiting</td>
<td></td>
</tr>
<tr>
<td>command modes</td>
<td>26</td>
</tr>
</tbody>
</table>

**G**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>global configuration</td>
<td>177</td>
</tr>
<tr>
<td>viewing</td>
<td></td>
</tr>
</tbody>
</table>

**H**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td></td>
</tr>
<tr>
<td>basic functions</td>
<td>27</td>
</tr>
<tr>
<td>UI command</td>
<td>674</td>
</tr>
<tr>
<td>hostname</td>
<td>635</td>
</tr>
<tr>
<td>hunt commands</td>
<td></td>
</tr>
<tr>
<td>set huntgroup</td>
<td>121</td>
</tr>
<tr>
<td>set huntgroup (redistribute)</td>
<td>124</td>
</tr>
<tr>
<td>show huntgroup</td>
<td>127</td>
</tr>
<tr>
<td>hunt group commands</td>
<td></td>
</tr>
<tr>
<td>set huntgroup (redistribute)</td>
<td>126</td>
</tr>
<tr>
<td>set huntgroup auto-flush</td>
<td>122</td>
</tr>
</tbody>
</table>

**I**

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP commands</td>
<td></td>
</tr>
<tr>
<td>ip igmp</td>
<td>130</td>
</tr>
<tr>
<td>ip igmp max-groups</td>
<td>131</td>
</tr>
<tr>
<td>ip igmp process-leaves</td>
<td>132</td>
</tr>
<tr>
<td>ip igmp querier</td>
<td>133</td>
</tr>
<tr>
<td>ip igmp query-interval</td>
<td>134</td>
</tr>
<tr>
<td>ip igmp query-max-response-time</td>
<td>135</td>
</tr>
<tr>
<td>ip igmp query-time-out</td>
<td>136</td>
</tr>
<tr>
<td>ip igmp robustness</td>
<td>137</td>
</tr>
<tr>
<td>ip igmp version</td>
<td>138</td>
</tr>
</tbody>
</table>
Index

IPX commands, (continued)
   ipx send-triggered-updates ............... 294
   ipx service ................................ 295
   ipx type-20-propagation .......... 296
   ipx update interval ................. 297
   ipx vlan .................................. 298
   show ipx cache ........................ 299
   show ipx interface ...................... 300
   show ipx rip statistics .......... 301
   show ipx rip-filter ..................... 301
   show ipx route ......................... 302
   show ipx sap statistics .......... 303
   show ipx sap-name-filter .......... 304
   show ipx sap-network-filter .......... 304
   show ipx services ..................... 305
   show ipx traffic ....................... 306
   ipx default-route ..................... 270
   ipx delay .................................. 271
   ipx down .................................. 272
   ipx gns-reply-disable .......... 273, 274
   ipx network .................................. 275
   ipx output-rip-delay .................. 276
   ipx output-sap-delay .................. 277
   ipx rip .................................. 278
   ipx rip-filter ......................... 279
   ipx rip-max-packetsize .............. 281
   ipx rip-multiplier .................... 282
   ipx route ................................ 283
   ipx route-cache aging ............... 284
   ipx route-cache hash-mode .......... 285
   ipx route-cache max-size ........... 286
   ipx route-cache update-timeout . 287
   ipx router ................................ 288
   ipx routing ................................ 289
   ipx sap .................................. 290
   ipx sap-max-packetsize .............. 291
   ipx sap-multiplier .................... 292
   ipx sap-name-filter ................... 293
   ipx sap-network-filter .............. 294
   ipx send-receive-mode ............... 295
   ipx send-triggered-updates .......... 296
   ipx update interval ................... 297
   ipx vlan .................................. 298

L3 Cache commands, (continued)
   ip unicast route-cache max-size .......... 315
   ip unicast route-cache update-timeout .......... 316
   ipx route-cache aging ............... 317
   ipx route-cache hash-mode .......... 318
   ipx route-cache max-size .......... 319
   ipx route-cache update-timeout .......... 320
   show ip multicast cache .......... 321
   show ip unicast cache .......... 322, 323

L3 cache commands
   ip multicast route-cache hash-depth .......... 309

L3 MCAST commands
   clear igmp-snooping statistics .......... 149
   clear lgmp client statistics .......... 152
   set igmp-snooping ..................... 157
   set lgmp server ....................... 159
   set lgmp server priority ............... 170
   set lgmp server proxy .................. 171
   set lgmp server robust-variable .......... 173
   set lgmp server router-report-time .......... 172
   show igmp-snooping statistics .......... 175
   show lgmp server ...................... 184

LDAP commands
   ldap search-base ................................. 326, 514
   ldap server secondary ..................... 328, 516
   ldap server-primary ...................... 327, 515
   show ldap .................................................. 98, 329, 517, 518
   ldap search-base ................................. 326, 514
   ldap server secondary ..................... 328, 516
   ldap server-primary ...................... 327, 515
   learned client ports
     removing from intelligent multicasting .......... 150
   learned session
     removing from intelligent multicasting .......... 152
   length
     UI command ........................................ 675

LGMP
   viewing client statistics ..................... 182
   viewing server configuration ..................... 182

LGMP client
   disabling ........................................ 169
   enabling ........................................ 169

LGMP client statistics
   clearing ........................................ 155

logging clear ........................................ 332

Logging commands
   logging clear ........................................ 332
   logging console .................................. 333
   logging history ................................ 335
   logging history size .......................... 338
   logging protocol event ...................... 339
   logging shutdown size ...................... 341
   logging traps .................................. 342
   show alarms .................................. 349
   show logging .................................. 350
logging console .......................... 333
logging history .......................... 355
logging history size .......................... 338
logging protocol event ......................... 339
logging shutdown size ......................... 341
logging traps .......................... 342

M
management client ports
  removing from intelligent multicasting ...... 153
management configured client ports
  displaying .................................. 180
management configured sessions
  viewing ......................................... 181
management multicast router ports
  creating ..................................... 162
  deleting ..................................... 162
management ports
  removing from intelligent multicasting .... 151
management sessions
  globally removing from intelligent multicasting .... 154
MCAST commands
  clear cgmp statistics ......................... 148
  clear intelligent-multicast client-port .......... 150
  clear intelligent-multicast router-port-vlan ...... 151
  clear intelligent-multicast session .............. 152
  clear intelligent-multicast static-client-port .... 153
  clear intelligent-multicast static-session ....... 154
  clear lgmp client statistics ................... 155
  set cgmp ................................. 157
  set intelligent-multicast ...................... 158
  set intelligent-multicast client-port-pruning .... 160
  set intelligent-multicast client-port-pruning-time ..... 161
  set intelligent-multicast router-port-vlan ........ 174
  set intelligent-multicast router-port-pruning ...... 162
  set intelligent-multicast router-port-pruning-time .. 164
  set intelligent-multicast session-pruning .......... 165
  set intelligent-multicast session-pruning-time ...... 166
  set intelligent-multicast static-client-port ....... 167
  set intelligent-multicast static-session ........... 168
  set lgmp client ............................ 169
  show cgmp statistics ........................ 174
  show intelligent-multicast client-port .......... 176
  show intelligent-multicast configuration ........... 177
  show intelligent-multicast router-port ............. 178
  show intelligent-multicast session ............... 179
  show intelligent-multicast static-client .......... 180
  show intelligent-multicast static-session ......... 181
  show lgmp client ............................ 182
mod-name .................................. 356
mod-notes .................................. 357
mod-num .................................. 356

module
  displaying information ....................... 358
  notes, setting ................................ 357
  setting name ................................ 356
module commands
  set module name ................................ 356
  set module notes ................................ 357
  show module .................................. 358
module name
  setting ........................................ 356
mtrace .................................... 140, 141
multicast router
  creating on specific VLANs ..................... 162
multicast router port
  removing from configuration .................... 163
multicast session
  dynamically learned .......................... 152
  removing from configuration .................... 165
  statically created .......................... 152

N
name
  module, setting ................................ 356
neighbor
  IP-RIP command ................................ 670
network
  IP-RIP command ................................ 258
network area .................................... 394, 395
  no form ....................................... 29
  no network area ................................ 394, 395
notes
  setting module ................................ 357
  notes page .................................... 357
  nvram initialize ................................ 637

O
OSPF commands
  area ............................................ 370
  area as-filter ................................ 371
  area default-cost ................................ 372
  area nssa ....................................... 373
  area range ..................................... 374
  area stub ....................................... 375
  area translate-nssa-to-external ..................... 376
  area virtual-link ................................ 377
  interface ....................................... 194
  ip ospf as-boundary router ..................... 379
  ip ospf authentication-key ..................... 380
  ip ospf auto-vlink-create ....................... 381
  ip ospf cost .................................... 382
  ip ospf dead-interval .......................... 383
  ip ospf ext-route-metric ......................... 384
  ip ospf hello-interval ......................... 385

Index
## Index

### OSPF commands, (continued)
- `ip ospf max-paths` .................................................. 386
- `ip ospf message-digest-key md5` ................................. 387
- `ip ospf packet tracing` ............................................. 388
- `ip ospf reset-stats` ................................................. 390
- `ip ospf retransmit-interval` ...................................... 389
- `ip ospf router-id` .................................................. 391
- `ip ospf transmit-delay` ............................................ 393
- `network area` ....................................................... 394
- `router ospf` .......................................................... 395
- `show ip ospf` ........................................................ 396
- `show ip ospf database` ............................................. 397
- `show ip ospf interface` ............................................ 398
- `show ip ospf neighbor` ............................................ 400
- `show ip ospf virtual-links` ........................................ 402
- `timers lsa-group-pacing` ........................................ 403
- `timers sf` ............................................................ 404

### Port commands
- `output delay` .......................................................... 421
- `IP-RIP command` .................................................... 259

### Policy commands
- `ip access-list` ........................................................ 414
- `show access-list` .................................................... 417
- `show access-lists` .................................................. 417
- `show ip access-lists` .............................................. 419

### Power Cool RAM commands
- `show system fans` ................................................... 475
- `show system power` ................................................ 476
- `show system ram` .................................................... 477

### R

### Rapid Spanning Tree commands
- `set port edge admin state` ....................................... 435
- `set port point-to-point admin status` ......................... 453
- `set port spanning-tree-mode` .................................... 566
- `set port spantree force-protocol-migration` .................. 567
- `set port spantree priority` ...................................... 568
- `set spantree` ........................................................ 570
- `set spantree config` .............................................. 571
- `set spantree default-path-cost` ................................ 572
- `set spantree fwwdelay` .......................................... 574
- `set spantree hello` ................................................. 575
- `set spantree hold-count` ......................................... 577
- `set spantree maxage` ............................................. 578
- `set spantree portcost` ............................................ 580
- `set spantree priority` ............................................ 582
- `set spantree version` ............................................. 583
- `show spantree` ........................................................ 584
- `show spantree blocked` ........................................... 586
- `show spantree config` ............................................ 587
- `show spantree port` ............................................... 588
- `show spantree version` .......................................... 590
- `receive version` .................................................. 255
- `redistribute` ....................................................... 234
- `reload` ................................................................ 638
- `removing` ............................................................. 639
- `multicast router ports` ........................................... 163
- `multicast sessions` ................................................ 165
- `reset` ................................................................ 639
- `router dvmrp` ........................................................ 113
- `router igmp` ........................................................... 142
- `router ospf` ............................................................ 396
- `router pruning` ....................................................... 163
- `disabling` ............................................................... 163
- `enabling` ................................................................ 163
- `router rip` ............................................................... 260
- `IP-RIP command` .................................................... 260
- `router vrrp` ............................................................ 707
- `router-DVMRP` ......................................................... 103

### S

### search criteria
- for viewing intelligent multicast sessions ................. 179

### Secure Mode
- `secure-mode` .......................................................... 639
- `show secure-mode` .................................................. 655
- `secure-mode` .......................................................... 639
show temperature ........................................ 665
show time zone ........................................... 657
show udp statistics ........................................ 248
show username ............................................. 683
show utilization results .................................... 658
show utilization settings ................................... 659
show version .................................................. 660
show vtp-snooping configuration .......................... 706
SNMP commands
  hostname ................................................... 315
  ip igmp query-max-response-time ......................... 136
  show snmp notify-user ..................................... 541
  snmp-server notify user ................................... 534
snooping
  CGMP .......................................................... 157
snooping statistics
  clearing CGMP .............................................. 148
SNTP
  show sntp ..................................................... 655
Spanning Tree commands
  set port edge admin state .................................. 435, 564
  set port point-to-point admin status ..................... 453, 565
  set port spanning-tree-mode ................................ 566
  set port span-tree force-protocol-migration ............... 567
  set port span-tree priority ................................ 568
  set span-tree ................................................. 570
  set span-tree default-path-cost ......................... 571
  set span-tree fwwdelay ...................................... 574
  set span-tree hello .......................................... 575
  set span-tree hold-count .................................... 577
  set span-tree maxage ........................................ 578
  set span-tree portcost ...................................... 580
  set span-tree priority ...................................... 582
  set span-tree version ...................................... 583
  show span-tree .............................................. 584
  show span-tree blocked ..................................... 586
  show span-tree config ....................................... 587
  show span-tree port ......................................... 588
  show span-tree version ..................................... 590
ssh ............................................................. 547
SSH commands
  clear ssh .................................................... 545
  ip ssh ........................................................ 546
  show ssh ...................................................... 550
  ssh ........................................................... 547
  ssh keygen .................................................. 548
  ssh timeout ................................................ 549
  ssh keygen .................................................. 548
  ssh timeout ................................................ 549
  ssl backcert ............................................... 559
  ssl certreq ................................................ 559
  ssl restart ................................................ 560
  ssl selfcert ............................................... 561
SSL/HTTPS commands
  ip https ...................................................... 553
  show ssl cert ................................................ 554
  show ssl certreq ............................................ 556
  show ssl ciphers ............................................ 557
  show ssl config ............................................. 557, 558
  ssl backcert ............................................... 559
  ssl certreq ................................................ 559
  ssl restart ................................................ 560
  ssl selfcert ............................................... 561
static client ports
  removing from intelligent multicast ...................... 153
static session .............................................. 180
statistics
  LGMP client ................................................... 155
  udp ............................................................ 248
  viewing CGMP ............................................... 174
  viewing LGMP .................................................. 182
Switch Fab commands
  set fabric configure-redundant-hardware .................. 591
  set fabric enable-redundant-element ....................... 592
  set fabric toggle-active-controller ....................... 593
  show fabric status ......................................... 594
Switch IP commands
  show arp ...................................................... 236
  show ip route ................................................ 362
System commands
  boot system flash ........................................... 597
  copy (running-config) ...................................... 607
  copy (startup-config) ...................................... 608
  copy (ftp) .................................................... 609
  copy running-config ....................................... 614
  copy running-config startup-config ....................... 615
  copy running-config tftp ................................... 615
  copy startup-config ....................................... 616
  copy startup-config running-config ....................... 617
  copy startup-config tftp ................................... 618
  copy tftp ..................................................... 620, 621
  copy tftp bootflash ........................................ 620, 637
  copy tftp flash .............................................. 621
  copy tftp running-config ................................... 623
  copy tftp startup-config ................................... 624
dir ............................................................. 629
erase ........................................................ 630
erase legacy-configs ........................................ 631
erase scripts ............................................... 631
erase startup-config ........................................ 632
ip http help server ......................................... 636
nvram initialize ............................................. 637
reload ........................................................ 638
reset .......................................................... 639
setup ........................................................ 646
show boot ..................................................... 647, 650, 651
show file_name ............................................... 652

Index
Index

System commands, (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show flash</td>
<td>653</td>
</tr>
<tr>
<td>show running-config</td>
<td>654</td>
</tr>
<tr>
<td>show startup-config</td>
<td>656</td>
</tr>
<tr>
<td>show version</td>
<td>660</td>
</tr>
</tbody>
</table>

T

TCP

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear TCP</td>
<td>193</td>
</tr>
<tr>
<td>tcp connections</td>
<td>246</td>
</tr>
<tr>
<td>telnet</td>
<td>685</td>
</tr>
</tbody>
</table>

Temperatures commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear temperatures</td>
<td>661</td>
</tr>
<tr>
<td>set temperature (shutdown)</td>
<td>662</td>
</tr>
<tr>
<td>set temperature (warning)</td>
<td>663</td>
</tr>
<tr>
<td>show temperature</td>
<td>665</td>
</tr>
</tbody>
</table>

terminal databits

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI commands</td>
<td>686</td>
</tr>
<tr>
<td>terminal flowcontrol</td>
<td>687</td>
</tr>
<tr>
<td>terminal length</td>
<td>688</td>
</tr>
<tr>
<td>terminal output pause</td>
<td>689</td>
</tr>
<tr>
<td>terminal parity</td>
<td>690</td>
</tr>
<tr>
<td>terminal speed</td>
<td>691</td>
</tr>
<tr>
<td>terminal stopbits</td>
<td>692</td>
</tr>
<tr>
<td>terminal width</td>
<td>693</td>
</tr>
</tbody>
</table>

Time zone commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>clock timezone</td>
<td>605</td>
</tr>
</tbody>
</table>

Time zones

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show time zone</td>
<td>657</td>
</tr>
</tbody>
</table>

timer

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>lsa-group-pacing</td>
<td>403</td>
</tr>
<tr>
<td>spf</td>
<td>404</td>
</tr>
</tbody>
</table>

Timers basic

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP-RIP command</td>
<td>262</td>
</tr>
</tbody>
</table>

triggered update

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP-RIP command</td>
<td>263</td>
</tr>
</tbody>
</table>

U

udp statistics

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI commands</td>
<td>248</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td>668</td>
</tr>
<tr>
<td>connect</td>
<td>669, 671</td>
</tr>
<tr>
<td>enable</td>
<td>672</td>
</tr>
<tr>
<td>exit</td>
<td>673</td>
</tr>
<tr>
<td>help</td>
<td>674</td>
</tr>
<tr>
<td>length</td>
<td>674</td>
</tr>
<tr>
<td>show history</td>
<td>675</td>
</tr>
<tr>
<td>show history</td>
<td>677, 681</td>
</tr>
<tr>
<td>show sessions</td>
<td>683</td>
</tr>
</tbody>
</table>

UI commands, (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>telnet</td>
<td>685</td>
</tr>
<tr>
<td>terminal databits</td>
<td>686</td>
</tr>
<tr>
<td>terminal flowcontrol</td>
<td>687</td>
</tr>
<tr>
<td>terminal length</td>
<td>688</td>
</tr>
<tr>
<td>terminal output pause</td>
<td>689</td>
</tr>
<tr>
<td>terminal parity</td>
<td>690</td>
</tr>
<tr>
<td>terminal speed</td>
<td>691</td>
</tr>
<tr>
<td>terminal stopbits</td>
<td>692</td>
</tr>
<tr>
<td>terminal width</td>
<td>693</td>
</tr>
</tbody>
</table>

User accounts

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create</td>
<td>694</td>
</tr>
<tr>
<td>Disable</td>
<td>694</td>
</tr>
<tr>
<td>Expiration</td>
<td>694</td>
</tr>
<tr>
<td>password</td>
<td>676</td>
</tr>
<tr>
<td>set login</td>
<td>679</td>
</tr>
<tr>
<td>show login</td>
<td>682</td>
</tr>
<tr>
<td>show username</td>
<td>683</td>
</tr>
<tr>
<td>username</td>
<td>694</td>
</tr>
</tbody>
</table>

V

VLANs

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>creating multicast routers on</td>
<td>162</td>
</tr>
</tbody>
</table>

VLANs

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>set vlan</td>
<td>699</td>
</tr>
<tr>
<td>set vlan (frame format)</td>
<td>700</td>
</tr>
<tr>
<td>set vtp-snooping</td>
<td>701</td>
</tr>
<tr>
<td>set vtp-snooping domain</td>
<td>703</td>
</tr>
<tr>
<td>show vlan detailed</td>
<td>705</td>
</tr>
<tr>
<td>show vtp-snooping configuration</td>
<td>706</td>
</tr>
<tr>
<td>vlan detailed</td>
<td>705</td>
</tr>
</tbody>
</table>
VRRP commands

- ip vrrp .................................................. 708, 709
- ip vrrp (auth-key) ................................. 710, 712
- ip vrrp (priority) .............................. 712
- ip vrrp (timer) ........................................ 714
- router vrrp ........................................ 707
- show ip vrrp ........................................ 715
- vtp-snooping ........................................ 701
- vtp-snooping domain ......................... 703

W

width

- UI command ........................................ 696